
TMS320C6000
CPU and Instruction Set

Reference Guide

Literature Number: SPRU189F
October 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

This reference guide describes the CPU architecture, pipeline, instruction set,
and interrupts for the TMS320C6000 digital signal processors (DSPs). Un-
less otherwise specified, all references to the C6000 refer to the
TMS320C6000 platform of DSPs: C62x refers to the TMS320C62x fixed-
point DSPs in the C6000 platform, C64x refers to the TMS320C64x fixed-
point DSPs in the C6000 platform, and C67x refers to the TMS320C67x

floating-point DSPs in the C6000 platform.

How to Use This Manual

Use this manual as a reference for the architecture of the TMS320C6000 CPU.
First-time readers should read Chapter 1 for general information about TI
DSPs, the features of the C6000, and the applications for which the C6000 is
best suited.

Read Chapters 2, 6, 7, and 8 to grasp the concepts of the architecture. Chap-
ter 3, Chapter 4, and Chapter 5 contain detailed information about each in-
struction and are best used as reference material. However, you may want to
read sections 3.1 through 3.9, sections 4.1 through 4.6, and sections 5.1
through 5.8 for general information about the instruction set and to understand
the instruction descriptions. Then browse through Chapter 3, Chapter 4, and
Chapter 5 to familiarize yourself with the instructions.

How to Use This Manual

iv

The following table gives chapter references for specific information:

If you are looking for
information about: Turn to these chapters:

Addressing modes Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C64x Fixed-Point
Instruction Set

Conditional operations Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C64x Fixed-Point
Instruction Set

Control registers Chapter 2, CPU Data Paths and Control

CPU architecture and data
paths

Chapter 2, CPU Data Paths and Control

Delay slots Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C64x Fixed-Point
Instruction Set

Chapter 6, TMS320C62x/C64x Pipeline

Chapter 7, TMS320C67x Pipeline

General-purpose register files Chapter 2, CPU Data Paths and Control

Instruction set Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C64x Fixed-Point
Instruction Set

Interrupts and control registers Chapter 8, Interrupts

How to Use This Manual

Notational Conventions

vRead This First

Parallel operations Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C64x Fixed-Point
Instruction Set

Pipeline phases and operation Chapter 6, TMS320C62x/C64x Pipeline

Chapter 7, TMS320C67x Pipeline

Reset Chapter 8, Interrupts

If you are interested in topics that are not listed here, check Related Docu-
mentation From Texas Instruments, on page vi, for brief descriptions of oth-
er C6x-related books that are available.

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special font .
Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� To help you easily recognize instructions and parameters throughout the
book, instructions are in bold face and parameters are in italics (except
in program listings).

� In instruction syntaxes, portions of a syntax that are in bold should be en-
tered as shown; portions of a syntax that are in italics describe the type of
information that should be entered. Here is an example of an instruction:

MPY src1,src2,dst

MPY is the instruction mnemonic. When you use MPY, you must supply
two source operands (src1 and src2) and a destination operand (dst) of
appropriate types as defined in Chapter 3, TMS320C62x/C64x/C67x
Fixed-Point Instruction Set.

Although the instruction mnemonic (MPY in this example) is in capital let-
ters, the C6x assembler is not case sensitive — it can assemble mnemon-
ics entered in either upper or lower case.

Related Documentation From Texas Instruments

vi

� Square brackets, [and], and parentheses, (and), are used to identify op-
tional items. If you use an optional item, you must specify the information
within brackets or parentheses; however, you do not enter the brackets or
parentheses themselves. Here is an example of an instruction that has op-
tional items.

[label] EXTU (.unit) src2, csta, cstb, dst

The EXTU instruction is shown with a label and several parameters. The
[label] and the parameter (.unit) are optional. The parameters src2, csta,
cstb, and dst are not optional.

� Throughout this book MSB means most significant bit and LSB means
least significant bit.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x generation and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C64x Technical Overview (literature number SPRU395) gives an
introduction to the C64x digital signal processor, and discusses the ap-
plication areas that are enhanced by the C64x VelociTI.2 extensions to
the C62x/C67x architecture.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMs320C6202 Digital Signal Processor Data Sheet (literature number
SPRS072) describes the features of the TMS320C6202 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6203 Digital Signal Processor Data Sheet (literature number
SPRS086) describes the features of the TMS320C6203 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6211 Digital Signal Processor Data Sheet (literature number
SPRS073) describes the features of the TMS320C6211 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

Related Documentation From Texas Instruments

viiRead This First

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6711 Digital Signal Processor Data Sheet (literature number
SPRS088) describes the features of the TMS320C6711 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), enhanced direct memory
access (EDMA), expansion bus (XBUS), clocking and phase-locked
loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198) de-
scribes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

TMS320C6x Peripheral Support Library Programmer’s Reference (litera-
ture number SPRU273) describes the contents of the ’C6x peripheral
support library of functions and macros. It lists functions and macros both
by header file and alphabetically, provides a complete description of
each, and gives code examples to show how they are used.

Trademarks

viii

TMS320C6x C Source Debugger User’s Guide (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C6x Evaluation Module Reference Guide (literature number
SPRU269) provides instructions for installing and operating the ’C6x
evaluation module. It also includes support software documentation,
application programming interfaces, and technical reference material.

TMS320C62x Multichannel Evaluation Module User’s Guide (literature
number SPRU285) provides instructions for installing and operating the
’C62x multichannel evaluation module. It also includes support software
documentation, application programming interfaces, and technical
reference material.

TMS320C62x Multichannel Evaluation Module Technical Reference
(SPRU308) provides provides technical reference information for the
’C62x multichannel evaluation module (McEVM). It includes support
software documentation, application programming interface references,
and hardware descriptions for the ’C62x McEVM.

TMS320C6201/6701 Evaluation Module Technical Reference (SPRU305)
provides provides technical information that describes the ’C6x
evaluation module functionality. It includes a description of host software
utilities and a complete application programming interface reference.

TMS320C6000 DSP/BIOS User’s Guide (literature number SPRU303)
describes how to use DSP/BIOS tools and APIs to analyze embedded
real-time DSP applications.

TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated
development environment and software tools for the TMS320C6000.

Trademarks

XDS510, VelociTI, and 320 Hotline On-line are trademarks of Texas Instru-
ments. All of the digital signal processors within the TMS320 family are trade-
marks of Texas Instruments.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

Read This First

Contents

ix

Contents

1 Introduction 1-1.
Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C62xx DSP and lists its key features.

1.1 TMS320 Family Overview 1-2.
1.1.1 History of TMS320 DSPs 1-2.
1.1.2 Typical Applications for the TMS320 Family 1-2.

1.2 Overview of the TMS320C6x Generation of Digital Signal Processors 1-4.
1.3 Features and Options of the TMS320C62x/C64x/C67x 1-5.
1.4 TMS320C62x/C64x/C67x Architecture 1-7.

1.4.1 Central Processing Unit (CPU) 1-8.
1.4.2 Internal Memory 1-8.
1.4.3 Memory and Peripheral Options 1-9.

2 CPU Data Paths and Control 2-1.
Summarizes the TMS320C62x/C64x/C67x architecture and describes the primary compo-
nents of the CPU.

2.1 General-Purpose Register Files 2-5.
2.2 Functional Units 2-7.
2.3 Register File Cross Paths 2-10.
2.4 Memory, Load, and Store Paths 2-11.
2.5 Data Address Paths 2-12.
2.6 TMS320C6000 Control Register File 2-13.

2.6.1 Pipeline/Timing of Control Register Accesses 2-14.
2.6.2 Addressing Mode Register (AMR) 2-14.
2.6.3 Control Status Register (CSR) 2-17.
2.6.4 E1 Phase Program Counter (PCE1) 2-19.

2.7 TMS320C67x Control Register File Extensions 2-20.
2.7.1 Floating-Point Adder Configuration Register (FADCR) 2-20.
2.7.2 Floating-Point Auxiliary Configuration Register (FAUCR) 2-22.
2.7.3 Floating-Point Multiplier Configuration Register (FMCR) 2-24.

2.8 TMS320C64x Control Register File Extensions 2-26.
2.8.1 Galois Field 2-26.
2.8.2 Special Timing Considerations 2-29.

2.9 Summary of TMS320C64x Architecture Key Extensions 2-30.

Contents

x

3 TMS320C62x/C64x/C67x Fixed-Point Instruction Set 3-1.
Describes the assembly language instructions that are common to both the TMS320C62x,
TMS320C64x, and TMS320C67x, including examples of each instruction. Provides informa-
tion about addressing modes, resource constraints, parallel operations, and conditional opera-
tions.

3.1 Instruction Operation and Execution Notations 3-2.
3.2 Mapping Between Instructions and Functional Units 3-4.
3.3 TMS320C62x/C64x/C67x Opcode Map 3-9.
3.4 Delay Slots 3-12.
3.5 Parallel Operations 3-13.

3.5.1 Example Parallel Code 3-15.
3.5.2 Branching Into the Middle of an Execute Packet 3-15.

3.6 Conditional Operations 3-16.
3.7 Resource Constraints 3-17.

3.7.1 Constraints on Instructions Using the Same Functional Unit 3-17.
3.7.2 Constraints on Cross Paths (1X and 2X) 3-17.
3.7.3 Constraints on Loads and Stores 3-18.
3.7.4 Constraints on Long (40-Bit) Data 3-18.
3.7.5 Constraints on Register Reads 3-19.
3.7.6 Constraints on Register Writes 3-19.

3.8 Addressing Modes 3-21.
3.8.1 Linear Addressing Mode 3-21.
3.8.2 Circular Addressing Mode 3-21.
3.8.3 Syntax for Load/Store Address Generation 3-23.

3.9 Individual Instruction Descriptions 3-24.

4 TMS320C67x Floating-Point Instruction Set 4-1.
Describes the TMS320C67x floating-point instruction set, including examples of each instruc-
tion. Provides information about addressing modes and resource constraints.

4.1 Instruction Operation and Execution Notations 4-2.
4.2 Mapping Between Instructions and Functional Units 4-4.
4.3 Overview of IEEE Standard Single- and Double-Precision Formats 4-6.
4.4 Delay Slots 4-11.
4.5 TMS320C67x Instruction Constraints 4-12.
4.6 Individual Instruction Descriptions 4-15.

Contents

xiContents

5 TMS320C64x Fixed-Point Instruction Set 5-1.
Describes the TMS320C64x fixed-point instruction set, including examples of each instruction..
Provides information about addressing modes and resource constraints.

5.1 Instruction Operation and Execution Notations 5-2.
5.2 Mapping Between Instructions and Functional Units 5-5.
5.3 TMS320C64x Opcode Map Symbols 5-10.
5.4 Delay Slots 5-11.
5.5 Conditional Operations 5-12.
5.6 Resource Constraints 5-13.

5.6.1 Constraints on Cross Paths (1X and 2X) 5-13.
5.6.2 Cross Path Stalls 5-14.
5.6.3 Constraints on Loads and Stores 5-14.
5.6.4 Constraints on Long (40-Bit) Data 5-15.

5.7 Addressing Modes 5-18.
5.7.1 Linear Addressing Mode 5-18.
5.7.2 Circular Addressing Mode 5-18.

5.8 Individual Instruction Descriptions 5-22.

6 TMS320C62x/C64x Pipeline 6-1.
Describes phases, operation, and discontinuities for the TMS320C62x/C64x CPU pipeline.

6.1 Pipeline Operation Overview 6-2.
6.1.1 Fetch 6-2.
6.1.2 Decode 6-4.
6.1.3 Execute 6-5.
6.1.4 Summary of Pipeline Operation 6-7.

6.2 Pipeline Execution of Instruction Types 6-14.
6.2.1 Single-Cycle Instructions 6-15.
6.2.2 Two-Cycle Instructions and C64x Non-multiply .M Unit Operations 6-15.
6.2.3 Store Instructions 6-16.
6.2.4 Extended Multiply Instructions 6-18.
6.2.5 Load Instructions 6-18.
6.2.6 Branch Instructions 6-20.

6.3 Performance Considerations 6-21.
6.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 6-21.
6.3.2 Multicycle NOPs 6-23.
6.3.3 Memory Considerations 6-25.

Contents

xii

7 TMS320C67x Pipeline 7-1.
Describes phases, operation, and discontinuities for the TMS320C67x CPU pipeline.

7.1 Pipeline Operation Overview 7-2.
7.1.1 Fetch 7-2.
7.1.2 Decode 7-4.
7.1.3 Execute 7-5.
7.1.4 Summary of Pipeline Operation 7-6.

7.2 Pipeline Execution of Instruction Types 7-13.
7.3 Functional Unit Constraints 7-20.

7.3.1 .S-Unit Constraints 7-21.
7.3.2 .M-Unit Constraints 7-25.
7.3.3 .L-Unit Constraints 7-30.
7.3.4 D-Unit Instruction Constraints 7-34.
7.3.5 Single-Cycle Instructions 7-38.
7.3.6 16 X 16-Bit Multiply Instructions 7-39.
7.3.7 Store Instructions 7-40.
7.3.8 Load Instructions 7-42.
7.3.9 Branch Instructions 7-44.
7.3.10 2-Cycle DP Instructions 7-46.
7.3.11 4-Cycle Instructions 7-47.
7.3.12 INTDP Instruction 7-47.
7.3.13 DP Compare Instructions 7-48.
7.3.14 ADDDP/SUBDP Instructions 7-49.
7.3.15 MPYI Instructions 7-50.
7.3.16 MPYID Instructions 7-50.
7.3.17 MPYDP Instructions 7-51.

7.4 Performance Considerations 7-52.
7.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 7-52.
7.4.2 Multicycle NOPs 7-54.
7.4.3 Memory Considerations 7-56.

8 Interrupts 8-1.
Describes the TMS320C6000 interrupts, including reset and nonmaskable interrupts (NMI),
and explains interrupt control, detection, and processing.

8.1 Overview of Interrupts 8-2.
8.1.1 Types of Interrupts and Signals Used 8-2.
8.1.2 Interrupt Service Table (IST) 8-5.
8.1.3 Summary of Interrupt Control Registers 8-10.

8.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR) 8-11.

8.3 Individual Interrupt Control 8-13.
8.3.1 Enabling and Disabling Interrupts (Interrupt Enable Register – IER) 8-13.
8.3.2 Status of, Setting, and Clearing Interrupts

(Interrupt Flag, Set, and Clear Registers–IFR, ISR, ICR) 8-14.
8.3.3 Returning From Interrupt Servicing 8-16.

Contents

xiiiContents

8.4 Interrupt Detection and Processing 8-18.
8.4.1 Setting the Nonreset Interrupt Flag 8-18.
8.4.2 Conditions for Processing a Nonreset Interrupt 8-18.
8.4.3 Actions Taken During Nonreset Interrupt Processing 8-21.
8.4.4 Setting the RESET Interrupt Flag for the TMS320C6000 8-22.
8.4.5 Actions Taken During RESET Interrupt Processing 8-23.

8.5 Performance Considerations 8-24.
8.5.1 General Performance 8-24.
8.5.2 Pipeline Interaction 8-24.

8.6 Programming Considerations 8-25.
8.6.1 Single Assignment Programming 8-25.
8.6.2 Nested Interrupts 8-26.
8.6.3 Manual Interrupt Processing 8-26.
8.6.4 Traps 8-27.

A Glossary A-1.
Defines terms and abbreviations used throughout this book.

Figures

xiv

Figures

1–1 TMS320C62x/C64x/C67x Block Diagram 1-7.
2–1 TMS320C62x CPU Data Paths 2-2.
2–2 TMS320C67x CPU Data Paths 2-3.
2–3 TMS320C64x CPU Data Path 2-4.
2–4 Storage Scheme for 40-Bit Data in a Register Pair 2-6.
2–5 Addressing Mode Register (AMR) 2-15.
2–6 Control Status Register (CSR) 2-17.
2–7 E1 Phase Program Counter (PCE1) 2-19.
2–8 Floating-Point Adder Configuration Register (FADCR) 2-20.
2–9 Floating-Point Auxiliary Configuration Register (FAUCR) 2-22.
2–10 Floating-Point Multiplier Configuration Register (FMCR) 2-24.
2–11 Galois Field Polynomial Generator Function Register (GFPGFR) 2-29.
3–1 TMS320C62x/C64x/C67x Opcode Map 3-10.
3–2 Basic Format of a Fetch Packet 3-13.
3–3 Examples of the Detectability of Write Conflicts by the Assembler 3-20.
4–1 Single-Precision Floating-Point Fields 4-8.
4–2 Double-Precision Floating-Point Fields 4-9.
6–1 Fixed-Point Pipeline Stages 6-2.
6–2 Fetch Phases of the Pipeline 6-3.
6–3 Decode Phases of the Pipeline 6-4.
6–4 Execute Phases of the Pipeline and Functional Block Diagram

of the TMS320C62x/C64x 6-6.
6–5 Fixed-Point Pipeline Phases 6-7.
6–6 Pipeline Operation: One Execute Packet per Fetch Packet 6-8.
6–7 Functional Block Diagram of TMS320C62x Based on Pipeline Phases 6-10.
6–8 Functional Block Diagram of TMS320C64x Based on Pipeline Phases 6-11.
6–9 Single-Cycle Instruction Phases 6-15.
6–10 Single-Cycle Execution Block Diagram 6-15.
6–11 Instruction Phases 6-15.
6–12 Single 16 x 16 Multiply Execution Block Diagram 6-16.
6–13 Store Instruction Phases 6-16.
6–14 Store Execution Block Diagram 6-17.
6–15 Extended Multiply Instruction Phases 6-18.
6–16 Multiply Extensions Execution Block Diagram 6-18.
6–17 Load Instruction Phases 6-18.
6–18 Load Execution Block Diagram 6-19.

Figures

xvContents

6–19 Branch Instruction Phases 6-20.
6–20 Branch Execution Block Diagram 6-20.
6–21 Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets 6-22.
6–22 Multicycle NOP in an Execute Packet 6-23.
6–23 Branching and Multicycle NOPs 6-24.
6–24 Pipeline Phases Used During Memory Accesses 6-25.
6–25 Program and Data Memory Stalls 6-26.
6–26 4-Bank Interleaved Memory 6-27.
6–27 4-Bank Interleaved Memory With Two Memory Spaces 6-28.
7–1 Floating-Point Pipeline Stages 7-2.
7–2 Fetch Phases of the Pipeline 7-3.
7–3 Decode Phases of the Pipeline 7-4.
7–4 Execute Phases of the Pipeline and Functional Block Diagram of the TMS320C67x 7-5. . .
7–5 Floating-Point Pipeline Phases 7-6.
7–6 Pipeline Operation: One Execute Packet per Fetch Packet 7-6.
7–7 Functional Block Diagram of TMS320C67x Based on Pipeline Phases 7-10.
7–8 Single-Cycle Instruction Phases 7-38.
7–9 Single-Cycle Execution Block Diagram 7-38.
7–10 Multiply Instruction Phases 7-39.
7–11 Multiply Execution Block Diagram 7-39.
7–12 Store Instruction Phases 7-40.
7–13 Store Execution Block Diagram 7-41.
7–14 Load Instruction Phases 7-42.
7–15 Load Execution Block Diagram 7-43.
7–16 Branch Instruction Phases 7-44.
7–17 Branch Execution Block Diagram 7-45.
7–18 2-Cycle DP Instruction Phases 7-46.
7–19 4-Cycle Instruction Phases 7-47.
7–20 INTDP Instruction Phases 7-48.
7–21 DP Compare Instruction Phases 7-48.
7–22 ADDDP/SUBDP Instruction Phases 7-49.
7–23 MPYI Instruction Phases 7-50.
7–24 MPYID Instruction Phases 7-51.
7–25 MPYDP Instruction Phases 7-51.
7–26 Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets 7-53.
7–27 Multicycle NOP in an Execute Packet 7-54.
7–28 Branching and Multicycle NOPs 7-55.
7–29 Pipeline Phases Used During Memory Accesses 7-56.
7–30 Program and Data Memory Stalls 7-57.
7–31 8-Bank Interleaved Memory 7-58.
7–32 8-Bank Interleaved Memory With Two Memory Spaces 7-59.
8–1 Interrupt Service Table 8-5.
8–2 Interrupt Service Fetch Packet 8-6.
8–3 IST With Branch to Additional Interrupt Service Code Located Outside the IST 8-7.

Figures

xvi

8–4 Interrupt Service Table Pointer (ISTP) 8-8.
8–5 Control Status Register (CSR) 8-11.
8–6 Interrupt Enable Register (IER) 8-13.
8–7 Interrupt Flag Register (IFR) 8-14.
8–8 Interrupt Set Register (ISR) 8-15.
8–9 Interrupt Clear Register (ICR) 8-15.
8–10 NMI Return Pointer (NRP) 8-16.
8–11 Interrupt Return Pointer (IRP) 8-17.
8–12 TMS320C62x/C64x Nonreset Interrupt Detection and Processing:

Pipeline Operation 8-19.
8–13 TMS320C67x Nonreset Interrupt Detection and Processing:

Pipeline Operation 8-20.
8–14 RESET Interrupt Detection and Processing: Pipeline Operation 8-22.

Tables

xviiContents

Tables

1–1 Typical Applications for the TMS320 DSPs 1-3.
2–1 40-Bit/64-Bit Register Pairs 2-6.
2–2 Functional Units and Operations Performed 2-8.
2–3 Control Registers Common to C62x/C67x and C64x Cores 2-13.
2–4 Addressing Mode Register (AMR) Mode Select Field Encoding 2-15.
2–5 Block Size Calculations 2-16.
2–6 Control Status Register Field Descriptions 2-18.
2–7 Control Register File Extensions 2-20.
2–8 Floating-Point Adder Configuration Register Field Descriptions 2-21.
2–9 Floating-Point Auxiliary Configuration Register Field Descriptions 2-23.
2–10 Floating-Point Multiplier Configuration Register Field Descriptions 2-25.
2–11 Modulo 2 Arithmetic 2-26.
2–12 Modulo 5 Arithmetic 2-27.
2–13 Modulo Arithmetic for Field GF(23) 2-28.
2–14 GFPGFR Field Descriptions 2-29.
2–15 C64x 8-Bit and 16-Bit Instruction Set Extensions 2-32.
3–1 Fixed-Point Instruction Operation and Execution Notations 3-2.
3–2 Instruction to Functional Unit Mapping 3-4.
3–3 Functional Unit to Instruction Mapping 3-5.
3–4 TMS320C62x/C64x/C67x Opcode Map Symbol Definitions 3-9.
3–5 Delay Slot and Functional Unit Latency Summary 3-12.
3–6 Registers That Can Be Tested by Conditional Operations 3-16.
3–7 Indirect Address Generation for Load/Store 3-23.
3–8 Relationships Between Operands, Operand Size, Signed/Unsigned, Functional

Units, and Opfields for Example Instruction (ADD) 3-26.
3–9 Program Counter Values for Example Branch Using a Displacement 3-41.
3–10 Program Counter Values for Example Branch Using a Register 3-43.
3–11 Program Counter Values for B IRP 3-45.
3–12 Program Counter Values for B NRP 3-47.
3–13 Data Types Supported by Loads 3-69.
3–14 Address Generator Options 3-69.
3–15 Data Types Supported by Loads 3-74.
3–16 Register Addresses for Accessing the Control Registers 3-89.
3–17 Data Types Supported by Stores 3-127.
3–18 Address Generator Options 3-127.
3–19 Data Types Supported by Stores 3-131.

Tables

xviii

4–1 Floating-Point Instruction Operation and Execution Notations 4-2.
4–2 Instruction to Functional Unit Mapping 4-4.
4–3 Functional Unit to Instruction Mapping 4-4.
4–4 IEEE Floating-Point Notations 4-7.
4–5 Special Single-Precision Values 4-8.
4–6 Hex and Decimal Representation for Selected Single-Precision Values 4-9.
4–7 Special Double-Precision Values 4-10.
4–8 Hex and Decimal Representation for Selected Double-Precision Values 4-10.
4–9 Delay Slot and Functional Unit Latency Summary 4-11.
4–10 Address Generator Options 4-58.
5–1 New Instruction Operation and Execution Notations 5-2.
5–2 Instruction to Functional Unit Mapping 5-5.
5–3 Functional Unit to Instruction Mapping 5-6.
5–4 TMS320C64x Opcode Map Symbol Definitions 5-10.
5–5 Delay Slot and Functional Unit Latency Summary 5-11.
5–6 Registers That Can Be Tested by Conditional Operations 5-12.
5–7 Constraint Differences Between C62x/C67x and C64x Registers 5-16.
5–8 Address Generator Options 5-108.
5–9 LDNDW Address Generator Options 5-111.
5–10 LDNW Address Generator Options 5-115.
5–11 STDW Address Generator Options 5-226.
5–12 STNDW Address Generator Options 5-230.
5–13 STNW Address Generator Options 5-234.
6–1 Operations Occurring During Fixed-Point Pipeline Phases 6-8.
6–2 Execution Stage Length Description for Each Instruction Type 6-14.
6–3 Program Memory Accesses Versus Data Load Accesses 6-25.
6–4 Loads in Pipeline From Example 6–2 6-28.
7–1 Operations Occurring During Floating-Point Pipeline Phases 7-7.
7–2 Execution Stage Length Description for Each Instruction Type 7-13.
7–3 Single-Cycle .S-Unit Instruction Constraints 7-21.
7–4 DP Compare .S-Unit Instruction Constraints 7-22.
7–5 2-Cycle DP .S-Unit Instruction Constraints 7-23.
7–6 Branch .S-Unit Instruction Constraints 7-24.
7–7 16 X 16 Multiply .M-Unit Instruction Constraints 7-25.
7–8 4-Cycle .M-Unit Instruction Constraints 7-26.
7–9 MPYI .M-Unit Instruction Constraints 7-27.
7–10 MPYID .M-Unit Instruction Constraints 7-28.
7–11 MPYDP .M-Unit Instruction Constraints 7-29.
7–12 Single-Cycle .L-Unit Instruction Constraints 7-30.
7–13 4-Cycle .L-Unit Instruction Constraints 7-31.
7–14 INTDP .L-Unit Instruction Constraints 7-32.
7–15 ADDDP/SUBDP .L-Unit Instruction Constraints 7-33.
7–16 Load .D-Unit Instruction Constraints 7-34.
7–17 Store .D-Unit Instruction Constraints 7-35.

Tables

xixContents

7–18 Single-Cycle .D-Unit Instruction Constraints 7-36.
7–19 LDDW Instruction With Long Write Instruction Constraints 7-37.
7–20 Single-Cycle Execution 7-38.
7–21 16 X 16-Bit Multiply Execution 7-39.
7–22 Store Execution 7-40.
7–23 Load Execution 7-42.
7–24 Branch Execution 7-44.
7–25 2-Cycle DP Execution 7-46.
7–26 4-Cycle Execution 7-47.
7–27 INTDP Execution 7-48.
7–28 DP Compare Execution 7-48.
7–29 ADDDP/SUBDP Execution 7-49.
7–30 MPYI Execution 7-50.
7–31 MPYID Execution 7-50.
7–32 MPYDP Execution 7-51.
7–33 Program Memory Accesses Versus Data Load Accesses 7-56.
7–34 Loads in Pipeline From Example 7–2 7-59.
8–1 Interrupt Priorities 8-3.
8–2 Interrupt Service Table Pointer (ISTP) Field Descriptions 8-8.
8–3 Interrupt Control Registers 8-10.
8–4 Control Status Register (CSR) Interrupt Control Field Descriptions 8-11.

Examples

xx

Examples

3–1 Fully Serial p-Bit Pattern in a Fetch Packet 3-14.
3–2 Fully Parallel p-Bit Pattern in a Fetch Packet 3-14.
3–3 Partially Serial p-Bit Pattern in a Fetch Packet 3-15.
3–4 LDW in Circular Mode 3-22.
3–5 ADDAH in Circular Mode 3-22.
5–1 LDW in Circular Mode 5-19.
5–2 ADDAH in Circular Mode 5-20.
5–3 LDNW in Circular Mode 5-21.
6–1 Execute Packet in Figure 6–7 and Figure 6–8 6-12.
6–2 Load From Memory Banks 6-27.
7–1 Execute Packet in Figure 7–7 7-12.
7–2 Load From Memory Banks 7-58.
8–1 Relocation of Interrupt Service Table 8-9.
8–2 Code Sequence to Disable Maskable Interrupts Globally 8-12.
8–3 Code Sequence to Enable Maskable Interrupts Globally 8-12.
8–4 Code Sequence to Enable an Individual Interrupt (INT9) 8-14.
8–5 Code Sequence to Disable an Individual Interrupt (INT9) 8-14.
8–6 Code to Set an Individual Interrupt (INT6) and Read the Flag Register 8-15.
8–7 Code to Clear an Individual Interrupt (INT6) and Read the Flag Register 8-15.
8–8 Code to Return From NMI 8-16.
8–9 Code to Return from a Maskable Interrupt 8-17.
8–10 Code Without Single Assignment: Multiple Assignment of A1 8-25.
8–11 Code Using Single Assignment 8-25.
8–12 Manual Interrupt Processing 8-26.
8–13 Code Sequence to Invoke a Trap 8-27.
8–14 Code Sequence for Trap Return 8-27.

1-1

a

Introduction

The TMS320C6000 digital signal processor (DSP) platform is part of the
TMS320 DSP family. The TMS320C62x DSP generation and the
TMS320C64x DSP generation comprise fixed-point devices in the C6000
DSP platform, and the TMS320C67x DSP generation comprises floating-
point devices in the C6000 DSP platform. The TMS320C62x and
TMS320C64x DSPs are code-compatible. The TMS320C62x and
TMS320C67x DSPs are code-compatible. All three use the VelociTI archi-
tecture, a high-performance, advanced VLIW (very long instruction word) ar-
chitecture, making these DSPs excellent choices for multichannel and multi-
function applications.

The VelociTI architecture of the C6000 platform of devices make them the first
off-the-shelf DSPs to use advanced VLIW to achieve high performance
through increased instruction-level parallelism. A traditional VLIW architecture
consists of multiple execution units running in parallel, performing multiple in-
structions during a single clock cycle. Parallelism is the key to extremely high
performance, taking these DSPs well beyond the performance capabilities of
traditional superscalar designs. VelociTI is a highly deterministic architecture,
having few restrictions on how or when instructions are fetched, executed, or
stored. It is this architectural flexibility that is key to the breakthrough efficiency
levels of the TMSC6000 Optimizing C compiler. VelociTI’s advanced features
include:

� Instruction packing: reduced code size
� All instructions can operate conditionally: flexibility of code
� Variable-width instructions: flexibility of data types
� Fully pipelined branches: zero-overhead branching.

Topic Page

1.1 TMS320 Family Overview 1-2.

1.2 Overview of the TMS320C6x Generation of
Digital Signal Processors 1-4.

1.3 Features and Options of the TMS320C62x/C64x/C67x 1-5.

1.4 TMS320C62x/C64x/C67x Architecture 1-7.

Chapter 1

TMS320 Family Overview

1-2

1.1 TMS320 Family Overview

The TMS320 DSP family consists of fixed-point, floating-point, and multipro-
cessor digital signal processors (DSPs). TMS320 DSPs have an architecture
designed specifically for real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments (TI) introduced the TMS32010 — the first fixed-
point DSP in the TMS320 family. Before the end of the year, Electronic Prod-
ucts magazine awarded the TMS32010 the title “Product of the Year”. Today,
the TMS320 family consists of many generations:

� C1x, C2x, C2xx, C5x, and C54x fixed-point DSPs

� C3x and C4x floating-point DSPs, and

� C8x multiprocessor DSPs.

Now there is a new generation of DSPs, the TMS320C6x generation, with
performance and features that are reflective of Texas Instruments commit-
ment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.

TMS320 Family Overview

1-3Introduction

Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D transformations
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56�600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail

Overview of the TMS320C6x Generation of Digital Signal Processors

 1-4

1.2 Overview of the TMS320C6x Generation of Digital Signal Processors

With a performance of up to 6000 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6x DSPs give system architects unlimit-
ed possibilities to differentiate their products. High performance, ease of use,
and affordable pricing make the TMS320C6x generation the ideal solution for
multichannel, multifunction applications, such as:

� Pooled modems

� Wireless local loop base stations

� Remote access servers (RAS)

� Digital subscriber loop (DSL) systems

� Cable modems

� Multichannel telephony systems

The TMS320C6x generation is also an ideal solution for exciting new applica-
tions; for example:

� Personalized home security with face and hand/fingerprint recognition

� Advanced cruise control with global positioning systems (GPS) navigation
and accident avoidance

� Remote medical diagnostics.

� Beam-forming base stations

� Virtual reality 3-D graphics

� Speech recognition

� Audio

� Radar

� Atmospheric modeling

� Finite element analysis

� Imaging (examples: fingerprint recognition, ultrasound, and MRI).

Features and Options of the TMS320C62x/C64x/C67x

1-5Introduction

1.3 Features and Options of the TMS320C62x/C64x/C67x

The C6000 devices execute up to eight 32-bit instructions per cycle. The
C62x/C67x device’s core CPU consists of 32 general-purpose registers of
32-bit word length and eight functional units. The C64x core CPU consists of
64 general-purpose 32-bit registers and eight functional units. These eight
functional units contain:

� Two multipliers
� Six ALUs

The C6000 generation has a complete set of optimized development tools, in-
cluding an efficient C compiler, an assembly optimizer for simplified assembly-
language programming and scheduling, and a Windows based debugger in-
terface for visibility into source code execution characteristics. A hardware
emulation board, compatible with the TI XDS510 emulator interface, is also
available. This tool complies with IEEE Standard 1149.1–1990, IEEE Stan-
dard Test Access Port and Boundary-Scan Architecture.

Features of the C6000 devices include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the per-
formance of typical DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� Conditional execution of all instructions

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Efficient code execution on independent functional units

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelization

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options add extra precision for vocoders and other com-
putationally intensive applications

Features and Options of the TMS320C62x/C64x/C67x

 1-6

� Saturation and normalization provide support for key arithmetic opera-
tions

� Field manipulation and instruction extract, set, clear, and bit counting sup-
port common operation found in control and data manipulation applica-
tions.

The C67x has these additional features:

� Hardware support for single-precision (32-bit) and double-precision
(64-bit) IEEE floating-point operations

� 32 � 32-bit integer multiply with 32- or 64-bit result.

The C64x additional features include:

� Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every
clock cycle.

� Quad 8-bit and dual 16-bit instruction set extensions with data flow support

� Support for non-aligned 32-bit (word) and 64-bit (double word) memory
accesses

� Special communication-specific instructions have been added to address
common operations in error-correcting codes.

� Bit count and rotate hardware extends support for bit-level algorithms.

TMS320C62x/C64x/C67x Architecture

1-7Introduction

1.4 TMS320C62x/C64x/C67x Architecture

Figure 1–1 is the block diagram for the TMS320C62x/C64x/C67x DSPs. The
C6000 devices come with program memory, which, on some devices, can be
used as a program cache. The devices also have varying sizes of data
memory. Peripherals such as a direct memory access (DMA) controller, pow-
er-down logic, and external memory interface (EMIF) usually come with the
CPU, while peripherals such as serial ports and host ports are on only certain
devices. Check the data sheet for your device to determine the specific periph-
eral configurations you have.

Figure 1–1. TMS320C62x/C64x/C67x Block Diagram

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

256-bit data
32-bit address

Program cache/program memory

ÁÁ

Á
Á

Á
Á

ÁÁ

ÁÁ

ÁÁ Á

Á
Á
Á

ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8-, 16-, 32-bit data (64-bit data, C64x only)

32-bit address
Data cache/data memory

etc.
serial ports,

Timers,

Additional
peripherals:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

down
Power

C62x/C64x/C67x CPU

ÁÁ
ÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
Á
Á

Interrupts

Emulation

Test

Control
logic

registers
Control

Á
Á
Á

ÁÁ
ÁÁ
ÁÁ

Á
Á
Á

Á
Á

Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ
ÁÁ

Á
Á
Á

Á
Á
Á

ÁÁ
ÁÁ

ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.D1.M1.S1.L1

Register file BRegister file A
DMA, EMIF

.D2 .M2 .S2 .L2

ÁÁ
Data path A Data path B

Á
Program fetch

Instruction decode

Instruction dispatch (See Note)

C62x/C64x/C67x device

Note: The instruction dispatch unit, on the C64x only, has advanced instruction packing.

TMS320C62x/C64x/C67x Architecture

 1-8

1.4.1 Central Processing Unit (CPU)

The C62x/C64x/C67x CPU, shaded in Figure 1–1, is common to all the
C62x/C64x/C67x devices. The CPU contains:

� Program fetch unit
� Instruction dispatch unit, advanced instruction packing (C64 only)
� Instruction decode unit
� Two data paths, each with four functional units
� 32 32-bit registers, 64 32-bit registers (C64 only)
� Control registers
� Control logic
� Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can de-
liver up to eight 32-bit instructions to the functional units every CPU clock
cycle. The processing of instructions occurs in each of the two data paths
(A and B), each of which contains four functional units (.L, .S, .M, and .D) and
16 32-bit general-purpose registers for the C62x/C67x and 32 32-bit general-
purpose registers for the C64x. The data paths are described in more detail
in Chapter 2, CPU Data Paths and Control. A control register file provides the
means to configure and control various processor operations. To understand
how instructions are fetched, dispatched, decoded, and executed in the data
path, see Chapter 6, TMS320C62x/C64x Pipeline, and Chapter 7,
TMS320C67x Pipeline.

1.4.2 Internal Memory

The C62x/C64x/C67x have a 32-bit, byte-addressable address space. Inter-
nal (on-chip) memory is organized in separate data and program spaces.
When off-chip memory is used, these spaces are unified on most devices to
a single memory space via the external memory interface (EMIF).

The C62x/C67x have two 32-bit internal ports to access internal data memory.
The C64x has two 64-bit internal ports to access internal data memory. The
C62x/C64x/C67x have a single internal port to access internal program
memory, with an instruction-fetch width of 256 bits.

TMS320C62x/C64x/C67x Architecture

1-9Introduction

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 plat-
form:

� Large on-chip RAM, up to 7M bits

� Program cache

� 2-level caches

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories for a broad range of external memory
requirements and maximum system performance.

� DMA Controller transfers data between address ranges in the memory
map without intervention by the CPU. The DMA controller has four pro-
grammable channels and a fifth auxiliary channel.

� EDMA Controller performs the same functions as the DMA controller. The
EDMA has 16 programmable channels, as well as a RAM space to hold
multiple configurations for future transfers.

� HPI is a parallel port through which a host processor can directly access
the CPU’s memory space. The host device has ease of access because
it is the master of the interface. The host and the CPU can exchange infor-
mation via internal or external memory. In addition, the host has direct ac-
cess to memory-mapped peripherals.

� Expansion bus is a replacement for the HPI, as well as an expansion of
the EMIF. The expansion provides two distinct areas of functionality (host
port and I/O port) which can co-exist in a system. The host port of the ex-
pansion bus can operate in either asynchronous slave mode, similar to the
HPI, or in synchronous master/slave mode. This allows the device to inter-
face to a variety of host bus protocols. Synchronous FIFOs and asynchro-
nous peripheral I/O devices may interface to the expansion bus.

� McBSP (multichannel buffered serial port) is based on the standard serial
port interface found on the TMS320C2000 and C5000 platform devices.
In addition, the port can buffer serial samples in memory automatically
with the aid of the DMA/EDNA controller. It also has multichannel capabili-
ty compatible with the T1, E1, SCSA, and MVIP networking standards.

TMS320C62x/C64x/C67x Architecture

 1-10

� Timers in the C6000 devices are two 32-bit general-purpose timers used
for these functions:

� Time events

� Count events

� Generate pulses

� Interrupt the CPU

� Send synchronization events to the DMA/EDMA controller.

� Power-down logic allows reduced clocking to reduce power consumption.
Most of the operating power of CMOS logic dissipates during circuit
switching from one logic state to another. By preventing some or all of the
chip’s logic from switching, you can realize significant power savings with-
out losing any data or operational context.

For more information on features and options of the peripherals for the
TMS320C6000, refer to the TM320C6000 Peripherals Reference Guide
(SPRU190).

2-1 August 1996

CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and
control registers. The two register files and the data cross paths are described.

The components of the data path for TMS320C62x , TMS320C67x , and
TMS320C64x are shown in Figure 2–1, Figure 2–2, and Figure 2–3, respec-
tively.

These components consist of the following:

� Two general-purpose register files (A and B)
� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
� Two load-from-memory data paths (LD1 and LD2)
� Two store-to-memory data paths (ST1 and ST2)
� Two data address paths (DA1 and DA2)
� Two register file data cross paths (1X and 2X).

Topic Page

2.1 General-Purpose Register Files 2-5.

2.2 Functional Units 2-7.

2.3 Register File Cross Paths 2-10.

2.4 Memory, Load, and Store Paths 2-11.

2.5 Data Address Paths 2-12.

2.6 TMS320C6000 Control Register File 2-13.

2.7 TMS320C67x Control Register File Extensions 2-20.

2.8 TMS320C64x Control Register File Extensions 2-26.

2.9 Summary of TMS320C64x Architecture Key Extensions 2-30.

Chapter 2

 2-2

Figure 2–1. TMS320C62x CPU Data Paths

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

Á
Á

Á
Á

Á

Á
ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ

ÁÁ

ÁÁ

Á
Á
Á

Á
Á
Á

Á
Á

Á
ÁÁ

ÁÁ .D1

.M1

ÁÁ
ÁÁ
ÁÁ

Á
Á
Á

ÁÁ
ÁÁÁ
Á
ÁÁÁ

ÁÁ

.S1

ÁÁ
Á
ÁÁ

ÁÁ
Á

.L1

long src

dst

src2

src1

ÁÁ
ÁÁ
ÁÁ

Á
ÁÁ

Á
Á

ÁÁ
ÁÁ

src1

src1

src1

src1

src1

src1

src1

8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁ

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Data path A

Data path B

Register
 file A

Register
 file B

long src
long dst

long dst
long src

CPU Data Paths and Control

2-3CPU Data Paths and Control

Figure 2–2. TMS320C67x CPU Data Paths

8

8

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

ÁÁ

Á

Á
Á

Á

Á
Á

Á
Á

Á
Á

Á

Á

Á

Á

Á

Á

Á
Á
ÁÁ

Á
ÁÁ

ÁÁ
Á

Á
.D1

.M1

Á
Á
Á

Á
Á

ÁÁ
Á
Á

Á
ÁÁ

.S1

Á
Á
Á
Á

Á
Á

Á

.L1

long src

dst

src2

src1

Á
Á

Á

ÁÁ
Á
Á
Á
Á

src1

src1

src1

src1

src1

src1

src1

8

8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁ

DA1

DA2

ST1

LD1 32 LSB

LD2 32 LSB

LD2 32 MSB

32

32

Data path A

Data path B

Register
 file A

Register
 file B

long src
long dst

long dst
long src

Á
LD1 32 MSB

32

ST2

32

8

8

8

8

Á
Á

Á

CPU Data Paths and Control

 2-4

Figure 2–3. TMS320C64x CPU Data Path

src2

src2

Á

ÁÁ
ÁÁ

.D1

.M1

Á
Á

ÁÁ
Á
Á

Á
ÁÁ

.S1

Á
Á
Á
Á

Á
Á

Á

.L1

long src

dst

src2

src1

Á
Á
Á

ÁÁ
Á
Á

Á
Á

src1

src1

src1

long dst

long dst
dst

dst

dst

src2

src2

src2

long src

DA1

ST1b

LD1b

LD1a

ST1a

Data path A

Register
file A

(A0–A31)

Á

Register
file B

(B0–B31)

ÁÁ .D2 Á
Á Á

src1
dst

src2DA2

LD2a
LD2b

src2

.M2 src1

src2

Á
Á

dst

Á

.S2 Á
src1

Á
long dst
long src

dst

ST2a

ST2b

long src

.L2 Á
long dst

dst Á

src1

Data path B

Control Register

8

32 MSB

32 LSB

8

long dst See Note 1

32 MSB

32 LSB

2x

1x

8

8

8

32 LSB
32 MSB

32 LSB

32 MSB

long dst

See Note 2

See Note 2
See Note 1

Notes for .M unit:
1. long dst is 32 MSB
2. dst is 32 LSB

CPU Data Paths and Control

General-Purpose Register Files

2-5CPU Data Paths and Control

2.1 General-Purpose Register Files

There are two general-purpose register files (A and B) in the C6000 data
paths. For the C62x /C67x DSPs, each of these files contains 16 32-bit reg-
isters (A0–A15 for file A and B0–B15 for file B). The general-purpose registers
can be used for data, data address pointers, or condition registers. The C64x
DSP register file doubles the number of general-purpose registers that are in
the C62x/C67x cores, with 32 32-bit registers (A0–A31 for file A and B0–B31
for file B).

The C62x/C67x general-purpose register files support data ranging in size from
packed 16-bit data through 40-bit fixed-point and 64-bit floating point data. Val-
ues larger than 32 bits, such as 40-bit long and 64-bit float quantities, are stored
in register pairs. In these the 32 LSBs of data are placed in an even-numbered
register and the remaining 8 or 32 MSBs in the next upper register (which is al-
ways an odd-numbered register). The C64x register file extends this by addi-
tionally supporting packed 8-bit types and 64-bit fixed-point data types. (The
C64x does not directly support floating-point data types.) Packed data types
store either four 8-bit values or two 16-bit values in a single 32-bit register, or
four 16-bit values in a 64-bit register pair.

There are 16 valid register pairs for 40-bit and 64-bit data in the C62x/C67x cores,
and 32 valid register pairs for 40-bit and 64-bit data in the C64x core, as shown
in Table 2–1. In assembly language syntax, a colon between the register names
denotes the register pairs, and the odd-numbered register is specified first.

General-Purpose Register Files

 2-6

Table 2–1. 40-Bit/64-Bit Register Pairs

Register Files Applicable

A B Devices

A1:A0 B1:B0 C62x/C64x/C67x

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

A17:A16 B17:B16 C64x only

A19:A18 B19:B18

A21:A20 B21:B20

A23:A22 B23:B22

A25:A24 B25:B24

A27:A26 B27:B26

A29:A28 B29:B28

A31:A30 B31:B30

Figure 2–4 illustrates the register storage scheme for 40-bit long data. Opera-
tions requiring a long input ignore the 24 MSBs of the odd-numbered register.
Operations producing a long result zero-fill the 24 MSBs of the odd-numbered
register. The even-numbered register is encoded in the opcode.

Figure 2–4. Storage Scheme for 40-Bit Data in a Register Pair

ÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍ

31 0 31 0Odd register Even register

39 32 31 0

Zero-filled 40-bit data

39 32 31 0

40-bit data

Á Á

Á
Á
ÁOdd register Even register

Read from registers

Write to registers

Ignored

78

Functional Units

2-7CPU Data Paths and Control

2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2–2.

Besides being able to perform all the C62x instructions, the C64x also contains
many 8-bit to 16-bit extensions to the instruction set. For example, the MPYU4
instruction performs four 8x8 unsigned multiplies with a single instruction on an
.M unit. The ADD4 instruction performs four 8-bit additions with a single instruc-
tion on an .L unit. The additional C64x operations are shown in boldface in
Table 2–2.

Functional Units

 2-8

Table 2–2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations Floating-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare
 operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations

Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

Arithmetic operations

DP → SP, INT → DP, INT → SP
 conversion operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field
 operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register
 file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic
 operations

Quad 8-bit saturated arithmetic
 operations

Compare

Reciprocal and reciprocal square-root
 operations

Absolute value operations

SP → DP conversion operations

Functional Units

2-9CPU Data Paths and Control

Table 2–2. Functional Units and Operations Performed (Continued)

Functional Unit Floating-Point OperationsFixed-Point Operations

.M unit (.M1, .M2) 16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with
 add/subtract operations

Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

32 X 32-bit fixed-point multiply operations

Floating-point multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular
 address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant
 offset (.D2 only)

Load and store double words with 5-bit
 constant

Load and store non-aligned words and
 double words

5-bit constant generation

32-bit logical operations

Load doubleword with 5-bit constant offset

Note: Fixed-point operations are available on all three devices. Floating-point operations and 32 x 32-bit fixed-point multiply are
available only on the C67x. Additonal C64x functions are shown in bold.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) and double word (64-bit) operands. Each functional unit has its own
32-bit write port into a general-purpose register file (Refer to Figure 2–3). All
units ending in 1 (for example, .L1) write to register file A, and all units ending
in 2 write to register file B. Each functional unit has two 32-bit read ports for
source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long
reads. Because each unit has its own 32-bit write port, when performing 32-bit
operations all eight units can be used in parallel every cycle. Since each C64x
multiplier can return up to a 64-bit result, an extra write port has been added from
the multipliers to the register file as compared to the C62x.

Register File Cross Paths

 2-10

2.3 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1X and 2X cross paths. These cross paths allow functional units from one data
path to access a 32-bit operand from the opposite side register file. The 1X
cross path allows the functional units of data path A to read their source from
register file B, and the 2X cross path allows the functional units of data path
B to read their source from register file A.

On the C62x/C67x six of the eight functional units have access to the register
file on the opposite side, via a cross path. The .M1, .M2, .S1 and .S2 units’ src2
units are selectable between the cross path and the same side register file. In
the case of the .L1 and .L2, both src1 and src2 inputs are also selectable be-
tween the cross path and the same-side register file.

On the C64x all eight of the functional units have access to the register file on
the opposite side, via a cross path. The src2 inputs of .M1, .M2, .S1, .S2, .D1,
and .D2 units are selectable between the cross path and the same-side regis-
ter file. In the case of the .L1 and .L2, both src1 and src2 inputs are also select-
able between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus the limit
is one source read from each data path’s opposite register file per cycle, or a
total of two cross path source reads per cycle. In the C62x/C67x only one func-
tional unit per data path, per execute packet, can get an operand from the op-
posite register file. In the C64x, multiple units on a side may read the same
cross path source simultaneously. Thus the C64x cross path operand for one
side may be used by up to two functional units on that side in an execute
packet.

On the C64x a delay clock cycle is introduced whenever an instruction at-
tempts to read a register via a cross path that was updated in the previous
cycle. This is known as a cross path stall. This stall is inserted automatically
by the hardware, no NOP instruction is needed. It should be noted that no stall
is introduced if the register being read is the destination for data placed by an
LDx instruction. For more information see Chapter 5, section 5.6.2 Cross Path
Stalls. Techniques for avoiding this stall are discussed in the TMS320C6000
Programmers Guide (SPRU198).

Memory, Load, and Store Paths

2-11CPU Data Paths and Control

2.4 Memory, Load, and Store Paths

The C62x has two 32-bit paths for loading data from memory to the register
file: LD1 for register file A, and LD2 for register file B. The C67x also has a sec-
ond 32-bit load path for both register files A and B. This allows the LDDW in-
struction to simultaneously load two 32-bit values into register file A and two
32-bit values into register file B. For side A, LD1a is the load path for the
32 LSBs and LD1b is the load path for the 32 MSBs. For side B, LD2a is the
load path for the 32 LSBs and LD2b is the load path for the 32 MSBs. There
are also two 32-bit paths, ST1 and ST2, for storing register values to memory
from each register file.

The C64x supports double word loads and stores. There are four 32-bit paths
for loading data from memory to the register file. For side A, LD1a is the load
path for the 32 LSBs and LD1b is the load path for the 32 MSBs. For side B,
LD2a is the load path for the 32 LSBs and LD2b is the load path for the
32 MSBs. There are also four 32-bit paths, for storing register values to
memory from each register file. ST1a is the write path for the 32 LSBs on side
A and ST1b is the write path for the 32 MSBs on side A. For side B, ST2a is
the write path for the 32 LSBs and ST2b is the write path for the 32 MSBs.

On the C6000 architecture, some of the ports for long and double word oper-
ands are shared between functional units. This places a constraint on which
long or double word operations can be scheduled on a data path in the same
execute packet. See Chapter 5, section 5.6.4, Constraints on Long (40-Bit)
Data.

Data Address Paths

 2-12

2.5 Data Address Paths

The data address paths DA1 and DA2 are each connected to the .D units in
both data paths. This allows data addresses generated by any one path to ac-
cess data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as
T1 and T2 respectively. T1 consists of the DA1 address path and the LD1 and
ST1 data paths. For the C64x and C67x, LD1 is comprised of LD1a and LD1b
to support 64-bit loads. For the C64x, ST1 is comprised of ST1a and ST1b to
support 64-bit stores. Similarly, T2 consists of the DA2 address path and the
LD2 and ST2 data paths. For the C64x and C67x, LD2 is comprised of LD2a
and LD2b to support 64-bit loads. For the C64x, ST2 is comprised of ST2a and
ST2b to support 64-bit stores. The T1 and T2 designations appear in functional
unit fields for load and store instructions.

For example, the following load instructions uses the .D1 unit to generate the
address but is using the LD2 path resource from DA2 to place the data in the
B register file. The use of the DA2 resource is indicated with the T2 designation.

 LDW .D1T2 *A0[3],B1

TMS320C6000 Control Register File

2-13CPU Data Paths and Control

2.6 TMS320C6000 Control Register File

One unit (.S2) can read from and write to the control register file, as shown in
this section. Table 2–3 lists the control registers contained in the control register
file and describes each. If more information is available on a control register, the
table lists where to look for that information. Each control register is accessed
by the MVC instruction. See the MVC instruction description in Chapter 3,
TMS320C62x/C64x/C67x Fixed-Point Instruction Set, for information on how to
use this instruction.

Additionally, some of the control register bits are specially accessed in other
ways. For example, arrival of a maskable interrupt on an external interrupt pin,
INTm, triggers the setting of flag bit IFRm. Subsequently, when that interrupt
is processed, this triggers the clearing of IFRm and the clearing of the global
interrupt enable bit, GIE. Finally, when that interrupt processing is complete,
the B IRP instruction in the interrupt service routine restores the pre-interrupt
value of the GIE. Similarly, saturating instructions like SADD set the SAT (satu-
ration) bit in the CSR (Control Status Register).

Table 2–3. Control Registers Common to C62x/C67x and C64x Cores

Abbreviation Register Name Description Page

AMR Addressing mode register Specifies whether to use linear or circular ad-
dressing for each of eight registers; also contains
sizes for circular addressing

2-14

CSR Control status register Contains the global interrupt enable bit, cache
control bits, and other miscellaneous control and
status bits

2-17

IFR Interrupt flag register Displays status of interrupts 8-14

ISR Interrupt set register Allows manually setting pending interrupts 8-14

ICR Interrupt clear register Allows manually clearing pending interrupts 8-14

IER Interrupt enable register Allows enabling/disabling of individual interrupts 8-13

ISTP Interrupt service table pointer Points to the beginning of the interrupt service
table

8-8

IRP Interrupt return pointer Contains the address to be used to return from a
maskable interrupt

8-17

NRP Nonmaskable interrupt return
pointer

Contains the address to be used to return from a
nonmaskable interrupt

8-16

PCE1 Program counter, E1 phase Contains the address of the fetch packet that is in
the E1 pipeline stage

2-19

TMS320C6000 Control Register File

 2-14

2.6.1 Pipeline/Timing of Control Register Accesses

As shown in this section, all MVC are single-cycle instructions that complete
their access of the explicitly named registers in the E1 pipeline phase. This is
true whether MVC is moving a general register to a control register, or vice ver-
sa. In all cases the source register content is read, moved through the .S2 unit,
and written to the destination register in the E1 pipeline phase.

Pipeline
Stage

E1

Read src2

Written dst

Unit in use .S2

Even though MVC modifies the particular target control register in a single
cycle, it can take extra clocks to complete modification of the non-explicitly
named register. For example, the MVC cannot modify bits in the IFR directly.
Instead, MVC can only write 1’s into the ISR or the ICR to specify setting or
clearing, respectively, of the IFR bits. MVC completes this ISR/ICR write in a
single (E1) cycle (as described above) but the modification of the IFR bits
themselves occur one clock later. For more information on the manipulation
of ISR, ICR, and IFR see these control hardware sections in Chapter 8: sec-
tion 8.3.2 Status of, Setting, and Clearing Interrupts, and section 8.3.3 Return-
ing from Interrupt Servicing.

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in the
Control Status Register (CSR) indirectly. As a result, several of these instruc-
tions update the SAT bit one full clock cycle after their primary results are writ-
ten to the register file. For example, the SMPY instruction writes its result at
the end of pipeline stage E2; its primary result is available after one delay slot.
In contrast, the SAT bit in the CSR is updated one cycle later than the result
is written; this update occurs after two delay slots. (For the specific behavior
of an instruction, refer to the description of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE, respec-
tively. Because these branches directly modify the CSR and IER (Interrupt En-
able Register) respectively, there are no delay slots between when the branch
is issued and when the control register updates take effect.

2.6.2 Addressing Mode Register (AMR)

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circular
addressing, the AMR specifies the addressing mode. A 2-bit field for each register
selects the address modification mode: linear (the default) or circular mode. With

TMS320C6000 Control Register File

2-15CPU Data Paths and Control

circular addressing, the field also specifies which BK (block size) field to use
for a circular buffer. In addition, the buffer must be aligned on a byte boundary
equal to the block size. The mode select fields and block size fields are shown
in Figure 2–5, and the mode select field encoding is shown in Table 2–4.

Figure 2–5. Addressing Mode Register (AMR)

31 26 1625 21 20

BK0

R, W, +0

Reserved

R, +0 R, W, +0

BK1

Block size fields

B7 mode B6 mode B5 mode B4 mode A7 mode A6 mode A5 mode A4 mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R, W, +0

Mode select fields

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

Table 2–4. Addressing Mode Register (AMR) Mode Select Field Encoding

Mode Description

0 0 Linear modification
(default at reset)

0 1 Circular addressing using
the BK0 field

1 0 Circular addressing using
the BK1 field

1 1 Reserved

The reserved portion of AMR is always 0. The AMR is initialized to 0 at reset.

The block size fields, BK0 and BK1, contain 5-bit values used in calculating
block sizes for circular addressing.

Block size (in bytes) = 2(N+1)

where N is the 5-bit value in BK0 or BK1

TMS320C6000 Control Register File

 2-16

Table 2–5 shows block size calculations for all 32 possibilities.

Table 2–5. Block Size Calculations

N Block Size N Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296

Note: When N is 11111, the behavior is identical to linear addressing.

TMS320C6000 Control Register File

2-17CPU Data Paths and Control

2.6.3 Control Status Register (CSR)

The CSR, shown in Figure 2–6, contains control and status bits. The functions
of the fields in the CSR are shown in Table 2–6. For the EN, PWRD, PCC, and
DCC fields, see the data sheet of your specific device to see if it supports the
options that these fields control. Also see the C6000 Peripherals Reference
Guide for more information on these options.

Figure 2–6. Control Status Register (CSR)
31 24

CPU ID
1623

Revision ID

R
15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +xR, C, +0 R, W, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

TMS320C6000 Control Register File

 2-18

Table 2–6. Control Status Register Field Descriptions

Bit Position Width Field Name Function

31-24 8

CPU ID and
Revision ID

CPU ID CPU ID identifies which of these CPUs:
CPU ID = 00b: indicates C62x,
CPU ID= 10b: indicates C67x,
CPU ID = 1000b: indicates C64x

23-16 8 Revision ID Revision ID defines silicon revision of the CPU.

Devices CPU Core Bits 31:16
 Voltage of CSR

C6201 C62x 2.5V 0x0001
C6201B, C6202, C6211 C62x 1.8V 0x0002
C6202B, C6203, C6204, C6205 C62x 1.5V 0x0003
C6701 revision 0 (early CPU) C67x 1.8V 0x0201
C6701, C6711, C6712 C67x 1.8V 0x0202
C64xx C64x 1.5V 0x0801

15-10 6 PWRD Control power-down modes; the values are always read as zero.†

9 1 SAT The saturate bit, set when any unit performs a saturate, can be
cleared only by the MVC instruction and can be set only by a func-
tional unit. The set by a functional unit has priority over a clear (by
the MVC instruction) if they occur on the same cycle. The saturate
bit is set one full cycle (one delay slot) after a saturate occurs. This
bit will not be modified by a conditional instruction whose condition
is false.

8 1 EN Endian bit: 1 = little endian, 0 = big endian †

7-5 3 PCC Program cache control mode†

4-2 3 DCC Data cache control mode†

1 1 PGIE Previous GIE (global interrupt enable); saves GIE when an inter-
rupt is taken.

0 1 GIE Global interrupt enable; enables (1) or disables (0) all interrupts ex-
cept the reset interrupt and NMI (nonmaskable interrupt).

† See the TMS320C6000 Peripherals Reference Guide for more information.

TMS320C6000 Control Register File

2-19CPU Data Paths and Control

2.6.4 E1 Phase Program Counter (PCE1)

The PCE1, shown in Figure 2–7, contains the 32-bit address of the fetch packet
in the E1 pipeline phase.

Figure 2–7. E1 Phase Program Counter (PCE1)

PCE1
31

R, +x

0

Legend : R Readable by the MVC instruction
+x Value undefined after reset

TMS320C67x Control Register File Extensions

 2-20

2.7 TMS320C67x Control Register File Extensions

The C67x has three additional configuration registers to support floating point
operations. The registers specify the desired floating-point rounding mode for
the .L and .M units. They also contain fields to warn if src1 and src2 are NaN
or denormalized numbers, and if the result overflows, underflows, is inexact,
infinite, or invalid. There are also fields to warn if a divide by 0 was performed,
or if a compare was attempted with a NaN source. Table 2–7 shows the addi-
tional registers used by the C67x. The OVER, UNDER, INEX, INVAL, DENn,
NANn, INFO, UNORD and DIV0 bits within these registers will not be modified
by a conditional instruction whose condition is false.

Table 2–7. Control Register File Extensions

Register
Description Page

Abbreviation Name
Description Page

FADCR Floating-point adder configura-
tion register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .L unit.

2-20

FAUCR Floating-point auxiliary configu-
ration register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .S unit.

2-22

FMCR Floating-point multiplier config-
uration register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .M unit.

2-24

2.7.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point configuration register (FADCR) contains fields that specify
underflow or overflow, the rounding mode, NaNs, denormalized numbers, and
inexact results for instructions that use the .L functional units. FADCR has a
set of fields specific to each of the .L units, .L1 and .L2. Figure 2–8 shows the
layout of FADCR. The functions of the fields in the FADCR are shown in
Table 2–8.

Figure 2–8. Floating-Point Adder Configuration Register (FADCR)

R, W, +0

31

RMode INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R, +0 R, W, +0

DEN2INFOUNDERReserved
27 26 25

NAN2DEN1

15

RMode INEX OVER INVAL
8 7 6 5 4 3 2 1 0

NAN1

R, +0

DEN2INFOUNDERReserved
11 10 9

NAN2DEN1Fields used by .L1

Fields used by .L2

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

TMS320C67x Control Register File Extensions

2-21CPU Data Paths and Control

Table 2–8. Floating-Point Adder Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26–25 2 Rmode .L2 Value 00: Round toward nearest representable floating-point number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

24 1 UNDER .L2 Set to 1 when result underflows

23 1 INEX .L2 Set to 1 when result differs from what would have been computed had
the exponent range and precision been unbounded; never set with
INVAL

22 1 OVER .L2 Set to 1 when result overflows

21 1 INFO .L2 Set to 1 when result is signed infinity

20 1 INVAL .L2 Set to 1 when a signed NaN (SNaN) is a source, NaN is a source in
a floating-point to integer conversion, or when infinity is subtracted
from infinity

19 1 DEN2 .L2 src2 is a denormalized number

18 1 DEN1 .L2 src1 is a denormalized number

17 1 NAN2 .L2 src2 is NaN

16 1 NAN1 .L2 src1 is NaN

15–11 5 Reserved

10–9 2 Rmode .L1 Value 00: Round toward nearest even representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

8 1 UNDER .L1 Set to 1 when result underflows

7 1 INEX .L1 Set to 1 when result differs from what would have been computed had
the exponent range and precision been unbounded; never set with
INVAL

6 1 OVER .L1 Set to 1 when result overflows

5 1 INFO .L1 Set to 1 when result is signed infinity

4 1 INVAL .L1 Set to 1 when a signed NaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from infinity

3 1 DEN2 .L1 src2 is a denormalized number

2 1 DEN1 .L1 src1 is a denormalized number

1 1 NAN2 .L1 src2 is NaN

0 1 NAN1 .L1 src1 is NaN

TMS320C67x Control Register File Extensions

 2-22

2.7.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify un-
derflow or overflow, the rounding mode, NaNs, denormalized numbers, and
inexact results for instructions that use the .S functional units. FAUCR has a
set of fields specific to each of the .S units, .S1 and .S2. Figure 2–9 shows the
layout of FAUCR. The functions of the fields in the FAUCR are shown in
Table 2–9.

Figure 2–9. Floating-Point Auxiliary Configuration Register (FAUCR)

R, +0

31

DIV0 INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R, W, +0

DEN2INFOUNDReserved
26 25

NAN2DEN1UNORD
27

Fields used by .S2

R, +0

15
DIV0 INEX OVER INVAL

8 7 6 5 4 3 2 1 0

NAN1

R, W, +0

DEN2INFOUNDFields used by .S1
10 9

NAN2DEN1UNORD

11
Reserved

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

TMS320C67x Control Register File Extensions

2-23CPU Data Paths and Control

Table 2–9. Floating-Point Auxiliary Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26 1 DIV0 .S2 Set to 1 when 0 is source to reciprocal operation

25 1 UNORD .S2 Set to 1 when NaN is a source to a compare operation

24 1 UNDER .S2 Set to 1 when result underflows

23 1 INEX .S2 Set to 1 when result differs from what would have been computed had the
exponent range and precision been unbounded; never set with INVAL

22 1 OVER .S2 Set to 1 when result overflows

21 1 INFO .S2 Set to 1 when result is signed infinity

20 1 INVAL .S2 Set to 1 when a signed NaN (SNaN) is a source, NaN is a source in a float-
ing-point to integer conversion, or when infinity is subtracted from infinity

19 1 DEN2 .S2 src2 is a denormalized number

18 1 DEN1 .S2 src1 is a denormalized number

17 1 NAN2 .S2 src2 is NaN

16 1 NAN1 .S2 src1 is NaN

15–11 5 Reserved

10 1 DIV0 .S1 Set to 1 when 0 is source to reciprocal operation

9 1 UNORD .S1 Set to 1 when NaN is a source to a compare operation

8 1 UNDER .S1 Set to 1 when result underflows

7 1 INEX .S1 Set to 1 when result differs from what would have been computed had the
exponent range and precision been unbounded; never set with INVAL

6 1 OVER .S1 Set to 1 when result overflows

5 1 INFO .S1 Set to 1 when result is signed infinity

4 1 INVAL .S1 Set to 1 when SNaN is a source, NaN is a source in a floating-point to inte-
ger conversion, or when infinity is subtracted from infinity

3 1 DEN2 .S1 src2 is a denormalized number

2 1 DEN1 .S1 src1 is a denormalized number

1 1 NAN2 .S1 src2 is a NaN

0 1 NAN1 .S1 src1 is a NaN

TMS320C67x Control Register File Extensions

 2-24

2.7.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that
specify underflow or overflow, the rounding mode, NaNs, denormalized num-
bers, and inexact results for instructions that use the .M functional units. FMCR
has a set of fields specific to each of the .M units, .M1 and .M2. Figure 2–10
shows the layout of FMCR. The functions of the fields in the FMCR are shown
in Table 2–10.

Figure 2–10. Floating-Point Multiplier Configuration Register (FMCR)

31

RMode INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R, +0 R, W, +0

DEN2INFOUNDERReserved
27 26 25

NAN2DEN1Fields used by .M2

15

RMode INEX OVER INVAL
8 7 6 5 4 3 2 1 0

NAN1

R, W, +0

DEN2INFOUNDERReserved
11 10 9

NAN2DEN1Fields used by .M1

R, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

TMS320C67x Control Register File Extensions

2-25CPU Data Paths and Control

Table 2–10. Floating-Point Multiplier Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26–25 2 Rmode .M2 Value 00: Round toward nearest representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

24 1 UNDER .M2 Set to 1 when result underflows

23 1 INEX .M2 Set to 1 when result differs from what would have been com-
puted had the exponent range and precision been unbounded;
never set with INVAL

22 1 OVER .M2 Set to 1 when result overflows

21 1 INFO .M2 Set to 1 when result is signed infinity

20 1 INVAL .M2 Set to 1 when SNaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from
infinity

19 1 DEN2 .M2 src2 is a denormalized number

18 1 DEN1 .M2 src1 is a denormalized number

17 1 NAN2 .M2 src2 is NaN

16 1 NAN1 .M2 src1 is NaN

15–11 5 Reserved

10–9 2 Rmode .M1 Value 00: Round toward nearest representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

8 1 UNDER .M1 Set to 1 when result underflows

7 1 INEX .M1 Set to 1 when result differs from what would have been com-
puted had the exponent range and precision been unbounded;
never set with INVAL

6 1 OVER .M1 Set to 1 when result overflows

5 1 INFO .M1 Set to 1 when result is signed infinity

4 1 INVAL .M1 Set to 1 when SNaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from
infinity

3 1 DEN2 .M1 src2 is a denormalized number

2 1 DEN1 .M1 src1 is a denormalized number

1 1 NAN2 .M1 src2 is NaN

0 1 NAN1 .M1 src1 is NaN

TMS320C64x Control Register File Extensions

 2-26

2.8 TMS320C64x Control Register File Extensions

One new control register in the C64x is the Galois Field Polynomial Generator
Function Register (GFPGFR).

2.8.1 Galois Field

Modern digital communication systems typically make use of error correction
coding schemes to improve system performance under imperfect channel condi-
tions. The scheme most commonly used is the Reed-Solomon code, due to its
robustness against burst errors and its relative ease of implementation.

The C64x contains Galois Field Multiply hardware that can be used for Reed-
Solomon encode and decode functions. To understand the relevance of the
Galois Field Multiply hardware, it is necessary to first define some mathematical
terms.

Two kinds of number systems that are common in algorithm development are
integers and real numbers. For integers the addition, subtraction and multiplica-
tion operations can be performed. Division can also be performed if a non-zero
remainder can be allowed. For real numbers all four of these operations can
be performed, even if there is a non-zero remainder for division operations.

Real numbers can belong to a mathematical structure called a field. A field
consists of a set of data elements along with addition, subtraction, multiplica-
tion, and division. A field of integers can also be created if modulo arithmetic
is performed.

An example is doing arithmetic using integers modulo 2. Perform the operations
using normal integer arithmetic and then take the result modulo 2. Table 2–11
describes addition, subtraction and multiplication modulo 2.

Table 2–11. Modulo 2 Arithmetic

Addition Subtraction Multiplication

+ 0 1 – 0 1 � 0 1

0 0 1 0 0 1 0 0 0

1 1 0 1 1 0 1 0 1

TMS320C64x Control Register File Extensions

2-27CPU Data Paths and Control

Note that addition and subtraction results are the same, and in fact are equivalent
to the XOR (exclusive OR) operation in binary. Also, the multiplication result is
equal to the AND operation in binary. These properties are unique to modulo 2
arithmetic, but modulo 2 arithmetic is used extensively in error correction coding.
Another more general property is that division by any non-zero element is now
defined. Division can always be performed if every element other than zero has
a multiplicative inverse, i.e.:

x � x–1 = 1.

Another example, arithmetic modulo 5, illustrates this concept more clearly. The
addition, subtraction and multiplication tables are given in Table 2–12.

Table 2–12. Modulo 5 Arithmetic

Addition Subtraction Multiplication

+ 0 1 2 3 4 – 0 1 2 3 4 � 0 1 2 3 4

0 0 1 2 3 4 0 0 4 3 2 1 0 0 0 0 0 0

1 1 2 3 4 0 1 1 0 4 3 2 1 0 1 2 3 4

2 2 3 4 0 1 2 2 1 0 4 3 2 0 2 4 1 3

3 3 4 0 1 2 3 3 2 1 0 4 3 0 3 1 4 2

4 4 0 1 2 3 4 4 3 2 1 0 4 0 4 3 2 1

In the rows of the multiplication table, it is clear that the element 1 appears in
every non-zero row and column. Every non-zero element can be multiplied by
at least one other element to get a result equal to 1. Therefore, division always
works and arithmetic over integers modulo 5 forms a field. Fields generated
in this manner are called finite fields or Galois fields and are written as GF(X),
such as GF(2) or GF(5). They only work when the arithmetic performed is mo-
dulo a prime number.

Galois fields can also be formed where the elements are vectors instead of in-
tegers if polynomials are used. Finite fields therefore can be found with a num-
ber of elements equal to any power of a prime number. Typically we are inter-
ested in implementing error correction coding systems using binary arithmetic.
All of the fields that are dealt with in Reed Solomon coding systems are of the
form GF(2m). This allows performing addition using XORs on the coefficients
of the vectors, and multiplication using a combination of ANDs and XORs.

A final example considers the field GF(23), which had 8 elements. This can be
generated by arithmetic modulo the (irreducible) polynomial P(x) = x3 + x + 1.
Elements of this field look like vectors of three bits.

TMS320C64x Control Register File Extensions

 2-28

Table 2–13 shows the addition and multiplication tables for field GF(23).

Table 2–13. Modulo Arithmetic for Field GF(23)

Addition

+ 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111

001 001 000 011 010 101 110 111 110

010 010 011 000 001 110 111 100 101

011 011 010 001 000 111 110 101 100

100 100 101 110 111 000 001 010 011

101 101 100 111 110 001 000 011 010

110 110 111 100 101 010 011 000 001

111 111 110 101 100 011 010 001 000

Multiplication

� 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000

001 000 001 010 011 100 101 110 111

010 000 010 100 110 011 001 111 101

011 000 011 110 101 111 100 001 010

100 000 100 011 111 110 010 101 001

101 000 101 001 100 010 111 011 110

110 000 110 111 001 101 011 010 100

111 000 111 101 010 001 110 100 011

Note that the value 1 (001) appears in every non-zero row of the multiplication
table, which indicates that this is a valid field.

The channel error can now be modeled as a vector of bits, with a one in every
bit position that an error has occurred, and a zero where no error has occurred.
Once the error vector has been determined, it can be subtracted from the re-
ceived message to determine the correct code word.

TMS320C64x Control Register File Extensions

2-29CPU Data Paths and Control

The Galois Field Multiply hardware on the C64x is named GMPY4. This in-
struction performs four parallel operations on 8-bit packed data on the .M unit.
The Galois Field Multiplier can be programmed to perform all Galois Multiplies
for fields of the form GF(2m), where m can range between 1 and 8 using any
generator polynomial. The field size and the polynomial generator are con-
trolled by the Galois Field Polynomial Generator Function Register
(GFPGFR).

The GFPGFR, shown in Figure 2–11, contains the Galois field polynomial gen-
erator and the field size control bits. These bits control the operation of the
GMPY4 instruction. This register can only be set via the MVC instruction.

The default function after reset for the GMPY4 instruction is field size=7 and
polynomial=0x1D.

Figure 2–11.Galois Field Polynomial Generator Function Register (GFPGFR)
31

Reserved SIZE Reserved

27 26 24 23 8 7 0

POLY

R, +0 R, +0R, W, +0x7 R, W, +0x1D

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset

Table 2–14. GFPGFR Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved Reserved. Read as zero. Ignored on write.

26–24 3 SIZE Field size.

23–8 16 Reserved Reserved. Read as zero. Ignored on write.

7–0 8 POLY Polynomial Generator.

2.8.2 Special Timing Considerations

If the next execute packet after an MVC instruction that changes the GFPGFR
value contains a GMPY4 instruction, then the GMPY4 will be controlled by the
newly loaded GFPGFR value.

Summary of TMS320C64x Architecture Key Extensions

 2-30

2.9 Summary of TMS320C64x Architecture Key Extensions

This summary lists the key extensions of the C64x architecture, as compared
to the C62x architecture. The C64x is a code-compatible member of the C6000
DSP family. The C64x provides a superset of the C62x architecture and also
complete code compatibility for existing C62x code running on a C64x device.
The C64x provides extensions to the existing C62x architecture in these areas:

� Register file enhancements
� Data path extensions
� Quad 8-bit and dual 16-bit extensions with data flow enhancements
� Additional functional unit hardware
� Increased orthogonality of the instruction set
� Additional instructions that reduce code size and increase register flexibility.

These areas are described in more detail below.

Register File Enhancements:

� The C64x has twice as many registers. The C64x has 64 general-purpose
registers, whereas the C62x has 32 general-purpose registers.

� The C62x uses A1, A2, B0, B1 and B2 as conditional registers. In addition to
these, the C64x can also use A0 as a conditional register.

� The C62x register file supports packed 16-bit data types in addition to 32-bit
and 40-bit data types. The C64x register file extends this by supporting
packed 8-bit types and 64-bit types.

Data Path Extensions:

� The .D unit in the C64x can load and store double words (64 bits) with a
single instruction, whereas the .D unit in the C62x cannot with a single in-
struction.

� The .D unit in the C64x can now access operands via a data cross path
similar to the .L, .M, and .S functional units. In the C62x only address cross
paths on the .D unit are supported.

Summary of TMS320C64x Architecture Key Extensions

2-31CPU Data Paths and Control

� The C64x pipelines data cross path accesses over multiple cycles. This
allows the same register to be used as a data cross path operand by multi-
ple functional units in the same execute packet. In the C62x, only one
cross operand is allowed per side. This additional pipelining by the C64x
can cause a delay clock cycle known as a cross path stall under certain
conditions. See Chapter 5, section 5.6.2 Cross Path Stalls.

� In the C64x, up to two long sources and two long results can be accessed
on each data path every cycle. In the C62x only one long source and one
long result per data path could occur every cycle.

Additional Functional Unit Hardware:

� Each .M unit can now perform two 16x16 bit multiplies or four 8x8 bit multiplies
every clock cycle.

� The .D units in the C64x can now access words and double words on any
byte boundary by using non-aligned load and store instructions. The C62x
only provides aligned load and store instructions.

� The .L units can perform byte shifts and the .M units can perform bi-direc-
tional variable shifts, in addition to the .S unit’s ability to do shifts. The
bi-directional shifts directly assist voice-compression codecs (vocoders).

� The .L units can perform quad 8-bit subtends with absolute value. This ab-
solute difference instruction greatly aids motion estimation algorithms.

� Special communications-specific instructions, such as SHFL, DEAL and
GMPY4 have been added to the .M unit to address common operations
in error-correcting codes.

� Bit-count and rotate hardware on the .M unit extends support for bit-level al-
gorithms; such as binary morphology, image metric calculations and encryp-
tion algorithms.

Increased Orthogonality of the Instruction Set:

� The .D unit can now perform 32-bit logical instructions, in addition to the
.S and .L units.

� The .D unit in the C64x now directly supports load and store instructions
for double word data values. The C62x does not directly support loads and
stores of double words, and the C67x only directly supports loads of
double words.

� The .L, and .D units can now be used to load 5-bit constants, in addition
to the .S unit’s ability to load 16-bit constants.

Summary of TMS320C64x Architecture Key Extensions

 2-32

Quad 8-bit and Dual 16-bit Extensions with Data Flow Enhancements:

� Extensive collection of PACK and byte shift instructions simplifies manipulation
of packed data types.

� Instructions have been added in the C64x that operate directly on packed
data to streamline data flow and increase instruction set efficiency. The
C64x has a comprehensive collection of 8-bit and 16-bit instruction set ex-
tensions, which are shown in Table 2–15.

Table 2–15. C64x 8-Bit and 16-Bit Instruction Set Extensions.

Operation Quad 8-bit Dual 16-bit

Multiply X X

Multiply with Saturation X

Addition/Subtraction X X†

Addition with Saturation X X

Absolute Value X

Subtract with Absolute Value X

Compare X X

Shift X

Data Pack/Unpack X X

Data Pack with Saturation X X

Dot-product with Optional Negate X‡ X

Min/Max/Average X X

Bit-expansion (Mask Generation) X X

† The C62x provides support for 16-bit data with the ADD2/SUB2 instructions. The C64x ex-
tends this support to include 8-bit data.

‡ Dot-product with negate is not available for 8-bit data.

Summary of TMS320C64x Architecture Key Extensions

2-33CPU Data Paths and Control

Additional Instructions that Reduce Code Size and Increase Register
Flexibility:

� BDEC and BPOS combine a branch instruction with the decrement/test posi-
tive of a destination register respectively. These instructions help reduce the
number of instructions needed to decrement a loop counter and conditionally
branch based upon the value of that counter. Any register can be used as
the loop counter, which can free the standard conditional registers (A0–A2
and B0–B2) for other uses.

� The ADDKPC instruction helps reduce the number of instructions needed
to set up the return address for a function call.

� The BNOP instruction helps reduce the number of instructions required to
perform a branch when NOPs are needed to fill the delay slots of a branch.

� Execute packet boundary restrictions are removed, thereby eliminating all of
the NOPs added to pad fetch packets.

3-1

TMS320C62x/C64x/C67x Fixed-Point
Instruction Set

The TMS320C62x , TMS320C64x , and the TMS320C67x share an in-
struction set. All of the instructions valid for the C62x are also valid for the
C64x and C67x . However, because the C67x is a floating-point device,
there are some instructions that are unique to it and do not execute on the
fixed-point device. Similarly, the C64x adds functionality to the C62x with some
unique instructions. This chapter describes the assembly language instruc-
tions that are common to the C62x, C64x, and C67x digital signal processors.
Also described are parallel operations, conditional operations, resource
constraints, and addressing modes.

Instructions unique to the C67x (floating-point addition, subtraction, multiplica-
tion, and others) are described in Chapter 4.

Instructions unique to the C64x are described in Chapter 5.

Topic Page

3.1 Instruction Operation and Execution Notations 3-2.

3.2 Mapping Between Instructions and Functional Units 3-4.

3.3 TMS320C62x/C64x/C67x Opcode Map 3-9.

3.4 Delay Slots 3-12.

3.5 Parallel Operations 3-13.

3.6 Conditional Operations 3-16.

3.7 Resource Constraints 3-17.

3.8 Addressing Modes 3-21.

3.9 Individual Instruction Descriptions 3-24.

Chapter 3

Instruction Operation and Execution Notations

 3-2

3.1 Instruction Operation and Execution Notations

Table 3–1 explains the symbols used in the fixed-point instruction descriptions.

Table 3–1. Fixed-Point Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

–a Perform 2s-complement subtraction using the addressing mode de-
fined by the AMR

+a Perform 2s-complement addition using the addressing mode defined
by the AMR

by..z Selection of bits y through z of bit string b

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register

cstn n-bit constant field (for example, cst5)

int 32-bit integer value

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

long 40-bit integer value

lsbn or LSBn n least significant bits (for example, lsb16)

msbn or MSBn n most significant bits (for example, msb16)

nop No operation

norm(x) Leftmost nonredundant sign bit of x

not Bitwise logical complement

or

op

Bitwise OR

Opfields

R Any general-purpose register

scstn n-bit signed constant field

sint Signed 32-bit integer value

slong Signed 40-bit integer value

slsb16 Signed 16 LSB of register

smsb16 Signed 16 MSB of register

Instruction Operation and Execution Notations

3-3TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–1. Fixed-Point Instruction Operation and Execution Notations (Continued)

Symbol Meaning

–s Perform 2s-complement subtraction and saturate the result to the re-
sult size if an overflow occurs

+s Perform 2s-complement addition and saturate the result to the result
size if an overflow occurs

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ulsb16 Unsigned 16 LSB of register

umsb16 Unsigned 16 MSB of register

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x ext l,r Extract and sign-extend a field in x, specified by l (shift left value) and
r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift
right value)

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xor Bitwise exclusive OR

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsb16 Signed 16 MSB of register that can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

→ Assignment

+ Addition

× Multiplication

– Subtraction

<< Shift left

>>s Shift right with sign extension

>>z Shift right with a zero fill

Mapping Between Instructions and Functional Units

 3-4

3.2 Mapping Between Instructions and Functional Units

Table 3–2 shows the mapping between instructions and functional units and
Table 3–3 shows the mapping between functional units and instructions.

Table 3–2. Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)‡

ADD MPYU ADDK SHL ADDAB STH (15-bit offset)‡

ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)‡

AND MPYSU AND SHRU ADDAW SUB

CMPEQ MPYH B disp SSHL LDB SUBAB

CMPGT MPYHU B IRP† SUB LDBU SUBAH

CMPGTU MPYHUS B NRP† SUBU LDH SUBAW

CMPLT MPYHSU B reg SUB2 LDHU ZERO

CMPLTU MPYHL CLR XOR LDW

LMBD MPYHLU EXT ZERO LDB (15-bit offset)‡

MV MPYHULS EXTU LDBU (15-bit offset)‡

NEG MPYHSLU MV LDH (15-bit offset)‡

NORM MPYLH MVC† LDHU (15-bit offset)‡

NOT MPYLHU MVK LDW (15-bit offset)‡

OR MPYLUHS MVKH MV

SADD MPYLSHU MVKLH STB

SAT SMPY NEG STH

SSUB SMPYHL NOT STW

SUB SMPYLH OR

SUBU SMPYH

SUBC

XOR

ZERO

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

3-5TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–3. Functional Unit to Instruction Mapping

C62x/C64x/C67x Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit

ABS �

ADD � � �

ADDU �

ADDAB �

ADDAH �

ADDAW �

ADDK �

ADD2 �

AND � �

B �

B IRP �†

B NRP �†

B reg �†

CLR �

CMPEQ �

CMPGT �

CMPGTU �

CMPLT �

CMPLTU �

EXT �

EXTU �

IDLE

LDB mem �

LDBU mem �

LDH mem �

LDHU mem �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

 3-6

Table 3–3. Functional Unit to Instruction Mapping (Continued)

C62x/C64x/C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

LDW mem �

LDB mem (15-bit offset) �‡

LDBU mem (15-bit offset) �‡

LDH mem (15-bit offset) �‡

LDHU mem (15-bit offset) �‡

LDW mem (15-bit offset) �‡

LMBD �

MPY �

MPYU �

MPYUS �

MPYSU �

MPYH �

MPYHU �

MPYHUS �

MPYHSU �

MPYHL �

MPYHLU �

MPYHULS �

MPYHSLU �

MPYLH �

MPYLHU �

MPYLUHS �

MPYLSHU �

MV � � �

MVC† �

MVK �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

3-7TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–3. Functional Unit to Instruction Mapping (Continued)

C62x/C64x/C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

MVKH �

MVKLH �

NEG � �

NOP

NORM �

NOT � �

OR � �

SADD �

SAT �

SET �

SHL �

SHR �

SHRU �

SMPY �

SMPYH �

SMPYHL �

SMPYLH �

SSHL �

SSUB �

STB mem �

STH mem �

STW mem �

STB mem (15-bit offset) �‡

STH mem (15-bit offset) �‡

STW mem (15-bit offset) �‡

SUB � � �

† S2 only
‡ D2 only

Mapping Between Instructions and Functional Units

 3-8

Table 3–3. Functional Unit to Instruction Mapping (Continued)

C62x/C64x/C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

SUBU � �

SUBAB �

SUBAH �

SUBAW �

SUBC �

SUB2 �

XOR � �

ZERO � � �

† S2 only
‡ D2 only

TMS320C62x/C64x/C67x Opcode Map

3-9TMS320C62x/C64x/C67x Fixed-Point Instruction Set

3.3 TMS320C62x/C64x/C67x Opcode Map

Table 3–4 and the instruction descriptions in this chapter explain the field syn-
taxes and values. The C62x, C64x, and C67x opcodes are mapped in
Figure 3–1.

Table 3–4. TMS320C62x/C64x/C67x Opcode Map Symbol Definitions

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register

cst constant

csta constant a

cstb constant b

dst destination

h MVK or MVKH bit

ld/st load/store opfield

mode addressing mode

offsetR register offset

op opfield, field within opcode that specifies a unique instruction

p parallel execution

r

rsv

LDDW bit

reserved

s select side A or B for destination

src2 source 2

src1 source 1

ucstn n-bit unsigned constant field

x use cross path for src2

y select .D1 or .D2

z test for equality with zero or nonzero

TMS320C62x/C64x/C67x Opcode Map

 3-10

Figure 3–1. TMS320C62x/C64x/C67x Opcode Map

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

Operations on the .L unit

3 5 5 5 7

src2 src1/cst

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

Operations on the .M unit

3 5 5 5 5

7 6

0 0src1/cst

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .D unit

3 5 5 5 6

7 6

1 0src2 src1/cst

31 29 28 27 23 22

creg z dst/src

4 3 2 1 0

1 1 s p

Load/store with 15-bit offset on the .D unit

3 5 15

6

ld/stucst15

78

y

3

Load/store baseR + offsetR/cst on the .D unit
31 29 28 27 23 22 18 17

creg z dst/src

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .S unit

3 5 5 5 6

6

1

11

xsrc1/cstsrc 2

31 29 28 27 23 22

creg z dst

7 6 4 3 2 1

cst 0 0 s p

3 5 16

5

1 0 1

ADDK on the .S unit

TMS320C62x/C64x/C67x Opcode Map

3-11TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Figure 3–1. TMS320C62x/C64x/C67x Opcode Map (Continued)

31 29 28 27 23 22 18 17

creg z dst

13 12 8 7 6 5 4 3 2 1 0

csta cstb op 0 0 1 0 s p

3 5 5 5 5 2

Field operations (immediate forms) on the .S unit

src2

31 29 28 27 23 22

creg z dst

7 6 5 4 3 2 1 0

1 0 1 0 s p

3 5 16

hcst

MVK and MVKH on the .S unit

Bcond disp on the .S unit
31 29 28 27

creg z

7 6 5 4 3 2 1 0

0 1 0 0 s p

3 21

0cst

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2
IDLE

14

0

src 0 00 0 0 p

31

Reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

NOP

Delay Slots

 3-12

3.4 Delay Slots

The execution of fixed-point instructions can be defined in terms of delay slots.
The number of delay slots is equivalent to the number of cycles required after
the source operands are read for the result to be available for reading. For a
single-cycle type instruction (such as ADD), source operands read in cycle i
produce a result that can be read in cycle i + 1. For a multiply instruction (MPY),
source operands read in cycle i produce a result that can be read in cycle i + 2.
Table 3–5 shows the number of delay slots associated with each type of in-
struction.

Delay slots are equivalent to an execution or result latency. All of the instruc-
tions that are common to the C62x, C64x, and C67x have a functional unit la-
tency of 1. This means that a new instruction can be started on the functional
unit each cycle. Single-cycle throughput is another term for single-cycle func-
tional unit latency.

Table 3–5. Delay Slot and Functional Unit Latency Summary

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁInstruction Type

ÁÁÁÁÁ
ÁÁÁÁÁ

Delay
Slots

ÁÁÁÁ
ÁÁÁÁ

Functional
Unit Latency

ÁÁÁÁÁ
ÁÁÁÁÁ

Read
Cycles †

ÁÁÁÁ
ÁÁÁÁ

Write
Cycles †

ÁÁÁ
ÁÁÁ

Branch
Taken†
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

NOP (no operation)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Store ÁÁÁÁÁ

ÁÁÁÁÁ
0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i ÁÁÁÁ
ÁÁÁÁ

i ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Single cycle

ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

i
ÁÁÁÁ
ÁÁÁÁ

i
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Multiply (16 � 16)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

i
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

i + 1
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Load ÁÁÁÁÁ

ÁÁÁÁÁ
4 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i ÁÁÁÁ
ÁÁÁÁ

i, i + 4§ ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Branch ÁÁÁÁÁ

ÁÁÁÁÁ
5 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i‡ ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

i + 5ÁÁÁÁ
ÁÁÁÁ† Cycle i is in the E1 pipeline phase.

‡ The branch to label, branch to IRP, and branch to NRP instructions instruction does not read any registers.
§ The write on cycle i + 4 uses a separate write port from other .D unit instructions.

Parallel Operations

3-13TMS320C62x/C64x/C67x Fixed-Point Instruction Set

3.5 Parallel Operations

Instructions are always fetched eight at a time. This constitutes a fetch packet.
The basic format of a fetch packet is shown in Figure 3–2. Fetch packets are
aligned on 256-bit (8-word) boundaries.

Figure 3–2. Basic Format of a Fetch Packet

p p p p p p p p

Instruction
A

000002

Instruction
B

001002

Instruction
C

010002

Instruction
D

011002

Instruction
E

100002

Instruction
F

101002

Instruction
G

110002

Instruction
H

111002

LSBs of
the byte
address

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

The execution of the individual instructions is partially controlled by a bit in
each instruction, the p-bit. The p-bit (bit 0) determines whether the instruction
executes in parallel with another instruction. The p-bits are scanned from left
to right (lower to higher address). If the p-bit of instruction i is 1, then instruction
i + 1 is to be executed in parallel with (in the the same cycle as) instruction i.
If the p-bit of instruction i is 0, then instruction i + 1 is executed in the cycle after
instruction i. All instructions executing in parallel constitute an execute packet.
An execute packet can contain up to eight instructions. Each instruction in an
execute packet must use a different functional unit.

An execute packet cannot cross an 8-word boundary. Therefore, the last p-bit
in a fetch packet is always set to 0, and each fetch packet starts a new execute
packet. There are three types of p-bit patterns for fetch packets. These three
p-bit patterns result in the following execution sequences for the eight instruc-
tions:

� Fully serial
� Fully parallel
� Partially serial

Example 3–1 through Example 3–3 illustrate the conversion of a p-bit se-
quence into a cycle-by-cycle execution stream of instructions.

Parallel Operations

 3-14

Example 3–1. Fully Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

0 0 0 0 0 0 0 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

The eight instructions are executed sequentially.

Example 3–2. Fully Parallel p-Bit Pattern in a Fetch Packet

This p-bit pattern:

1 1 1 1 1 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

All eight instructions are executed in parallel.

Parallel Operations

3-15TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 3–3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0

0 0 1 1

31 0 31 0 31 0 31 0

0 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C D E

4 F G H

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or
other data path resources. This is also true for instructions F, G, and H.

3.5.1 Example Parallel Code

The || characters signify that an instruction is to execute in parallel with the pre-
vious instruction. The code for the fetch packet in Example 3–3 would be rep-
resented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower
addresses are ignored. In Example 3–3, if a branch to the address containing
instruction D occurs, then only D and E execute. Even though instruction C is
in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on execut-
ing A, B, or C, the branch to the middle of the execute packet will produce an
erroneous result.

Conditional Operations

 3-16

3.6 Conditional Operations

All instructions can be conditional. The condition is controlled by a 3-bit opcode
field (creg) that specifies the condition register tested, and a 1-bit field (z) that
specifies a test for zero or nonzero. The four MSBs of every opcode are creg
and z. The specified condition register is tested at the beginning of the E1 pipe-
line stage for all instructions. For more information on the pipeline, see Chap-
ter 6, TMS320C62x/C64x Pipeline, and Chapter 7, TMS320C67x Pipeline. If
z = 1, the test is for equality with zero. If z = 0, the test is for nonzero. The case
of creg = 0 and z = 0 is treated as always true to allow instructions to be execut-
ed unconditionally. The creg field is encoded in the instruction opcode as
shown in Table 3–6.

Table 3–6. Registers That Can Be Tested by Conditional Operations

Specified
C diti l

creg z
Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved� 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

Reserved 1 1 x x

Note: x can be any value. The C64x can also use A0 as a conditional register. Please see Chap-
ter 5, section 5.5 Conditional Operations.

† This value is reserved for software breakpoints that are used for emulation purposes.

Conditional instructions are represented in code by using square brackets, [],
surrounding the condition register name. The following execute packet con-
tains two ADD instructions in parallel. The first ADD is conditional on B0 being
nonzero. The second ADD is conditional on B0 being zero. The character ! in-
dicates the inverse of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive. This means that only one will
execute. If they are scheduled in parallel, mutually exclusive instructions are
constrained as described in section 3.7. If mutually exclusive instructions
share any resources as described in section 3.7, they cannot be scheduled in
parallel (put in the same execute packet), even though only one will execute.

Resource Constraints

3-17TMS320C62x/C64x/C67x Fixed-Point Instruction Set

3.7 Resource Constraints

No two instructions within the same execute packet can use the same re-
sources. Also, no two instructions can write to the same register during the
same cycle. The following sections describe how an instruction can use each
of the resources. Chapter 5, section 5.6 discusses the differences between the
C62x/C67x and the C64x with respect to resource constaints.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same
execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ; \ .S1 is used for
|| SHR .S1 A3, 15, A4 ; / both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ; \ Two different functional
|| SHR .S1 A3, 15, A4 ; / units are used

3.7.2 Constraints on Cross Paths (1X and 2X)

One unit (either a .S, .L, or .M unit) per data path, per execute packet, can read
a source operand from its opposite register file via the cross paths (1X and 2X).
For example, .S1 can read both of an instruction’s operands from the A register
file, or it can read one operand from the B register file using the 1X cross path
and the other from the A register file. This is denoted by an X following the unit
name in the instruction syntax.

Two instructions using the same cross path between register files cannot be
issued in the same execute packet, because there is only one path from A to
B and one path from B to A.

The following execute packet is invalid:

 ADD.L1X A0,B1,A1 ; \ 1X cross path is used
|| MPY.M1X A4,B4,A5 ; / for both instructions

The following execute packet is valid:

 ADD.L1X A0,B1,A1 ; \ Instructions use the 1X and
|| MPY.M2X B4,A4,B2 ; / 2X cross paths

The operand will come from a register file opposite of the destination if the x
bit in the instruction field is set (shown in the opcode map located in Figure 3–1
on page 3-10).

Resource Constraints

 3-18

3.7.3 Constraints on Loads and Stores

Load/store instructions can use an address pointer from one register file while
loading to or storing from the other register file. Two load/store instructions us-
ing a destination/source from the same register file cannot be issued in the
same execute packet. The address register must be on the same side as the
.D unit used.

The following execute packet is invalid:

LDW.D1 *A0,A1 ; \ .D2 unit must use the address
|| LDW.D2 *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from correct
|| LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file
cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1 *A4,A5 ; \ Loading to and storing from the
|| STW.D2 A6,*B4 ; / same register file

The following execute packets are valid:

LDW.D1 *A4,B5 ; \ Loading to, and storing from
|| STW.D2 A6,*B4 ; / different register files

LDW.D1 *A0,B2 ; \ Loading to
|| LDW.D2 *B0,A1 ; / different register files

3.7.4 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands
and a write register port for long results, only one long result may be issued
per register file in an execute packet. All instructions with a long result on the
.S and .L units have zero delay slots. See section 2.1 on page 2-5 for the order
for long pairs.

The following execute packet is invalid:

 ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes
|| SHL.S1 A8,A9,A7:A6 ; / on A register file

Resource Constraints

3-19TMS320C62x/C64x/C67x Fixed-Point Instruction Set

The following execute packet is valid:

 ADD.L1 A5:A4,A1,A3:A2 ; \ One long write for
|| SHL.S2 B8,B9,B7:B6 ; / each register file

Because the .L and .S units share their long read port with the store port, op-
erations that read a long value cannot be issued on the .L and/or .S units in
the same execute packet as a store.

The following execute packet is invalid:

 ADD .L1 A5:A4,A1,A3:A2 ; \ Long read operation and a
|| STW .D1 A8,*A9 ; / store

The following execute packet is valid:

 ADD.L1 A4, A1, A3:A2 ; \ No long read with
|| STW.D1 A8,*A9 ; / with the store

3.7.5 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle.
Conditional registers are not included in this count.

The following code sequences are invalid:

 MPY .M1 A1,A1,A4 ; five reads of register A1
|| ADD .L1 A1,A1,A5
|| SUB .D1 A1,A2,A3

 MPY .M1 A1,A1,A4 ; five reads of register A1
|| ADD .L1 A1,A1,A5
|| SUB .D2x A1,B2,B3

This code sequence is valid:

 MPY .M1 A1,A1,A4 ; only four reads of A1
|| [A1] ADD .L1 A0,A1,A5
|| SUB .D1 A1,A2,A3

3.7.6 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two in-
structions with the same destination can be scheduled in parallel as long as
they do not write to the destination register on the same cycle. For example,
a MPY issued on cycle i followed by an ADD on cycle i + 1 cannot write to the
same register because both instructions write a result on cycle i + 1. Therefore,
the following code sequence is invalid unless a branch occurs after the MPY,
causing the ADD not to be issued.

 MPY .M1 A0,A1,A2
 ADD .L1 A4,A5,A2

Resource Constraints

 3-20

However, this code sequence is valid:

 MPY .M1 A0,A1,A2
|| ADD .L1 A4,A5,A2

Figure 3–3 shows different multiple-write conflicts. For example, ADD and
SUB in execute packet L1 write to the same register. This conflict is easily de-
tectable.

MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously;
however, if a branch instruction causes the execute packet after L2 to be
something other than L3, a conflict would not occur. Thus, the potential conflict
in L2 and L3 might not be detected by the assembler. The instructions in L4
do not constitute a write conflict because they are mutually exclusive. In con-
trast, because the instructions in L5 may or may not be mutually exclusive, the
assembler cannot determine a conflict. If the pipeline does receive commands
to perform multiple writes to the same register, the result is undefined.

Figure 3–3. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD.L2 B5,B6,B7 ; \ detectable, conflict
|| SUB.S2 B8,B9,B7 ; /

L2: MPY.M2 B0,B1,B2 ; \ not detectable

L3: ADD.L2 B3,B4,B2 ; /

L4:[!B0] ADD.L2 B5,B6,B7 ; \ detectable, no conflict
|| [B0] SUB.S2 B8,B9,B7 ; /

L5:[!B1] ADD.L2 B5,B6,B7 ; \ not detectable
|| [B0] SUB.S2 B8,B9,B7 ; /

Addressing Modes

3-21TMS320C62x/C64x/C67x Fixed-Point Instruction Set

3.8 Addressing Modes

The addressing modes on the C62x, C64x, and C67x are linear, circular using
BK0, and circular using BK1. The mode is specified by the addressing mode
register, or AMR (defined in Chapter 2).

All registers can perform linear addressing. Only eight registers can perform
circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by
the .D2 unit. No other units can perform circular addressing.
LDB(U)/LDH(U)/LDW , STB/STH/STW, ADDAB/ADDAH/ADDAW/ADDAD ,
and SUBAB/SUBAH/SUBAW instructions all use the AMR to determine what
type of address calculations are performed for these registers.

Additional information on addressing modes for the C64x can be found in
Chapter 5.

3.8.1 Linear Addressing Mode

3.8.1.1 LD/ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst oper-
and to the left by 2, 1, or 0 for word, halfword, or byte access, respectively, and
then performs an add or a subtract to baseR (depending on the operation spe-
cified).

3.8.1.2 ADDA/SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the
src1/cst operand to the left by 2, 1, or 0 for word, halfword, or byte data sizes,
respectively, and then performs the add or subtract specified.

3.8.2 Circular Addressing Mode

The BK0 and BK1 fields in the AMR specify block sizes for circular addressing.
See section 2.6.2, on page 2-14, for more information on the AMR.

3.8.2.1 LD/ST Instructions

After shifting offsetR/cst to the left by 2, 1, or 0 for LDW, LDH(U), or LDB(U) ,
respectively, an add or subtract is performed with the carry/borrow inhibited
between bits N and N + 1. Bits N + 1 to 31 of baseR remain unchanged. All
other carries/borrows propagate as usual. If you specify an offsetR/cst greater
than the circular buffer size, 2(N + 1), the effective offsetR/cst is modulo the cir-
cular buffer size (see Example 3–4). The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4 � data size (byte, half-

Addressing Modes

 3-22

word, word). So, to perform circular addressing on an array of 8 words, a size
of 32 should be specified, or N = 4. Example 3–4 shows a LDW performed with
register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 half-
words, or 8 words. The value put in the AMR for this example is 0004 0001h.

Example 3–4. LDW in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 XXXX XXXXh A1 XXXX XXXXh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h–11Fh; thus, it is wrapped around to
(124h – 20h = 104h).

3.8.2.2 ADDA/SUBA Instructions

After shifting src1/cst to the left by 2, 1, or 0 for ADDAW, ADDAH , or ADDAB ,
respectively, an add or a subtract is performed with the carry/borrow inhibited
between bits N and N + 1. Bits N + 1 to 31 (inclusive) of src2 remain unchanged.
All other carries/borrows propagate as usual. If you specify src1 greater than
the circular buffer size, 2(N + 1), the effective offsetR/cst is modulo the circular
buffer size (see Example 3–5). The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4 � data size (byte, half-
word, word). So, to perform circular addressing on an array of 8 words, a size
of 32 should be specified, or N = 4. Example 3–5 shows an ADDAH performed
with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes,
16 halfwords, or 8 words. The value put in the AMR for this example is
0004 0001h.

Example 3–5. ADDAH in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary
100h–11Fh; thus, it is wrapped around to (126h – 20h = 106h).

Addressing Modes

3-23TMS320C62x/C64x/C67x Fixed-Point Instruction Set

3.8.3 Syntax for Load/Store Address Generation

The C62x, C64x, and C67x CPUs have a load/store architecture, which means
that the only way to access data in memory is with a load or store instruction.
Table 3–7 shows the syntax of an indirect address to a memory location.
Sometimes a large offset is required for a load/store. In this case you can use
the B14 or B15 register as the base register, and use a 15-bit constant (ucst15)
as the offset.

Table 3–7. Indirect Address Generation for Load/Store

Addressing Type
No Modification of
Address Register

Preincrement or Pre-
decrement of

Address Register

Postincrement or
Postdecrement of Ad-

dress Register

Register indirect *R *++R
*– –R

*R++
*R– –

Register relative *+R[ucst5]
*–R[ucst5]

*++R[ucst5]
*– –R[ucst5]

*R++[ucst5]
*R– –[ucst5]

Register relative with
15-bit constant offset

*+B14/B15[ucst15] not supported not supported

Base + index *+R[offsetR]
*–R[offsetR]

*++R[offsetR]
*– –R[offsetR]

*R++[offsetR]
*R– –[offsetR]

Individual Instruction Descriptions

 3-24

3.9 Individual Instruction Descriptions

This section gives detailed information on the fixed-point instruction set for the
C62x, C64x, and C67x. Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Instruction type
� Delay slots
� Functional Unit Latency
� Examples

The ADD instruction is used as an example to familiarize you with the way
each instruction is described. The example describes the kind of information
you will find in each part of the individual instruction description and where to
obtain more information.

Example

3-25 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

The way each instruction is described.Example

Syntax EXAMPLE (.unit) src, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates
which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2,
.D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units
the instruction is mapped to, types of operands, and the opcode.

The opcode map, repeated from the summary figure on page 3-10 shows the
various fields that make up each instruction. These fields are described in
Table 3–4 on page 3-9.

There are instructions that can be executed on more than one functional unit.
Table 3–8 shows how this situation is documented for the ADD instruction.
This instruction has three opcode map fields: src1, src2, and dst. In the
seventh row, the operands have the types cst5, long, and long for src1, src2,
and dst, respectively. The ordering of these fields implies cst5 + long � long,
where + represents the operation being performed by the ADD. This operation
can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that src1 (scst5), src2 (slong), and dst (slong) are all
signed values.

In the third row, src1, src2, and dst are int, int, and long, respectively. The u in
front of each operand signifies that all operands are unsigned. Any operand
that begins with x can be read from a register file that is different from the des-
tination register file. The operand comes from the register file opposite the des-
tination if the x bit in the instruction is set (shown in the opcode map).

Example

3-26

Table 3–8. Relationships Between Operands, Operand Size, Signed/Unsigned, Functional
Units, and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1,
.L2

0000011 ADD

src1
src2
dst

sint
xsint
slong

.L1,
.L2

0100011 ADD

src1
src2
dst

uint
xuint
ulong

.L1,
.L2

0101011 ADDU

src1
src2
dst

xsint
slong
slong

.L1,
.L2

0100001 ADD

src1
src2
dst

xuint
ulong
ulong

.L1,
.L2

0101001 ADDU

src1
src2
dst

scst5
xsint
sint

.L1,
.L2

0000010 ADD

src1
src2
dst

scst5
slong
slong

.L1,
.L2

0100000 ADD

src1
src2
dst

sint
xsint
sint

.S1,
.S2

000111 ADD

src1
src2
dst

scst5
xsint
sint

.S1,
.S2

000110 ADD

src2
src1
dst

sint
sint
sint

.D1,
.D2

010000 ADD

src2
src1
dst

sint
ucst5
sint

.D1,
.D2

010010 ADD

Example

3-27 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Description Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 + src2 → dst
else nop

Execution for .D1, .D2 Opcodes
if (cond) src2 + src1 → dst
else nop

The execution describes the processing that takes place when the instruction
is executed. The symbols are defined in Table 3–1 on page 3-2.

Pipeline This section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.

Instruction Type This section gives the type of instruction. See section 6.2 on page 6-14 for in-
formation about the pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute
See section 3.4 on page 3-12 for an explanation of delay slots.

Functional Unit Latency
This section gives the number of cycles that the functional unit is in use during
the execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values
are given before and after instruction execution.

ABS

3-28

Integer Absolute Value With SaturationABS

Syntax ABS (.unit) src2, dst

.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 0011010

src2
dst

slong
slong

.L1, L2 0111000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The absolute value of src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 when src2 is an sint is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –231, then –src2 → dst
3) If src2 = –231, then 231 – 1 → dst

The absolute value of src2 when src2 is an slong is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –239, then –src2 → dst
3) If src2 = –239, then 239 – 1 → dst

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

ABS

3-29 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh –2147463619 A1 8000 4E3Dh –2147463619

A5 XXXX XXXXh A5 7FFF B1C3h 2147463619

Example 2 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1073086480 A1 3FF6 0010h 1073086480

A5 XXXX XXXXh A5 3FF6 0010h 1073086480

ADD(U)

3-30

Signed or Unsigned Integer Addition Without SaturationADD(U)

Syntax ADD (.unit) src1, src2, dst
or

ADDU (.L1 or .L2) src1, src2, dst
or

ADD (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000011

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100011

src1
src2
dst

uint
xuint
ulong

.L1, .L2 0101011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0100001

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 0101001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0100000

src1
src2
dst

sint
xsint
sint

.S1, .S2 000111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 000110

src2
src1
dst

sint
sint
sint

.D1, .D2 010000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010010

ADD(U)

3-31 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Opcode .L unit

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Opcode .S unit

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description for .L1, .L2 and .S1, .S2 Opcodes
src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 + src2 → dst
else nop

Opcode .D unit

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description for .D1, .D2 Opcodes
src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes
if (cond) src2 + src1 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline

ADD(U)

3-32

Example 1 ADD .L2X A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

B1 FFFF FF12h –238 B1 FFFF FF12h

B2 XXXX XXXXh B2 0000 316Ch 12652

Example 2 ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 † A1 0000 325Ah

A2 FFFF FF12h 4294967058 † A2 FFFF FF12h

A5:A4 XXXX XXXX A5:A4 0000 0001h 0000 316Ch 4294979948 ‡

Example 3 ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h 1099511627538 ‡ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch 12652 ‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Example 4 ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h –228 § A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0§ A5:A4 0000 0000h 0000 316Ch 12652 §

§ Signed 40-bit (long) integer

Example 5 ADD .L1 –13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 324Dh 12877

ADD(U)

3-33 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 6 ADD .D1 A1,26,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 3274h 12916

ADDAB/ADDAH/ADDAW

3-34

Integer Addition Using Addressing ModeADDAB/ADDAH/ADDAW

Syntax ADDAB (.unit) src2, src1, dst
or

ADDAH (.unit) src2, src1, dst
or

ADDAW (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 byte: 110000
halfword: 110100

word: 111000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 byte: 110010
halfword: 110110

word: 111010

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is added to src2 using the addressing mode specified for src2. The addi-
tion defaults to linear mode. However, if src2 is one of A4–A7 or B4–B7, the
mode can be changed to circular mode by writing the appropriate value to the
AMR (see section 2.6.2). src1 is left shifted by 1 or 2 for halfword and word data
sizes respectively. Byte, halfword, and word mnemonics are ADDAB , ADD-
AH, and ADDAW, respectively. The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline

ADDAB/ADDAH/ADDAW

3-35 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 ADDAB .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 2 ADDAH .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 3 ADDAW .D1 A4,2,A4

Before instruction 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

ADDK

3-36

Integer Addition Using Signed 16-Bit ConstantADDK

Syntax ADDK (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

scst16
uint

.S1, .S2

Opcode

165

z dst

6 0

cst 1 0 1 0 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description A 16-bit signed constant is added to the dst register specified. The result is
placed in dst.

Execution if (cond) cst + dst → dst
else nop

Pipeline
Stage E1

Read cst

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A1 0021 740Ah 2192394

Pipeline

ADD2

3-37 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Two 16-Bit Integer Adds on Upper and Lower Register HalvesADD2

Syntax ADD2 (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description The upper and lower halves of the src1 operand are added to the upper and
lower halves of the src2 operand. Any carry from the lower half add does not
affect the upper half add.

Execution if (cond) {
((lsb16(src1) + lsb16(src2)) and FFFFh) or

 ((msb16(src1) + msb16(src2)) << 16) → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADD2 .S1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 33 14305 A1 0021 37E1h

A2 XXXX XXXXh A2 03BB 1C99h 955 7321

B1 039A E4B8h 922 58552 B1 039A E4B8h

Pipeline

AND

3-38

Bitwise ANDAND

Syntax AND (.unit) src1, src2, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111011

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111010

src1
src2
dst

uint
xuint
uint

.S1, .S2 011111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011110

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise AND is performed between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 and src2 → dst
else nop

AND

3-39 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Delay Slots 0

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Example 1 AND .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 XXXX XXXXh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 XXXX XXXXh A3 0000 0006h

Pipeline

B

3-40

Branch Using a DisplacementB

Syntax B (.unit) label

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst scst21 .S1, .S2

Opcode

21

z

6 0

cst 0 0 1 0 0 s p

31

creg

29 28 27 7

13 1 1

Description A 21-bit signed constant specified by cst is shifted left by 2 bits and is added
to the address of the first instruction of the fetch packet that contains the
branch instruction. The result is placed in the program fetch counter (PFC).
The assembler/linker automatically computes the correct value for cst by the
following formula:

cst = (label – PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) cst << 2 + PCE1 → PFC
else nop

Notes:

1) PCE1 (program counter) represents the address of the first instruction
in the fetch packet in the E1 stage of the pipeline. PFC is the program
fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.5.2 on page 3-15 for information on branching into the
middle of an execute packet.

B

3-41 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read

Written

Branch
Taken

�

Unit in use .S

Instruction Type Branch

Delay Slots 5

Table 3–9 gives the program counter values and actions for the following code
example.

Example

0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .M1X A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M1 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3–9. Program Counter Values for Example Branch Using a Displacement

Cycle
Program Counter
Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code executes

Cycle 7 0000 0014h

Pipeline

B

3-42

Branch Using a RegisterB

Syntax B (.unit) src2

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xuint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description src2 is placed in the PFC.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as
onlly one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) src2 → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

�

Unit in use .S2

Pipeline

B

3-43 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Instruction Type Branch

Delay Slots 5

Table 3–10 gives the program counter values and actions for the following
code example. In this example, the B10 register holds the value 1000 000Ch.

Example B10 1000 000Ch

1000 0000 B .S2 B10
1000 0004 ADD .L1 A1, A2, A3
1000 0008 || ADD .L2 B1, B2, B3
1000 000C MPY .M1X A3, B3, A4
1000 0010 || SUB .D1 A5, A6, A6
1000 0014 MPY .M1 A3, A6, A5
1000 0018 MPY .M1 A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .D1 A4, A6, A4

Table 3–10. Program Counter Values for Example Branch Using a Register

Cycle
Program Counter
Value Action

Cycle 0 1000 0000h Branch command executes
(target code fetched)

Cycle 1 1000 0004h

Cycle 2 1000 000Ch

Cycle 3 1000 0014h

Cycle 4 1000 0018h

Cycle 5 1000 001Ch

Cycle 6 1000 000Ch Branch target code executes

Cycle 7 1000 0014h

B IRP

3-44

Branch Using an Interrupt Return PointerB IRP

Syntax B (.unit) IRP

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xsint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 00 0 1 1 0

Description IRP is placed in the PFC. This instruction also moves PGIE to GIE. PGIE is
unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a ture condition, the code executes in a well-defined way.

Execution if (cond) IRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is the program fetch counter.

2) Refer to the chapter on interrupts for more information on IRP, PGIE, and
GIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

B IRP

3-45 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read IRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Table 3–11 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at

PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3–11. Program Counter Values for B IRP

Cycle
Program Counter
Value (Hex) Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline

B NRP

3-46

Branch Using NMI Return PointerB NRP

Syntax B (.unit) NRP

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xsint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 00 0 1 1 1

Description NRP is placed in the PFC. This instruction also sets NMIE. PGIE is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) NRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Refer to the chapter on interrupts for more information on NRP and
NMIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

B NRP

3-47 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read NRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Table 3–12 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at

PC = 0000 1000 NRP = 0000 1000

0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3–12. Program Counter Values for B NRP

Cycle
Program Counter
Value (Hex) Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline

CLR

3-48

Clear a Bit FieldCLR

Syntax CLR (.unit) src2, csta, cstb, dst
or

CLR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2 11

src2
src1
dst

xuint
uint
uint

.S1, .S2 111111

Opcode

Constant form:

5

z cstb

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27 7

13

18 1723 22

src2

5

csta

13

5

12 8

5 2 1 1

1 0

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

6 1 1

x

1

11

1 1 1 0 1 1

CLR

3-49 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Description The field in src2, specified by csta and cstb, is cleared to zero. csta and cstb
may be specified as constants or as the ten LSBs of the src1 registers, with
cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the LSB
in the field and cstb signifies the bit location of the MSB in the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be cleared. The LSB location of src2 is 0 and the MSB location of
src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x1 1 1 1 10 0 0

0x x0 0 0 0 00 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 clear src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 07A0 000Ah

Pipeline

CLR

3-50

Example 2 CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 XXXX XXXXh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h

CMPEQ

3-51 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Integer Compare for EqualityCMPEQ

Syntax CMPEQ (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 1010011

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1010010

src1
src2
dst

xsint
slong
uint

.L1, .L2 1010001

src1
src2
dst

scst5
slong
uint

.L1, .L2 1010000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description This instruction compares src1 to src2. If src1 equals src2, then 1 is written
to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Pipeline

CMPEQ

3-52

Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPEQ .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 4B8h 1208 A1 0000 4B8h

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 4B7h 1207 B1 0000 4B7h

Example 2 CMPEQ .L1 Ch,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 XXXX XXXXh A2 0000 0001h true

Example 3 CMPEQ .L2X A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 XXXX XXXXh B1 0000 0001h true

B3:B2 0000 0FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h

CMPGT(U)

3-53 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Signed or Unsigned Integer Compare for Greater ThanCMPGT(U)

Syntax CMPGT (.unit) src1, src2, dst
or

CMPGTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
uint

.L1, .L2 1000111 CMPGT

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1000110 CMPGT

src1
src2
dst

xsint
slong
uint

.L1, .L2 1000101 CMPGT

src1
src2
dst

scst5
slong
uint

.L1, .L2 1000100 CMPGT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1001111 CMPGTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1001110 CMPGTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1001101 CMPGTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1001100 CMPGTU

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

CMPGT(U)

3-54

Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is greater than src2, then 1 is written to dst. Otherwise, 0 is written to dst. Only
the four LSBs are valid in the 5-bit cst field when the ucst4 operand is used.
If the MSB of the cst field is non-zero, the result is invalid.

Note:

The CMPGT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPGT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPLT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPGT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPGT .L1x B4, A5, A0

Then to implement this operation the assembler converts this instruction to

CMPLT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

CMPGT(U)

3-55 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 08BDh 2237 B1 0000 08BDh

Example 2 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h –367 A1 FFFF FE91h

A2 XXXX XXXXh A2 0000 0001h true

B1 FFFF FDC4h –572 B1 FFFF FDC4h

Example 3 CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 XXXX XXXXh A2 0000 0000h false

Example 4 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 00EBh 235 B1 0000 00EBh

Example 5 CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h 296† A1 0000 0128h

A2 FFFF FFDEh 4294967262 † A2 FFFF FFDEh

A3 XXXX XXXXh A3 0000 0000h false

CMPGT(U)

3-56

Example 6 CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5† A1 0000 0005h

A2 XXXX XXXXh A2 0000 0001h true

Example 7 CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah 10‡ A3:A2 0000 0000h 0000 000Ah

A4 XXXX XXXXh A4 0000 0001h true

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

CMPLT(U)

3-57 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Signed or Unsigned Integer Compare for Less ThanCMPLT(U)

Syntax CMPLT (.unit) src1, src2, dst
or

CMPLTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
uint

.L1, .L2 1010111 CMPLT

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1010110 CMPLT

src1
src2
dst

xsint
slong
uint

.L1, .L2 1010101 CMPLT

src1
src2
dst

scst5
slong
uint

.L1, .L2 1010100 CMPLT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1011111 CMPLTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1011110 CMPLTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1011101 CMPLTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1011100 CMPLTU

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

CMPLT(U)

3-58

Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is less than src2, then 1 is written to dst. Otherwise, 0 is written to dst.

Note:

The CMPLT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPLT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPLT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPLT .L1x B4, A5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 < src2) 1 → dst
else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

CMPLT(U)

3-59 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 XXXX XXXXh A3 0000 0001h true

Example 2 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h –298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 XXXX XXXXh A3 0000 0001h true

Example 3 CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 XXXX XXXXh A2 0000 0000h false

Example 4 CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah 10394 † A1 0000 289Ah

A2 FFFF F35Eh 4294964062 † A2 FFFF F35Eh

A3 XXXX XXXXh A3 0000 0001h true

† Unsigned 32-bit integer

CMPLT(U)

3-60

Example 5 CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh 15† A1 0000 000Fh

A2 XXXX XXXXh A2 0000 0001h true

Example 6 CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h 3900000 † A1 003B 8260h

A2 XXXX XXXXh A2 0000 0000h false

A5:A4 0000 0000h 003A 0002h 3801090 ‡ A5:A4 0000 0000h 003A 0002h

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

EXT

3-61 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Extract and Sign-Extend a Bit FieldEXT

Syntax EXT (.unit) src2, csta, cstb, dst
or

EXT (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

sint
ucst5
ucst5
sint

.S1, .S2

src2
src1
dst

xsint
uint
sint

.S1, .S2

Opcode

Constant form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

csta

13

5

12

1 1

8

cstb

7

5 2

0 1

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 16

x

11

1 0 1 1 1 1

Description The field in src2, specified by csta and cstb, is extracted and sign-extended
to 32 bits. The extract is performed by a shift left followed by a signed shift right.
csta and cstb are the shift left amount and shift right amount, respectively. This
can be thought of in terms of the LSB and MSB of the field to be extracted. Then
csta = 31 – MSB of the field and cstb = csta + LSB of the field. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0–4 and csta bits 5–9. In the example below, csta is 12 and
cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the
instruction. If any of the 22 MSBs are non-zero, the result is invalid.

EXT

3-62

csta

x

cstb – csta

src2

dst

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0

1 1 0 1 0 0 1 1 0 11 1

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 ext csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 ext src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline

EXT

3-63 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 FFFF F21Fh

Example 2 EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 XXXX XXXXh A3 0000 03B6h

EXTU

3-64

Extract and Zero-Extend a Bit FieldEXTU

Syntax EXTU (.unit) src2, csta, cstb, dst
or

EXTU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

src2
src1
dst

xuint
uint
uint

.S1, .S2

Opcode

Constant width and offset form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

csta

13

5

12

1 1

cstb

8

5

7

0 0

2

Register width and offset form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 1

1 0 1 0 1 1

6

x

11

Description The field in src2, specified by csta and cstb, is extracted and zero extended
to 32 bits. The extract is performed by a shift left followed by an unsigned shift
right. csta and cstb are the amounts to shift left and shift right, respectively.
This can be thought of in terms of the LSB and MSB of the field to be extracted.
Then csta = 31 – MSB of the field and cstb = csta + LSB of the field. The shift
left and shift right amounts may also be specified as the ten LSBs of the src1
register with cstb being bits 0–4 and csta bits 5–9. In the example below, csta
is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register ver-
sion of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.

EXTU

3-65 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

0 1 0 1 0 0 1 1 0 10 0

x

csta cstb – cst a

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0src2

dst

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register width and offset form is used:

if (cond) src2 extu src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline

EXTU

3-66

Example 1 EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 0000 121Fh

Example 2 EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh

IDLE

3-67 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Multicycle NOP With No Termination Until InterruptIDLE

Syntax IDLE

Opcode

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2

Description This instruction performs an infinite multicycle NOP that terminates upon ser-
vicing an interrupt, or a branch occurs due to an IDLE instruction being in the
delay slots of a branch.

Instruction Type NOP

Delay Slots 0

LDB(U)/LDH(U)/LDW

3-68

Load From Memory With a 5-Bit Unsigned Constant Offset
or Register Offset

LDB(U)/LDH(U)/LDW

Syntax Register Offset

LDB (.unit) *+baseR[offsetR], dst
or

LDH (.unit) *+baseR[offsetR], dst
or

LDW (.unit) *+baseR[offsetR], dst
or

LDBU (.unit) *+baseR[offsetR], dst
or

LDHU (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDB (.unit) *+baseR[ucst5], dst
or

LDH (.unit) *+baseR[ucst5], dst
or

LDW (.unit) *+baseR[ucst5], dst
or

LDBU (.unit) *+baseR[ucst5], dst
or

LDHU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description Each of these instructions loads from memory to a general-purpose register
(dst). Table 3–13 summarizes the data types supported by loads. Table 3–14
describes the addressing generator options. The memory address is formed
from a base address register (baseR) and an optional offset that is either a reg-
ister (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given, the
assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register file
used: y = 0 selects the .D1 unit and baseR and offsetR from the A register file,
and y = 1 selects the .D2 unit and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for LDB(U) , LDH(U), and LDW,
respectively. After scaling, offsetR/ucst5 is added to or subtracted from baseR.
For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in
memory. For postincrement or postdecrement addressing, the value of baseR
before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see sec-
tion 2.6.2 on page 2-14).

LDB(U)/LDH(U)/LDW

3-69 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

For LDH(U) and LDB(U) the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16- and 24-bits, respectively, of dst
values are sign-extended. For LDHU and LDBU loads, the upper 16- and
24-bits, respectively, of dst are zero-filled. For LDW, the entire 32 bits fills dst.
dst can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file dst will be loaded into: s = 0 indicates dst
will be in the A register file and s = 1 indicates dst will be loaded in the B register
file. The r bit should be set to zero.

Table 3–13. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Table 3–14. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

LDB(U)/LDH(U)/LDW

3-70

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [], indicate that the ucst5 offset
is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively. Pa-
rentheses, (), can be used to set a nonscaled, constant offset. For example,
LDW (.unit) *+baseR (12) dst represents an offset of 12 bytes, whereas LDW
(.unit) *+baseR [12] dst represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset if you use the
optional offset parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Execution if (cond) mem → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 6,
TMS320C62x/C64x Pipeline, and Chapter 7, TMS320C67x Pipeline.

Example 1 LDW .D1 *A10,B1

Before LDW 1 cycle after LDW 5 cycles after LDW

B1 0000 0000h B1 0000 0000h B1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Pipeline

LDB(U)/LDH(U)/LDW

3-71 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 2 LDB .D1 *–A5[4],A7

Before LDB 1 cycle after LDB 5 cycles after LDB

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h E1h mem 200h E1h mem 200h E1h

Example 3 LDH .D1 *++A4[A1],A8

Before LDH 1 cycle after LDH 5 cycles after LDH

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh

Example 4 LDW .D1 *A4++[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3h

LDB(U)/LDH(U)/LDW

3-72

Example 5 LDW .D1 *++A4[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h

LDB(U)/LDH(U)/LDW

3-73 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Load From Memory With a 15-Bit Constant OffsetLDB(U)/LDH(U)/LDW

Syntax LDB (.unit) *+B14/B15[ucst15], dst
or

LDH (.unit) *+B14/B15[ucst15], dst
or

LDW (.unit) *+B14/B15[ucst15], dst
or

LDBU (.unit) *+B14/B15[ucst15], dst
or

LDHU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

31 29 28 27 23 22

creg z dst

4 3 2 1 0

1 1 s p

3 5 15

6

ld/stucst15

78

y

3

Description Each of these instructions performs a load from memory to a general-purpose
register (dst). Table 3–15 summarizes the data types supported by loads. The
memory address is formed from a base address register (baseR) B14 (y = 0)
or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0, 1, or 2 for LDB(U) , LDH(U), and
LDW, respectively. After scaling, ucst15 is added to baseR. Subtraction is not
supported. The result of the calculation is the address sent to memory. The ad-
dressing arithmetic is always performed in linear mode.

For LDH(U) and LDB(U) , the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16 and 24 bits of dst values are sign-
extended, respectively. For LDHU and LDBU loads, the upper 16 and 24 bits
of dst are zero-filled, respectively. For LDW, the entire 32 bits fills dst. dst can
be in either register file. The s bit determines which file dst will be loaded into:
s = 0 indicates dst is loaded in the A register file, and s = 1 indicates dst is
loaded into the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2, 1, or 0 for
word, halfword, and byte loads, respectively. Parentheses, (), can be used to set
a nonscaled, constant offset. For example, LDW (.unit) *+B14/B15(60) dst repre-
sents an offset of 60 bytes, whereas LDW (.unit) *+B14/B15[60] dst represents

LDB(U)/LDH(U)/LDW

3-74

an offset of 60 words, or 240 bytes. You must type either brackets or paren-
theses around the specified offset if you use the optional offset parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Table 3–15. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

Pipeline

LDB(U)/LDH(U)/LDW

3-75 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example LDB .D2 *+B14[36],B1

Before LDB 1 cycle after LDB

B1 XXXX XXXXh B1 XXXX XXXXh

B14 0000 0100h B14 0000 0100h

mem 124–127h 4E7A FF12h mem 124–127h 4E7A FF12h

mem 124h 12h mem 124h 12h

5 cycles after LDB

B1 0000 0012h

B14 0000 0100h

mem 124–127h 4E7A FF12h

mem 124h 12h

LMBD

3-76

Leftmost Bit DetectionLMBD

Syntax LMBD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101011

src1
src2
dst

cst5
xuint
uint

.L1, .L2 1101010

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description The LSB of the src1 operand determines whether to search for a leftmost 1 or 0
in src2. The number of bits to the left of the first 1 or 0 when searching for a 1
or 0, respectively, is placed in dst.

The following diagram illustrates the operation of LMBD for several cases.

1 1 1 1 1 1 1 1 1 11 1

x0 1 xx x x x xx x x

x x x x x x x00 0 x x x0 1 x x x x x x x x x xx x xx x xx

When searching for 1 in src2, LMBD returns 4:

When searching for 0 in src2, LMBD returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD returns 0:

Execution if (cond) {
if (src10 == 0) lmb0(src2) → dst
if (src10 == 1) lmb1(src2) → dst
}

else nop

LMBD

3-77 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example LMBD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 XXXX XXXXh A3 0000 0008h

Pipeline

MPY(U/US/SU)

3-78

Signed or Unsigned Integer Multiply 16lsb x 16lsbMPY(U/US/SU)

Syntax MPY (.unit) src1, src2, dst
or

MPYU (.unit) src1, src2, dst
or

MPYUS (.unit) src1, src2, dst
or

MPYSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2 11001 MPY

src1
src2
dst

ulsb16
xulsb16
uint

.M1, .M2 11111 MPYU

src1
src2
dst

ulsb16
xslsb16
sint

.M1, .M2 11101 MPYUS

src1
src2
dst

slsb16
xulsb16
sint

.M1, .M2 11011 MPYSU

src1
src2
dst

scst5
xslsb16
sint

.M1, .M2 11000 MPY

src1
src2
dst

scst5
xulsb16
sint

.M1, .M2 11110 MPYSU

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) � lsb16(src2) → dst
else nop

MPY(U/US/SU)

3-79 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example 1 MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291† A1 0000 0123h

A2 01E0 FA81h –1407 † A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF9 C0A3 –409437

Example 2 MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 0F12 FA81h 64129 ‡ A2 0F12 FA81h

A3 XXXX XXXXh A3 011C C0A3 18661539 §

Example 3 MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h 65441 ‡ A1 1234 FFA1h

A2 1234 FFA1h –95† A2 1234 FFA1h

A3 XXXX XXXXh A3 FFA1 2341h –6216895

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer
§ Unsigned 32-bit integer

Pipeline

MPY(U/US/SU)

3-80

Example 4 MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h –13† A1 3497 FFF3h

A2 XXXX XXXXh A2 FFFF FF57h –163

Example 5 MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h 65523 ‡ A1 3497 FFF3h

A2 XXXX XXXXh A2 000C FF57h 851779

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer

MPYH(U/US/SU)

3-81 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Signed or Unsigned Integer Multiply 16msb x 16msbMPYH(U/US/SU)

Syntax MPYH (.unit) src1, src2, dst
or

MPYHU (.unit) src1, src2, dst
or

MPYHUS (.unit) src1, src2, dst
or

MPYHSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00001 MPYH

src1
src2
dst

umsb16
xumsb16
uint

.M1, .M2 00111 MPYHU

src1
src2
dst

umsb16
xsmsb16
sint

.M1, .M2 00101 MPYHUS

src1
src2
dst

smsb16
xumsb16
sint

.M1, .M2 00011 MPYHSU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) � msb16(src2) → dst
else nop

MPYH(U/US/SU)

3-82

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example 1 MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 1234h –89† A2 FFA7 1234h

A3 XXXX XXXXh A3 FFFF F3D5h –3115

Example 2 MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35‡ A1 0023 0000h

A2 FFA7 1234h 65447 ‡ A2 FFA7 1234h

A3 XXXX XXXXh A3 0022 F3D5h 2290645 §

Example 3 MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 FFFFh 65447 ‡ A2 FFA7 FFFFh

A3 XXXX XXXXh A3 0022 F3D5h 2290645

† Signed 16-MSB integer
‡ Unsigned 16-MSB integer
§ Unsigned 32-bit integer

Pipeline

MPYHL(U)/MPYHULS/MPYHSLU

3-83 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Signed or Unsigned Integer Multiply 16msb x 16lsbMPYHL(U)/MPYHULS/MPYHSLU

Syntax MPYHL (.unit) src1, src2, dst
or

MPYHLU (.unit) src1, src2, dst
or

MPYHULS (.unit) src1, src2, dst
or

MPYHSLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01001 MPYHL

src1
src2
dst

umsb16
xulsb16
uint

.M1, .M2 01111 MPYHLU

src1
src2
dst

umsb16
xslsb16
sint

.M1, .M2 01101 MPYHULS

src1
src2
dst

smsb16
xulsb16
sint

.M1, .M2 01011 MPYHSLU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) � lsb16(src2) → dst
else nop

MPYHL(U)/MPYHULS/MPYHSLU

3-84

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh 138† A1 008A 003Eh

A2 21FF 00A7h 167‡ A2 21FF 00A7h

A3 XXXX XXXXh A3 0000 5A06h 23046

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline

MPYHL(U)/MPYHULS/MPYHSLU

3-85 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Signed or Unsigned Integer Multiply 16lsb x 16msbMPYHL(U)/MPYHULS/MPYHSLU

Syntax MPYLH (.unit) src1, src2, dst
or

MPYLHU (.unit) src1, src2, dst
or

MPYLUHS (.unit) src1, src2, dst
or

MPYLSHU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xsmsb16
sint

.M1,
.M2

10001 MPYLH

src1
src2
dst

ulsb16
xumsb16
uint

.M1,
.M2

10111 MPYLHU

src1
src2
dst

ulsb16
xsmsb16
sint

.M1,
.M2

10101 MPYLUHS

src1
src2
dst

slsb16
xumsb16
sint

.M1,
.M2

10011 MPYLSHU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) � msb16(src2) → dst
else nop

MPYHL(U)/MPYHULS/MPYHSLU

3-86

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh 14† A1 0900 000Eh

A2 0029 00A7h 41‡ A2 0029 00A7h

A3 XXXX XXXXh A3 0000 023Eh 574

† Signed 16-LSB integer
‡ Signed 16-MSB integer

Pipeline

MV

3-87 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Move From Register to Register (Pseudo-Operation)MV

Syntax MV (.unit) src, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode map field used... For operand type... Unit Opfield

src
dst

xsint
sint

.L1, .L2 0000010

src
dst

sint
sint

.D1, .D2 010010

src
dst

slong
slong

.L1, .L2 0100001

src
dst

xsint
sint

.S1, .S2 000110

Opcode See ADD and OR instructions.

Description This is a pseudo operation that moves a value from one register to another.
The assembler uses the operation ADD (.unit) 0, src, dst to perform this task.
For the C64x, the operation performed is OR (.unit) FFFFh, src2, dst. In the
case where dst is an slong, the C64x will use the ADD 0, src, dst operation like
the C62x/C67x.

Execution if (cond) 0 + src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

MVC

3-88

Move Between the Control File and the Register FileMVC

Syntax MVC (.unit) src2, dst

.unit = .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Operands when moving from the control file to the register file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

uint
uint

.S2 001111

Description The src2 register is moved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Operands when moving from the register file to the control file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.S2 001110

Description The src2 register is moved from the register file to the control register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–16.

MVC

3-89 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–16. Register Addresses for Accessing the Control Registers

Register
Abbreviation Name

Register
Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

IFR Interrupt flag register 00010 R

ISR Interrupt set register 00010 W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

ISTP Interrupt service table pointer 00101 R, W

IRP Interrupt return pointer 00110 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

FADCR� Floating-point adder configuration 10010 R, W

FAUCR� Floating-point auxiliary configuration 10011 R, W

FMCR� Floating-point multiplier configuration 10100 R, W

Note: R = Readable by the MVC instruction
W = Writeable by the MVC instruction

† TMSC320C67x only

Execution if (cond) src → dst
else nop

Note:

The MVC instruction executes only on the B side (.S2).

Pipeline
Stage E1

Read src2

Written dst

Unit in use .S2

Pipeline

MVC

3-90

Instruction Type Single-cycle

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR until
two cycles after the write to the ISR or ICR.

Delay Slots 0

Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

Note:

The six MSBs of the AMR are reserved and therefore are not written to.

MVK

3-91 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Move a 16-Bit Signed Constant Into a Register and Sign ExtendMVK

Syntax MVK (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

scst16
sint

.S1, .S2

Opcode

165

z dst

6 0

cst 0 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description The 16-bit constant is sign extended and placed in dst.

Execution if (cond) scst16 → dst
else nop

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Note:

Use the MVK instruction to load 16-bit constants. The assembler will gener-
ate a warning for any constant over 16 bits. To load 32-bit constants, such
as 0x 1234 5678, use the following pair of instructions:

MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVKL label
MVKH label

Pipeline

MVK

3-92

Example 1 MVK .S1 293,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 0000 0125h 293

Example 2 MVK .S2 125h,B1

Before instruction 1 cycle after instruction

B1 XXXX XXXXh B1 0000 0125h 293

Example 3 MVK .S1 0FF12h,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 FFFF FF12h –238

MVKH/MVKLH

3-93 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Move 16-Bit Constant Into the Upper Bits of a RegisterMVKH/MVKLH

Syntax MVKH (.unit) cst, dst
or

MVKLH (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

uscst16
sint

.S1, .S2

Opcode

165

z dst

6 0

cst 1 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description The 16-bit constant cst is loaded into the upper 16 bits of dst. The 16 LSBs of
dst are unchanged. The assembler encodes the 16 MSBs of a 32-bit constant
into the cst field of the opcode for the MVKH instruction. The assembler en-
codes the 16 LSBs of a constant into the cst field of the opcode for the MVKLH
instruction.

Execution MVKLH if (cond)((cst15..0) << 16) or (dst15..0) → dst
else nop

MVKH if (cond)((cst31..16) << 16) or (dst15..0) → dst
else nop

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline

MVKH/MVKLH

3-94

Note:

Use the MVK instruction to load 16-bit constants. The assembler will gener-
ate a warning for any constant over 16 bits. To load 32-bit constants, such
as 0x1234 5678, use the following pair of instructions:

MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVKL label
MVKH label

Example 1 MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2 MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah

MVKL

3-95 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Sign Extend 16-Bit Constant, Place In Register (Pseudo Operation)MVKL

Syntax MVKL (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

scst16
sint

.S1, .S2

Opcode

165

z dst

6 0

cst 0 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description This is a pseudo-operation that sign extends the 16-bit constant and places
it in dst.

Execution if (cond) scst16 → dst
else nop

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Note:

To load 32-bit constants, such as 0x1234 5678, use the following pair of in-
structions:

MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVKL label
MVKH label

Pipeline

MVKL

3-96

Example 1 MVKL .S1 293,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 0000 0125h 293

Example 2 MVKL .S2 125h,B1

Before instruction 1 cycle after instruction

B1 XXXX XXXXh B1 0000 0125h 293

Example 3 MVKL .S1 0FF12h,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 FFFF FF12h –238

NEG

3-97 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Negate (Pseudo-Operation)NEG

Syntax NEG (.unit) src, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src
dst

xsint
sint

.S1, .S2 010110

src
dst

xsint
sint

.L1, .L2 0000110

src
dst

slong
slong

.L1, .L2 0100100

Opcode See SUB instruction.

Description This is a pseudo operation used to negate src and place in dst. The assembler
uses the operation SUB 0, src, dst to perform this task.

Execution if (cond) 0 –s src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

NOP

3-98

No OperationNOP

Syntax NOP [count]

Opcode map field used... For operand type... Unit

src ucst4 none

Opcode

14

0

src 0 00 0 0 p

31

reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

Description src is encoded as count – 1. For src + 1 cycles, no operation is performed. The
maximum value for count is 9. NOP with no operand is treated like NOP 1 with
src encoded as 0000.

A multicycle NOP will not finish if a branch is completed first. For example, if
a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle
n + 3, the branch is complete on cycle n + 6 and the NOP is executed only from
cycle n + 3 to cycle n + 5. A single-cycle NOP in parallel with other instructions
does not affect operation.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0

Example 1 NOP

MVK .S1 125h,A1

Before NOP

1 cycle after NOP
(No operation ex-
ecutes)

1 cycle after
 MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h

NOP

3-99 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 2 MVK .S1 1,A1

MVKLH .S1 0,A1

NOP 5

ADD .L1 A1,A2,A1

Before NOP 5

1 cycle after ADD
instruction (6 cycles
after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h

NORM

3-100

Normalize IntegerNORM

Syntax NORM (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
uint

.L1, .L2 1100011

src2
dst

slong
uint

.L1, .L2 1100000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The number of redundant sign bits of src2 is placed in dst. Several examples
are shown in the following diagram.

1 1 1 1 1 1 1 1 1 01 1

x0 1 xx x x x xx x x

In this case, NORM returns 3:

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this case, NORM returns 0:

In this case, NORM returns 31:

x0 0 0 0 1 x x x x x x x x x x x x x x x x x xx x x x xx x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src2

src2

src2

src2

Execution if (cond) norm(src) → dst
else nop

NORM

3-101 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Instruction Type Single-cycle

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Delay Slots 0

Example 1 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 XXXX XXXXh A2 0000 0005h 5

Example 2 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 XXXX XXXXh A2 0000 0013h 19

Pipeline

NOT

3-102

Bitwise NOT (Pseudo-Operation)NOT

Syntax NOT (.unit) src, dst

(.unit) = .L1, .L2, .S1, or .S2

Opcode map field used... For operand type... Unit Opfield

src
dst

xuint
uint

.L1, .L2 1101110

src
dst

xuint
uint

.S1, .S2 001010

Opcode See XOR instruction.

Description This is a pseudo operation used to bitwise NOT the src operand and place the
result in dst. The assembler uses the operation XOR (.unit) –1, src, dst to per-
form this task.

Execution if (cond) –1 xor src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

OR

3-103 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Bitwise OROR

Syntax OR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111110

src1
src2
dst

uint
xuint
uint

.S1, .S2 011011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011010

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise OR instruction is performed beween src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.

OR

3-104

Execution if (cond) src1 or src2 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 OR .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 08A3 A49Fh A1 08A3 A49Fh

A2 XXXX XXXXh A2 08FF B7DFh

B1 00FF 375Ah B1 00FF 375Ah

Example 2 OR .L2 –12,B1,B2

Before instruction 1 cycle after instruction

B1 0000 3A41h B1 0000 3A41h

B2 XXXX XXXXh B2 FFFF FFF5h

Pipeline

SADD

3-105 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Integer Addition With Saturation to Result SizeSADD

Syntax SADD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0010011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0110001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0010010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0110000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description src1 is added to src2 and saturated if an overflow occurs according to the fol-
lowing rules:

1) If the dst is an int and src1 + src2 > 231 – 1, then the result is 231 – 1.
2) If the dst is an int and src1 + src2 < –231, then the result is –231.
3) If the dst is a long and src1 + src2 > 239 – 1, then the result is 239 – 1.
4) If the dst is a long and src1 + src2 < –239, then the result is –239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status
register (CSR) is set one cycle after dst is written.

Execution if (cond) src1 +s src2 → dst
else nop

SADD

3-106

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 012A 3FA2h 19546018 A2 012A 3FA2h A2 012A 3FA2h

A3 XXXX XXXXh A3 5B58 9145h 1532531013 A3 5B58 9145h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 4367 71F2h 1130852850 A1 4367 71F2h A1 4367 71F2h

A2 5A2E 51A3h 1512984995 A2 5A2E 51A3h A2 5A2E 51A3h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647 A3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline

SADD

3-107 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 3 SADD .L1X B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h 1922644401 † A5:A4 0000 0000h 7C83 39B1h

A7:A6 XXXX XXXXh XXXX XXXXh A7:A6 0000 0000h 8DAD 7953h 2376956243 †

B2 112A 3FA2h 287981474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h CSR

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 83C3 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

† Signed 40-bit (long) integer

SAT

3-108

Saturate a 40-Bit Integer to a 32-Bit IntegerSAT

Syntax SAT (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

slong
sint

.L1, .L2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 1 0 0 0 0 0 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater
than what can be represented in 32-bits, src2 is saturated. The result is placed
in dst. If a saturate occurs, the SAT bit in the control status register (CSR) is
set one cycle after dst is written.

Execution if (cond) {
if (src2 > (231 – 1))

(231 – 1) → dst
else if (src2 < –231)

–231 → dst
else src231..0 → dst
}

else nop

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

SAT

3-109 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 1 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 XXXX XXXXh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 3 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 XXXX XXXXh B5 A190 7321h B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not

saturated

SET

3-110

Set a Bit FieldSET

Syntax SET (.unit) src2, csta, cstb, dst
or

SET (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

src2
src1
dst

xuint
uint
uint

.S1, .S2

Opcode

Constant form:

55

z dst cstb

6 5 0

src2 1 0 0 0 1 0 s p

31

creg

29 28 27 23 22 7

13

18 13

1 1

17

5

csta

12 8

5 2

Register form:

55

z dst 1 1 1 0 1 1

6 5 0

src2 1 0 0 0 s p

31

creg

29 28 27 23 22

13

18 13

1 1

17

5

src1

12

6

x

11

SET

3-111 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Description The field in src2, specified by csta and cstb, is set to all 1s. The csta and cstb
operands may be specified as constants or in the ten LSBs of the src1 register,
with cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the
LSB of the field and cstb signifies the bit location of the MSB of the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be set to all 1s. The LSB location of src2 is 0 and the MSB location
of src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x1 1 1 1 10 0 0

x x1 11 1 1 11 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

Execution If the constant form is used:

if (cond) src2 set csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 set src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline

SET

3-112

Example 1 SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 XXXX XXXXh A1 4B3F FF9Eh

Example 2 SET .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 C197h B1 0000 C197h

B2 XXXX XXXXh B2 9EFF FA31h

SHL

3-113 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Arithmetic Shift LeftSHL

Syntax SHL (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110011

src2
src1
dst

slong
uint
slong

.S1, .S2 110001

src2
src1
dst

xuint
uint
ulong

.S1, .S2 010011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110010

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110000

src2
src1
dst

xuint
ucst5
ulong

.S1, .S2 010010

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0–40. When an immediate is used, valid shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

SHL

3-114

Execution if (cond) src2 << src1 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 XXXX XXXXh A1 9E3D 31C0h

Example 2 SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 XXXX XXXXh B2 2EA3 4A00h

Example 3 SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0094h 0000 0000h

Pipeline

SHR

3-115 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Arithmetic Shift RightSHR

Syntax SHR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110111

src2
src1
dst

slong
uint
slong

.S1, .S2 110101

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110110

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110100

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the right by the src1 operand. The sign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0–40. When an immediate is used, valid shift
amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>s src1 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Pipeline

SHR

3-116

Delay Slots 0

Example 1 SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 FFF1 2363h

Example 2 SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 XXXX XXXXh B2 0000 0524h

Example 3 SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0000h 0000 090Ah

SHRU

3-117 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Logical Shift RightSHRU

Syntax SHRU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xuint
uint
uint

.S1, .S2 100111

src2
src1
dst

ulong
uint
ulong

.S1, .S2 100101

src2
src1
dst

xuint
ucst5
uint

.S1, .S2 100110

src2
src1
dst

ulong
ucst5
ulong

.S1, .S2 100100

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the right by the src1 operand. The zero-ex-
tended result is placed in dst. When a register is used, the six LSBs specify the
shift amount and valid values are 0–40. When an immediate is used, valid shift
amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>z src1 → dst
else nop

SHRU

3-118

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 00F1 2363h

Pipeline

SMPY (HL/LH/H)

3-119 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Integer Multiply With Left Shift and SaturationSMPY (HL/LH/H)

Syntax SMPY (.unit) src1, src2, dst
or

SMPYHL (.unit) src1, src2, dst
or

SMPYLH (.unit) src1, src2, dst
or

SMPYH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb15
sint

.M1, .M2 11010 SMPY

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01010 SMPYHL

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2 10010 SMPYLH

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00010 SMPYH

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 0x8000 0000, then the result
is saturated to 0x7FFF FFFF. If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.

SMPY (HL/LH/H)

3-120

Execution if (cond) {
if (((src1 � src2) << 1) != 0x8000 0000)

((src1 � src2) << 1) → dst
else

0x7FFF FFFF → dst
}

else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 � 16)

Delay Slots 1

Example 1 SMPY .M1 A1,A2,A3

Before instruction 2 cycle after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 01E0 FA81h –1407 ‡ A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF3 8146h –818874

CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h 138† A1 008A 0000h

A2 0000 00A7h 167‡ A2 0000 00A7h

A3 XXXX XXXXh A3 0000 B40Ch 46092

CSR 0001 0100h CSR 0001 0100h Not saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline

SMPY (HL/LH/H)

3-121 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 3 SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h –32768 ‡ A1 0000 8000h

A2 8000 0000h –32768 † A2 8000 0000h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647

CSR 0001 0100h CSR 0001 0300h Saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer

SSHL

3-122

Shift Left With SaturationSSHL

Syntax SSHL (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 100011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 100010

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used to specify the shift, the five least significant bits
specify the shift amount. Valid values are 0 through 31, and the result of the
shift is invalid if the shift amount is greater than 31. The result of the shift is
saturated to 32 bits. If a saturate occurs, the SAT bit in the CSR is set one cycle
after dst is written.

Note:

For the C64x, when a register is used to specify the shift, the six least-signifi-
cant bits specify the shift amount. Valid values are 0 through 63. If the shift
count value is greater than 32, then the result is saturate to 32 bits when src2
is non-zero.

SSHL

3-123 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Execution if (cond) {
if (bit(31) through bit(31–src1) of src2 are all 1s or all 0s)

dst = src2 << src1;
else if (src2 > 0)

saturate dst to 0x7FFF FFFF;
else if (src2 < 0)

 saturate dst to 0x8000 0000;
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 XXXX XXXXh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline

SSUB

3-124

Integer Subtraction With Saturation to Result SizeSSUB

Syntax SSUB (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0001111

src1
src2
dst

xsint
sint
sint

.L1, .L2 0011111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0001110

src1
src2
dst

scst5
slong
slong

.L1, .L2 0101100

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description src2 is subtracted from src1 and is saturated to the result size according to the
following rules:

1) If the result is an int and src1 – src2 > 231 – 1, then the result is 231 – 1.
2) If the result is an int and src1 – src2 < –231, then the result is –231.
3) If the result is a long and src1 – src2 > 239 – 1, then the result is 239 – 1.
4) If the result is a long and src1 – src2 < –239, then the result is –239.

The result is placed in dst. If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.

Execution if (cond) src1 –s src2 → dst
else nop

SSUB

3-125 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction 2 cycles after instruction

B1 5A2E 51A3h 1512984995 B1 5A2E 51A3h B1 5A2E 51A3h

B2 802A 3FA2h –2144714846 B2 802A 3FA2h B2 802A 3FA2h

B3 XXXX XXXXh B3 7FFF FFFFh 2147483647 B3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SSUB .L1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4367 71F2h 1130852850 A0 4367 71F2h A0 4367 71F2h

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 XXXX XXXXh A2 E939 204Fh –382132145 A2 E939 204Fh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Pipeline

STB/STH/STW

3-126

Store to Memory With a Register Offset or 5-Bit Unsigned Constant OffsetSTB/STH/STW

Syntax STB (.unit) src,*+baseR[offsetR]
or

STH (.unit) src, *+baseR[offsetR]
or

STW (.unit) src, *+baseR[offsetR]

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17

creg z src

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description Each of these instructions performs a store to memory from a general-purpose
register (src). Table 3–17 summarizes the data types supported by stores.
Table 3–18 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register file
used: y = 0 selects the .D1 unit and baseR and offsetR from the A register file,
and y = 1 selects the .D2 unit and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW, re-
spectively. After scaling, offsetR/ucst5 is added to or subtracted from baseR.
For the preincrement, predecrement, positive offset, and negative offset ad-
dress generator options, the result of the calculation is the address to be ac-
cessed in memory. For postincrement or postdecrement addressing, the value
of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.6.2 on page 2-14).

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file, regardless of
the .D unit or baseR or offsetR used. The s bit determines which file the source
is read from: s = 0 indicates src will be in the A register file, and s = 1 indicates
src will be in the B register file. The r bit should be set to zero.

STB/STH/STW

3-127 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–17. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Table 3–18. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R– –[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5
offset is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,
STW (.unit) *+baseR(12) dst represents an offset of 12 bytes whereas STW
(.unit) *+baseR[12] dst represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset if you use the
optional offset parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Execution if (cond) src → mem
else nop

STB/STH/STW

3-128

Instruction Type Store

Pipeline
Stage E1 E2 E3

Read baseR,
offsetR

src

Written baseR

Unit in use .D2

Delay Slots 0
For more information on delay slots for a store, see Chapter 6,
TMS320C62x/C64x Pipeline, and Chapter 7, TMS320C67x Pipeline.

Example 1 STB .D1 A1,*A10

Before in-
struction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Example 2 STH .D1 A1,*+A10(4)

Before in-
struction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Pipeline

STB/STH/STW

3-129 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Example 3 STW .D1 A1,*++A10[1]

Before in-
struction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A32 7634h

Example 4 STH .D1 A1,*A10––[A11]

Before in-
struction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 00F8h A10 0000 00F8h

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem F8h 0000h mem F8h 0000h mem F8h 0000h

mem 100h 0000 mem 100h 0000h mem 100h 2634h

STB/STH/STW

3-130

Store to Memory With a 15-Bit OffsetSTB/STH/STW

Syntax STB (.unit) src, *+B14/B15[ucst15]
or

STH (.unit) src, *+B14/B15[ucst15]
or

STW (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

31 29 28 27 23 22

creg z src

4 3 2 1 0

1 1 s p

3 5 15

6

ld/stucst15

78

y

3

Description These instructions perform stores to memory from a general-purpose regis-
ter (src). Table 3–19 summarizes the data types supported by stores. The
memory address is formed from a base address register B14 (y = 0) or B15
(y = 1) and an optional offset that is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW,
respectively. After scaling, ucst15 is added to baseR. The result of the calcula-
tion is the address that is sent to memory. The addressing arithmetic is always
performed in linear mode.

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file. The s bit deter-
mines which file the source is read from: s = 0 indicates src is in the A register
file, and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2, 1, or 0
for word, halfword, and byte loads, respectively. Parentheses, (), can be used
to set a nonscaled, constant offset. For example, STW (.unit) *+B14/B15(60)
dst represents an offset of 12 bytes, whereas STW (.unit) *+B14/B15[60]
dst represents an offset of 60 words, or 240 bytes. You must type either brack-
ets or parentheses around the specified offset if you use the optional offset pa-
rameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

STB/STH/STW

3-131 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Table 3–19. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Execution if (cond) src → mem
else nop

Pipeline
Stage E1 E2 E3

Read B14/B15,
src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

Note:

This instruction executes only on the .D2 unit.

Example STB .D2 B1,*+B14[40]

Before in-
struction

1 cycle after
instruction

3 cycles after
instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h

Pipeline

SUB(U)

3-132

Signed or Unsigned Integer Subtraction Without SaturationSUB(U)

Syntax SUB (.unit) src1, src2, dst
or

SUBU (.unit) src1, src2, dst
or

SUB (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000111 SUB

src1
src2
dst

xsint
sint
sint

.L1, .L2 0010111 SUB

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100111 SUB

src1
src2
dst

xsint
sint
slong

.L1, .L2 0110111 SUB

src1
src2
dst

uint
xuint
ulong

.L1, .L2 0101111 SUBU

src1
src2
dst

xuint
uint
ulong

.L1, .L2 0111111 SUBU

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000110 SUB

src1
src2
dst

scst5
slong
slong

.L1, .L2 010010
0

SUB

src1
src2
dst

sint
xsint
sint

.S1, .S2 010111 SUB

src1
src2
dst

scst5
xsint
sint

.S1, .S2 010110 SUB

SUB(U)

3-133 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Opcode map field used... MnemonicOpfieldUnitFor operand type...

src2
src1
dst

sint
sint
sint

.D1, .D2 010001 SUB

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010011 SUB

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description for .L1, .L2 and .S1, .S2 Opcodes
src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 – src2 → dst
else nop

Opcode

.D unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description for .D1, .D2 Opcodes
src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes
if (cond) src2 – src1 → dst
else nop

SUB(U)

3-134

Note:

Subtraction with a signed constant on the .L and .S units allows either the first
or the second operand to be the signed 5-bit constant.

SUB src1, scst5, dst is encoded as ADD –scst5, src2, dst where the src1
register is now src2 and scst5 is now –scst5.

However, the .D unit provides only the second operand as a constant since
it is an unsigned 5-bit constant. ucst5 allows a greater offset for addressing
with the .D unit.

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

Example 1 SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 A1 0000 325Ah

A2 FFFF FF12h –238 A2 FFFF FF12h

A3 XXXX XXXXh A3 0000 3348h 13128

Example 2 SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 † A1 0000 325Ah

A2 FFFF FF12h 4294967058 † A2 FFFF FF12h

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 0000 00FFh 0000 3348h –4294954168 ‡

† Unsigned 32-bit integer
‡ Signed 40-bit (long) integer

Pipeline

SUBAB/SUBAH/SUBAW

3-135 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Integer Subtraction Using Addressing ModeSUBAB/SUBAH/SUBAW

Syntax SUBAB (.unit) src2, src1, dst
or

SUBAH (.unit) src2, src1, dst
or

SUBAW (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 Byte: 110001
Halfword: 110101

Word: 111001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 Byte: 110011
Halfword: 110111

Word: 111011

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is subtracted from src2. The subtraction defaults to linear mode. Howev-
er, if src2 is one of A4–A7 or B4–B7, the mode can be changed to circular mode
by writing the appropriate value to the AMR (see section 2.6.2 on page 2-14).
src1 is left shifted by 1 or 2 for halfword and word data sizes, respectively. SUB-
AB , SUBAH , and SUBAW are byte, halfword, and word mnemonics, respec-
tively. The result is placed in dst.

Execution if (cond) src2 –a src1 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline

SUBAB/SUBAH/SUBAW

3-136

Example 1 SUBAB .D1 A5,A0,A5

Before instruction 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

Example 2 SUBAW .D1 A5,2,A3

Before instruction 1 cycle after instruction

A3 XXXX XXXXh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

SUBC

3-137 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Conditional Integer Subtract and Shift – Used for DivisionSUBC

Syntax SUBC (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

uint
xuint
uint

.L1, .L2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 1 0 0 1 0 1 1 1 1 0 s p

3 5 5 5 7

src2 src1

Description Subtract src2 from src1. If result is greather than or equal to 0, left shift result
by 1, add 1 to it, and place it in dst. If result is less than 0, left shift scr1 by 1,
and place it in dst. This step is commonly used in division.

Execution if (cond) {
if (src1 – src2 � 0)

((src1–src2) << 1) + 1 → dst
else src1 << 1 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

SUBC

3-138

Example 1 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137777 A0 0000 47E5h 18405

A1 0001 F63Fh 128575 A1 0001 F63Fh

SUB2

3-139 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Two 16-Bit Integer Subtractions on Upper and Lower Register HalvesSUB2

Syntax SUB2 (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 1 0 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description The upper and lower halves of src2 are subtracted from the upper and lower
halves of src1. Any borrow from the lower-half subtraction does not affect the
upper-half subtraction.

Execution if (cond) {
((lsb16(src1) – lsb16(src2)) and FFFFh) or

 ((msb16(src1) – msb16(src2)) << 16) → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example SUB2 .S2X B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h †33 12913 ‡ A0 0021 3271h

B1 003A 1B48h †58 6984 ‡ B1 003A 1B48h

B2 XXXX XXXXh B2 0019 E8D7h 25† –5929 ‡

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline

XOR

3-140

Exclusive ORXOR

Syntax XOR (.unit) src2, src1, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1101110

src1
src2
dst

uint
xuint
uint

.S1, .S2 001011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 001010

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise exclusive-OR is performed between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.

XOR

3-141 TMS320C62x/C64x/C67x Fixed-Point Instruction Set

Execution if (cond) src1 xor src2 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 XOR .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0721 325Ah A1 0721 325Ah

A2 0019 0F12h A2 0019 0F12h

A3 XXXX XXXXh A3 0738 3D48h

Example 2 XOR .L2 B1,0dh,B2

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B2 XXXX XXXXh B2 0000 102Eh

Pipeline

ZERO

3-142

Zero a Register (Pseudo-Operation)ZERO

Syntax ZERO (.unit) dst

.unit = .L1, .L2, .D1, .D2, .S1, or .S2

Opcode map field used... For operand type... Unit Opfield

dst sint .L1, .L2 0010111

dst sint .D1, .D2 010001

dst sint .S1, .S2 010111

dst slong .L1, .L2 0110111

Description This is a pseudo operation used to fill the dst register with 0s by subtracting
the dst from itself and placing the result in the dst. The assembler uses the op-
eration SUB (.unit) src1, src2, dst to perform this task where src1 and src2 both
equal dst. For the C64x, the operation performed is MVK 0, dst. In the case
where dst is an slong, the C64x will use the SUB operation like the C62x/C67x.

Execution if (cond) dst – dst → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

4-1

TMS320C67x Floating-Point Instruction Set

The TMS320C67x floating-point DSP uses all of the instructions available
to the TMS320C62x , but it also uses other instructions that are specific to the
C67x . These specific instructions are for 32-bit integer multiply, doubleword
load, and floating-point operations, including addition, subtraction, and multi-
plication. This chapter describes these C67x-specific instructions.

Instructions that are common to both the C62x and C67x are described in
Chapter 3.

Topic Page

4.1 Instruction Operation and Execution Notations 4-2.

4.2 Mapping Between Instructions and Functional Units 4-4.

4.3 Overview of IEEE Standard Single- and
Double-Precision Formats 4-6.

4.4 Delay Slots 4-11.

4.5 TMS320C67x Instruction Constraints 4-12.

4.6 Individual Instruction Descriptions 4-15.

Chapter 4

Instruction Operation and Execution Notations

 4-2

4.1 Instruction Operation and Execution Notations

Table 4–1 explains the symbols used in the floating-point instruction descriptions.

Table 4–1. Floating-Point Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register

cstn n-bit constant field (for example, cst5)

dp Double-precision floating-point register value

dp(x) Convert x to dp

dst_h msb32 of dst

dst_l lsb32 of dst

int 32-bit integer value

int(x) Convert x to integer

lsbn or LSBn n least significant bits (for example, lsb32)

msbn or MSBn n most significant bits (for example, msb32)

nop No operation

R Any general-purpose register

rcp(x) Reciprocal approximation of x

sdint Signed 64-bit integer value (two registers)

sint Signed 32-bit integer value

sp Single-precision floating-point register value that can optionally use
cross path

sp(x) Convert x to sp

sqrcp(x) Square root of reciprocal approximation of x

src1_h msb32 of src1

src1_l lsb32 of src1

src2_h msb32 of src2

src2_l lsb32 of src2

Instruction Operation and Execution Notations

4-3TMS320C67x Floating-Point Instruction Set

Table 4–1. Floating-Point Instruction Operation and Execution Notations (Continued)

Symbol Meaning

ucstn n-bit unsigned constant field (for example, ucstn5)

uint Unsigned 32-bit integer value

dp Double-precision floating-point register value

xsint Signed 32-bit integer value that can optionally use cross path

sp Single-precision floating-point register value

xsp Single-precision floating-point register value that can optionally use
cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

→ Assignment

+ Addition

× Multiplication

– Subtraction

<< Shift left

Mapping Between Instructions and Functional Units

 4-4

4.2 Mapping Between Instructions and Functional Units
Table 4–2 shows the mapping between instructions and functional units and
and Table 4–3 shows the mapping between functional units and instructions.

Table 4–2. Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

DPTRUNC CMPGTDP

INTDP CMPGTSP

INTDPU CMPLTDP

INTSP CMPLTSP

INTSPU RCPDP

SPINT RCPSP

SPTRUNC RSQRDP

SUBDP RSQRSP

SUBSP SPDP

Table 4–3. Functional Unit to Instruction Mapping

C67x Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit Type

ABSDP � 2-cycle DP

ABSSP � Single cycle

ADDAD � Single cycle

ADDDP � ADDDP/
SUBDP

ADDSP � Four cycle

CMPEQDP � DP compare

CMPEQSP � Single cycle

CMPGTDP � DPcompare

CMPGTSP � Single cycle

Mapping Between Instructions and Functional Units

4-5TMS320C67x Floating-Point Instruction Set

Table 4–3. Functional Unit to Instruction Mapping (Continued)

Instruction Type

C67x Functional Units

Instruction Type.D Unit.S Unit.M Unit.L Unit

CMPLTDP � DP compare

CMPLTSP � Single cycle

DPINT � 4-cycle

DPSP � 4-cycle

DPTRUNC � 4-cycle

INTDP � INTDP

INTDPU � INTDP

INTSP � 4-cycle

INTSPU � 4-cycle

LDDW � Load

MPYDP � MPYDP

MPYI � MPYI

MPYID � MPYID

MPYSP � 4-cycle

RCPDP � 2-cycle DP

RCPSP � Single cycle

RSQRDP � 2-cycle DP

RSQRSP � Single cycle

SPDP � 2-cycle DP

SPINT � 4-cycle

SPTRUNC � 4-cycle

SUBDP � ADDDP/
SUBDP

SUBSP � 4-cycle

Overview of IEEE Standard Single- and Double-Precision Formats

 4-6

4.3 Overview of IEEE Standard Single- and Double-Precision Formats

Floating-point operands are classified as single-precision (SP) and double-
precision (DP). Single-precision floating-point values are 32-bit values stored
in a single register. Double-precision floating-point values are 64-bit values
stored in a register pair. The register pair consists of consecutive even and odd
registers from the same register file. The least significant 32 bits are loaded
into the even register. The most significant 32 bits containing the sign bit and
exponent are loaded into the next register (which is always the odd register).
The register pair syntax places the odd register first, followed by a colon, then
the even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Instructions that use DP sources fall in two categories: instructions that read
the upper and lower 32-bit words on separate cycles, and instructions that
read both 32-bit words on the same cycle. All instructions that produce a
double-precision result write the low 32-bit word one cycle before writing the
high 32-bit word. If an instruction that writes a DP result is followed by an in-
struction that uses the result as its DP source and it reads the upper and lower
words on separate cycles, then the second instruction can be scheduled on
the same cycle that the high 32-bit word of the result is written. The lower result
is written on the previous cycle. This is because the second instruction reads
the low word of the DP source one cycle before the high word of the DP source.

IEEE floating-point numbers consist of normal numbers, denormalized num-
bers, NaNs (not a number), and infinity numbers. Denormalized numbers are
nonzero numbers that are smaller than the smallest nonzero normal number.
Infinity is a value that represents an infinite floating-point number. NaN values
represent results for invalid operations, such as (+infinity + (–infinity)).

Normal single-precision values are always accurate to at least six decimal
places, sometimes up to nine decimal places. Normal double-precision values
are always accurate to at least 15 decimal places, sometimes up to 17 decimal
places.

Table 4–4 shows notations used in discussing floating-point numbers.

Overview of IEEE Standard Single- and Double-Precision Formats

4-7TMS320C67x Floating-Point Instruction Set

Table 4–4. IEEE Floating-Point Notations

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Symbol ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

s ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sign bit
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

e
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exponent field

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

f ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fraction (mantissa) field

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

x ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Can have value of 0 or 1 (don’t care)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Not-a-Number (SNaN or QNaN)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SNaN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Signal NaN

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

QNaN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Quiet NaN

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN_out ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QNaN with all bits in the f field= 1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Inf
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Infinity
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

LFPN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Largest floating-point number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SFPN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Smallest floating-point number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

LDFPN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Largest denormalized floating-point number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁSDFPN

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSmallest denormalized floating-point numberÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

signed Inf
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

+infinity or –infinity

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

signed NaN_out ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NaN_out with s = 0 or 1

Overview of IEEE Standard Single- and Double-Precision Formats

 4-8

Figure 4–1 shows the fields of a single-precision floating-point number repre-
sented within a 32-bit register.

Figure 4–1. Single-Precision Floating-Point Fields
31

e

23 22 030

s f

Legend : s sign bit (0 positive, 1 negative)
e 8-bit exponent (0 < e < 255)
f 23-bit fraction

0 < f < 1*2–1 + 1*2–2 + ... + 1*2–23 or
0 < f < ((223)–1)/(223)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 255) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a single-precision
floating-point number.

Normal

–1s * 2(e–127) * 1.f 0 < e < 255

Denormalized (Subnormal)

–1s * 2–126 * 0.f e = 0; f nonzero

Table 4–5 shows the s,e, and f values for special single-precision floating-
point numbers.

Table 4–5. Special Single-Precision Values

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Symbol ÁÁÁÁ
ÁÁÁÁ

Sign (s)ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Exponent (e) ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Fraction (f)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

+0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ+Inf

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ255

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–Inf
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nonzero

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

QNaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1xx..x

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SNaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0xx..x and nonzero

Overview of IEEE Standard Single- and Double-Precision Formats

4-9TMS320C67x Floating-Point Instruction Set

Table 4–6 shows hex and decimal values for some single-precision floating-
point numbers.

Table 4–6. Hex and Decimal Representation for Selected Single-Precision Values
ÁÁÁÁÁ
ÁÁÁÁÁSymbol

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁHex Value

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁDecimal ValueÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

NaN_out
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FFF FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

QNaN

ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0.0

ÁÁÁÁÁ
ÁÁÁÁÁ

–0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x8000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

–0.0

ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x3F80 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.0

ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x4000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2.0
ÁÁÁÁÁ
ÁÁÁÁÁ

LFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7F7F FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3.40282347e+38
ÁÁÁÁÁ
ÁÁÁÁÁSFPN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ0x0080 0000

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ1.17549435e–38ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

LDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x007F FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.17549421e–38

ÁÁÁÁÁ
ÁÁÁÁÁ

SDFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0001 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.40129846e–45

Figure 4–2 shows the fields of a double-precision floating-point number repre-
sented within a pair of 32-bit registers.

Figure 4–2. Double-Precision Floating-Point Fields
31

e

20 19 0 31 030

s

Odd register Even register

f f

Legend : s sign bit (0 positive, 1 negative)
e 11-bit exponent (0 < e < 2047)
f 52-bit fraction

0 < f < 1*2–1 + 1*2–2 + ... + 1*2–52 or
0 < f < ((252)–1)/(252)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 2047) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a double-precision
floating-point number.

Normal

–1s * 2(e–1023) * 1.f 0 < e < 2047

Denormalized (Subnormal)

–1s * 2–1022 * 0.f e = 0; f nonzero

Overview of IEEE Standard Single- and Double-Precision Formats

 4-10

Table 4–7 shows the s,e, and f values for special double-precision floating-
point numbers.

Table 4–7. Special Double-Precision Values
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁSign (s)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁExponent (e)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁFraction (f)ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

–0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+Inf ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

–Inf ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NaN ÁÁÁÁÁ
ÁÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
nonzero

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

QNaN
ÁÁÁÁÁ
ÁÁÁÁÁ

x
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
1xx..x

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁSNaN

ÁÁÁÁÁ
ÁÁÁÁÁx

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ2047

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0xx..x and nonzero

Table 4–8 shows hex and decimal values for some double-precision floating-
point numbers.

Table 4–8. Hex and Decimal Representation for Selected Double-Precision Values

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Symbol ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Hex Value ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Decimal Value

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NaN_out
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FFF FFFF FFFF FFFF
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
QNaN

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ0x0000 0000 0000 0000

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0.0ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x8000 0000 0000 0000
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

–0.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x3FF0 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
1.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x4000 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FEF FFFF FFFF FFFF ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
1.7976931348623157e+308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0010 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.2250738585072014e–308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x000F FFFF FFFF FFFF
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.2250738585072009e–308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0000 0000 0001
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
4.9406564584124654e–324

Delay Slots

4-11TMS320C67x Floating-Point Instruction Set

4.4 Delay Slots

The execution of floating-point instructions can be defined in terms of delay
slots and functional unit latency. The number of delay slots is equivalent to the
number of additional cycles required after the source operands are read for the
result to be available for reading. For a single-cycle type instruction, operands
are read on cycle i and produce a result that can be read on cycle i + 1. For
a 4-cycle instruction, operands are read on cycle i and produce a result that
can be read on cycle i + 4. Table 4–9 shows the number of delay slots associat-
ed with each type of instruction.

The double-precision floating-point addition, subtraction, multiplication,
compare, and the 32-bit integer multiply instructions also have a functional unit
latency that is greater than 1. The functional unit latency is equivalent to the
number of cycles that the instruction uses the functional unit read ports. For
example, the ADDDP instruction has a functional unit latency of 2. Operands
are read on cycle i and cycle i + 1. Therefore, a new instruction cannot begin
until cycle i + 2, rather than i + 1. ADDDP produces a result that can be read
on cycle i + 7, because it has six delay slots.

Delay slots are equivalent to an execution or result latency. All of the instruc-
tions that are common to the C62x and C67x have a functional unit latency
of 1. This means that a new instruction can be started on the functional unit
each cycle. Single-cycle throughput is another term for single-cycle functional
unit latency.

Table 4–9. Delay Slot and Functional Unit Latency Summary

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Delay
Slots

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
Unit Latency

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read Cycles †
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Write
Cycles †

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Single cycle ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

2-cycle DP ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i, i + 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ4-cycle

ÁÁÁÁ
ÁÁÁÁ3

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi

ÁÁÁÁÁ
ÁÁÁÁÁi + 3ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

INTDP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 3, i + 4

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Load ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i, i + 4‡

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

DP compare ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 + 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ADDDP/SUBDP
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ

2
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 5, i + 6
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPYI
ÁÁÁÁ
ÁÁÁÁ

8
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1, 1 + 2, i + 3
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 8ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁMPYID

ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi, i + 1, 1 + 2, i + 3

ÁÁÁÁÁ
ÁÁÁÁÁi + 8, i + 9ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁMPYDP
ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi, i + 1, 1 + 2, i + 3

ÁÁÁÁÁ
ÁÁÁÁÁi + 8, i + 9

† Cycle i is in the E1 pipeline phase.
‡ A write on cycle i + 4 uses a separate write port from other instructions on the .D unit.

TMS320C67x Instruction Constraints

 4-12

4.5 TMS320C67x Instruction Constraints

If an instruction has a multicycle functional unit latency, it locks the functional
unit for the necessary number of cycles. Any new instruction dispatched to that
functional unit during this locking period causes undefined results. If an in-
struction with a multicycle functional unit latency has a condition that is evalu-
ated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following
constraints:

DP compare No other instruction can use the functional unit on cycles
i and i + 1.

ADDDP/SUBDP No other instruction can use the functional unit on cycles
i and i + 1.

MPYI No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYID No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYDP No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

If a cross path is used to read a source in an instruction with a multicycle func-
tional unit latency, you must ensure that no other instructions executing on the
same side uses the cross path.

An instruction of the following types scheduled on cycle i using a cross path
to read a source, has the following constraints:

DP compare No other instruction on the same side can used the cross
path on cycles i and i + 1.

ADDDP/SUBDP No other instruction on the same side can use the cross
path on cycles i and i + 1.

MPYI No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYDP No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

Other hazards exist because instructions have varying numbers of delay slots,
and need the functional unit read and write ports of varying numbers of cycles.
A read or write hazard exists when two instructions on the same functional unit
attempt to read or write, respectively, to the register file on the same cycle.

TMS320C67x Instruction Constraints

4-13TMS320C67x Floating-Point Instruction Set

An instruction of the following types scheduled on cycle i has the following
constraints:

2-cycle DP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 1 due to a write hazard on cycle
i + 1.

Another 2-cycle DP instruction cannot be scheduled on
that functional unit on cycle i + 1 due to a write hazard on
cycle i + 1.

4-cycle A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 due to a write hazard on cycle
i + 3.

A multiply (16 �16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 2 due to a write hazard
on cycle i + 3.

INTDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 or i + 4 due to a write hazard
on cycle i + 3 or i + 4, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle
 i + 1.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle
i + 1.

MPYI A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 6 due to a write hazard
on cycle i + 7.

MPYID A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycles i + 4, i + 5, or i + 6.

A multiply (16 �16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.

TMS320C67x Instruction Constraints

 4-14

MPYDP A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYI instruction cannot be scheduled on that function-
al unit on cycle i + 4, i + 5, or i + 6.

A MPYID instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16×16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.

ADDDP/SUBDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 5 or i + 6 due to a write hazard
on cycle i + 5 or i + 6, respectively.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

All of the above cases deal with double-precision floating-point instructions or
the MPYI or MPYID instructions except for the 4-cycle case. A 4-cycle instruc-
tion consists of both single- and double-precision floating-point instructions.
Therefore, the 4-cycle case is important for the following single-precision float-
ing-point instructions:

� ADDSP
� SUBSP
� SPINT
� SPTRUNC
� INTSP
� MPYSP

The .S and .L units share their long write port with the load port for the 32 most
significant bits of an LDDW load. Therefore, the LDDW instruction and the .S
or .L unit writing a long result cannot write to the same register file on the same
cycle. The LDDW writes to the register file on pipeline phase E5. Instructions
that use a long result and use the .L and .S unit write to the register file on pipe-
line phase E1. Therefore, the instruction with the long result must be sched-
uled later than four cycles following the LDDW instruction if both instructions
use the same side.

Individual Instruction Descriptions

4-15TMS320C67x Floating-Point Instruction Set

4.6 Individual Instruction Descriptions

This section gives detailed information on the floating-point instruction set for
the C67x. Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Pipeline
� Instruction type
� Delay slots
� Examples

ABSDP

4-16

Double-Precision Floating-Point Absolute ValueABSDP

Syntax ABSDP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc2 rsv

Description The absolute value of src2 is placed in dst. The 64-bit double-precision oper-
and is read in one cycle by using the src2 port for the 32 MSBs and the src1
port for the 32 LSBs.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0, then –src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or –infinity, +infinity is placed in dst and the INFO bit is
set.

Pipeline
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

Pipeline

ABSDP

4-17 TMS320C67x Floating-Point Instruction Set

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example ABSDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 c004 0000h 0000 0000h –2.5 A1:A0 c004 0000h 0000 0000h –2.5

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 4004 0000h 0000 0000h 2.5

ABSSP

4-18

Single-Precision Floating-Point Absolute ValueABSSP

Syntax ABSSP (.unit) src2, dst

.unit = . S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc2 0 0 0 0 0

Description The absolute value in src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0, then –src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or –infinity, +infinity is placed in dst and the INFO bit is
set.

Pipeline
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Pipeline

ABSSP

4-19 TMS320C67x Floating-Point Instruction Set

Delay Slots 0

Functional Unit
Latency

1

Example ABSSP .S1X B1,A5

Before instruction 1 cycle after instruction

B1 c020 0000h –2.5 B1 c020 0000h –2.5

A5 XXXX XXXXh A5 4020 0000h 2.5

ADDAD

4-20

Integer Addition Using Doubleword Addressing ModeADDAD

Syntax ADDAD (.unit) src2, src1, dst

.unit = . D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 111100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 111101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is added to src2 using the doubleword addressing mode specified for
src2. The addition defaults to linear mode. However, if src2 is one of A4–A7
or B4–B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.6.2 on page 2-14). src1 is left shifted by 3
due to doubleword data sizes. The result is placed in dst. (See the ADDAB/
ADDAH/ADDAW instruction, page 3-34, for byte, halfword, and word
versions.)

Note:

There is no SUBAD instruction.

Execution if (cond) src2 +(src1 �� 3) → dst
else nop

Pipeline
Stage E1

Read src1
src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Pipeline

ADDAD

4-21 TMS320C67x Floating-Point Instruction Set

Delay Slots 0

Functional Unit
Latency

1

Example ADDAD .D1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 1234h 4660 A1 0000 1234h 4660

A2 0000 0002h 2 A2 0000 0002h 2

A3 XXXX XXXXh A3 0000 1244h 4676

ADDDP

4-22

Double-Precision Floating-Point AdditionADDDP

Syntax ADDDP (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
dp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 1 1 0 0 0 1 1 0 s p

3 5 5 5 7

src2 src1

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop

ADDDP

4-23 TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set, also.

3) If one source is +infinity and the other is –infinity, the result is NaN_out
and the INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is set.

ADDDP

4-24

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

Example ADDDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000h –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 4018 6666h 6666 6666h 6.1

Pipeline

ADDSP

4-25 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point AdditionADDSP

Syntax ADDSP (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 1 0 0 0 0 1 1 0 s p

3 5 5 5 7

src2 src1

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop

ADDSP

4-26

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If one source is +infinity and the other is –infinity, the result is NaN_out
and the INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.

ADDSP

4-27 TMS320C67x Floating-Point Instruction Set

Pipeline
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example ADDSP .L1 A1,A2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 40C3 3334h 6.1

Pipeline

CMPEQDP

4-28

Double-Precision Floating-Point Compare for EqualityCMPEQDP

Syntax CMPEQDP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 equals src2, 1 is written to dst.
Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

CMPEQDP

4-29 TMS320C67x Floating-Point Instruction Set

Input FAUCR Fields

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/–denormalized +/–0 1 0 0

+/–0 +/–denormalized 1 0 0

+/–0 +/–0 1 0 0

+/–denormalized +/–denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

–infinity –infinity 1 0 0

–infinity other 0 0 0

Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those in the preceding table are set, except
the NaNn and DENn bits when appropriate.

Pipeline
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Pipeline

CMPEQDP

4-30

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPEQDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 c004 0000h 0000 0000h –2.5 A3:A2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0000h false

CMPEQSP

4-31 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point Compare for EqualityCMPEQSP

Syntax CMPEQSP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 equals src2, 1 is written to dst.
Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

CMPEQSP

4-32

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/–denormalized +/–0 1 0 0

+/–0 +/–denormalized 1 0 0

+/–0 +/–0 1 0 0

+/–denormalized +/–denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

–infinity –infinity 1 0 0

–infinity other 0 0 0

Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those shown in the preceding table are set,
except for the NaNn and DENn bits when appropriate.

Pipeline
Stage E1

Read src1
src2

Written dst

Unit in use .S

Pipeline

CMPEQSP

4-33 TMS320C67x Floating-Point Instruction Set

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPEQSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0000h false

CMPGTDP

4-34

Double-Precision Floating-Point Compare for Greater ThanCMPGTDP

Syntax CMPGTDP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is greater than src2, 1 is written
to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

CMPGTDP

4-35 TMS320C67x Floating-Point Instruction Set

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

–infinity –infinity 0 0 0

–infinity other 0 0 0

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept the NaNn and DENn bits when appropriate.

Pipeline
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Pipeline

CMPGTDP

4-36

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPGTDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 c004 0000h 0000 0000h –2.5 A3:A2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0001h true

CMPGTSP

4-37 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point Compare for Greater ThanCMPGTSP

Syntax CMPGTSP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is greater than src2, 1 is written
to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

CMPGTSP

4-38

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

–infinity –infinity 0 0 0

–infinity other 0 0 0

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline
Stage E1

Read src1
src2

Written dst

Unit in use .S

Pipeline

CMPGTSP

4-39 TMS320C67x Floating-Point Instruction Set

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPGTSP .S1X A1,B2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0000h false

CMPLTDP

4-40

Double-Precision Floating-Point Compare for Less ThanCMPLTDP

Syntax CMPLTDP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is less than src2, 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

CMPLTDP

4-41 TMS320C67x Floating-Point Instruction Set

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

–infinity –infinity 0 0 0

–infinity other 1 0 0

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Pipeline

CMPLTDP

4-42

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPLTDP .S1X A1:A0,B3:B2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

B3:B2 c004 0000h 0000 0000h –2.5 B3:B2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0000h false

CMPLTSP

4-43 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point Compare for Less ThanCMPLTSP

Syntax CMPLTSP (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is less than src2, 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

CMPLTSP

4-44

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

–infinity –infinity 0 0 0

–infinity other 1 0 0

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline
Stage E1

Read src1
src2

Written dst

Unit in use .S

Pipeline

CMPLTSP

4-45 TMS320C67x Floating-Point Instruction Set

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPGTSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0001h true

DPINT

4-46

Convert Double-Precision Floating-Point Value to IntegerDPINT

Syntax DPINT (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 0 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. The operand is read in one cycle by using the src2 port for the 32 MSBs
and the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER bits
are set. Overflow occurs if src2 is greater than 231 – 1 or less than –231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Pipeline

DPINT

4-47 TMS320C67x Floating-Point Instruction Set

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example DPINT .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 XXXX XXXXh A4 0000 0009h 9

DPSP

4-48

Convert Double-Precision Floating-Point Value to Single-Precision
Floating-Point Value

DPSP

Syntax DPSP (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 0 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The double-precision 64-bit value in src2 is converted to a single-precision val-
ue and placed in dst. The operand is read in one cycle by using the src2 port
for the 32 MSBs and the src1 port for the 32 LSBs.

Execution if (cond) sp(src2) → dst
else nop

DPSP

4-49 TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

3) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

4) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

5) If src2 is signed infinity, the result is signed infinity and the INFO bit is set.

6) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

7) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

DPSP

4-50

Pipeline
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example DPSP .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A4 XXXX XXXXh A4 4109 999Ah 8.6

Pipeline

DPTRUNC

4-51 TMS320C67x Floating-Point Instruction Set

Convert Double-Precision Floating-Point Value to Integer
With Truncation

DPTRUNC

Syntax DPTRUNC (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 0 0 0 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. This instruction operates like DPINT except that the rounding modes in
the FADCR are ignored; round toward zero (truncate) is always used. The
64-bit operand is read in one cycle by using the src2 port for the 32 MSBs and
the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

DPTRUNC

4-52

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER bits
are set. Overflow occurs if src2 is greater than 231 – 1 or less than –231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example DPTRUNC .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 XXXX XXXXh A4 0000 0008h 8

Pipeline

INTDP(U)

4-53 TMS320C67x Floating-Point Instruction Set

Convert Integer to Double-Precision Floating-Point ValueINTDP(U)

Syntax INTDP (.unit) src2, dst
or

INTDPU (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
dp

.L1, .L2 0111001

src2
dst

xuint
dp

.L1, .L2 0111011

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The integer value in src2 is converted to a double-precision value and placed
in dst.

Execution if (cond) dp(src2) → dst
else nop

You cannot set configuration bits with this instruction.

Pipeline
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type INTDP

Delay Slots 4

Functional Unit
Latency

1

Pipeline

INTDP(U)

4-54

Example 1 INTDP .L1x B4,A1:A0

Before instruction 5 cycles after instruction

B4 1965 1127h 426053927 B4 1965 1127h 426053927

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 41B9 6511h 2700 0000h 4.2605393 E08

Example 2 INTDPU .L1 A4,A1:A0

Before instruction 5 cycles after instruction

A4 FFFF FFDEh 4294967262 A4 FFFF FFDEh 4294967262

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 41EF FFFFh FBC0 0000h 4.2949673 E09

INTSP(U)

4-55 TMS320C67x Floating-Point Instruction Set

Convert Integer to Single-Precision Floating-Point ValueINTSP(U)

Syntax INTSP (.unit) src2, dst
or

INTSPU (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sp

.L1, .L2 1001010

src2
dst

xuint
sp

.L1, .L2 1001001

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The integer value in src2 is converted to single-precision value and placed in
dst.

Execution if (cond) sp(src2) → dst
else nop

The only configuration bit that can be set is the INEX bit and only if the mantissa
is rounded.

Pipeline
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Pipeline

INTSP(U)

4-56

Example 1 INTSP .L1 A1,A2

Before instruction 4 cycles after instruction

A1 1965 1127h 426053927 A1 1965 1127h 426053927

A2 XXXX XXXXh A2 4DCB 2889h 4.2605393 E08

Example 2 INTSPU .L1X B1,A2

Before instruction 4 cycles after instruction

B1 FFFF FFDEh 4294967262 B1 C020 0000h 4294967262

A2 XXXX XXXXh A2 4F80 0000h 4.2949673 E09

LDDW

4-57 TMS320C67x Floating-Point Instruction Set

Load Doubleword From Memory With an Unsigned Constant Offset
or Register Offset

LDDW

Syntax LDDW (.unit) *+baseR[offsetR/ucst5], dst

.unit = .D1 or .D2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description This instruction loads a doubleword to a pair of general-purpose registers
(dst). Table 4–10 describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and the register
file used: y = 0 selects the .D1 unit and the baseR and offsetR from the A regis-
ter file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file. The s bit determines the register file into which the dst is loaded: s = 0 indi-
cates that dst is in the A register file, and s = 1 indicates that dst is in the B regis-
ter file. The r bit has a value of 1 for the LDDW instruction and a value of 0 for
all other load and store instructions. The dst field must always be an even value
because LDDW loads register pairs. Therefore, bit 23 is always zero. Further-
more, the value of the ld/st field is110.

The bracketed offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent
doublewords. After scaling, offsetR/ucst5 is added to or subtracted from bas-
eR. For the preincrement, predecrement, positive offset, and negative offset
address generator options, the result of the calculation is the address to be ac-
cessed in memory. For postincrement or postdecrement addressing, the
shifted value of baseR before the addition or subtraction is the address to be
accessed in memory.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register, bracketed constant, or constant enclosed in parentheses
is specified. Square brackets, [], indicate that ucst5 is left shifted by 3. Paren-
theses, (), indicate that ucst5 is not left shifted. In other words, parentheses
indicate a byte offset rather than a doubleword offset. You must type either
brackets or parathesis around the specified offset if you use the optional offset
parameter.

LDDW

4-58

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see sec-
tion 2.6.2 on page 2-14).

The destination register pair must consist of a consecutive even and odd regis-
ter pair from the same register file. The instruction can be used to load a
double-precision floating-point value (64 bits), a pair of single-precision float-
ing-point words (32 bits), or a pair of 32-bit integers. The least significant
32 bits are loaded into the even register and the most significant 32 bits (con-
taining the sign bit and exponent) are loaded into the next register (which is
always the odd register). The register pair syntax places the odd register first,
followed by a colon, then the even register (that is, A1:A0, B1:B0, A3:A2,
B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-
endian byte order, depending on the mode selected. When LDDW is used to
load two 32-bit single-precision floating-point values or two 32-bit integer val-
ues, the order is dependent on the endian mode used. In little-endian mode,
the first 32-bit word in memory is loaded into the even register. In big-endian
mode, the first 32-bit word in memory is loaded into the odd register. Regard-
less of the endian mode, the double word address must be on a doubleword
boundary (the three LSBs are zero).

Table 4–10 summarizes the address generation options supported.

Table 4–10. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

LDDW

4-59 TMS320C67x Floating-Point Instruction Set

Execution if (cond) mem → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4

Functional Unit
Latency

1

Example 1 LDDW .D2 *+B10[1],A1:A0

Before instruction 5 cycles after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 4021 3333h 3333 3333h 8.6

B10 0000 0010h 16 B10 0000 0010h 16

mem 0x18 3333 3333h 4021 3333h 8.6 mem 0x18 3333 3333h 4021 3333h 8.6

Little-endian mode

Example 2 LDDW .D1 *++A10[1],A1:A0

Before instruction 1 cycle after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 XXXX XXXXh XXXX XXXXh

A10 0000 0010h 16 A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h 8.6 mem 0x18 4021 3333h 3333 3333h 8.6

5 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6

A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h 8.6

Big-endian mode

Pipeline

MPYDP

4-60

Double-Precision Floating-Point MultiplyMPYDP

Syntax MPYDP (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
dp
dp

.M1, .M2

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x 0 1 1 1 0 0 0 0 s p

3 5 5 5 5

7 6

0 0src1

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the ex-
clusive-or of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) If signed 0 is multiplied by signed infinity, the result is signed NaN_out
and the INVAL bit is set.

5) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

6) If rounding is performed, the INEX bit is set.

MPYDP

4-61 TMS320C67x Floating-Point Instruction Set

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type MPYDP

Delay Slots 9

Functional Unit
Latency

4

Example MPYDP .M1 A1:A0,A3:A2,A5:A4

Before instruction 10 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000 –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 C035 8000h 0000 0000h –21.5

Pipeline

MPYI

4-62

32-Bit Integer Multiply – Result Is Lower 32 BitsMPYI

Syntax MPYI (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.M1, .M2 00100

src1
src2
dst

cst5
xsint
sint

.M1, .M2 00110

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The lower 32 bits of the
result are placed in dst.

Execution if (cond) lsb32(src1 � src2) → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Instruction Type MPYI

Delay Slots 8

Functional Unit
Latency

4

Pipeline

MPYI

4-63 TMS320C67x Floating-Point Instruction Set

Example MPYI .M1X A1,B2,A3

Before instruction 9 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

B2 0011 2765h 1124197 B2 0011 2765h 1124197

A3 XXXX XXXXh A3 CBCA 6558h –875928232

MPYID

4-64

32-Bit Integer Multiply – Result Is 64 BitsMPYID

Syntax MPYID (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sdint

.M1, .M2 01000

src1
src2
dst

cst5
xsint
sdint

.M1, .M2 01100

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The 64-bit result is placed
in the dst register pair.

Execution if (cond) lsb32(src1 � src2) → dst_l
msb32(src1 � src2) → dst_h

else nop

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M

Instruction Type MPYID

Delay Slots 9 (8 if dst_l is src of next instruction)

Functional Unit
Latency

4

Pipeline

MPYID

4-65 TMS320C67x Floating-Point Instruction Set

Example MPYID .M1 A1,A2,A5:A4

Before instruction 10 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

A2 0011 2765h 1124197 A2 0011 2765h 1124197

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 0000 0381h CBCA 6558h 3856004703576

MPYSP

4-66

Single-Precision Floating-Point MultiplyMPYSP

Syntax MPYSP (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.M1, .M2

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x 1 1 1 0 0 0 0 0 s p

3 5 5 5 5

7 6

0 0src1

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the ex-
clusive-or of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) If signed 0 is multiplied by signed infinity, the result is signed NaN_out
and the INVAL bit is set.

5) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

6) If rounding is performed, the INEX bit is set.

MPYSP

4-67 TMS320C67x Floating-Point Instruction Set

Pipeline
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example MPYSP .M1X A1,B2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 XXXX XXXXh A3 C1AC 0000h –21.5

Pipeline

RCPDP

4-68

Double-Precision Floating-Point Reciprocal ApproximationRCPDP

Syntax RCPDP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xrsvsrc2

Description The 64-bit double-precision floating-point reciprocal approximation value of
src2 is placed in dst. The operand is read in one cycle by using the src1 port
for the 32 LSBs and the src2 port for the 32 MSBs.

The RCPDP instruction provides the correct exponent, and the mantissa is ac-
curate to the eighth binary position (therefore, mantissa error is less than 2–8).
This estimate can be used as a seed value for an algorithm to compute the re-
ciprocal to greater accuracy. The Newton-Rhapson algorithm can further ex-
tend the mantissa’s precision:

x[n+1] = x[n](2 – v*x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPDP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the man-
tissa; with the second iteration, the accuracy is 32 bits; with the third iteration,
the accuracy is the full 52 bits.

Execution if (cond) rcp(src2) → dst
else nop

RCPDP

4-69 TMS320C67x Floating-Point Instruction Set

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and UN-
DER bits are set. Underflow occurs when 21022 � src2 � infinity.

Pipeline
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h A1:A0 4010 0000h 0000 0000h 4.00

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 3FD0 0000h 0000 0000h 0.25

Pipeline

RCPSP

4-70

Single-Precision Floating-Point Reciprocal ApproximationRCPSP

Syntax RCPSP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

x00000src2

Description The single-precision floating-point reciprocal approximation value of src2 is
placed in dst.

The RCPSP instruction provides the correct exponent, and the mantissa is ac-
curate to the eighth binary position (therefore, mantissa error is less than 2–8).
This estimate can be used as a seed value for an algorithm to compute the re-
ciprocal to greater accuracy. The Newton-Rhapson algorithm can further ex-
tend the mantissa’s precision:

x[n+1] = x[n](2 – v*x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the man-
tissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) rcp(src2) → dst
else nop

RCPSP

4-71 TMS320C67x Floating-Point Instruction Set

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and UN-
DER bits are set. Underflow occurs when 2126 � src2 � infinity.

Pipeline
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example RCPSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 XXXX XXXXh A2 3E80 0000h 0.25

Pipeline

RSQRDP

4-72

Double-Precision Floating-Point Square-Root Reciprocal ApproximationRSQRDP

Syntax RSQRDP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xrsvsrc2

Description The 64-bit double-precision floating-point square-root reciprocal approxima-
tion value of src2 is placed in dst. The operand is read in one cycle by using
the src1 port for the 32 LSBs and the src2 port for the 32 MSBs.

The RSQRDP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2–8). This estimate can be used as a seed value for an algorithm to com-
pute the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n+1] = x[n](1.5 – (v/2)*x[n]*x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm is given by RSQRDP. For each iteration
the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-
tion, the accuracy is the full 52 bits.

Execution if (cond) sqrcp(src2) → dst
else nop

RSQRDP

4-73 TMS320C67x Floating-Point Instruction Set

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to cal-
culate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Pipeline

RSQRDP

4-74

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h 4.0 A1:A0 4010 0000h 0000 0000h 4.0

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 3FE0 0000h 0000 0000h 0.5

RSQRSP

4-75 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point Square-Root Reciprocal ApproximationRSQRSP

Syntax RSQRSP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description The single-precision floating-point square-root reciprocal approximation value
of src2 is placed in dst.

The RSQRSP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2–8). This estimate can be used as a seed value for an algorithm to com-
pute the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n+1] = x[n](1.5 – (v/2)*x[n]*x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm, is given by RSQRSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the man-
tissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) sqrcp(src2) → dst
else nop

RSQRSP

4-76

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to cal-
culate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example 1 RSQRSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 XXXX XXXXh A2 3F00 0000h 0.5

Pipeline

RSQRSP

4-77 TMS320C67x Floating-Point Instruction Set

Example 2 RSQRSP .S2X A1,B2

Before instruction 1 cycle after instruction

A1 4109 999Ah 8.6 A1 4109 999Ah 8.6

B2 XXXX XXXXh B2 3EAE 8000h 0.34082031

SPDP

4-78

Convert Single-Precision Floating-Point Value to a Double-Precision
Floating-Point Value

SPDP

Syntax SPDP (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description The single-precision value in src2 is converted to a double-precision value and
placed in dst.

Execution if (cond) dp(src2) → dst
else nop

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

4) If src2 is signed infinity, INFO bit is set.

5) No overflow or underflow can occur.

Pipeline
Stage E1 E2

Read src2

Written dst_l dst_h

Unit in use .S

Pipeline

SPDP

4-79 TMS320C67x Floating-Point Instruction Set

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example SPDP .S1X B2,A1:A0

Before instruction 2 cycles after instruction

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 4021 3333h 4000 0000h 8.6

SPINT

4-80

Convert Single-Precision Floating-Point Value to IntegerSPINT

Syntax SPINT (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 1 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The single-precision value in src2 is converted to an integer and placed in dst.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less
than –231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Pipeline

SPINT

4-81 TMS320C67x Floating-Point Instruction Set

Functional Unit
Latency

1

Example SPINT .L1 A1,A2

Before instruction 4 cycles after instruction

A1 4109 9999Ah 8.6 A1 4109 999Ah 8.6

A2 XXXX XXXXh A2 0000 0009h 9

SPTRUNC

4-82

Convert Single-Precision Floating-Point Value to Integer With TruncationSPTRUNC

Syntax SPTRUNC (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 1 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The single-precision value in src2 is converted to an integer and placed in dst.
This instruction operates like SPINT except that the rounding modes in the
FADCR are ignored, and round toward zero (truncate) is always used.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less
than –231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Pipeline

SPTRUNC

4-83 TMS320C67x Floating-Point Instruction Set

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example SPTRUNC .L1X B1,A2

Before instruction 4 cycles after instruction

B1 4109 9999Ah 8.6 B1 4109 999Ah 8.6

A2 XXXX XXXXh A2 0000 0008h 8

SUBDP

4-84

Double-Precision Floating-Point SubtractSUBDP

Syntax SUBDP (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

dp
xdp
dp

.L1, .L2 0011001

src1
src2
dst

xdp
dp
dp

.L1, .L2 0011101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1

Execution if (cond) src1 – src2 → dst
else nop

SUBDP

4-85 TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If both sources are +infinity or –infinity, the result is NaN_out and the IN-
VAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.

SUBDP

4-86

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

Example SUBDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 3333 3333h 8.6

A3:A2 C004 0000h 0000 0000h –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 4026 3333h 3333 3333h 11.1

Pipeline

SUBSP

4-87 TMS320C67x Floating-Point Instruction Set

Single-Precision Floating-Point SubtractSUBSP

Syntax SUBSP (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sp
xsp
sp

.L1, .L2 0010001

src1
src2
dst

xsp
sp
sp

.L1, .L2 0010101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1

Execution if (cond) src1 – src2 → dst
else nop

SUBSP

4-88

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If both sources are +infinity or –infinity, the result is NaN_out and the IN-
VAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.

SUBSP

4-89 TMS320C67x Floating-Point Instruction Set

Pipeline
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example SUBSP .L1X A2,B1,A3

Before instruction 4 cycles after instruction

A2 4109 999Ah A2 4109 999Ah 8.6

B1 C020 0000h B1 C020 0000h –2.5

A3 XXXX XXXXh A3 4131 999Ah 11.1

Pipeline

5-1

TMS320C64x Fixed-Point Instruction Set

The TMS320C64x fixed-point DSP uses all of the instructions available to
the TMS320C62x , but it also uses other instructions that are specific to the
C64x . These specific instructions include 8-bit and 16-bit extensions, non-
aligned word loads and stores, data packing/unpacking operations. This chap-
ter describes these C64x-specific instructions.

Instructions that are common to both the C62x and C64x are described in
Chapter 3.

Topic Page

5.1 Instruction Operation and Execution Notations 5-2.

5.2 Mapping Between Instructions and Functional Units 5-5.

5.3 TMS320C64x Opcode Map Symbols 5-10.

5.4 Delay Slots 5-11.

5.5 Conditional Operations 5-12.

5.6 Resource Constraints 5-13.

5.7 Addressing Modes 5-18.

5.8 Individual Instruction Descriptions 5-22.

Chapter 5

Instruction Operation and Execution Notations

 5-2

5.1 Instruction Operation and Execution Notations

Table 5–1 explains the symbols used in the new instruction descriptions.

Table 5–1. New Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

bi Select bit i of source/destination b

bit_count Count the number of bits that are 1 in a specified byte

bit_reverse Reverse the order of bits in a 32-bit register

byte0 8-bit value in the least significant byte position in 32-bit register
(bits 0-7)

byte1 8 -bit value in the next to least significant byte position in 32-bit
register (bits 8-15)

byte2 8-bit value in the next to most signficant byte position in 32-bit
register (bits 16-23)

byte3 8-bit value in the most signficant byte position in 32-bit register
(bits 24-31)

bv2 Bit Vector of two flags for s2 or u2 data type

bv4 Bit Vector of four flags for s4 or u4 data type

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register

cstn n-bit constant field (for example, cst5)

dst_h or dst_o msb32 of dst (placed in odd-numbered register of 64-bit register
pair)

dst_l or dst_e lsb32 of dst (placed in even-numbered register of a 64-bit register
pair)

dws4 Four packed signed 16-bit integers in a 64-bit register pair

dwu4 Four packed unsigned 16-bit integers in a 64-bit register pair

gmpy Galois Field Multiply

i2 Two packed 16-bit integers in a single 32-bit register

i4 Four packed 8-bit integers in a single 32-bit register

int 32-bit integer value

lsbn or LSBn n least significant bits (for example, lsb16)

Instruction Operation and Execution Notations

5-3TMS320C64x Fixed-Point Instruction Set

Table 5–1. New Instruction Operation and Execution Notations (Continued)

Symbol Meaning

msbn or
MSBn

n most significant bits (for example, msb16)

nop No operation

or Bitwise OR

R Any general-purpose register

ROTL Rotate left

sat Saturate

sbyte0 Signed 8-bit value in the least significant byte position in 32-bit
register (bits 0–7)

sbyte1 Signed 8-bit value in the next to least significant byte position in
32-bit register (bits 8–15)

sbyte2 Signed 8-bit value in the next to most significant byte position in
32-bit register (bits 16–23)

sbyte3 Signed 8-bit value in the most significant byte position in 32-bit
register (bits 24–31)

scstn Signed n-bit constant field (for example, scst7)

se Sign-extend

sint Signed 32-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

s2 Two packed signed 16-bit integers in a single 32-bit register

s4 Four packed signed 8-bit integers in a single 32-bit register

sllong Signed 64-bit integer value

ubyte0 Unsigned 8-bit value in the least significant byte position in 32-bit
register (bits 0–7)

ubyte1 Unsigned 8-bit value in the next to least significant byte position
in 32-bit register (bits 8–15)

ubyte2 Unsigned 8-bit value in the next to most significant byte position
in 32-bit register (bits 16–23)

ubyte3 Unsigned 8-bit value in the most significant byte position in 32-bit
register (bits 24–31)

ucstn n-bit unsigned constant field (for example, ucstn5)

uint Unsigned 32-bit integer value

Instruction Operation and Execution Notations

 5-4

Table 5–1. New Instruction Operation and Execution Notations (Continued)

Symbol Meaning

ullong Unsigned 64-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

u2 Two packed unsigned 16-bit integers in a single 32-bit register

u4 Four packed unsigned 8-bit integers in a single 32-bit register

xsint Signed 32-bit integer value that can optionally use cross path

xs2 Two packed signed 16-bit integers in a single 32-bit register that
can optionally use cross path

xs4 Four packed signed 8-bit integers in a single 32-bit register that
can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xu2 Two packed unsigned 16-bit integers in a single 32-bit register
that can optionally use cross path

xu4 Four packed unsigned 8-bit integers in a single 32-bit register
that can optionally use cross path

→ Assignment

 + Addition

++ Increment by one

 x Multiplication

 – Subtraction

> Greater than

< Less than

<< Shift left

>> Shift right

>= Greater than or equal to

<= Less than or equal to

== Equal to

~ Logical Inverse

& Logical And

Mapping Between Instructions and Functional Units

5-5TMS320C64x Fixed-Point Instruction Set

5.2 Mapping Between Instructions and Functional Units

Table 5–2 shows the mapping between instructions and functional units.
Table 5–3 shows the mapping between functional units and instructions.

Table 5–2. Instruction to Functional Unit Mapping

.L unit .M unit .S unit .D unit

ABS2 AVG2 SHFL ADD2 SUB2 ADD2

ADD2 AVGU4 SMPY2 ADDKPC SWAP2 ADDAD

ADD4 BITC4 SSHVL AND UNPKHU4 AND

AND BITR SSHVR ANDN UNPKLU4 ANDN

ANDN DEAL XPND2 BDEC XOR LDDW

MAX2 DOTP2 XPND4 BNOP LDNDW

MAXU4 DOTPN2 BPOS LDNW

MIN2 DOTPNRSU2 CMPEQ2 MVK

MINU4 DOTPNRUS2 CMPEQ4 OR

MVK DOTPRSU2 CMPGT2 STDW

OR DOTPRUS2 CMPGTU4 STNDW

PACK2 DOTPSU4 CMPLT2 STNW

PACKH2 DOTPUS4 CMPLTU4 SUB2

PACKH4 DOTPU4 MVK XOR

PACKHL2 GMPY4 OR

PACKL4 MPY2 PACK2

PACKLH2 MPYHI PACKH2

SHLMB MPYIH PACKHL2

SHRMB MPYHIR PACKLH2

SUB2 MPYIHR SADD2

SUB4 MPYLI SADDU4

SUBABS4 MPYIL SADDSU2

SWAP2 MPYLIR SADDUS2

SWAP4 MPYILR SHLMB

UNPKHU4 MPYSU4 SHR2

UNPKLU4 MPYUS4 SHRMB

XOR MPYU4 SHRU2

MVD SPACK2

ROTL SPACKU4

Mapping Between Instructions and Functional Units

 5-6

Table 5–3. Functional Unit to Instruction Mapping

Instruction .L unit .M unit .S unit .D unit

ABS2 √

ADD2� √ √ √

ADD4 √

ADDAD √

ADDKPC √

AND� √ √ √

ANDN √ √ √

AVG2 √

AVGU4 √

BDEC √

BITC4 √

BITR √

BNOP √

BNOP reg √

BPOS √

CMPEQ2 √

CMPEQ4 √

CMPGT2 √

CMPGTU4 √

CMPLT2 √

CMPLTU4 √

DEAL √

DOTP2 √

DOTPN2 √

DOTPNRSU2 √

DOTPNRUS2 √

DOTPRSU2 √

DOTPRUS2 √

DOTPSU4 √

Mapping Between Instructions and Functional Units

5-7TMS320C64x Fixed-Point Instruction Set

Table 5–3. Functional Unit to Instruction Mapping (Continued)

Instruction .D unit.S unit.M unit.L unit

DOTPUS4 √

DOTPU4 √

GMPY4 √

LDDW √

LDNDW √

LDNW √

MAX2 √

MAXU4 √

MIN2 √

MINU4 √

MPY2 √

MPYHI √

MPYIH √

MPYHIR √

MPYIHR √

MPYLI √

MPYIL √

MPYLIR √

MPYILR √

MPYSU4 √

MPYUS4 √

MPYU4 √

MVD √

MVK� √ √ √

OR� √ √ √

PACK2 √ √

PACKH2 √ √

PACKH4 √

PACKHL2 √ √

Mapping Between Instructions and Functional Units

 5-8

Table 5–3. Functional Unit to Instruction Mapping (Continued)

Instruction .D unit.S unit.M unit.L unit

PACKL4 √

PACKLH2 √ √

ROTL √

SADD2 √

SADDSU2 √

SADDU4 √

SADDUS2 √

SHFL √

SHLMB √ √

SHR2 √

SHRMB √ √

SHRU2 √

SMPY2 √

SPACK2 √

SPACKU4 √

SSHVL √

SSHVR √

STDW √

STNDW √

STNW √

SUB2� √ √ √

SUB4 √

SUBABS4 √

SWAP2 √ √

SWAP4 √

UNPKHU4 √ √

UNPKLU4 √ √

XOR� √ √ √

Mapping Between Instructions and Functional Units

5-9TMS320C64x Fixed-Point Instruction Set

Table 5–3. Functional Unit to Instruction Mapping (Continued)

Instruction .D unit.S unit.M unit.L unit

XPND2 √

XPND4 √

Note: � indicates instructions that exist on C62x/C67x but are now also available on one or more additional functional units.

TMS320C64x Opcode Map Symbols

 5-10

5.3 TMS320C64x Opcode Map Symbols

Table 5–4 and the instruction descriptions in this chapter explain the field syn-
taxes and values.

Table 5–4. TMS320C64x Opcode Map Symbol Definitions

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register

cst constant

csta constant a

cstb constant b

dst destination

h MVK or MVKH bit

ld/st load/store opfield

mode addressing mode

offsetR register offset

op opfield, field within opcode that specifies a unique instruction

p parallel execution

r

rsv

LDDW bit

reserved

s select side A or B for destination

sc scaling mode bit

src2 source 2

src1 source 1

ucstn n-bit unsigned constant field

x use cross path for src2

y select .D1 or .D2

z test for equality with zero or nonzero

Delay Slots

5-11TMS320C64x Fixed-Point Instruction Set

5.4 Delay Slots

The execution of the additional instructions can be defined in terms of delay
slots. The number of delay slots is equivalent to the number of cycles required
after the source operands are read for the result to be available for reading.
For a single-cycle type instruction (such as CMPGT2), source operands read
in cycle i produce a result that can be read in cycle i + 1. For a two-cycle instruc-
tion (such as AVGU4), source operands read in cycle i produce a result that
can be read in cycle i + 2. For a four-cycle instruction (such as DOTP2), source
operands read in cycle i produce a result that can be read in cycle i + 4.
Table 5–5 shows the number of delay slots associated with each type of in-
struction.

Delay slots are equivalent to an execution or result latency. All of the additional
instructions have a functional unit latency of 1. This means that a new instruc-
tion can be started on the functional unit every cycle. Single-cycle throughput
is another term for single-cycle functional unit latency.

Table 5–5. Delay Slot and Functional Unit Latency Summary

Instruction Type
Delay
Slots

Functional
Unit Latency Read Cycles † Write Cycles † Branch Taken †

NOP (no operation) 0 1

Store 0 1 i i

Single cycle 0 1 i i

Two cycle 1 1 i i + 1

Multiply (16x16) 1 1 i i + 1

Four cycle 3 1 i i + 3

Load 4 1 i i, i + 4‡

Branch 5 1 i§ i + 5

† Cycle i is in the E1 pipeline phase.
‡ For loads, any address modification happens in cycle i. The loaded data is written into the register file in cycle i + 4.
§ The branch to label, branch to IRP, and branch to NRP instructions do not read any general-purpose registers.

Conditional Operations

 5-12

5.5 Conditional Operations

The C64x handles conditional operations in the same manner as the
TMS320C62x /TMS320C67x . In addition, the C64x can use A0 as a condi-
tional register as well as A1,A2, B0, B1 and B2. The creg field is encoded in
the instruction opcode as shown in Table 5–6.

Table 5–6. Registers That Can Be Tested by Conditional Operations

Specified
C diti l

creg z
Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved� 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

A0 1 1 0 z

Reserved 1 1 x x

† This value is reserved for software breakpoints that are used for emulation purposes.

Resource Constraints

5-13TMS320C64x Fixed-Point Instruction Set

5.6 Resource Constraints

This section will cover the differences between the C62x and the C64x with
respect to resource constraints.

If no differences are cited, then the same constraints covered in Chapter 3,
section 3.7 apply.

5.6.1 Constraints on Cross Paths (1X and 2X)

Units in one data path may read a single operand from the opposite data path
by using a cross path (1X and 2X). The C62x/C67x architectures provided
cross path access to the .L, .S and .M units. One functional unit per data path
per execute packet may read an operand via a cross path on these architec-
tures. The C64x adds data cross path access to the .D unit for arithmetic and
logical operations. Also, multiple units in a given path may read an operand
via the same cross path on the C64x, provided that each unit is reading the
same operand.

For example, the .S1 unit can read both its operands from the A register file; or
it can read an operand from the B register file using the 1X cross path and the
other from the A register file. The use of a cross path is denoted by an X following
the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being
used for two different B register operands:

 MV .S1X B0, A0 ; \ Invalid. Instructions are using the 1X cross path
||MV .L1X B1, A1 ; / with different B registers

The following execute packet is valid because all uses of the 1X cross path are
for the same B register operand, and all uses of the 2X cross path are for the
same A register operand:

 ADD .L1X A0,B1,A1 ; \ Instructions use the 1X with B1

 || SUB .S1X A2,B1,A2 ; / 1X cross paths using B1

 || AND .D1 A4,A1,A3 ;

 || MPY .M1 A6,A1,A4 ;

 || ADD .L2 B0,B4,B2 ;

 || SUB .S2X B4,A4,B3 ; / 2X cross paths using A4

 || AND .D2X B5,A4,B4 ; / 2X cross paths using A4

 || MPY .M2 B6,B4,B5 ;

As in the C62x core, when an operand comes from a register file opposite of
the destination register, the x bit in the instruction field is set.

Resource Constraints

 5-14

5.6.2 Cross Path Stalls

The C64x introduces a delay clock cycle whenever an instruction attempts to
read a register via a cross path that was updated in the previous cycle. This
is known as a cross path stall. This stall is inserted automatically by the hard-
ware, no NOP instruction is needed. It should be noted that no stall is
introduced if the register being read has data placed by a load instruction, or
if an instruction reads a result one cycle after the result is generated.

Here are some examples:

 ADD .S1 A0, A0, A1; / Stall is introduced; A1 is updated

 ; 1 cycle before it is used as a cross path

 ADD .S2X A1, B0, B1; \ source

 ADD .S1 A0, A0, A1 ; / No stall is introduced; A0 not updated

 ; 1 cycle before it is used as a cross

 ADD .S2X A0, B0, B1 ; \ path source

 LDW .D1 *++A0[1], A1; / No stall is introduced; A1 is the load

 ; destination

 NOP 4 ; NOP 4 represents 4 instructions to

 ADD .S2X A1, B0, B1 ; \ be executed between the load and add.

 LDW .D1 *++A0[1], A1 ; / Stall is introduced; A0 is updated

 ADD .S2X A0, B0, B1 ; 1 cycle before it is used as a cross .
 ; \ path source

This cross path stall does not occur on the C62x/C67x. However, all code writ-
ten for the C62x/C67x that contains cross paths used in the manner above and
that runs on the C64x will exhibit this behavior. The code will still run correctly
but it will take more clock cycles.

It is possible to avoid the cross path stall by scheduling an instruction that reads
an operand via the cross path at least one cycle after the operand is updated.
With appropriate scheduling, the C64x can provide one cross path operand per
data path per cycle with no stalls. In many cases, the TMS320C6000 Optimizing
C Compiler and Assembly Optimizer automatically perform this scheduling.

5.6.3 Constraints on Loads and Stores

The data address paths named DA1 and DA2 are each connected to the
.D units in both data paths. Load/store instructions can use an address register

Resource Constraints

5-15TMS320C64x Fixed-Point Instruction Set

from one register file while loading to or storing from the other register file. Two
load/store instructions using a destination/source from the same register file
cannot be issued in the same execute packet. The address register must be on
the same side as the .D unit used.

The DA1 and DA2 resources and their associated data paths are specified as
T1 and T2, respectively. T1 consists of the DA1 address path and the LD1a,
LD1b, ST1a, and ST1b data paths. Similarly, T2 consists of the DA2 address
path and the LD2a, LD2b, ST2a, and ST2b data paths. The T1 and T2 designa-
tions appear in functional unit fields for load and store instructions.

The C64x can access words and double words at any byte boundary using
non-aligned loads and stores. As a result, word and double word data does not
need alignment to 32-bit or 64-bit boundaries. No other memory access may
be used in parallel with a non-aligned memory access. The other .D unit can
be used in parallel, as long as it is not performing a memory access.

The following execute packet is invalid:

 LDNW .D2T2 *B2[B12],B13 ; \ Two memory operations,

|| LDB .D1T1 *A2,A14 ; / one non-aligned

The following execute packet is valid:

 LDNW .D2T2 *B2[B12], A13; \ One non-aligned memory
 ; operation,

|| ADD .D1x A12, B13, A14 ; one non-memory .D unit
 ; / operation

5.6.4 Constraints on Long (40-Bit) Data

Some of the ports for long and double word operands are shared between
functional units. This creates constraints on when long or double word opera-
tions can be scheduled in a data path. The restrictions are different between
the C64x, the C62x, and the C67x. These differences are summarized in
Table 5–7.

Resource Constraints

 5-16

Table 5–7. Constraint Differences Between C62x/C67x and C64x Registers

Situation C62x C67x C64x

Both .S and .L units on the same side use a long source. Conflict Conflict OK

Both .S and .L units on the same side write a long result. Conflict Conflict OK

A store reads the data to store from the same side that the .S unit reads
a long source.

Conflict Conflict Conflict

A store (other than STDW) reads the data to store from the same side
that the .L unit reads a long source.

Conflict Conflict OK

An STDW reads the data to store from the same side that the .L unit
reads a long source.

N/A N/A Conflict

An LDDW writes back data (loaded from memory) to the same side that
the .S unit writes a long result.

N/A Conflict Conflict

An LDDW writes back data (loaded from memory) to the same side that
the .L unit writes a long result.

N/A Conflict OK

Legend: Conflict = Conflict exists
OK = No conflict exists
N/A = Not Applicable; instruction not available to core

On the C62x and C67x, only one long result may be issued per register file in
an execute packet. On the C64x, the .L, .S and .D units can operate indepen-
dently, as long as the .D unit does loads of data smaller than double words. Up
to two instructions with long results may be issued per side in an execute packet.
Double word load instructions conflict with long results from the .S units. All
stores conflict with a long source on the .S unit. Only double word stores conflict
with a long source on the .L unit.

The following execute packet is invalid on the C62x/C67x and the C64x cores,
because the .D unit store on the T1 path conflicts with the long source on the
.S1 unit:

ADD .S1 A1,A5:A4, A3:A2; \ Long source on .S unit and a

|| STW .D1T1 A8,*A9; / store on the T1 path of the .D unit

The following code sequence is invalid on the C64x and C67x cores. This ex-
ample is not applicable to the C62x core because it uses the LDDW instruction
that is not supported on the C62x core.

LDDW .D1T1 *A16,A11:A10 ; \ Double word load written to

 ; A11:A10 on .D1

NOP 3 ; conflicts after 3 cycles

SHL .S1 A8,A9,A7:A6 ; / with write to A7:A6 on .S1

Resource Constraints

5-17TMS320C64x Fixed-Point Instruction Set

The following code sequences are invalid on the C64x core. These examples
are not applicable to the C62x and C67x cores, because the STDW instruction
is not supported on the C62x or C67x cores.

ADD .L1 A1,A5:A4,A3:A2 ; \ Long source on .L1 conflicts

|| STDW .D1T1 A13:A12,*A16 ; with double word store on the
 ; / T1 path of .D1

SHL .S1 A5:A4,A1,A3:A2 ; \ Long source on .S1 conflicts

|| STDW .D1T1 A9:A8,*A19 ; with double word store on the
 ; / T1 path of .D1

The following code sequences are invalid on the C62x and C67x cores but val-
id on the C64x core:

ADD .L1 A1,A5:A4,A3:A2 ; \ Two long writes

|| SHL .S1 A8,A9,A7:A6 ; / on A register file

LDW .D1T1 *A13,A11 ; \ Word read on T1 path of .D1 doesn’t

NOP 3 ; / conflict after 3 cycles with long

ADD .L1 A4,A1,A3:A2 ; \ write on .L1 unit and long write

|| SHL .S1 A8,A2,A7:A6 ; / on .S1 unit

ADD .L1 A1,A5:A4,A3:A2 ; \ Long source operand on .L1

|| STW .D1T1 A8,*A9 ; doesn’t conflict with store

 ; / word on the T1 path of .D1

The following execute packets are valid on all cores:

ADD .L1 A1,A5:A4,A3:A2 ; \ One long write for

|| SHL .S2 B8,B9,B7:B6 ; / each register file

ADD .L1 A4, A1, A3:A2 ; \ No long read with

|| STW .D1T1 A8,*A9 ; / the store on T1 path of .D1

The following execute packet is invalid on all cores:

SHR .S1 A5:A4, A1, A3:A2 ; \ No long read on .S1 with

|| STW .D1T1 A8,*A9 ; / the store on T1 path of .D1

Addressing Modes

 5-18

5.7 Addressing Modes

The addressing modes on the C6000 DSPs are linear, circular using BK0, and
circular using BK1. The mode is specified by the addressing mode register, or
AMR (defined in Chapter 2).

All registers can perform linear addressing. Only eight registers can perform cir-
cular addressing: A4-A7 are used by the .D1 unit, and B4-B7 are used by the .D2
unit. No other units can perform circular addressing. LDB(U)/LDH(U)/LDW, STB/
STH/STW, LDNDW, LDNW, STNDW, STNW, LDDW, STDW, ADDAB/ADDAH/
ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW instructions all use the AMR to
determine what type of address calculations are performed for these registers.
There is no SUBAD instruction.

5.7.1 Linear Addressing Mode

5.7.1.1 LD/ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst oper-
and to the left by 3, 2, 1, or 0 for double word, word, halfword, or byte access,
respectively; and then performs an add or a subtract to baseR (depending on
the operation specified). The LDNDW and STNDW instructions also support
non-scaled offsets. In non-scaled mode, the offsetR/cst is not shifted before
adding or subtracting from the baseR.

For the pre-increment, pre-decrement, positive offset, and negative offset ad-
dress generation options, the result of the calculation is the address to be ac-
cessed in memory. For post-increment or post-decrement addressing, the val-
ue of baseR before the addition or subtraction is the address to be accessed
from memory.

5.7.1.2 ADDA/SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the
src1/cst operand to the left by 3, 2, 1, or 0 for double word, word, halfword, or
byte data sizes, respectively, and then performs the add or subtract specified.

5.7.2 Circular Addressing Mode

The BK0 and BK1 fields in the AMR specify block sizes for circular addressing.
See the description of the AMR (defined in Chapter 2) for more information.

Addressing Modes

5-19TMS320C64x Fixed-Point Instruction Set

5.7.2.1 LD/ST Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 ac-
cording to the data size, and is then added to or subtracted from baseR to pro-
duce the final address. Circular addressing modifies this slightly by only allow-
ing bits N through 0 of the result to be updated, leaving bits 31 through N+1
unchanged after address arithmetic. The resulting address is bounded to
2(N+1) range, regardless of the size of the offsetR/cst.

The circular buffer size specified in the AMR is not scaled. For example, a
block-size of 8 is 8 bytes, not 8 times the data size (byte, half word, word). So,
to perform circular addressing on an array of 8 words, a size of 32 should be
specified, or N = 4. Example 5–1 shows an LDW performed with register A4 in
circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 half words, or
8 words. The value put in the AMR for this example is 00040001h.

Example 5–1. LDW in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 XXXX XXXXh A1 XXXX XXXXh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h–11Fh; thus, it is wrapped around to
(124h – 20h = 104h).

5.7.2.2 ADDA/SUBA Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 ac-
cording to the data size, and is then added to or subtracted from baseR to pro-
duce the final address. Circular addressing modifies this slightly by only allow-
ing bits N through 0 of the result to be updated, leaving bits 31 through N+1
unchanged after address arithmetic. The resulting address is bounded
to 2(N+1) range, regardless of the size of the offsetR/cst.

The circular buffer size in the AMR is not scaled. For example, a block size of 8
is 8 bytes, not 8 times the data size (byte, half word, word). So, to perform cir-
cular addressing on an array of 8 words, a size of 32 should be specified, or
N = 4. Example 5–2 shows an ADDAH performed with register A4 in circular
mode and BK0=4, so the buffer size is 32 bytes, 16 half words, or 8 words. The
value put in the AMR for this example is 00040001h.

Addressing Modes

 5-20

Example 5–2. ADDAH in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary
100h–11Fh; thus, it is wrapped around to (126h – 20h = 106h).

5.7.2.3 Circular Addressing Considerations with Non-Aligned Memory

Circular addressing may be used with non-aligned accesses. When circular
addressing is enabled, address updates and memory accesses occur in the
same manner as for the equivalent sequence of byte accesses. The only re-
striction is that the circular buffer size be at least as large as the data size being
accessed. Non-aligned access to circular buffers that are smaller than the data
being read will cause undefined results.

Non-aligned accesses to a circular buffer apply the circular addressing calculation
to logically adjacent memory addresses. The result is that non-aligned accesses
near the boundary of a circular buffer will correctly read data from both ends of
the circular buffer, thus seamlessly causing the circular buffer to “wrap around”
at the edges.

Consider, for example, a circular buffer size of 16 bytes. A circular buffer of this
size at location 0x20, would look like this in physical memory:

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3

7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8

x x x x x x x x x a b c d e f g h i j k l m n o p x x x x x x x x x

The effect of circular buffering is to make it so that memory accesses and ad-
dress updates in the 0x20–0x2F range stay completely inside this range. Ef-
fectively, the memory map behaves in this manner:

2 2

7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8

h i j k l m n o p a b c d e f g h i j k l m n o p a b c d e f g h i

Addressing Modes

5-21TMS320C64x Fixed-Point Instruction Set

Example 5–3 shows an LDNW performed with register A4 in circular mode
and BK0 = 3, so the buffer size is 16 bytes, 8 half words, or 4 words. The value
put in the AMR for this example is 00030001h. The buffer starts at address
0x0020 and ends at 0x002F. The register A4 is initialized to the address
0x002A.

Example 5–3. LDNW in Circular Mode

LDNW .D1 *++A4[2],A1

Before LDNW 1 cycle after LDNW 5 cycles after LDNW

A4 0000 002Ah A4 0000 0022h A4 0000 0022h

A1 XXXX XXXXh A1 XXXX XXXXh A1 5678 9ABCh

mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh

Note: 2h words is 8h bytes. 8h bytes is 3 bytes beyond the 16-byte (10h) boundary starting at address 002Ah; thus, it is
wrapped around to 0022h (002Ah + 8h = 0022h).

Individual Instruction Descriptions

 5-22

5.8 Individual Instruction Descriptions

This section gives detailed information on the fixed-point instruction set for the
C64x. Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Instruction type
� Delay slots
� See Also lists instructions of similar type
� Examples

ABS2

5-23 TMS320C64x Fixed-Point Instruction Set

Absolute Value With Saturation, Signed Packed 16-Bit ABS2

Syntax ABS2 (.unit) src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xs2
s2

.L1, .L2 00100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src/cst op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 10 1 1

Description In the ABS2 instruction, the absolute values of the upper and lower halves of
the src2 operand are placed in the upper and lower halves of the dst.

Execution if (cond) {

(abs(lsb16(src2)) → lsb16(dst)

(abs(msb16(src2)) → msb16(dst)

}

else nop

Specifically, this instruction performs the following steps for each half-word of
src2, then writes its result to the appropriate half-word of dst:

1) If the value is between 0 and 215, then value → dst

2) If the value is less than 0 and not equal to –215, then –value → dst

3) If the value is equal to –215, then 215 –1 → dst

Note:

This operation is performed on each 16-bit value separately. This instruction
does not affect the SAT bit in the CSR.

ABS2

5-24

Pipeline ___________________

Pipeline

Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ABS

Example 1 ABS2 .L1 A0,A15

Before instruction 1 cycle after instruction

A0 FF68 4E3Dh –152 20029 A0 FF68 4E3Dh –152 20029

A2 XXXX XXXXh A2 0098 4E3Dh 152 20029

Example 2 ABS2 .L1 A0,A15

Before instruction 1 cycle after instruction

A0 3FF6 F105h 16374 –3835 A0 3FF6 F105h 16374 –3835

A2 XXXX XXXXh A2 3FF6 0EFBh 16374 3835

ADD2

5-25 TMS320C64x Fixed-Point Instruction Set

Two 16-Bit Integer Adds on Upper and Lower Register HalvesADD2

Syntax ADD2 (.unit) src1, src2, dst
.unit = .S1, .S2, .L1, .L2, .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i2
xi2
i2

.S1, .S2 000001

src1
src2
dst

i2
xi2
i2

.L1, .L2 0000101

src1
src2
dst

i2
xi2
i2

.D1, .D2 0100

Opcode

.S unit

31 29 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

.L Unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description In the ADD2 instruction, the upper and lower halves of the src1 operand are
added to the upper and lower halves of the src2 operand. The values in src1
and src2 are treated as signed, packed 16-bit data and the results are written
in signed, packed 16-bit format into dst.

ADD2

5-26

For each pair of signed packed 16-bit values found in the src1 and src2, the
sum between the 16-bit value from src1 and the 16-bit value from src2 is calcu-
lated to produce a16-bit result. The result is placed in the corresponding posi-
tions in the dst. The carry from the lower half add does not affect the upper half
add.

This is the same ADD2 instruction that is found on the C62x, but with the added
flexibility of being able to perform this operation on the .L and .D units as well
as the .S unit.

31 16 15 0

a_hi a_lo src1

ADD2

b_hi b_lo src2

31 16 15 0

a_hi + b_hi a_lo + b_lo dst

Execution if (cond) {

msb16(src1) + msb16(src2) → msb16(dst);

lsb16(src1) + lsb16(src2) → lsb16(dst);

}

else nop

ADD2

5-27 TMS320C64x Fixed-Point Instruction Set

Pipeline ___________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S, .L, .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADD4, SUB2

Example ADD2 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 0021 37E1h 33 14305 A0 0021 37E1h 33 14305

signed signed

A1 039A E4B8h 922 –6984 A1 039A E4B8h 922 –6984

signed signed

A2 XXXX XXXXh A2 03BB 1C99h 955 7321

signed

ADD4

5-28

Add Four 8-Bit Pairs For Four 8-Bit ResultsADD4

Syntax ADD4 (.unit) src1, src2, dst
unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i4
xi4
i4

.L1, .L2 1100101

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The ADD4 instruction performs 2s-complement addition between packed 8-bit
quantities. The values in src1 and src2 are treated as packed 8-bit data and
the results are written in packed 8-bit format.

For each pair of packed 8-bit values found in src1 and src2, the sum between
the 8-bit value from src1 and the 8-bit value from src2 is calculated to produce
an 8-bit result. The result is placed in the corresponding positions in dst. No
saturation is performed. The carry from one 8-bit add does not affect the add
of any other 8-bit add.

31 24 23 16 15 8 7 0

3 2 1 0 1a_3 a_2 a_1 a_0 src1

ADD4ADD4

b 3 b 2 b 1 b 0 2b_3 b_2 b_1 b_0 src2

31 24 23 16 15 8 7 0

a_3 + b_3 a_2 + b_2 a_1 + b_1 a_0 + b_0 dst

ADD4

5-29 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

byte0(src1) + byte0(src2) → byte0(dst)

byte1(src1) + byte1(src2) → byte1(dst)

byte2(src1) + byte2(src2) → byte2(dst)

byte3(src1) + byte3(src2) → byte3(dst)

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADD2, SUB4

Example 1 ADD4 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 FF 68 4E 3Dh A0 FF 68 4E 3Dh

A1 3F F6 F1 05h A1 3F F6 F1 05h

A2 XXXX XXXXh A2 3E 5E 3F 42h

ADD4

5-30

Example 2 ADD4 .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 4A E2 D3 1Fh A0 4A E2 D3 1Fh

A1 32 1A C1 28h A1 32 1A C1 28h

A2 XXXX XXXXh A2 7C FC 94 47h

ADDAD

5-31 TMS320C64x Fixed-Point Instruction Set

Integer Addition Using Doubleword Addressing ModeADDAD

Syntax ADDAD (.unit) src2, src1, dst

.unit = . D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 111100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 111101

Opcode

.D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 1 1 0 0 s p

3 1 5 5 5 6 5 1 1

Description src1 is added to src2 using the doubleword addressing mode specified for
src2. The addition defaults to linear mode. However, if src2 is one of A4–A7
or B4–B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.6.2 on page 2-14). src1 is left shifted by 3
due to doubleword data sizes. The result is placed in dst. (See the ADDAB/
ADDAH/ADDAW instruction, page 3-34, for byte, halfword, and word ver-
sions.)

Note:

There is no SUBAD instruction.

Execution if (cond) src2 +(src1 �� 3) → dst
else nop

ADDAD

5-32

Pipeline ___________________________

Pipeline

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDAB, ADDAH, ADDAW

Example ADDAD .D1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 1234h 4660 A1 0000 1234h 4660

A2 0000 0002h 2 A2 0000 0002h 2

A3 XXXX XXXXh A3 0000 1244h 4676

ADDKPC

5-33 TMS320C64x Fixed-Point Instruction Set

Add a Signed 7-bit Constant to Program CounterADDKPC

Syntax ADDKPC (.unit) src1, dst, src2
.unit = S2

Opcode map field used... For operand type... Unit

src1
src2
dst

scst7
ucst3
uint

.S2

Opcode

31 29 28 27 23 22 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst scst7 ucst3 0 0 0 0 1 0 1 1 0 0 0 s p

3 1 5 7 3 1 10 1 1

Description In the ADDKPC instruction, a 7-bit signed constant is shifted 2 bits to the left,
then added to the address of the first instruction of the fetch packet that con-
tains the ADDKPC instruction (PCE1). The result is placed in the destination
register. The 3-bit unsigned constant specifies the number of NOP cycles to
insert after the current instruction. This instruction helps reduce the number
of instructions needed to set up the return address for a function call.

The following code:

B .S2 func
 MVKL .S2 LABEL, B3
 MVKH .S2 LABEL, B3

NOP 3

LABEL

could be replaced by:

B .S2 func
ADDKPC .S2 LABEL, B3, 4

LABEL

Only one ADDKPC instruction can be executed per cycle. An ADDKPC in-
struction cannot be paired with any relative branch instruction in the same exe-
cute packet. If an ADDKPC and a relative branch are in the same execute
packet, and if the ADDKPC instruction is executed when the branch is taken,
behavior is undefined.

ADDKPC

5-34

Execution if (cond) (scst7 << 2) + PCE1 → dst

else nop

Pipeline ______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also B, BNOP

Example ADDKPC .S2 30h,B3,5

Before instruction 1 cycle after instruction

PCE1 0100 0000h

B3 XXXX XXXXh B3 0100 00C0h

AND

5-35 TMS320C64x Fixed-Point Instruction Set

Bitwise ANDAND

Syntax AND (.unit) src1, src2, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xint
uint

.L1, .L2 1111001

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111010

src1
src2
dst

uint
xunit
uint

.S1, .S2 011111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011110

src
src2
dst

uint
xuint
uint

.D1, .D2 0110

src1
src2
dst

scst5
xuint
uint

.D1, .D2 0111

Opcode

.L unit form:

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1lcst x op 1 1 0 s p

3 5 5 5 1 7 3 1 1

.S unit form:

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1lcst x op 1 1 0 0 s p

3 5 5 5 1 6 4 1 1

AND

5-36

.D unit form:

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1/cst5 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description In this instruction a bitwise AND is performed between src1 and src2. The re-
sult is placed in dst. The scst5 operands are sign extended to 32 bits. This is
the same AND instruction that is found on the C62x, but with the added flexibil-
ity of being able to perform this operation on the .D unit as well as the .L and
.S units.

Execution if (cond) src1 and src2 → dst

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single Cycle

Delay Slots 0

See Also ANDN, OR, XOR

Example 1 AND .L1X A1, B1, A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 XXXX XXXXh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

AND

5-37 TMS320C64x Fixed-Point Instruction Set

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 XXXX XXXXh A3 0000 0006h

ANDN

5-38

Bit-Wise Logical AND InvertANDN

Syntax ANDN (.unit) src1, src2, dst
unit = .L1, .L2, .D1, .D2, S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111100

src1
src2
dst

uint
xunit
uint

.D1,

.D2
0000

src1
src2
dst

uint
xuint
uint

.S1,

.S2
0110

Opcode

.D unit form:

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

.L unit form:

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit form:

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description In the ANDN instruction, a bitwise logical AND is performed between src1 and
the bitwise logical inverse of src2. The result is placed in dst.

Execution if (cond) src1 and ~ src2 → dst

else nop

ANDN

5-39 TMS320C64x Fixed-Point Instruction Set

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also AND, OR, XOR

Example ANDN .L1 A0,A1,A2

Before instruction 1 cycle after instruction

A0 1957 21ABh A0 1957 21ABh

A1 081C 17E6h F7E3E819 A1 081C 17E6h

A2 XXXX XXXXh A2 1143 2009h

AVG2

5-40

Average, Signed Packed 16-BitAVG2

Syntax AVG2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

 s2
 xs2
 s2

.M1, .M2 10011

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The AVG2 instruction performs an averaging operation on packed 16-bit data.
For each pair of signed 16-bit values found in src1 and src2, AVG2 calculates
the average of the two values and returns a signed 16-bit quantity in the corre-
sponding position in the dst.

Execution if (cond) {

((lsb16(src1) + lsb16(src2) + 1) >> 1) → lsb16(dst);

((msb16(src1) + msb16(src2) + 1) >> 1) → msb16(dst);

}

The averaging operation is performed by adding 1 to the sum of the two 16-bit
numbers being averaged. The result is then right-shifted by 1 to produce a
16-bit result.

Note: No overflow conditions exist.

Pipeline ________________________________

Pipeline

Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

AVG2

5-41 TMS320C64x Fixed-Point Instruction Set

Instruction Type Two-cycle

Delay Slots 1

See Also AVGU4

Example AVG2 .M1 A0,A1,A2

Before instruction 2 cycles after instruction

A0 6198 4357h 24984 17239 A0 6198 4357h 24984 17239

A1 7582 AE15 30082 –20971 A1 7582 AE15h 30082 –20971

A2 XXXX XXXXh A2 6B8D F8B6 27533 –1866

AVGU4

5-42

Average, Unsigned Packed 8-BitAVGU4

Syntax AVGU4 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

 u4
 xu4
 u4

.M1, .M2 10010

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The AVGU4 instruction performs an averaging operation on packed 8-bit data.
The values in src1 and src2 are treated as unsigned, packed 8-bit data and the
results are written in unsigned, packed 8-bit format. For each unsigned,
packed 8-bit value found in src1 and src2, AVGU4 calculates the average of
the two values and returns an unsigned, 8-bit quantity in the corresponding
positions in the dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 src1

AVGU4AVGU4

ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

(ua_3 +ub_3+1)>>1 (ua_2 +ub_2+1)>>1 (ua_1 +ub_1+1)>>1 (ua_0 +ub_0+1)>>1 dst

AVGU4

5-43 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

((ubyte0(src1) + ubyte0(src2) + 1) >> 1) → ubyte0(dst);

(((ubyte1(src1) + ubyte1(src2) + 1) >> 1) → ubyte1(dst);

(((ubyte2(src1) + ubyte2(src2) + 1) >> 1) → ubyte2(dst);

(((ubyte3(src1) + ubyte3(src2) + 1) >> 1) → ubyte3(dst)

}

else nop

The averaging operation is performed by adding 1 to the sum of the two 8-bit
numbers being averaged. The result is then right-shifted by 1 to produce an
8-bit result.

Note: No overflow conditions exist.

Pipeline ______________________________

Pipeline

Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also AVG2

Example AVGU4 .M1 A0,A1,A2

Before instruction 2 cycles after instruction

A0 1A 2E 5F 4Eh 26 46 95 78 A0 1A 2E 5F 4Eh 26 46 95 78

unsigned unsigned

A1 9E F2 6E 3Fh 158 242 110 63 A1 9E F2 6E 3Fh 158 242 110 63

unsigned unsigned

A2 XXXX XXXXh A2 5C 90 67 47h 92 144 103 71

unsigned

BDEC

5-44

Branch and DecrementBDEC

Syntax BDEC (.unit) scst10, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit

src
dst

scst10
int

.S1, .S2

Opcode

31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst scst10 1 0 0 0 0 0 0 1 0 0 0 s p

3 1 5 10 1 10 1 1

Description If the predication and decrement register (dst) is positive (greater than or equal
to 0), the BDEC instruction performs a relative branch and decrements dst by
one. The instruction performs the relative branch using a 10-bit signed
constant specified by the scst10. The constant is shifted 2 bits to the left, then
added to the address of the first instruction of the fetch packet that contains
the BDEC instruction (PCE1). The result is placed in the program fetch counter
(PFC).

This instruction helps reduce the number of instructions needed to decrement
a register and conditionally branch based upon the value of the register. Note
also that any register can be used which can free the predicate registers
(A0–A2 and B0–B2) for other uses.

The following code:

 CMPLT .L1 A10,0,A1
 [!A1] SUB .L1 A10,1,A10
||[!A1] B .S1 func

 NOP 5

could be replaced by:

BDEC .S1 func, A10
NOP 5

Note:

Only one BDEC instruction can be executed per cycle. The BDEC instruction
can be predicated by using any conventional condition register. The condi-
tions are effectively ANDed together. If two branches are in the same execute
packet, and if both are taken, behavior is undefined.

BDEC

5-45 TMS320C64x Fixed-Point Instruction Set

Execution if(cond) {

if (dst >=0), PFC = ((PCE1 + se(scst10)) <<2);

 if (dst >=0), dst = dst – 1;

else nop

}

else nop

Pipeline __

 Target Instruction
__

Pipeline

Stage E1 PS PW PR DP DC E1

__

Read dst

Written dst, PC

Branch Taken X

Unit in use .S

__

Instruction Type Branch

Delay Slots 5

Example 1 BDEC .S1 100h,A10

Before instruction After branch has been taken

PCE1 0100 0000h

PC XXXX XXXXh PC 0100 0400h

A10 0000 000Ah A10 0000 0009h

BDEC

5-46

Example 2 BDEC .S1 300h,A10 ; 300h is sign extended

Before instruction After branch has been taken

PCE1 0100 0000h

PC XXXX XXXXh PC 00FF FC00h

A10 0000 0010h A10 0000 000Fh

BITC4

5-47 TMS320C64x Fixed-Point Instruction Set

Bit Count, Packed 8-BitBITC4

Syntax BITC4 (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xu4
 u4

.M1, .M2 11110

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The BITC4 instruction performs a bit-count operation on 8-bit quantities. The
value in src2 is treated as packed 8-bit data, and the result is written in packed
8-bit format. For each of the 8-bit quantities in src2, the count of the number
of “1” bits in that value is written to the corresponding position in dst.

31 24 23 16 15 8 7 0

ub_3 ub_2 ub_1 ub_0 src2

bit_count(ub_3) bit_count(ub_2) bit_count(ub_1) bit_count(ub_0) dst

Execution if (cond) {

((bit_count src2(ubyte0)) → ubyte0(dst);

((bit_count src2(ubyte1)) → ubyte1(dst);

((bit_count src2(ubyte2)) → ubyte2(dst);

((bit_count src2(ubyte3)) → ubyte3(dst);

}

else nop

BITC4

5-48

Pipeline ________________________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

Example BITC4 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 XXXX XXXX h A2 05 03 05 02h

BITR

5-49 TMS320C64x Fixed-Point Instruction Set

Bit ReverseBITR

Syntax BITR (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xu4
 u4

.M1, .M2 11111

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The BITR instruction implements a bit-reversal. A bit-reversal function re-
verses the order of bits in a 32-bit word. This means that bit 0 of the source
becomes bit 31 of the result, bit 1 of the source becomes bit 30 of the result,
bit 2 becomes bit 29, and so on.

31 0

abcdefghijklmnopqrstuvwxyzABCDEF src2

31 0

FEDCBAzyxwvutsrqponmlkjihgfedcba dst

Execution if (cond) {

bit_reverse (src2) → dst

}

else nop

BITR

5-50

Pipeline _______________________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

Example BITR .M2 B4,B5

Before instruction 2 cycles after instruction

B4 A6E2 C179h B4 A6E2 C179h

B5 XXXX XXXXh B5 9E83 4765h

BNOP

5-51 TMS320C64x Fixed-Point Instruction Set

Branch Using a Displacement With NOPBNOP

Syntax BNOP (.unit) src2, src1
.unit = .S1, .S2

Opcode map field used... For operand type... Unit

src2
src1

scst12
ucst3

.S1,

.S2

Opcode

31 29 28 27 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z scst12 ucst3 0 0 0 0 1 0 0 1 0 0 0 s p

3 1 12 3 1 10 1 1

Description The constant displacement form of the BNOP instruction performs a relative
branch with NOP instructions. The instruction performs the relative branch us-
ing the 12-bit signed constant specified by src2. The constant is shifted 2 bits
to the left, then added to the address of the first instruction of the fetch packet
that contains the BNOP instruction (PCE1). The result is placed in the program
fetch counter (PFC).

The 3-bit unsigned constant specified in src1 gives the number of delay slot
NOP instructions to be inserted, from 0 to 5. With src1 = 0, no NOP cycles are
inserted.

This instruction helps reduce the number of instructions to perform a branch
when NOP instructions are required to fill the delay slots of a branch.

The following code:

B .S1 LABEL

NOP N

LABEL: ADD

could be replaced by:

BNOP .S1 LABEL, N

LABEL: ADD

Note:

BNOP instructions may be predicated. The predication condition controls
whether or not the branch is taken, but does not affect the insertion of NOPs.
BNOP always inserts the number of NOPs specified by N, regardless of the
predication condition.

BNOP

5-52

Only one branch instruction can be executed per cycle. If two branches are in
the same execute packet, and if both are taken, the behavior is undefined. It
should also be noted that when a predicated BNOP instruction is used with a
NOP count greater than 5, the C64x will insert the full delay slots requested
when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:

ZERO .L1 A0

[A0] BNOP .S1 LABEL,7; branch is not taken and
 ; 7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count
greater than 5 and the predication condition is true, the branch will be taken
and the multi-cycle NOP is terminated when the branch is taken.

For example in the following set of instructions, only 5 cycles of NOP are in-
serted:

MVK .D1 1,A0

[A0] BNOP .S1 LABEL,7; branch is taken and 5 cycles of
 ; NOPs are inserted

Execution if (cond) {

PFC = (PCE1 + (se(scst12) << 2));

nop (src1);

}

else nop(src1 +1)

BNOP

5-53 TMS320C64x Fixed-Point Instruction Set

Pipeline __

 Target Instruction

__

Pipeline

Stage E1 PS PW PR DP DC E1

__

Read src2

Written PC

Branch Taken X

Unit in use .S
__

Instruction Type Branch

Delay Slots 5

See Also ADDKPC , B, NOP

Example BNOP .S1 30h,2

Before instruction After branch has been taken

PCE1 0100 0500h

PC XXXX XXXXh PC 0100 1100h

BNOP

5-54

Branch Using a Register With NOPBNOP

Syntax BNOP (.unit) src2, src1
.unit = .S2

Opcode map field used... For operand type... Unit

src2
src1

xuint
ucst3

.S2

Opcode

31 29 28 27 23 22 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z 0 0 0 0 1 src2 0 0 ucst3 x 0 0 1 1 0 1 1 0 0 0 1 p

3 1 5 5 2 3 1 10 1 1

Description The register form of the BNOP instruction performs an absolute branch with
NOP instructions. The register specified in src2 is placed in the program fetch
counter (PFC).

The 3-bit unsigned constant specified in src1 gives the number of delay slots
NOP instructions to be inserted, from 0 to 5. With src1 = 0, no NOP cycles are
inserted.

This instruction helps reduce the number of instructions to perform a branch
when NOP instructions are required to fill the delay slots of a branch.

The following code:

B .S2 B3

NOP N

could be replaced by:

BNOP .S2 B3, N

Note:

BNOP instructions may be predicated. The predication condition controls
whether or not the branch is taken, but does not affect the insertion of NOPs.
BNOP always inserts the number of NOPs specified by N, regardless of the
predication condition.

Only one branch instruction can be executed per cycle. If two branches are in
the same execute packet, and if both are taken, the behavior is undefined. It

BNOP

5-55 TMS320C64x Fixed-Point Instruction Set

should also be noted that when a predicated BNOP instruction is used with a
NOP count greater than 5, the C64x will insert the full delay slots requested
when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:

 ZERO .L1 A0

[A0] BNOP .S1 B3,7; branch is not taken and

 ; 7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count
greater than 5 and the predication condition is true, the branch will be taken
and multi-cycle NOP is terminated when the branch is taken.

For example, in the following set of instructions only 5 cycles of NOP are in-
serted:

 MVK .D1 1,A0

[A0] BNOP .S1 B3,7; branch is taken and 5 cycles of

 ; NOPs are inserted

Execution if (cond) {

src2 → PFC

nop (src1);

}

else nop (src1 +1)

Pipeline __

 Target Instruction
__

Pipeline

Stage E1 PS PW PR DP DC E1

__

Read src2

Written PC

Branch Taken X

Unit in use .S2
__

BNOP

5-56

Instruction Type Branch

Delay Slots 5

See Also ADDKPC , B, NOP

Example BNOP .S2 A5,2

Before instruction After branch has been taken

PCE1 0010 0000h

PC XXXX XXXXh PC 0100 F000h

A5 0100 F000h A5 0100 F000h

BPOS

5-57 TMS320C64x Fixed-Point Instruction Set

Branch PositiveBPOS

Syntax BPOS (.unit) scst10, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit

src
dst

scst10
int

.S1, .S2

Opcode

31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst scst10 0 0 0 0 0 0 0 1 0 0 0 s p

3 1 5 10 1 10 1 1

Description If the predication register (dst) is positive (greater than or equal to 0), the BPOS
instruction performs a relative branch. If dst is negative, the BPOS instruction
takes no other action.

The instruction performs the relative branch using a 10-bit signed constant
specified by the scst10. The constant is shifted 2 bits to the left, then added
to the address of the first instruction of the fetch packet that contains the BDEC
instruction (PCE1). The result is placed in the program fetch counter (PFC).

Any register can be used which can free the predicate registers (A0–A2 and
B0–B2) for other uses.

Note:

Only one BPOS instruction can be executed per cycle. The BPOS instruction
can be predicated by using any conventional condition register. The condi-
tions are effectively ANDed together. If two branches are in the same execute
packet, and if both are taken, behavior is undefined.

Execution if (cond) {

 if (dst >=0), PFC = (PCE1 + (se(scst10) << 2));

else nop

}

else nop

BPOS

5-58

Pipeline __

 Target Instruction
 __

Pipeline

Stage E1 PS PW PR DP DC E1

__

Read dst

Written PC

Branch Taken X

Unit in use .S
__

Instruction Type Branch

Delay Slots 5

Example BPOS .S1 200h,A10

Before instruction After branch has been taken

PCE1 0010 0000h

PC XXXX XXXXh PC 0100 0800h

A10 0000 000Ah A10 0000 000Ah

CMPEQ2

5-59 TMS320C64x Fixed-Point Instruction Set

Compare if Equal, Packed 16-BitCMPEQ2

Syntax CMPEQ2 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
bv2

.S1, .S2 011101

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The CMPEQ2 instruction performs equality comparisons on packed 16-bit
data. Each 16-bit value in src1 is compared against the corresponding 16-bit
value in src2, returning either a 1 if equal or 0 if not equal. The equality results
are packed into the two least-significant bits of dst. The result for the lower pair
of values is placed in bit 0, and the results for the upper pair of values are
placed in bit 1. The remaining bits of dst are set to 0.

CMPEQ2

5-60

31 16 15 0

a_hi a_lo src1

b_hi b_lo src2

0 =

0

0

31 12

= dst

a_lo = = b_lo

a_hi = = b_hi

Execution if (cond {

if (lsb16(src1) == lsb16(src2), 1 → dst0
else 0 → dst0 ;

if (msb16(src1) == msb16(src2)), 1 → dst1
else 0 → dst1

}

else nop

Pipeline ______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

CMPEQ2

5-61 TMS320C64x Fixed-Point Instruction Set

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPEQ4, CMPGT2, XPND2

Example 1 CMPEQ2 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h A3 1105 6E30h

A4 1105 6980h A4 1105 6980h

A5 XXXX XXXXh A5 0000 0002h

Example 2 CMPEQ2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F23A 3789h B2 F23A 3789h

B8 04B8 3789h B8 04B8 3789h

B15 XXXX XXXXh B15 0000 0001h

Example 3 CMPEQ2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 01B6 2451h B2 01B6 2451h

B8 01B6 2451h B8 01B6 2451h

B15 XXXX XXXXh B15 0000 0003h

CMPEQ4

5-62

Compare if Equal, Packed 8-BitCMPEQ4

Syntax CMPEQ4 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s4
xs4
bv4

.S1, .S2 011100

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The CMPEQ4 instruction performs equality comparisons on packed 8-bit data.
Each 8-bit value in src1 is compared against the corresponding 8-bit value
in src2, returning a 1 if equal or 0 if not equal. The equality comparison results
are packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the least-
significant byte, then working towards the most- significant byte. The compari-
son results for byte 0 are written to bit 0 of the result. Likewise the results for
byte 1 to 3 are written to bits 1 to 3 of the result, respectively, as shown in the
diagram below. The remaining bits of dst are set to 0.

CMPEQ4

5-63 TMS320C64x Fixed-Point Instruction Set

31 24 23 16 15 8 7 0

sa_3 sa_2 sa_1 sa_0 src1

sb_3 sb_2 sb_1 sb_0 src2

0 = = =

0

0

31 1234

= dst

sa_0 = = sb_0

sa_1 = = sb_1

sa_2 = = sb_2

sa_3 = = sb_3

Execution if (cond {

if (sbyte0(src1) == sbyte0(src2)), 1 → dst0
else 0 → dst0 ;

if (sbyte1(src1) == sbyte1(src2)), 1 → dst1
else 0 → dst1

if (sbyte2(src1) == sbyte2(src2)), 1 → dst2
else 0 → dst2

if (sbyte3(src1) == sbyte3(src2)), 1 → dst3
else 0 → dst3

 }

else nop

CMPEQ4

5-64

Pipeline _______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPEQ2, CMPGTU4, XPND4

Example 1 CMPEQ4 .S1 A3,A4, A5

Before instruction 1 cycle after instruction

A3 02 3A 4E 1Ch A3 02 3A 4E 1Ch

A4 02 B8 4E 76h A4 02 B8 4E 76h

A5 XXXX XXXXh A5 0000 000Ah

Example 2 CMPEQ4 .S2 B2,B6,B13

Before instruction 1 cycle after instruction

B2 F2 3A 37 89h B2 F2 3A 37 89h

B8 04 B8 37 89h B8 04 B8 37 89h

B13 XXXX XXXXh B13 0000 0003h

CMPEQ4

5-65 TMS320C64x Fixed-Point Instruction Set

Example 3 CMPEQ4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 01 B6 24 51h B2 01 B6 24 51h

B8 05 B6 24 51h B8 05 B6 24 51h

B13 XXXX XXXXh B13 0000 0007h

CMPGT2

5-66

Compare for Greater Than, Packed 16-Bit CMPGT2

Syntax CMPGT2 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
bv2

.S1, .S2 010100

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The CMPGT2 instruction performs comparisons for greater than values on
signed, packed 16-bit data. Each signed 16-bit value in src1 is compared
against the corresponding signed 16-bit value in src2, returning a 1 if src1 is
greater than src2 or returning a 0 if it is not greater. The comparison results are
packed into the two least-significant bits of dst. The result for the lower pair of
values is placed in bit 0, and the results for the upper pair of values are placed
in bit 1. The remaining bits of dst are set to 0.

CMPGT2

5-67 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

a_hi a_lo src1

b_hi b_lo src2

0 >

0

0

31 12

> dst

a_lo > b_lo

a_hi > b_hi

Execution if (cond) {

if (lsb16(src1) > lsb16(src2), 1 → dst0
else 0 → dst0 ;

if (msb16(src1) > msb16(src2)), 1 → dst1
else 0 → dst1

}

else nop

Pipeline ______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ2, CMPGT, CMPGTU4, XPND2

CMPGT2

5-68

Example 1 CMPGT2 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208

A4 1105 6980h 4357 27008 A4 1105 6980h 4357 22008

A5 XXXX XXXXh A5 0000 0001h

Example 2 CMPGT2 .S2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F23A 3789h –3526 14217 B2 F23A 3789h –3526 14217

B8 04B8 4975h 1208 18805 B8 04B8 4975h 1208 18805

B15 XXXX XXXX h B15 0000 0000h

Example 3 CMPGT2 .S2 B2, B8, B15

Before instruction 1 cycle after instruction

B2 01A6 2451h 422 9297 B2 01A6 2451h 422 9297

B8 0124 A051h 292 –24495 B8 0124 A051h 292 –24495

B15 XXXX XXXXh B15 0000 0003h

CMPGTU4

5-69 TMS320C64x Fixed-Point Instruction Set

Compare for Greater Than, Unsigned Packed 8-BitCMPGTU4

Syntax CMPGTU4 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
bv4

.S1, .S2 010101

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The CMPGTU4 instruction performs comparisons for greater than values on
packed 8-bit data. Each unsigned 8-bit value in src1 is compared against the
corresponding 8-bit unsigned value in src2, returning a 1 if the byte in src1 is
greater than the corresponding byte in src2 or 0 if is not greater. The compari-
son results are packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the least-
significant byte, then working towards the most-significant byte. The compari-
son results for byte 0 are written to bit 0 of the result. Likewise, the results for
byte 1 to 3 are written to bits 1 to 3 of the result, respectively, as shown in the
diagram below. The remaining bits of dst are set to 0.

CMPGTU4

5-70

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 src1

ub_3 ub_2 ub_1 ub_0 src2

0 > > >

0

0

31 1234

> dst

ua_0 > ub_0

ua_1 > ub_1

ua_2 > ub_2

ua_3 > ub_3

Execution if (cond) {

if (ubyte0(src1) > ubyte0(src2)), 1 → dst0
else 0 → dst0;

if (ubyte1(src1) > ubyte1(src2)), 1 → dst1
else 0 → dst1;

if (ubyte2(src1) > ubyte2(src2)), 1 → dst2
else 0 → dst2;

if (ubyte3(src1) > ubyte3(src2)), 1 → dst3
else 0 → dst3;

}

else nop

CMPGTU4

5-71 TMS320C64x Fixed-Point Instruction Set

Pipeline _______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ4, CMPGT, CMPGT2, XPND4

Example 1 CMPGTU4 .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 25 3A 1C E4h 37 58 28 228 A3 25 3A 1C E4h 37 58 28 228

A4 02 B8 4E 76h 2 184 78 118 A4 02 B8 4E 76h 2 184 78 118

A5 XXXX XXXXh A5 0000 0009h

Example 2 CMPGTU4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 89 F2 3A 37h 137 242 58 55 B2 89 F2 3A 37h 137 242 58 55

B8 04 8F 17 89h 4 143 23 137 B8 04 8F 17 89h 4 143 23 137

B13 XXXX XXXXh B13 0000 000Eh

CMPGTU4

5-72

Example 3 CMPGTU4 .S2 B2,B8,B13

Before instruction 1 cycle after instruction

B2 12 33 9D 51h 18 51 157 81 B2 12 33 9D 51h 18 51 157 81

B8 75 67 24 C5h 117 103 36 197 B8 75 67 24 C5h 117 103 36 197

B13 XXXX XXXXh B13 0000 0002h

CMPLT2

5-73 TMS320C64x Fixed-Point Instruction Set

Compare for Less Than, Packed 16-Bit (Pseudo-Operation)CMPLT2

Syntax CMPLT2 (.unit) src2, src1, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
bv2

.S1, .S2 010100

Opcode See CMPGT2 instruction.

Description The CMPLT2 instruction is a pseudo-operation used to perform less-than
comparisons on signed, packed 16-bit data. Each signed 16-bit value in src2
is compared against the corresponding signed 16-bit value in src1, returning
a 1 if src2 is less than src1 or returning a 0 if it is not less than. The comparison
results are packed into the two least-significant bits of dst. The result for the
lower pair of values is placed in bit 0, and the results for the upper pair of values
are placed in bit 1. The remaining bits of dst are set to 0. The assembler uses
the operation CMPGT2 (.unit) src1, src2, dst to perform this task.

Execution if (cond) {

if (lsb16(src2) < lsb16(src1), 1 → dst0
else 0 → dst0;

if (msb16(src2) < msb16(src1)), 1 → dst1
else 0 → dst1

}

else nop

Pipeline _______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

CMPLT2

5-74

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ2, CMPGT2, CMPLTU4, XPND2

Example 1 CMPLT2 .S1 A4,A3,A5; assembler treats as CMPGT2 A3,A4,A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208

A4 1105 6980h 4357 27008 A4 1105 6980h 4357 27008

A5 XXXX XXXXh A5 0000 0001h

Example 2 CMPLT2 .S2 B8,B2,B15; assembler treats as CMPGT2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 F23A 3789h –3526 14217 B2 F23A 3789h –3526 14217

B8 04B8 4975h 1208 18805 B8 04B8 4975h 1208 18805

B15 XXXX XXXXh B15 0000 0000h Both are false

Example 3 CMPLT2 .S2 B8,B2,B12; assembler treats as CMPGT2 B2,B8,B15

Before instruction 1 cycle after instruction

B2 01A6 2451h 422 9297 B2 01A6 2451h 422 9297

B8 0124 A051h 292 –24495 B8 0124 A051h 292 –24495

B12 XXXX XXXXh B12 0000 0003h Both are true

CMPLTU4

5-75 TMS320C64x Fixed-Point Instruction Set

Compare for Less Than, Unsigned Packed 8-Bit (Pseudo-Operation)CMPLTU4

Syntax CMPLTU4 (.unit) src2, src1, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
bv4

.S1, .S2 010101

Opcode See CMPGTU4 instruction.

Description CMPLTU4 is a pseudo-operation that performs less-than comparisons on
packed 8-bit data. Each unsigned 8-bit value in src2 is compared against the
corresponding 8-bit unsigned value in src1, returning a 1 if the byte in src2 is
less than the corresponding byte in src1 or 0 it if is not less than. The compari-
son results are packed into the four least-significant bits of dst.

The 8-bit values in each input are numbered from 0 to 3, starting with the least-
significant byte, and moving towards the most-significant byte. The compari-
son results for byte 0 are written to bit 0 of the result. Similarly, the results for
byte 1 to 3 are written to bits 1 to 3 of the result, respectively, as shown in the
CMPGTU4 instruction diagram. The remaining bits of dst are set to 0.

The assembler uses the operation CMPGTU4 (.unit) src1, src2, dst to perform
this task.

Execution if (cond) {

if (ubyte0(src2) < ubyte0(src1)), 1 → dst0
else 0 → dst0;

if (ubyte1(src2) < ubyte1(src1)), 1 → dst1
else 0 → dst1;

if (ubyte2(src2) < ubyte2(src2)), 1 → dst2
else 0 → dst2;

if (ubyte3(src2) < ubyte3(src1)), 1 → dst3
else 0 → dst3;

}

else nop

CMPLTU4

5-76

Pipeline _______________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ4, CMPGT, CMPLT2, XPND4

Example 1 CMPLTU4 .S1 A4,A3,A5; assembler treats as CMPGTU4 A3,A4,A5

Before instruction 1 cycle after instruction

A3 25 3A 1C E4h 37 58 28 228 A3 02 3A 1C E4h 37 58 28 228

A4 02 B8 4E 76h 2 184 78 118 A4 02 B8 4E 76h 2 184 78 118

A5 XXXX XXXXh A5 0000 0009h

Example 2 CMPLTU4 .S2 B8,B2,B13; assembler treats as CMPGTU4 B2,B8,B13

Before instruction 1 cycle after instruction

B2 89 F2 3A 37h 137 242 58 55 B2 89 F2 3A 37h 137 242 58 55

B8 04 8F 17 89h 4 143 23 137 B8 04 8F 17 89h 4 143 23 137

B13 XX XX XX XXh B13 0000 000Eh

CMPLTU4

5-77 TMS320C64x Fixed-Point Instruction Set

Example 3 CMPLTU4 .S2 B8,B2,B13; assembler treats as CMPGTU4 B2,B8,B13

Before instruction 1 cycle after instruction

B2 12 33 9D 51h 18 51 157 81 B2 12 33 9D 51h 18 51 157 81

B8 75 67 24 C5h 117 103 36 197 B8 75 67 24 C5h 117 103 36 197

B13 XX XX XX XXh B13 0000 0002h

DEAL

5-78

De-Interleave and PackDEAL

Syntax DEAL (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xuint
 uint

.M1, .M2 11101

Opcode

31 29 28 27 23 22 18 17 13 12 11 9 9 8 7 6 5 4 3 2 1 0

creg z dst src2 op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The DEAL instruction performs a de-interleave and pack operation on the bits
in src2. The odd and even bits of src2 are extracted into two separate, 16-bit
quantities. These 16-bit quantities are then packed such that the even bits are
placed in the lower half-word, and the odd bits are placed in the upper half
word.

As a result, bits 0, 2, 4, ... , 28, 30 of src2 are placed in bits 0, 1, 2, ... , 14, 15
of dst. Likewise, bits 1, 3, 5, ... , 29, 31 of src2 are placed in bits 16, 17,
18, ... , 30, 31 of dst.

31 0

aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpP src2

31 0

abcdefghijklmnopABCDEFGHIJKLMNOP dst

Note:

The DEAL instruction is the exact inverse of the SHFL instruction.

DEAL

5-79 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

src231,29,27...1 → dst31,30,29...16 ;

src230,28,26...0 → dst15,14,13...0 ;

}

else nop

Pipeline _______________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHFL

Example DEAL .M1 A1,A2

Before instruction 2 cycles after instruction

A1 9E52 6E30h A1 9E52 6E30h

A2 XXXX XXXXh A2 B174 6CA4h

DOTP2

5-80

Dot Product, Signed Packed 16-BitDOTP2

Syntax DOTP2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
int

.M1, .M2 01100

src1
src2
dst

s2
xs2
sllong

.M1, .M2 01011

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 1 1

Description The DOTP2 instruction returns the dot-product between two pairs of signed,
packed 16-bit values. The values in src1 and src2 are treated as signed,
packed 16-bit quantities. The signed result is written either to a single 32-bit
register, or sign-extended into a 64-bit register pair.

The product of the lower half-words of src1 and src2 is added to the product
of the upper half-words of src1 and src2. The result is then written to the dst.

In the 64-bit result version the upper word of the register pair always contains
either all 0s or all 1s, depending on whether the result is positive or negative,
respectively.

DOTP2

5-81 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

a_hi a_lo src1

DOTP2

b_hi b_lo src2

=
63 32 31 0

0 or F a_hi*b_hi + a_lo*b_lo dst_o:dst_e

The 32-bit result version returns the same results that the 64-bit result version
does in the lower 32 bits. The upper 32-bits are discarded.

31 16 15 0

a_hi a_lo src1

DOTP2

b_hi b_lo src2

=
31 0

a_lo*b_lo + a_hi*b_hi dst

Note:

In the overflow case, where all four half-words in src1 and src2 are 0x8000,
the value 0x80000000 is written into the 32-bit dst and
0x0000000080000000 is written into the 64-bit dst.

DOTP2

5-82

Execution if (cond) {

(lsb16(src1) x lsb16(src2)) +

(msb16(src1) x msb16(src2)) → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPN2

Example 1 DOTP2 .M1 A5,A6,A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h 27186 4499

A6 B174 6CA4h –20108 27812 A6 B174 6CA4h –20108 27812

A8 XXXX XXXXh A8 E6DF F6D4h –421529900

DOTP2

5-83 TMS320C64x Fixed-Point Instruction Set

Example 2 DOTP2 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h 27186 4499

A6 B174 6CA4h –20108 27812 A6 B174 6CA4h –20108 27812

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 FFFF FFFFh E6DF F6D4h

–421529900

Example 3 DOTP2 .M2 B2,B5,B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h 4660 13463

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h 8703 20647

B8 XXXX XXXXh B8 12FC 544Dh 318526541

Example 4 DOTP2 .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h 4660 13463

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h 8703 20647

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 0000 0000h 12FC 544Dh

318526541

DOTPN2

5-84

Dot Product With Negate, Signed Packed 16-BitDOTPN2

Syntax DOTPN2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
int

.M1, .M2 01001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The DOTPN2 instruction returns the dot-product between two pairs of signed,
packed 16-bit values where the second product is negated. The values in src1
and src2 are treated as signed, packed 16-bit quantities. The signed result is
written to a single 32-bit register.

The product of the lower half-words of src1 and src2 is subtracted from the
product of the upper half-words of src1 and src2. The result is then written to
dst.

31 16 15 0

a_hi a_lo src1

DOTPN2

b_hi b_lo src2

�

31 0

a_hi*b_hi – a_lo*b_lo dst

DOTPN2

5-85 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

(msb16(src1) x msb16(src2)) –

(lsb16(src1) x lsb16(src2)) → dst

}

else nop

Note that unlike DOTP2, no overflow case exists for this instruction.

Pipeline ___

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2

Example 1 DOTPN2 .M1 A5,A6,A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah 13865 10058

A6 325C 8036h 12892 –32714 A6 325C 8036h 12892 –32714

.

A8 XXXX XXXXh A8 1E44 2F20h 507784992

DOTPN2

5-86

Example 2 DOTPN2 .M2 B2,B5,B8

Before instruction 4 cycles after instruction

B2 3FF6 5010h 16374 20496 B2 3FF6 5010h 16374 20496

B5 B1C3 0244h –20029 580 B5 B1C3 0244h –20029 580

B8 XXXX XXXXh B8 EBBE 6A22h –339842526

DOTPNRSU2

5-87 TMS320C64x Fixed-Point Instruction Set

Dot Product With Negate, Shift and Round, Signed by Unsigned
Packed 16-Bit

DOTPNRSU2

Syntax DOTPNRSU2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xu2
int

.M1, .M2 00111

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The DOTPNRSU2 instruction returns the dot-product between two pairs of
packed 16-bit values, where the second product is negated. This instructiion
takes the result of the dot-product and performs an additional round and shift
step. The values in src1 are treated as signed, packed 16-bit quantities;
whereas the values in src2 are treated as unsigned, packed 16-bit quantities.
The results are written to dst.

The product of the lower half-words of src1 and src2 is subtracted from the
product of the upper half-words of src1 and src2. The value 215 is then added
to this sum, producing an intermediate 32-bit result. The intermediate result
is signed shifted right by 16, producing a rounded, shifted result that is sign
extended and placed in dst.

DOTPNRSU2

5-88

31 16 15 0

sa_hi sa_lo src1

DOTPNRSU2

31 16 15 0

ub_hi ub_lo src2

=
31 0

(((sa_hi*ub_hi) – (sa_lo*ub_lo)) + 0x8000)>>16 dst

Note:

The intermediate results of DOTPNRSU2 are only maintained to 32-bit preci-
sion, thus overflow may occur during the rounding step.

Execution if (cond) {

int = (smsb16(src1) x umsb16(src2))

– (slsb16(src1) x ulsb16(src2)) + 0x8000;

int >> 16 → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

DOTPNRSU2

5-89 TMS320C64x Fixed-Point Instruction Set

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPRSU2

Example 1 DOTPNRSU2 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah 13865 10058

signed signed

A6 325C 8036h 12892 32822 A6 325C 8036h 12892 32822

unsigned unsigned

A8 XXXX XXXXh A8 FFFF F6FAh –2310

signed

Example 2 DOTPNRSU2 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 3FF6 5010h 16374 20496 B2 3FF6 5010h 16374 20496

signed signed

B5 B1C3 0244h 45507 580 B5 B1C3 0244h 45507 580

unsigned unsigned

B8 XXXX XXXXh B8 0000 2BB4h 11188

signed

DOTPNRUS2

5-90

Dot Product With Negate, Shift and Round, Unsigned by Signed
Packed 16-Bit (Pseudo-Operation)

DOTPNRUS2

Syntax DOTPNRUS2 (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xu2
int

.M1, .M2 00111

Opcode See DOTPNRSU2 instruction.

Description The DOTPNRUS2 pseudo-operation performs the dot-product between two
pairs of packed 16-bit values, where the second product is negated. This in-
struction takes the result of the dot-product and performs an additional round
and shift step. The values in src1 are treated as signed, packed 16-bit quanti-
ties, whereas the values in src2 are treated as unsigned, packed 16-bit quan-
tities. The results are written to dst. The assembler uses the DOTPNRSU2
src1, src2, dst instruction to perform this task.

The product of the lower half-words of src1 and src2 is subtracted from the
product of the upper half-words of src1 and src2. The value 215 is then added
to this sum, producing an intermediate 32-bit result. The intermediate result
is signed shifted right by 16, producing a rounded, shifted result that is sign
extended and placed in dst.

Execution if (cond) {

int = (umsb16(src2) x smsb16(src1))

– (ulsb16(src2) x lsb16(src1)) + 0x8000;

int >> 16 → dst

}

else nop

DOTPNRUS2

5-91 TMS320C64x Fixed-Point Instruction Set

Pipeline ___

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRSU2, DOTPRUS2

DOTPRSU2

5-92

Dot Product With Shift and Round, Signed by Unsigned Packed
16-Bit

DOTPRSU2

Syntax DOTPRSU2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xu2
int

.M1, .M2 01101

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The DOTPRSU2 instruction returns the dot-product between two pairs of
packed 16-bit values. This instruction takes the result of the dot-product and
performs an additional round and shift step. The values in src1 are treated as
signed packed 16-bit quantities, whereas the values in src2 are treated as un-
signed packed 16-bit quantities. The results are written to dst.

The product of the lower half-words of src1 and src2 is added to the product
of the upper half-words of src1 and src2. The value 215 is then added to this
sum, producing an intermediate 32-bit result. The intermediate result is signed
shifted right by 16, producing a rounded, shifted result that is sign extended
and placed in dst.

DOTPRSU2

5-93 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

sa_hi sa_lo src1

DOTPRSU2

31 16 15 0

ub_hi ub_lo src2

=
31 0

(((sa_hi*ub_hi) + (sa_lo*ub_lo)) + 0x8000)>>16 dst

Note:

The intermediate results of DOTPRSU2 are only maintained to 32-bit preci-
tion, and so overflow may occur during the rounding step.

Execution if (cond) {

int = (smsb16(src1) x umsb16(src2)) +

(slsb16(src1) x ulsb16(src2)) + 0x8000;

int >> 16 → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

DOTPRSU2

5-94

See Also DOTP2, DOTPN2, DOTPNRSU2

Example 1 DOTPRSU2 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 3629 274Ah 13865 10058 A5 3629 274Ah 13865 10058

signed signed

A6 325C 8036h 12892 32822 A6 325C 8036h 12892 32822

unsigned unsigned

A8 XXXX XXXXh A8 0000 1E55 7765

signed

Example 2 DOTPRSU2 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 B1C3 0244h –20029 580 B2 B1C3 0244h –20029 580

signed signed

B5 3FF6 5010h 16374 20496 B5 3FF6 5010h 16374 20496

unsigned unsigned

B8 XXXX XXXXh B8 FFFF ED29 –4823

signed

DOTPRUS2

5-95 TMS320C64x Fixed-Point Instruction Set

Dot Product With Shift and Round, Unsigned by Signed Packed
16-Bit (Pseudo-Operation)

DOTPRUS2

Syntax DOTPRUS2 (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xu2
int

.M1, .M2 01101

Opcode See DOTPRSU2 instruction.

Description The DOTPRUS2 pseudo-operation returns the dot-product between two pairs
of packed 16-bit values. This instruction takes the result of the dot-product,
and performs an additional round and shift step. The values in src1 are treated
as signed packed 16-bit quantities, whereas the values in src2 are treated as
unsigned packed 16-bit quantities. The results are written to dst. The assem-
bler uses the DOTPRSU2 src1, src2, dst instruction to perform this task.

The product of the lower half-words of src1 and src2 is added to the product
of the upper half-words of src1 and src2. The value 215 is then added to this
sum, producing an intermediate 32-bit result. The intermediate result is signed
shifted right by 16, producing a rounded, shifted result that is sign extended
and placed in dst.

Execution if (cond) {

int = (umsb16(src2) x smsb16(src1)) + (ulsb16(src2)
x slsb16(src1)) + 0 x 8000;

int >> 16 → dst

}

else nop

DOTPRUS2

5-96

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRUS2, DOTPRSU2

DOTPSU4

5-97 TMS320C64x Fixed-Point Instruction Set

Dot Product, Signed by Unsigned Packed 8-BitDOTPSU4

Syntax DOTPSU4 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield
src1
src2
dst

s4
xu4
int

.M1, .M2 00010

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The DOTPSU4 instruction returns the dot-product between four sets of
packed 8-bit values. The values in src1 are treated as signed packed 8-bit
quantities, whereas the values in src2 are treated as unsigned 8-bit packed
data. The signed result is written into dst.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The four products are
summed together, and the resulting dot product is written as a signed 32-bit
result to dst.

31 24 23 16 15 8 7 0

sa_3 sa_2 sa_1 sa_0 src1

DOTPSU4

ub_3 ub_2 ub_1 ub_0 src2

=

31 0

(sa_3*ub_3) + (sa_2*ub_2) + (sa_1*ub_1) + (sa_0*ub_0) dst

DOTPSU4

5-98

Execution if (cond) {

(sbyte0(src1) x ubyte0(src2)) +

(sbyte1(src1) x ubyte1(src2)) +

(sbyte2(src1) x ubyte2(src2)) +

(sbyte3(src1) x ubyte3(src2)) → dst

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPU4

Example 1 DOTPSU4 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 –109 A5 6A 32 11 93h 106 50 17 –109

signed signed

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h 177 116 108 164

unsigned unsigned

A8 XXXX XXXXh A8 0000 214Ah 8522

signed

DOTPSU4

5-99 TMS320C64x Fixed-Point Instruction Set

Example 2 DOTPSU4 .M2 B2, B5, B8

Before instruction 4 cycles after instruction

B2 3F F6 50 10h 63 -10 80 16 B2 3F F6 50 10h 63 -10 80 16

signed signed

B5 C3 56 02 44h 195 86 2 68 B5 C3 56 02 44h 195 86 2 68

unsigned unsigned

B8 XXXX XXXXh B8 0000 3181h 12673

signed

DOTPUS4

5-100

Dot-Product, Unsigned by Signed Packed 8-Bit (Pseudo-Operation)DOTPUS4

Syntax DOTPUS4 (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s4
xu4
int

.M1, .M2 00010

Opcode See DOTPSU4 instruction.

Description The DOTPUS4 pseudo-operation returns the dot-product between four sets
of packed 8-bit values. The values in src1 are treated as signed packed 8-bit
quantities, whereas the values in src2 are treated as unsigned 8-bit packed
data. The signed result is written into dst. The assembler uses the DOTPSU4
src1, src2, dst instruction to perform this task.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The four products are
summed together, and the resulting dot-product is written as a signed 32-bit
result to dst.

Execution if (cond) {

(ubyte0(src2) x sbyte0(src1)) +

(ubyte1(src2) x sbyte1(src1)) +

(ubyte2(src2) x sbyte2(src1)) +

(ubyte3(src2) x sbyte3(src1)) → dst

 }

else nop

DOTPUS4

5-101 TMS320C64x Fixed-Point Instruction Set

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPU4, DOTPSU4

DOTPU4

5-102

Dot Product, Unsigned Packed 8-BitDOTPU4

Syntax DOTPU4 (.unit) src1, src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
uint

.M1, .M2 00110

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The DOTPU4 instruction returns the dot-product between four sets of packed
8-bit values. The values in both src1 and src2 are treated as unsigned, 8-bit
packed data. The unsigned result is written into dst.

For each pair of 8-bit quantities in src1 and src2, the unsigned 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The four products are
summed together, and the resulting dot-product is written as a 32-bit result to
dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 src1

DOTPU4

ub_3 ub_2 ub_1 ub_0 src2

=
31 0

(ua_3*ub_3) + (ua_2*ub_2) + (ua_1*ub_1) + (ua_0*ub_0) dst

DOTPU4

5-103 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

(ubyte0(src1) x ubyte0(src2)) +

(ubyte1(src1) x ubyte1(src2)) +

(ubyte2(src1) x ubyte2(src2)) +

(ubyte3(src1) x ubyte3(src2)) → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also DOTPSU4

Example DOTPU4 .M1 A5, A6, A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 147 A5 6A 32 11 93h 106 50 17 147

unsigned unsigned

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h 177 116 108 164

unsigned . unsigned

A8 XXXX XXXXh A8 0000 C54Ah 50506

unsigned

GMPY4

5-104

Galois Field Multiply, Packed 8-BitGMPY4

Syntax GMPY4 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.M1, .M2 10001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The GMPY4 instruction performs the Galois field multiply on four values in src1
with four parallel values in src2. The four products are packed into dst. The values
in both src1 and src2 are treated as unsigned, 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the unsigned, 8-bit value from
src1 is Galois field multiplied with the unsigned, 8-bit value from src2. The
product of src1 byte 0 and src2 byte 0 is written to byte0 of dst. The product
of src1 byte 1 and src2 byte 1 is written to byte1 of dst. The product of src1
byte 2 and src2 byte 2 is written to byte2 of dst. The product of src1 byte 3 and
src2 byte 3 is written to the most significant byte in dst.

GMPY4

5-105 TMS320C64x Fixed-Point Instruction Set

31 24 23 16 15 8 7 0

3 2 1 0 1ua_3 ua_2 ua_1 ua_0 src1

GMPY4GMPY4

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ua_3 gmpy ub_3 ua_2 gmpy ub_2 ua_1 gmpy ub_1 ua_0 gmpy ub_0 dst

Note: gmpy represents the Galois Field Operation

The size and polynomial are controlled by the Galois Field Polynomial Generator
Function Register in the control register file. All registers in the control register file
can be written using the MVC instruction.

The default field generator polynomial is 0x1D, and the default size is 7. This
setting is used for many communications standards.

Note that the GMPY4 instruction is commutative, so:

GMPY4 .M1 A10,A12,A13

** is equivalent to **

GMPY4 .M1 A12,A10,A13

Execution if (cond) {

(ubyte0(src1) gmpy ubyte0(src2)) → ubyte0(dst)

(ubyte1(src1) gmpy ubyte1(src2)) → ubyte1(dst)

(ubyte2(src1) gmpy ubyte2(src2)) → ubyte2(dst)

(ubyte3(src1) gmpy ubyte3(src2)) → ubyte3(dst)

}

else nop

GMPY4

5-106

Pipeline ___

Pipeline

Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in use .M

Instruction Type Four-cycle

Delay Slots 3

See Also MVC, XOR

Example 1 GMPY4 .M1 A5,A6,A7; polynomial = 0x11d

Before instruction 4 cycles after instruction

A5 45 23 00 01h 69 35 0 1 A5 45 23 00 01h 69 35 0 1

unsigned unsigned

A6 57 34 00 01h 87 52 0 1 A6 57 34 00 01h 87 52 0 1

unsigned . unsigned

A7 XXXX XXXXh A7 72 92 00 01h 114 146 0 1

unsigned

Example 2 GMPY4 .M1 A5,A6,A7; field size is 256

Before instruction 4 cycles after instruction

A5 FF FE 02 1Fh 255 254 2 31 A5 FF FE 02 1Fh 255 254 2 31

unsigned unsigned

A6 FF FE 02 01h 255 254 2 1 A6 FF FE 02 01h 255 254 2 1

unsigned . unsigned

A7 XXXX XXXXh XXXX XXXXh A7 E2 E3 04 1Fh 226 227 4 31

unsigned

LDDW

5-107 TMS320C64x Fixed-Point Instruction Set

Load Doubleword From Memory With an Unsigned Constant
Offset or Register Offset

LDDW

Syntax LDDW (.unit) *+baseR[offsetR/ucst5], dst
.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode r y ld/st 1 0 s p

3 1 4 5 5 4 1 1 3 2 1 1

Description The LDDW instruction loads a 64-bit quantity from memory into a register pair
dst_o:dst_e. Table 5–8 describes the addressing generator options. The
memory address is formed from a base address register (baseR) and an op-
tional offset that is either a register (offsetR) or a 5-bit unsigned constant
(ucst5).

Both offsetR and baseR must be in the same register file and on the same side
as the .D unit used. The y bit in the opcode determines the .D unit and the regis-
ter file used: y = 0 selects the .D1 unit and the baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file. The s bit determines the register file into which the dst is loaded:
s = 0 indicates that dst is in the A register file, and s = 1 indicates that dst is
in the B register file. The r bit has a value of 1 for the LDDW instruction and
a value of 0 for all other load and store instructions. The dst field must always
be an even value because LDDW loads register pairs. Therefore, bit 23 is al-
ways zero. Furthermore, the value of the ld/st field is110.

The bracketed offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent
doublewords. After scaling, offsetR/ucst5 is added to or subtracted from bas-
eR. For the preincrement, predecrement, positive offset, and negative offset
address generator options, the result of the calculation is the address to be ac-
cessed in memory. For postincrement or postdecrement addressing, the
shifted value of baseR before the addition or subtraction is the address to be
accessed in memory.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register, bracketed constant, or constant enclosed in parentheses
is specified. Square brackets, [], indicate that ucst5 is left shifted by 3. Paren-
theses, (), indicate that ucst5 is not left shifted. In other words, parentheses
indicate a byte offset rather than a doubleword offset. You must type either
brackets or parathesis around the specified offset if you use the optional offset
parameter.

LDDW

5-108

The addressing arithmetic that performs the additions and subtractions de-
faults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR.

The destination register pair must consist of a consecutive even and odd regis-
ter pair from the same register file. The instruction can be used to load a
double-precision floating-point value (64 bits), a pair of single-precision float-
ing-point words (32 bits), or a pair of 32-bit integers. The least significant
32 bits are loaded into the even-numbered register and the most significant
32 bits (containing the sign bit and exponent) are loaded into the next register
(which is always odd-numbered register). The register pair syntax places the
odd register first, followed by a colon, then the even register (that is, A1:A0,
B1:B0, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-
endian byte order, depending on the mode selected. When LDDW is used to
load two 32-bit single-precision floating-point values or two 32-bit integer val-
ues, the order is dependent on the endian mode used. In little-endian mode,
the first 32-bit word in memory is loaded into the even register. In big-endian
mode, the first 32-bit word in memory is loaded into the odd register. Regard-
less of the endian mode, the double word address must be on a doubleword
boundary (the three LSBs are zero).

Table 5–8 summarizes the address generation options supported.

Table 5–8. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Execution if (cond) mem → dst
else nop

LDDW

5-109 TMS320C64x Fixed-Point Instruction Set

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4

Functional Unit
Latency

1

Example 1 LDDW .D2 *+B10[1],A1:A0

Before instruction 5 cycles after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 4021 3333h 3333 3333h

B10 0000 0010h 16 B10 0000 0010h 16

mem 0x18 3333 3333h 4021 3333h 8.6 mem 0x18 3333 3333h 4021 3333h

Little-endian mode

Example 2 LDDW .D1 *++A10[1],A1:A0

Before instruction 1 cycle after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 XXXX XXXXh XXXX XXXXh

A10 0000 0010h 16 A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h 8.6 mem 0x18 4021 3333h 3333 3333h

5 cycles after instruction

A1:A0 4021 3333h 3333 3333h

A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h

Big-endian mode

Pipeline

LDNDW

5-110

Load Non-Aligned Double Word LDNDW

Syntax LDNDW (.unit) *mem, dst
.unit = .D1, .D2

Opcode map field used... For operand type... Unit Opfield

baseR
offset
dst

uint
uint
ullong

.D1, .D2

baseR
offset
dst

uint
ucst5
ullong

.D1 .D2

Opcode

31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst sc baseR offset mode r y ld/st 0 1 s p

3 1 4 1 5 5 4 1 1 3 2 1 1

Description The LDNDW instruction loads a 64-bit quantity from memory into a register pair,
dst_o:dst_e. The table below describes the addressing generator options. The
LDNDW instruction may read a 64-bit value from any byte boundary. Thus align-
ment to a 64-bit boundary is not required. The memory effective address is
formed from a base address register (baseR) and an optional offset that is either
a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same
side, as the .D unit used. The y bit in the opcode determines the .D unit and
register file used: y = 0 selects the .D1 unit and baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file.

The LDNDW instruction supports both scaled offsets and non-scaled offsets.
The sc field is used to indicate whether the offsetR/ucst5 is scaled or not. If sc
is 1 (scaled), the offsetR/ucst5 is shifted left 3 bits before adding or subtracting
from the baseR. If sc is 0 (non-scaled), the offsetR/ucst5 is not shifted before
adding or subtracting from the baseR. For the pre-increment, pre-decrement,
positive offset, and negative offset address generator options, the result of the cal-
culation is the address to be accessed in memory. For post-increment or post-
decrement addressing, the value of baseR before the addition or subtraction is
the address to be accessed from memory.

The addressing arithmetic that performs the additions and subtractions defaults
to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed
to circular mode by writing the appropriate value to the AMR.

LDNDW

5-111 TMS320C64x Fixed-Point Instruction Set

The dst field of the instruction selects a register pair, a consecutive even-num-
bered and odd-numbered register pair from the same register file. The instruc-
tion can be used to load a pair of 32-bit integers. The least significant 32 bits
are loaded into the even-numbered register and the most significant 32 bits
are loaded into the next register (which is always an odd-numbered register).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file dst will be loaded into: s = 0 indicates dst
will be in the A register file and s = 1 indicates dst will be loaded in the B register
file.

Table 5–9. LDNDW Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Note:

No other memory access may be issued in parallel with a non-aligned
memory access. The other .D unit can be used in parallel as long as it is not
performing a memory access.

LDNDW

5-112

Assembler Notes When no bracketed register or constant is specified, the assembler defaults
increments and decrements to 1 and offsets to 0. Loads that do no modification
to the baseR can use the assembler syntax *R. Square brackets, [], indicate
that the ucst5 offset is left-shifted by 3 for double word loads.

Parentheses, (), can be used to tell the assembler that the offset is a non-
scaled offset.

For example, LDNDW (.unit) *+baseR (14) dst represents an offset of 14 bytes,
and the assembler writes out the instruction with offsetC = 14 and sc = 0.

LDNDW (.unit) *+baseR [16] dst represents an offset of 16 double words, or
128 bytes, and the assembler writes out the instruction with offsetC = 16 and
sc = 1.

Either brackets or parentheses must be typed around the specified offset if the
optional offset parameter is used.

Execution if (cond) {

mem → dst

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4 E5

__

Read baseR,

 offsetR

Written baseR dst

Unit in use .D

__

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement

See Also LDNW, STNDW, STNW

LDNDW

5-113 TMS320C64x Fixed-Point Instruction Set

Example 1 LDNDW .D1 *A0++, A3:A2

Before instruction 1 cycle after instruction 5 cycles after instruction

A0 0000 1001h A0 0000 1009h A0 0000 1009h

A3:A2 XXXX XXXXh XXXh A3:A2 XXXX XXXXh XXXX XXXh A3:A2 5E1C 4F29h A812 B6C5h

little
endian

Byte Memory Address 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4

Example 2 LDNDW .D1 *A0++, A3:A2

Before instruction 1 cycle after instruction 5 cycles after instruction

A0 0000 1003h A0 0000 100Bh A0 0000 100Bh

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 6934 5E1Ch 4F29 A812h

little
endian

Byte Memory Address 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4

LDNW

5-114

Load Non-Aligned WordLDNW

Syntax LDNW (.unit) *mem, dst
.unit = .D1, .D2

Opcode map field used... For operand type... Unit Opfield

baseR
offset
dst

uint
uint
int

.D1, .D2

baseR
offset
dst

uint
ucst5
int

.D1 .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offset mode r y 0 1 1 0 1 s p

3 1 5 5 5 4 1 1 3 2 1 1

Description The LDNW instruction loads a 32-bit quantity from memory into a 32-bit regis-
ter, dst. The table below describes the addressing generator options. The
LDNW instruction may read a 32-bit value from any byte boundary. Thus align-
ment to a 32-bit boundary is not required. The memory effective address is
formed from a base address register (baseR), and an optional offset that is ei-
ther a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not
given, the assembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same
side, as the .D unit used. The y bit in the opcode determines the .D unit and
register file used: y = 0 selects the .D1 unit and baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5
is added to, or subtracted from, baseR. For the pre-increment, pre-decrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For post-increment or
post-decrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed from memory.

The addressing arithmetic that performs the additions and subtractions defaults
to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed
to circular mode by writing the appropriate value to the AMR.

LDNW

5-115 TMS320C64x Fixed-Point Instruction Set

The dst can be in either register file, regardless of the .D unit or baseR or off-
setR used. The s bit determines which file dst will be loaded into: s = 0 indicates
dst will be in the A register file and s = 1 indicates dst will be loaded in the B reg-
ister file. r is always zero.

Table 5–10. LDNW Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Note:

No other memory access may be issued in parallel with a non-aligned
memory access. The other .D unit can be used in parallel, as long as it is not
doing a memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults
increments and decrements to 1 and offsets to 0. Loads that do no modification
to the baseR can use the assembler syntax *R. Square brackets, [], indicate
that the ucst5 offset is left-shifted by 2 for word loads.

Parentheses, (), can be used to tell the assembler that the offset is a non-
scaled, constant offset. The assember right shifts the constant by 2 bits for
word loads before using it for the ucst5 field. After scaling by the LDNW instruc-
tion, this results in the same constant offset as the assembler source if the least
significant two bits are zeros.

LDNW

5-116

For example, LDNW (.unit) *+baseR (12) dst represents an offset of 12 bytes
(3 words), and the assembler writes out the instruction with ucst5 = 3.

LDNW (.unit) *+baseR [12] dst represents an offset of 12 words, or 48 bytes,
and the assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the
optional offset parameter is used.

Execution if (cond) {

mem → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4 E5

__

Read baseR,

 offsetR

Written baseR dst

Unit in use .D

__

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement

See Also LDNDW, STNDW, STNW

LDNW

5-117 TMS320C64x Fixed-Point Instruction Set

Example 1 LDNW .D1 *A0++, A2

Before instruction 1 cycle after instruction 5 cycles after instruction

A0 0000 1001h A0 0000 1005h A0 0000 1005h

A2 XXXX XXXXh A2 XXXX XXXXh A2 A812 B6C5h Little

endian

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 1C 4F 29 A8 12 B6 C5 D4

Example 2 LDNW .D1 *A0++, A2

Before instruction 1 cycle after instruction 5 cycles after instruction

A0 0000 1003h A0 0000 1007h A0 0000 1007h

A2 XXXX XXXXh A2 XXXX XXXXh A2 4F29 A812h Little

endian

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value 1C 4F 29 A8 12 B6 C5 D4

MAX2

5-118

Maximum, Signed Packed 16-BitMAX2

Syntax MAX2 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
s2

.L1, .L2 1000010

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The MAX2 instruction performs a maximum operation on packed signed 16-bit
values. For each pair of signed 16-bit values in src1 and src2, MAX2 places
the larger value in the corresponding position in dst.

31 16 15 0

a_hi a_lo src1

MAX2MAX2

b_hi b_lo src2

31 16 15 0

(a_hi > b_hi)? a_hi : b_hi (a_lo > b_lo)? a_lo : b_lo dst

MAX2

5-119 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

if (lsb16(src1) >= lsb16(src2), lsb16(src1) → lsb16(dst)

else lsb16(src2) → lsb16(dst);

if (msb16(src1) >= msb16(src2)), msb16(src1) → msb16(dst)

else msb16(src2) → msb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAXU4, MIN2, MINU4

Example 1 MAX2 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 –3526 A2 3789 F23Ah 14217 –3526

A8 04B8 4975h 1208 18805 A8 04B8 4975h 1208 18805

A9 XXXX XXXXh A9 3789 4975h 14217 18805

MAX2

5-120

Example 2 MAX2 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 2451h 292 9297 A2 0124 2451h 292 9297

B8 01A6 A051h 422 –24495 B8 01A6 A051h 422 –24495

B12 XXXX XXXXh B12 01A6 2451h 422 9297

MAXU4

5-121 TMS320C64x Fixed-Point Instruction Set

Maximum, Unsigned Packed 8-BitMAXU4

Syntax MAXU4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.L1, .L2 1000011

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The MAXU4 instruction performs a maximum operation on packed, unsigned
8-bit values. For each pair of unsigned 8-bit values in src1 and src2, MAXU4
places the larger value in the corresponding position in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 src1

MAXU4MAXU4

ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ua_3>ub_3?ua_3 :ub_3 ua_2>ub_2?ua_2 :ub_2 ua_1>ub_1?ua_1 :ub_1 ua_0>ub_0?ua_0 :ub_0

dst

MAXU4

5-122

Execution if (cond) {

if (ubyte0(src1) >= ubyte0(src2), ubyte0(src1) → ubyte0(dst)

else ubyte0(src2) → ubyte0(dst);

if (ubyte1(src1) >= ubyte1(src2)), ubyte1(src1) → ubyte1(dst)

else ubyte1(src2) → ubyte1(dst);

if (ubyte2(src1) >= ubyte2(src2)), ubyte2(src1) → ubyte2(dst)

else ubyte2(src2) → ubyte2(dst);

if (ubyte3(src1) >= ubyte3(src2)), ubyte3(src1) → ubyte3(dst)

else ubyte3(src2) → ubyte3(dst);

 }

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MIN2, MINU4

Example 1 MAXU4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah 55 137 242 58 A2 37 89 F2 3Ah 55 137 242 58

unsigned unsigned

A8 04 B8 49 75h 4 184 73 117 A8 04 B8 49 75h 4 184 73 117

unsigned unsigned

A9 XXXX XXXXh A9 37 B8 F2 75h 55 184 242 117

unsigned

MAXU4

5-123 TMS320C64x Fixed-Point Instruction Set

Example 2 MAXU4 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 01 24 24 B9h 1 36 36 185 A2 01 24 24 B9h 1 36 36 185

unsigned unsigned

B8 01 A6 A0 51h 1 166 160 81 B8 01 A6 A0 51h 1 166 160 81

unsigned unsigned

B12 XXXX XXXXh B12 01 A6 A0 B9h 1 166 160 185

unsigned

MIN2

5-124

Minimum, Signed Packed 16-BitMIN2

Syntax MIN2 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

s2
xs2
s2

.L1, .L2 1000001

Opcode

31 29 28 27 23 22 21 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The MIN2 instruction performs a minimum operation on packed, signed 16-bit
values. For each pair of signed 16-bit values in src1 and src2, MAX2 places
the smaller value in the corresponding position in dst.

31 16 15 0

a_hi a_lo src1

MIN2MIN2

b_hi b_lo src2

31 16 15 0

(a_hi < b_hi)? a_hi : b_hi (a_lo < b_lo)? a_lo : b_lo dst

MIN2

5-125 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

if (lsb16(src1) <= lsb16(src2), lsb16(src1) → lsb16(dst)

else lsb16(src2) → lsb16(dst);

if (msb16(src1) <= msb16(src2)), msb16(src1) → msb16(dst)

else msb16(src2)→ msb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MAXU4, MINU4

Example 1 MIN2 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 –3526 A2 3789 F23Ah 14217 –3526

A8 04B8 4975h 1208 18805 A8 04B8 4975h 1208 18805

A9 XXXX XXXX h A9 04B8 F23Ah 1208 –3526

MIN2

5-126

Example 2 MIN2 .L2X A2, B8, B12

Before instruction 1 cycle after instruction

A2 0124 8003h 292 –32765 A2 0124 8003h 292 –32765

B8 0A37 8001h 2615 –32767 B8 0A37 8001h 2615 –32767

B12 XXXX XXXX h B12 0124 8001h 292 –32767

MINU4

5-127 TMS320C64x Fixed-Point Instruction Set

Minimum, Unsigned Packed 8-BitMINU4

Syntax MINU4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.L1, .L2 1001000

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The MINU4 instruction performs a minimum operation on packed, unsigned
8-bit values. For each pair of unsigned 8-bit values in src1 and src2, MAXU4
places the smaller value in the corresponding position in dst.

31 24 23 16 15 8 7 0

ua_3 ua_2 ua_1 ua_0 src1

MINU4MINU4

ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ua_3<ub_3?ua_3 :ub_3 ua_2<ub_2?ua_2 :ub_2 ua_1<ub_1?ua_1 :ub_1 ua_0<ub_0?ua_0 :ub_0

dst

MINU4

5-128

Execution if (cond) {

if (ubyte0(src1) <= ubyte0(src2), ubyte0(src1) → ubyte0(dst)

else ubyte0(src2) → ubyte0(dst);

if (ubyte1(src1) <= ubyte1(src2)), ubyte1(src1) → ubyte1(dst)

else ubyte1(src2) → ubyte1(dst);

if (ubyte2(src1) <= ubyte2(src2)), ubyte2(src1) → ubyte2(dst)

else ubyte2(src2) → ubyte2(dst);

if (ubyte3(src1) <= ubyte3(src2)), ubyte3(src1) → ubyte3(dst)

else ubyte3(src2) → ubyte3(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also MAX2, MAXU4, MIN2

Example 1 MINU4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah 55 137 242 58 A2 37 89 F2 3Ah 55 137 242 58

unsigned unsigned

A8 04 B8 49 75h 4 184 73 117 A8 04 B8 49 75h 4 184 73 117

unsigned unsigned

A9 XXXX XXXXh A9 04 89 49 3Ah 4 137 73 58

unsigned

MINU4

5-129 TMS320C64x Fixed-Point Instruction Set

Example 2 MINU4 .L2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 01 24 24 B9h 1 36 36 185 B2 01 24 24 B9h 1 36 36 185

unsigned unsigned

B8 01 A6 A0 51h 1 166 160 81 B8 01 A6 A0 51h 1 166 160 81

unsigned unsigned

B12 XXXX XXXXh B12 01 24 24 51h 1 36 36 81

unsigned

MPY2

5-130

Multiply Signed by Signed, Packed 16-BitMPY2

Syntax MPY2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
ullong

.M1, .M2 00000

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPY2 instruction performs two 16-bit by 16-bit multiplications between
two pairs of signed, packed 16-bit values. The values in src1 and src2 are
treated as signed, packed 16-bit quantities. The 32-bit results are written into
a 64-bit register pair.

The product of the lower half-words of src1 and src2 is written to the even des-
tination register, dst_e. The product of the upper half-words of src1 and src2
is written to the odd destination register, dst_o.

31 16 15 0

a_hi a_lo src1

MPY2

b_hi b_lo src2

=
63 32 31 0

a_hi*b_hi a_lo*b_lo dst_o:dst_e

This instruction helps reduce the number of instructions required to perform two
16-bit by 16-bit multiplies on both the lower and upper halves of two registers.

MPY2

5-131 TMS320C64x Fixed-Point Instruction Set

The following code:

 MPY .M1 A0, A1, A2

 MPYH .M1 A0, A1, A3

may be replaced by:

 MPY2 .M1 A0, A1, A3:A2

Execution if (cond) {

(lsb16(src1) x lsb16(src2)) → dst_e

(msb16(src1) x msb16(src2)) → dst_o

 }

else nop

Pipeline ______________________________________

Pipeline

Stage E1 E2 E3 E4

Read src1, src2

Written dst

Unit in us e .M

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4

Example 1 MPY2 .M1 A5,A6, A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h 27186 4499

A6 B174 6CA4h –20108 27812 A6 B174 6CA4h –20108 27812

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 DF6A B0A8h 0775 462h

–546,656,088 125,126,188

MPY2

5-132

Example 2 MPY2 .M2 B2, B5, B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h 4660 13463

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h 8703 20647

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 026A D5CCh 1091 7E81h

40,555,980 277,970,561

MPYHI

5-133 TMS320C64x Fixed-Point Instruction Set

Multiply 16 MSB x 32-Bit Into 64-Bit ResultMPYHI

Syntax MPYHI (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
sllong

.M1, .M2 10100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYHI instruction performs a 16-bit by 32-bit multiply. The upper half of
src1 is used as a 16-bit signed input. The value in src2 is treated as a 32-bit
signed value. The result is written into the lower 48 bits of a 64-bit register pair,
dst_o:dst_e, and sign extended to 64 bits.

Execution if (cond) {

((msb16 (src1)) x src2) → dst_o:dst_e

}

else nop

MPYHI

5-134

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYLI

Example 1 MPYHI .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 A5 6A32 1193h 27186

A6 B174 6CA4h –1,317,770,076 A6 B174 6CA4h –1,317,770,076

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 FFFF DF6Ah DDB9 2008h

 –358,248,997,286,136

MPYHI

5-135 TMS320C64x Fixed-Point Instruction Set

Example 2 MPYHI .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 B2 1234 3497h 4660

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h 570,380,455

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 0000 026Ah DB88 1FECh

 2,657,972,920,300

MPYHIR

5-136

Multiply 16 MSB x 32-Bit, Shifted by 15 to Produce a Rounded
32-Bit Result

MPYHIR

Syntax MPYHIR (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
int

.M1, .M2 10000

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYHIR instruction performs a 16-bit by 32-bit multiply. The upper half
of src1 is treated as a 16-bit signed input. The value in src2 is treated as a 32-bit
signed value. The product is then rounded to a 32-bit result by adding the val-
ue 214 and then this sum is right shifted by 15. The lower 32 bits of the result
are written into dst.

31 16 15 0

a_hi a_lo src1

MPYHIRMPYHIR

b_hi b_lo src2

=
31 0

((a_hi x b_hi:b_lo) + 0x4000) >> 15
dst

Execution if (cond) {

lsb32(((msb16(src1) x (src2)) + 0x4000)>>15) → dst

}

else nop

MPYHIR

5-137 TMS320C64x Fixed-Point Instruction Set

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYLIR

Example MPYHIR .M2 B2,B5,B9

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 B2 1234 3497h 4660

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h 570,380,455

B9 XXXX XXXXh B9 04D5 B710h 81,114,896

MPYIH

5-138

Multiply 32 x High 16-Bit Into 64-Bit Result (Pseudo-Operation)MPYIH

Syntax MPYIH (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
sllong

.M1, .M2 10100

Opcode See MPYHI instruction.

Description The MPYIH pseudo-operation performs a 16-bit by 32-bit multiply. The upper
half of src1 is used as a 16-bit signed input. The value in src2 is treated as a
32-bit signed value. The result is written into the lower 48 bits of a 64-bit register
pair, dst_o:dst_e, and sign extended to 64 bits. The assembler uses the MPYHI
src1, src2, dst instruction to perform this task.

Execution if (cond) {

(src2 x msb16 (src1)) → dst_o:dst_e

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHI, MPYIL

MPYIHR

5-139 TMS320C64x Fixed-Point Instruction Set

Multiply 32-Bit X High 16-bit, Shifted by 15 to Produce a Rounded
32-Bit Result (Pseudo-Operation)

MPYIHR

Syntax MPYIHR (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
int

.M1, .M2 10000

Opcode See MPYHIR instruction.

Description The MPYIHR pseudo-operation performs a 16-bit by 32-bit multiply. The upper
half of src1 is treated as a 16-bit signed input. The value in src2 is treated as
a 32-bit signed value. The product is then rounded to a 32-bit result by adding
the value 214 and then this sum is right shifted by 15. The lower 32 bits of the
result are written into dst. The assembler uses the MPYHIR src1, src2, dst in-
struction to perform this operation.

Execution if (cond) {

lsb32((((src2) x msb16(src1)) + 0x4000) >> 15) → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHIR, MPYILR

MPYIL

5-140

Multiply 32 x Low 16-Bit Into 64-Bit Result (Pseudo-Operation)MPYIL

Syntax MPYIL (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
sllong

.M1, .M2 10101

Opcode See MPYLI instruction.

Description The MPYIL pseudo-operation performs a 16-bit by 32-bit multiply. The lower
half of src1 is used as a 16-bit signed input. The value in src2 is treated as a
32-bit signed value. The result is written into the lower 48 bits of a 64-bit regis-
ter pair, dst_o:dst_e, and sign extended to 64 bits. The assembler uses the
MPYLI src1, src2, dst instruction to perform this operation.

Execution if (cond) {

((src2) x lsb16(src1)) → dst_o:dst_e

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYIH, MPYLI

MPYILR

5-141 TMS320C64x Fixed-Point Instruction Set

Multiply 32-Bit x Low 16, Shifted by 15 to Produce a Rounded
32-Bit Result (Pseudo-Operation)

MPYILR

Syntax MPYILR (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
int

.M1, .M2 01110

Opcode See MPYLIR instruction.

Description The MPYILR pseudo-operation performs a 16-bit by 32-bit multiply. The lower
half of src1 is used as a 16-bit signed input. The value in src2 is treated as a
32-bit signed value. The product is then rounded to a 32-bit result by adding
the value 214 and then this sum is right shifted by 15. The lower 32 bits of the
result are written into dst. The assembler uses a MPYLIR src1, src2, dst in-
struction to perform this operation.

Execution if (cond) {

lsb32((((src2) x lsb16(src1)) + 0x4000) >> 15) → dst

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYIHR, MPYLIR

MPYLI

5-142

Multiply 16 LSB x 32-Bit Into 64-Bit ResultMPYLI

Syntax MPYLI (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
sllong

.M1, .M2 10101

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYLI instruction performs a 16-bit by 32-bit multiply. The lower half of
src1 is used as a 16 bit signed input. The value in src2 is treated as a 32-bit
signed value. The result is written into the lower 48 bits of a 64-bit register pair,
dst_o:dst_e, and sign extended to 64 bits.

Execution if (cond) {

(lsb16(src1) x (src2)) → dst_o : dst_e

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

MPYLI

5-143 TMS320C64x Fixed-Point Instruction Set

See Also MPYHI

Example 1 MPYLI .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 4499 A5 6A32 1193h 4499

A6 B174 6CA4h –1,317,770,076 A6 B174 6CA4h –1,317,770,076

.

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 FFFF FA9Bh A111 462Ch

 –5,928,647,571,924

Example 2 MPYLI .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 13463 B2 1234 3497h 13463

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h 570,380,455

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 0000 06FBh E9FA 7E81

 7,679,032,065,665

MPYLIR

5-144

Multiply 16 LSB x 32-Bit, Shifted by 15 to Produce a Rounded
32-Bit Result

MPYLIR

Syntax MPYLIR (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

int
xint
int

.M1, .M2 01110

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYLIR instruction performs a 16-bit by 32-bit multiply. The lower half of
src1 is treated as a 16-bit signed input. The value in src2 is treated as a 32-bit
signed value. The product is then rounded into a 32-bit result by adding the
value 214 and then this sum is right shifted by 15. The lower 32 bits of the result
are written into dst.

31 16 15 0

a_hi a_lo src1

MPYLIRMPYLIR

b_hi b_lo src2

=
31 0

((a_lo * b_hi:b_lo) + 0x4000)) >> 15) dst

Execution if (cond) {

lsb32(((lsb16(src1) x (src2)) + 0x4000) >> 15) → dst

}

else nop

MPYLIR

5-145 TMS320C64x Fixed-Point Instruction Set

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYHIR

Example MPYLIR .M2 B2,B5,B9

Before instruction 4 cycles after instruction

B2 1234 3497h 13463 B2 1234 3497h 13463

B5 21FF 50A7h 570,380,455 B5 21FF 50A7h 570,380,455

B9 XXXX XXXXh B9 0DF7 D3F5h 234,345,461

MPYSU4

5-146

Multiply Signed by Unsigned Packed, 8-BitMPYSU4

Syntax MPYSU4 (.unit) src1,src2, dst

.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

s4
xu4
dws4

.M1, .M2 00101

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYSU4 instruction returns the product between four sets of packed 8-bit
values producing four signed 16-bit results. The four signed 16-bit results are
packed into a 64-bit register pair, dst_o:dst_e. The values in src1 are treated
as signed packed 8-bit quantities, whereas the values in src2 are treated as
unsigned 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The product of src1
byte 0 and src2 byte 0 is written to the lower half of dst_e. The product of src1
byte 1 and src2 byte 1 is written to the upper half of dst_e. The product of src1
byte 2 and src2 byte 2 is written to the lower half of dst_o. The product of src1
byte 3 and src2 byte 3 is written to the upper half of dst_o.

31 24 23 16 15 8 7 0

3 2 1 0 1sa_3 sa_2 sa_1 sa_0 src1

MPYSU4MPYSU4

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

=
63 48 47 32 31 16 15 0

sa_3*ub_3 sa_2*ub_2 sa_1*ub_1 sa_0*ub_0 dst_o:dst_e

MPYSU4

5-147 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

 (sbyte0(src1) x ubyte0(src2)) → lsb16(dst_e)

(sbyte1(src1) x ubyte1(src2)) → msb16(dst_e)

(sbyte2(src1) x ubyte2(src2)) → lsb16(dst_o)

(sbyte3(src1) x ubyte3(src2)) → msb16(dst_o)

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYU4

Example 1 MPYSU4 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A 32 11 93h 106 50 17 –109 A5 6A 32 11 93h 106 50 17 –109

signed signed

A6 B1 74 6C A4h 177 116 108 164 A6 B1 74 6C A4h 177 116 108 164

unsigned . unsigned

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 49A4 16A8h 072C BA2Ch

18762 5800 1386 –17876

signed

MPYSU4

5-148

Example 2 MPYSU4 .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

A5 3F F6 50 10h 63 -10 80 16 A5 3F F6 50 10h 63 -10 80 16

signed signed

A6 C3 56 02 44h 195 86 2 68 A6 C3 56 02 44h 195 86 2 68

unsigned . unsigned

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 2FFD FCA4h 00A0 0440h

12285 –680 160 1088

signed

MPYUS4

5-149 TMS320C64x Fixed-Point Instruction Set

Multiply Unsigned by Signed Packed, 8-Bit (Pseudo-Operation)MPYUS4

Syntax MPYUS4 (.unit) src2, src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

s4
xu4
dws4

.M1, .M2 00101

Opcode See MPYSU4 instruction.

Description The MPYUS4 pseudo-operation returns the product between four sets of
packed 8-bit values, producing four signed 16-bit results. The four signed
16-bit results are packed into a 64-bit register pair, dst_o:dst_e. The values in
src1 are treated as signed packed 8-bit quantities, whereas the values in src2
are treated as unsigned 8-bit packed data. The assembler uses the MPYSU4
src1, src2, dst instruction to perform this operation.

For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The product of src1
byte 0 and src2 byte 0 is written to the lower half of dst_e. The product of src1
byte 1 and src2 byte 1 is written to the upper half of dst_e. The product of src1
byte 2 and src2 byte 2 is written to the lower half of dst_o. The product of src1
byte 3 and src2 byte 3 is written to the upper half of dst_o.

Execution if (cond) {

 (ubyte0(src2) x sbyte0(src1)) → lsb16(dst_e)

(ubyte1(src2) x sbyte1(src1)) → msb16(dst_e)

(ubyte2(src2) x sbyte2(src1)) → lsb16(dst_o)

(ubyte3(src2) x sbyte3(src1)) → msb16(dst_o)

 }

else nop

MPYUS4

5-150

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4, MPYU4

MPYU4

5-151 TMS320C64x Fixed-Point Instruction Set

Multiply Unsigned by Unsigned Packed, 8-BitMPYU4

Syntax MPYU4 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

s4
xu4
dwu4

.M1, .M2 00100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The MPYU4 instruction returns the product between four sets of packed 8-bit
values producing four unsigned 16-bit results that are packed into a 64-bit reg-
ister pair, dst_o:dst_e. The values in both src1 and src2 are treated as un-
signed 8-bit packed data.

For each pair of 8-bit quantities in src1 and src2, the unsigned 8-bit value from
src1 is multiplied with the unsigned 8-bit value from src2. The product of src1
byte 0 and src2 byte 0 is written to the lower half of dst_e. The product of src1
byte 1 and src2 byte 1 is written to the upper half of dst_e. The product of src1
byte 2 and src2 byte 2 is written to the lower half of dst_o. The product of src1
byte 3 and src2 byte 3 is written to the upper half of dst_o.

31 24 23 16 15 8 7 0

3 2 1 0 1ua_3 ua_2 ua_1 ua_0 src1

MPYU4MPYU4

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

=
63 48 47 32 31 16 15 0

ua_3*ub_3 ua_2*ub_2 ua_1*ub_1 ua_0*ub_0 dst_o:dst_e

MPYU4

5-152

Execution if (cond) {

(ubyte0(src1) x ubyte0(src2)) → lsb16(dst_e)

(ubyte1(src1) x ubyte1(src2)) → msb16(dst_e)

(ubyte2(src1) x ubyte2(src2)) → lsb16(dst_o)

(ubyte3(src1) x ubyte3(src2)) → msb16(dst_o)

}

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPYSU4

Example 1 MPYU4 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 68 32 C1 93h 104 50 193 147 A5 68 32 C1 93h 104 50 193 147

unsigned unsigned

A6 B1 74 2C ABh 177 116 44 171 A6 B1 74 2C ABh 177 116 44 171

unsigned . unsigned

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 47E8 16A8h 212C 6231h

18408 5800 8492 25137

unsigned

MPYU4

5-153 TMS320C64x Fixed-Point Instruction Set

Example 2 MPYU4 .M2 B2,B5,B9:B8

Before instruction 4 cycles after instruction

B2 3D E6 50 7Fh 61 230 80 127 B2 3D E6 50 7Fh 61 230 80 127

unsigned unsigned

B5 C3 56 02 44h 195 86 2 68 B5 C3 56 02 44h 195 86 2 68

unsigned . unsigned

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 2E77 4D44h 00A0 21BCh

11895 19780 160 8636

unsigned

MVD

5-154

Move From Register to Register, DelayedMVD

Syntax MVD (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type Unit Opfield

src2
dst

xint
int

.M1, .M2 11010

Opcode

31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The MVD instruction moves data from the src2 register to the dst register over
4 cycles. This is done using the multiplier path.

MVD .M2x A0,B0 ;

NOP ;

NOP ;

NOP ; B0 = A0

Execution if (cond) src2 → dst

else nop

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src2

Written dst

Unit in use .M

__

MVD

5-155 TMS320C64x Fixed-Point Instruction Set

Instruction Type Four-cycle

Delay Slots 3

Example MVD .M2X A5,B8

Before instruction 4 cycles after instruction

A5 6A32 1193h A5 6A32 1193h

B8 XXXX XXXXh B8 6A32 1193h

MVK/MVKL

5-156

Move a Signed Constant Into a Register and Sign-ExtendMVK/MVKL

Syntax MVK (.unit) cst, dst
.unit = .L1 or .L2, .S1 or .S2, .D1 or .D2

Opcode map field used... For operand type Unit Opfield

cst
dst

scst16
sint

.S1, .S2

cst
dst

scst5
sint

.L1, .L2 00101

cst
dst

scst5
sint

.D1, .D2 000000

Opcode

.S Unit

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst scst16 0 1 0 1 0 s p

3 1 5 16 5 1 1

.L Unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst scst op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 10 1 1

.D Unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/scst op 1 0 0 0 0 s p

3 1 5 5 5 6 5 1 1

Description In the MVK/MVKL instruction, the cst (constant) is sign extended and placed
in dst. The .S unit form allows for a 16-bit signed constant. This is the same
MVK instruction that is found on the C62x but with the added flexibility of being
able to perform this operation not only on the .S unit but also on the .L and
.D units when the constant is limited to a 5-bit signed constant.

Since many non-address constants fall into a 5-bit sign constant range, this
allows the flexibility to schedule the MVK instruction on the .L or .D units. In

MVK/MVKL

5-157 TMS320C64x Fixed-Point Instruction Set

the .D unit form, the constant is in the position normally used by src1, as for
address math. Only the MVK instruction is supported on the .L or .D units. The
.S unit supports both MVK and MVKL .

In most cases, the C6000 assembler and linker issue a warning or an error
when a constant is outside the range supported by the instruction. In the case
of MVK .S, a warning is issued whenever the constant is outside the signed
16-bit range, –32768 to 32767 (or 0XFFFF8000 to 0x 00007FFF).

For example:

MVK .S1 0x00008000X, A0

will generate a warning, whereas

MVK .S1 0 x FFFF8000, A0

will not generate a warning.

The MVKL instruction is equivalent to the MVK instruction, except that the
MVKL disables the constant range checking normally performed by the as-
sembler/linker. This allows MVKL to be paired with MVKH to generate 32-bit
constants.

To load 32-bit constants, such as 0x1234 ABCD, use the following pair of
instructions:
MVKL .S1 0x0ABCD, A4

MVKLH .S1 0x1234, A4

This could also be used:
MVKL .S1 0x1234ABCD, A4

MVKH .S1 0x1234ABCD, A4

Use this to load the address of a label:
MVKL .S2 label, B5

MVKH .S2 label, B5

Execution if (cond) scst → dst

else nop

MVK/MVKL

5-158

Pipeline ____________________________

Pipeline

Stage E1

Read

Written dst

Unit in use .L, .S, or .D

Instruction Type Single Cycle

Delay Slots 0

See Also MVKH, MVKLH

Example 1 MVK .L2 –5,B8

Before instruction 1 cycle after instruction

B8 XXXX XXXXh B8 FFFF FFFBh

Example 2 MVK .D2 14,B8

Before instruction 1 cycle after instruction

B8 XXXX XXXXh B8 0000 000Eh

Example 3 MVKL .S1 5678h,A8

Before instruction 1 cycle after instruction

A8 XXXX XXXXh A8 0000 5678h

Example 4 MVKL .S1 0C678h,A8

Before instruction 1 cycle after instruction

A8 XXXX XXXXh A8 FFFF C678h

OR

5-159 TMS320C64x Fixed-Point Instruction Set

Bitwise OROR

Syntax OR (.unit) src1, src2, dst
.unit =.D1 or .D2, .L1, .L2, .S1, .S2,

Opcode map field used... For operand type... Unit Opfield

src
src2
dst

uint
xuint
uint

.D1, .D2 0001

src1
src2
dst

scst5
xuint
uint

.D1, .D2 0011

src1
src2
dst

uint
xint
uint

.L1, .L2 1111111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111110

src1
src2
dst

uint
xunit
uint

.S1, .S2 011011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011010

Opcode

.D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1/cst5 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S Unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

OR

5-160

Description A bitwise OR instruction is performed between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits. This is the
same OR instruction that is found on the C62x, but with the added flexibility
of being able to perform this operation on the .D unit as well as the .L and
.S units.

Execution if (cond) src1 or src2 → dst

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single Cycle

Delay Slots 0

See Also AND, ANDN, XOR

Example 1 OR .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 08A3 A49Fh A3 08A3 A49Fh

A4 00FF 375Ah A4 00FF 375Ah

A5 XXXX XXXX h A5 08FF B7DFh

OR

5-161 TMS320C64x Fixed-Point Instruction Set

Example 2 OR .D2 –12,B2,B8

Before instruction 1 cycle after instruction

B2 0000 3A41h B2 0000 3A41h

B8 XXXX XXXXh B8 FFFF FFF5h

PACK2

5-162

Pack 16 LSB, 16 LSB Into Packed 16-BitPACK2

Syntax PACK2 (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

i2
xi2
i2

.L1, .L2 0000000

src1
src2
dst

i2
xi2
i2

.S1 .S2 1111

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S Unit

31 30 29 28 27 23 22 18 17 13 12 11 10 9 6 5 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The PACK2 instruction takes the lower half-words from src1 and src2 and
packs them both into dst. The lower half-word of src1 is placed in the upper
half-word of dst. The lower half-word of src2 is placed in the lower half-word
of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values
to be used by the packed arithmetic operations, such as ADD2.

PACK2

5-163 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

a_hi a_lo src1

PACK2

b_hi b_lo src2

31 16 15 0

a_lo b_lo dst

Execution if (cond) {

lsb16(src2) → lsb16(dst)

lsb16(src1) → msb16(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH2, PACKHL2, PACKLH2, SPACK2

PACK2

5-164

Example 1 PACK2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXX h A9 F23A 4975h

Example 2 PACK2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXXh B12 2451 A051h

PACKH2

5-165 TMS320C64x Fixed-Point Instruction Set

Pack 16 MSB, 16 MSB Into Packed 16-BitPACKH2

Syntax PACKH2 (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

i2
xi2
i2

.L1, .L2 0011110

src1
src2
dst

i2
xi2
i2

.S1 .S2 001001

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The PACKH2 instruction takes the upper half-words from src1 and src2 and
packs them both into dst. The upper half-word of src1 is placed in the upper
half-word of dst. The upper half-word of src2 is placed in the lower half-word
of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values
to be used by the packed arithmetic operations, such as ADD2.

PACKH2

5-166

31 16 15 0

a_hi a_lo src1

PACKH2

b_hi b_lo src2

31 16 15 0

a_hi b_hi dst

Execution if (cond) {

msb16(src2) → lsb16(dst)

msb16(src1) → msb16(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKHL2, PACKLH2, SPACK2

PACKH2

5-167 TMS320C64x Fixed-Point Instruction Set

Example 1 PACKH2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXX h A9 3789 04B8h

Example 2 PACKH2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXXh B12 0124 01A6h

PACKH4

5-168

Pack High Bytes of Four Half-Words Into Packed 8-BitPACKH4

Syntax PACKH4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type Unit Opfield

src1
src2
dst

i4
xi4
i4

.L1, .L2 1101001

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The PACKH4 instruction moves the high bytes of the two half-words in src1
and src2 and packs them into dst. The bytes from src1 will be packed into the
most significant bytes of dst, and the bytes from src2 will be packed into the
least significant bytes of dst.

Specifically, the high byte of the upper half-word of src1 is moved to the upper
byte of the upper half-word of dst. The high byte of the lower half-word of src1
is moved to the lower byte of the upper half-word of dst. The high byte of the
upper half-word of src2 is moved to the upper byte of the lower half-word of dst.
The high byte of the lower half-word of src2 is moved to the lower byte of the
lower half-word of dst.

31 24 23 16 15 8 7 0

a 3 a 2 a 1 a 0 src1a_3 a_2 a_1 a_0 src1

PACKH4PACKH4

b 3 b 2 b 1 b 0b_3 b_2 b_1 b_0 src2

31 24 23 16 15 8 7 0

a_3 a_1 b_3 b_1 dst

PACKH4

5-169 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

byte3(src1) → byte3(dst);

byte1(src1) → byte2(dst);

byte3(src2) → byte1(dst);

byte1(src2) → byte0(dst);

}

else nop

Pipeline ________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also PACKL4, SPACKU4

Example 1 PACKH4 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah

A8 04 B8 49 75h A8 04 B8 49 75h

A9 XXXX XXXXh A9 37 F2 04 49h

PACKH4

5-170

Example 2 PACKH4 .L2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 01 24 24 51h B2 01 24 24 51h

B8 01 A6 A0 51h B8 01 A6 A0 51h

B12 XXXX XXXXh B12 01 24 01 A0h

PACKHL2

5-171 TMS320C64x Fixed-Point Instruction Set

Pack 16 MSB, 16 LSB Into Packed 16-BitPACKHL2

Syntax PACKHL2 (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i2
xi2
i2

.L1, .L2 0011100

src1
src2
dst

i2
xi2
i2

.S1 . S2 001000

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The PACKHL2 instruction takes the upper half-word from src1 and the lower
half-word from src2 and packs them both into dst. The upper half-word of src1
is placed in the upper half-word of dst. The lower half-word of src2 is placed
in the lower half-word of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values
to be used by the packed arithmetic operations, such as ADD2.

PACKHL2

5-172

31 16 15 0

a_hi a_lo src1

PACKHL2

b_hi b_lo src2

31 16 15 0

a_hi b_lo dst

Execution if (cond) {

lsb16(src2) → lsb16(dst)

msb16(src1) → msb16(dst);

 }

else nop

Pipeline ________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2 , PACKH2 , PACKLH2 , SPACK2

PACKHL2

5-173 TMS320C64x Fixed-Point Instruction Set

Example 1 PACKHL2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXXh A9 3789 4975h

Example 2 PACKHL2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXXh B12 0124 A051h

PACKL4

5-174

Pack Low Bytes of Four Half-Words Into Packed 8-BitPACKL4

Syntax PACKL4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i4
xi4
i4

.L1, .L2 1101000

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The PACKL4 instruction moves the low bytes of the two half-words in src1
and src2, and packs them into dst. The bytes from src1 will be packed into the
most significant bytes of dst, and the bytes from src2 will be packed into the
least significant bytes of dst.

Specifically, the low byte of the upper half-word of src1 is moved to the upper
byte of the upper half-word of dst. The low byte of the lower half-word of src1
is moved to the lower byte of the upper half-word of dst. The low byte of the
upper half-word of src2 is moved to the upper byte of the lower half-word of dst.
The low byte of the lower half-word of src2 is moved to the lower byte of the
lower half-word of dst.

31 24 23 16 15 8 7 0

3 2 1 0 1a_3 a_2 a_1 a_0 src1

PACKL4PACKL4

b 3 b 2 b 1 b 0 2b_3 b_2 b_1 b_0 src2

31 24 23 16 15 8 7 0

a_2 a_0 b_2 b_0 dst

PACKL4

5-175 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

byte2(src1) → byte3(dst)

byte0(src1) → byte2(dst)

byte2(src2) → byte1(dst)

byte0(src2) → byte0(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH4, SPACKU4

Example 1 PACKL4 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah

A8 04 B8 49 75h A8 04 B8 49 75h

A9 XXXX XXXXh A9 89 3A B8 75h

PACKL4

5-176

Example 2 PACKL4 .L2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 01 24 24 51h B2 01 24 24 51h

B8 01 A6 A0 51h B8 01 A6 A0 51h

B12 XXXX XXXXh B12 24 51 A6 51h

PACKLH2

5-177 TMS320C64x Fixed-Point Instruction Set

Pack 16LSB, 16MSB Into Packed 16-BitPACKLH2

Syntax PACKLH2 (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i2
xi2
i2

.L1, .L2 0011011

src1
src2
dst

i2
xi2
i2

.S1 .S2 010000

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The PACKLH2 instruction takes the lower half-word from src1, and the upper
half-word from src2, and packs them both into dst. The lower half-word of src1
is placed in the upper half-word of dst. The upper half-word of src2 is placed
in the lower half-word of dst.

This instruction is useful for manipulating and preparing pairs of 16-bit values
to be used by the packed arithmetic operations, such as ADD2.

PACKLH2

5-178

31 16 15 0

a_hi a_lo src1

PACKLH2

b_hi b_lo src2

31 16 15 0

a_lo b_hi dst

Execution if (cond) {

msb16(src2) → lsb16(dst)

lsb16(src1) → msb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, PACKHL2, SPACK2

PACKLH2

5-179 TMS320C64x Fixed-Point Instruction Set

Example 1 PACKLH2 .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXXh A9 F23A 04B8h

Example 2 PACKLH2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXX h B12 2451 01A6h

ROTL

5-180

Rotate LeftROTL

Syntax ROTL (.unit) src2,src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

 uint
 xuint
 uint

.M1, .M2 11101

src1
src2
dst

 ucst5
 xuint
 uint

.M1, .M2 11110

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1/ucst x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The ROTL instruction rotates the 32-bit value of src2 to the left, and places the
result in dst. The number of bits to rotate is given in the five least-significant
bits of src1. Bits 5 through 31 of src1 are ignored and may be non-zero.

In the example below, src1 is equal to 8.

31 8 0

abcdefghijklmnopqrstuvwxyzABCDEF src2

ijklmnopqrstuvwxyzABCDEFabcdefgh dst

 (for src1 = 8)

Note:

The ROTL instruction is useful in cryptographic applications.

ROTL

5-181 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

 (src2 << src1) | (src2 >> (32–src1) → dst

 }

else nop

Pipeline ________________________________

Pipeline

Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHL, SHLMB, SHRMB, SHR, SHRU

Example 1 ROTL .M2 B2,B4,B5

Before instruction 2 cycles after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h B4 1458 3B69h

.

B5 XXXX XXXXh B5 C582 F34Dh

Example 2 ROTL .M1 A4,10h,A5

Before instruction 2 cycles after instruction

A4 187A 65FCh A4 187A 65FCh

A5 XXXX XXXXh A5 65FC 187Ah

SADD2

5-182

Add With Saturation, Signed Packed 16-BitSADD2

Syntax SADD2 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
s2

.S1, .S2 0000

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SADD2 instruction performs 2s-complement addition between signed,
packed 16-bit quantities in src1 and src2. The results are placed in a signed,
packed 16-bit format into dst.

For each pair of 16-bit quantities in src1 and src2, the sum between the signed
16-bit value from src1 and the signed 16-bit value from src2 is calculated and
saturated to produce a signed 16-bit result. The result is placed in the corre-
sponding position in dst.

SADD2

5-183 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

a_hi a_lo src1

SADD2

b_hi b_lo src2

31 16 15 0

sat(a_hi+b_hi) sat(a_lo+b_lo) dst

Note:

This operation is performed on each half-word separately. This instruction
does not affect the SAT bit in the CSR.

Execution if (cond) {

sat((msb16(src1) + msb16(src2))) → msb16(dst)

sat((lsb16(src1) + lsb16(src2))) → lsb16(dst)

}

else nop

Saturation (shown above as sat) is performed on each 16-bit result indepen-
dently. For each sum, the following tests are applied:

� If the sum is in the range – 215 to 2 15 – 1, inclusive, then no saturation is
performed and the sum is left unchanged.

� If the sum is greater than 215 – 1, then the result is set to 215 – 1.

� If the sum is less than – 215, then the result is set to – 215.

SADD2

5-184

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SADD, SADDU4, SADDUS2

Example 1 SADD2 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 5789 F23Ah 22409 –3526 A2 5789 F23Ah 22409 –3526

A8 74B8 4975h 29880 18805 A8 74B8 4975h 29880 18805

A9 XXXX XXXXh A9 7FFF 3BAFh 32767 15279

Example 2 SADD2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 847Ch 292 –31260 B2 0124 847Ch 292 –31260

B8 01A6 A051h 422 –24495 B8 01A6 A051h 422 –24495

B12 XXXX XXXXh B12 02AC 8000h 684 –32768

SADDU4

5-185 TMS320C64x Fixed-Point Instruction Set

Add With Saturation, Unsigned, Packed 8-BitSADDU4

Syntax SADDU4 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.S1 ,.S2 0011

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SADDU4 instruction performs 2s-complement addition between un-
signed, packed 8-bit quantities. The values in src1 and src2 are treated as un-
signed, packed 8-bit quantities. The results are written into dst in an unsigned,
packed 8-bit format.

For each pair of 8-bit quantities in src1 and src2, the sum between the un-
signed 8-bit value from src1 and the unsigned 8-bit value from src2 is calcu-
lated and saturated to produce an unsigned 8-bit result. The result is placed
in the corresponding position in dst.

SADDU4

5-186

31 24 23 16 15 8 7 0

3 2 1 0 1ua_3 ua_2 ua_1 ua_0 src1

SADDU4SADDU4

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

=
31 24 23 16 15 8 7 0

sat(ua_3+ub_3) sat(ua_2+ub_2) sat(ua_1+ub_1) sat(ua_0+ub_0) dst

Note:

This operation is performed on each 8-bit quantity separately. This instruc-
tion does not affect the SAT bit in the CSR.

Execution if (cond) {

sat((ubyte0(src1) + ubyte0(src2))) → ubyte0(dst)

sat((ubyte1(src1) + ubyte1(src2))) → ubyte1(dst)

sat((ubyte2(src1) + ubyte2(src2))) → ubyte2(dst)

sat((ubyte3(src1) + ubyte3(src2))) → ubyte3(dst)

}

else nop

Saturation (shown above as sat) is performed on each 8-bit result indepen-
dently. For each sum, the following tests are applied:

� If the sum is in the range 0 to 2 8 – 1, inclusive, then no saturation is per-
formed and the sum is left unchanged.

� If the sum is greater than 28 – 1, then the result is set to 28 – 1.

SADDU4

5-187 TMS320C64x Fixed-Point Instruction Set

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SADD, SADD2, SADDUS2

Example 1 SADDU4 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 57 89 F2 3Ah 87 137 242 58 A2 57 89 F2 3Ah 87 137 242 58

unsigned unsigned

A8 74 B8 49 75h 116 184 73 117 A8 74 B8 49 75h 116 184 73 117

unsigned unsigned

A9 XXXX XXXXh A9 CB FF FF AFh 203 255 255 175

unsigned

Example 2 SADDU4 .S2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 14 7C 01 24h 20 124 1 36 B2 14 7C 01 24h 20 124 1 36

unsigned unsigned

B8 A0 51 01 A6h 160 81 1 166 B8 A0 51 01 A6h 160 81 1 166

unsigned unsigned

B12 XXXX XXXXh B12 B4 CD 02 CA 180 205 2 202

unsigned

SADDSU2

5-188

Add With Saturation, Signed With Unsigned Packed 16-Bit
(Pseudo-Operation)

SADDSU2

Syntax SADDSU2 (.unit) src2, src1, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u2
xs2
u2

.S1, .S2 0001

Opcode See SADDUS2 instruction.

Description The SADDSU2 pseudo-operation performs 2s-complement addition between
unsigned and signed packed 16-bit quantities. The values in src1 are treated
as unsigned packed 16-bit quantities, and the values in src2 are treated as
signed packed 16-bit quantities. The results are placed in an unsigned packed
16-bit format into dst. The assembler uses the SADDUS2 src1, src2, dst in-
struction to perform this operation.

For each pair of 16-bit quantities in src1 and src2, the sum between the un-
signed 16-bit value from src1 and the signed 16-bit value from src2 is calcu-
lated and saturated to produce a signed 16-bit result. The result is placed in
the corresponding position in dst.

Saturation is performed on each 16-bit result independently. For each sum,
the following tests are applied:

� If the sum is in the range 0 to 2 16 – 1, inclusive, then no saturation is per-
formed and the sum is left unchanged.

� If the sum is greater than 216 – 1, then the result is set to 216 – 1.

� If the sum is less than 0, then the result is set to 0.

Execution if (cond) {

SAT((smsb16(src2) + umsb16(src1))) → umsb16(dst)

SAT((slsb16(src2) + ulsb16(src1))) → ulsb16(dst)

}

else nop

SADDSU2

5-189 TMS320C64x Fixed-Point Instruction Set

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SADD, SADD2, SADDUS2, SADDU4

SADDUS2

5-190

Add With Saturation, Unsigned With Signed Packed 16-BitSADDUS2

Syntax SADDUS2 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u2
xs2
u2

.S1 ,.S2 0001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SADDUS2 instruction performs 2s-complement addition between un-
signed, and signed, packed 16-bit quantities. The values in src1 are treated
as unsigned, packed 16-bit quantities; and the values in src2 are treated as
signed, packed 16-bit quantities. The results are placed in an unsigned,
packed 16-bit format into dst.

For each pair of 16-bit quantities in src1 and src2, the sum between the un-
signed 16-bit value from src1 and the signed 16-bit value from src2 is calcu-
lated and saturated to produce a signed 16-bit result. The result is placed in
the corresponding position in dst.

SADDUS2

5-191 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

ua_hi ua_lo src1

SADDUS2

sb_hi sb_lo src2

31 16 15 0

sat(ua_hi+sb_hi) sat(ua_lo+sb_lo) dst

Note:

This operation is performed on each half-word separately. This instruction
does not affect the SAT bit in the CSR.

Execution if (cond) {

sat((umsb16(src1) + smsb16(src2))) → umsb16(dst)

sat((ulsb16(src1) + slsb16(src2))) → ulsb16(dst)

}

else nop

Saturation (shown above as sat) is performed on each 16-bit result indepen-
dently. For each sum, the following tests are applied:

� If the sum is in the range 0 to 2 16 – 1, inclusive, then no saturation is per-
formed and the sum is left unchanged.

� If the sum is greater than 216 – 1, then the result is set to 216 – 1.

� If the sum is less than 0, then the result is set to 0.

SADDUS2

5-192

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SADD, SADD2, SADDU4

Example 1 SADDUS2 .S1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 5789 F23Ah 22409 62010 A2 5789 F23Ah 22409 62010

unsigned unsigned

A8 74B8 4975h 29880 18805 A8 74B8 4975h 9880 18805

signed signed

A9 XXXX XXXXh A9 CC41 FFFF 52289 65535

unsigned

Example 2 SADDUS2 .S2 B2, B8, B12

Before instruction 1 cycle after instruction

B2 147C 0124h 5244 292 B2 147C 0124h 5244 292

unsigned unsigned

B8 A051 01A6h –24495 422 B8 A051 01A6h –24495 422

signed signed

B12 XXXX XXXXh B12 0000 02ACh 0 684

unsigned

SHFL

5-193 TMS320C64x Fixed-Point Instruction Set

ShuffleSHFL

Syntax SHFL (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xuint
 uint

.M1, .M2 11100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The SHFL instruction performs an interleave operation on the two half-words
in src2. The bits in the lower half-word of src2 are placed in the even bit posi-
tions in dst, and the bits in the upper half-word of src2 are placed in the odd
bit positions in dst.

As a result, bits 0, 1, 2, ..., 14, 15 of src2 are placed in bits 0, 2, 4, ... , 28, 30
of dst. Likewise, bits 16, 17, 18, .. 30, 31 of src2 are placed in bits 1, 3, 5, ...,
29, 31 of dst.

SHFL

5-194

31 16 15 0

abcdefghijklmnop ABCDEFGHIJKLMNOP src2

SHFLSHFL

31 16 15 0

aAbBcCdDeEfFgGhH iIjJkKlLmMnNoOpP dst

Note:

The SHFL instruction is the exact inverse of the DEAL instruction.

Execution if (cond) {

src231,30,29...16 → dst31,29,27...1

src215,14,13...0 → dst30,28,26...0

}

Pipeline _________________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also DEAL

SHFL

5-195 TMS320C64x Fixed-Point Instruction Set

Example SHFL .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA4h A1 B174 6CA4h

A2 XXXX XXXXh A2 9E52 6E30h

SHLMB

5-196

Shift Left and Merge ByteSHLMB

Syntax SHLMB (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.L1, .L2 1100001

src1
src2
dst

u4
xu4
u4

.S1 .S2 1001

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S Unit

31 29 28 27 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SHLMB instruction shifts the contents of src2 left by one byte, and then the
most significant byte of src1 is merged into the least significant byte position.
The result is placed in dst.

SHLMB

5-197 TMS320C64x Fixed-Point Instruction Set

31 24 32 16 15 8 7 0

ua 3 ua 2 ua 1 ua 0 src1ua_3 ua_2 ua_1 ua_0 src1

SHLMBSHLMB

ub 3 ub 2 ub 1 ub 0 src2ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ub_2 ub_1 ub_0 ua_3 dst

Execution if (cond) {

ubyte2(src2) → ubyte3(dst);

ubyte1(src2) → ubyte2(dst);

ubyte0(src2) → ubyte1(dst);

ubyte3(src1) → ubyte0(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also ROTL, SHL, SHRMB, SHR, SHRU

SHLMB

5-198

Example 1 SHLMB .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXX h A9 B849 7537h

Example 2 SHLMB .S2 B2,B8, B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXX h B12 A6A0 5101h

SHR2

5-199 TMS320C64x Fixed-Point Instruction Set

Shift Right, Signed Packed 16-BitSHR2

Syntax SHR2 (.unit) src2,src1, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xs2
s2

.S1 .S2 0111

src1
src2
dst

ucst
xs2
s2

.S1 .S2 011000

Opcode

.S unit (uint form)

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

.S unit (cst form)

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The SHR2 instruction performs an arithmetic shift right on signed, packed 16-bit
quantities. The values in src2 are treated as signed, packed 16-bit quantities.
The lower five bits of src1 or ucst5 are treated as the shift amount. The results
are placed in a signed, packed 16-bit format into dst.

For each signed 16-bit quantity in src2, the quantity is shifted right by the
number of bits specified in the lower five bits of src1 or ucst5 . Bits 5
through 31 of src1 are ignored and may be non-zero. The shifted quantity is
sign-extended, and placed in the corresponding position in dst. Bits shifted out
of the least-significant bit of the signed 16-bit quantity are discarded.

SHR2

5-200

31 24 16 15 8 0

abcdefghijklmnop qrstuvwxyzABCDEF src2

aaaaaaaaabcdefgh qqqqqqqqqrstuvwx dst

 (for src1 = +8)

Note:

If the shift amount specified in src1 or ucst5 is the range 16 to 31, the behavior
is identical to a shift value of 15.

Execution if (cond) {

smsb16(src2) >> src1 → smsb16(dst)

slsb16(src2) >> src1 → slsb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHR, SHRU2

SHR2

5-201 TMS320C64x Fixed-Point Instruction Set

Example 1 SHR2 .S2 B2,B4,B5

Before instruction 1 cycle after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h shift value 9 B4 1458 3B69h shift value 9

B5 XXXX XXXXh B5 FFD3 FFE0h

Example 2 SHR2 .S1 A4,0fh,A5 ; shift value is 15

Before instruction 1 cycle after instruction

A4 000A 87AFh A4 000A 87AFh

A5 XXXX XXXXh A5 0000 FFFFh

SHRMB

5-202

Shift Right and Merge ByteSHRMB

Syntax SHRMB (.unit) src1,src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.L1, .L2 1100010

src1
src2
dst

u4
xu4
u4

.S1, .S2 1010

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S Unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SHRMB instruction shifts the contents of src2 right by one byte, and then
the least significant byte of src1 is merged into the most significant byte position.
The result is placed in dst.

SHRMB

5-203 TMS320C64x Fixed-Point Instruction Set

31 24 23 16 15 8 7 0

ua 3 ua 2 ua 1 ua 0 src1ua_3 ua_2 ua_1 ua_0 src1

SHRMBSHRMB

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ua_0 ub_3 ub_2 ub_1 dst

Execution if (cond) {

ubyte0(src1) → ubyte3(dst);

ubyte3(src2) → ubyte2(dst);

ubyte2(src2) → ubyte1(dst);

ubyte1(src2) → ubyte0(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

See Also ROTL, SHL, SHLMB, SHR, SHRU

SHRMB

5-204

Example 1 SHRMB .L1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah A2 3789 F23Ah

A8 04B8 4975h A8 04B8 4975h

A9 XXXX XXXX h A9 3A04 B849h

Example 2 SHRMB .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 0124 2451h B2 0124 2451h

B8 01A6 A051h B8 01A6 A051h

B12 XXXX XXXX h B12 5101 A6A0h

SHRU2

5-205 TMS320C64x Fixed-Point Instruction Set

Shift Right, Unsigned Packed 16-BitSHRU2

Syntax SHRU2 (.unit) src2, src1, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xu2
u2

.S1 .S2 1000

src1
src2
dst

ucst
xu2
u2

.S1 .S2 011001

Opcode

.S unit (uint form)

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

.S unit (cst form)

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

Description The SHRU2 instruction performs an arithmetic shift right on unsigned, packed
16-bit quantities. The values in src2 are treated as unsigned, packed 16-bit
quantities. The lower five bits of src1 or ucst5 are treated as the shift amount.
The results are placed in an unsigned, packed 16-bit format into dst.

For each unsigned 16-bit quantity in src2, the quantity is shifted right by the
number of bits specified in the lower five bits of src1 or ucst5. Bits 5 through 31
of src1 are ignored and may be non-zero. The shifted quantity is zero-
extended, and placed in the corresponding position in dst. Bits shifted out of
the least-significant bit of the signed 16-bit quantity are discarded.

SHRU2

5-206

31 24 16 15 8 0

abcdefghijklmnop qrstuvwxyzABCDEF src2

00000000abcdefgh 00000000qrstuvwx dst

 (for src1 = +8)

Note:

If the shift amount specified in src1 or ucst5 is in the range of 16 to 31, the
dst will be set to all zeros.

Execution if (cond) {

umsb16(src2) >> src1 → umsb16(dst)

ulsb16(src2) >> src1 → ulsb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHR2, SHRU

SHRU2

5-207 TMS320C64x Fixed-Point Instruction Set

Example 1 SHRU2 .S2 B2,B4,B5

Before instruction 1 cycle after instruction

B2 A6E2 C179h B2 A6E2 C179h

B4 1458 3B69h Shift value 9 B4 1458 3B69h Shift value 9

B5 XXXX XXXXh B5 0053 0060h

Example 2 SHRU2 .S1 A4,0fh,A5 ; Shift value is 15.

Before instruction 1 cycle after instruction

A4 000A 87AFh A4 000A 87AFh

A5 XXXX XXXXh A5 0000 0001h

SMPY2

5-208

Multiply Signed by Signed, with Left Shift and Saturate,
Packed 16-Bit

SMPY2

Syntax SMPY2 (.unit) src1,src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
ullong

.M1, .M2 00001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The SMPY2 instruction performs two 16-bit by 16-bit multiplies between two
pairs of signed packed 16-bit values, with an additional left-shift and saturate.
The values in src1 and src2 are treated as signed, packed 16-bit quantities.
The two 32-bit results are written into a 64-bit register pair.

The SMPY2 instruction produces two 16 x 16 products. Each product is shifted
left by one; and if the left-shifted result is equal to 0x80000000, the output value
is saturated to 0x7FFFFFFF.

The saturated product of the lower half-words of src1 and src2 is written to the
even destination register, dst_e. The saturated product of the upper half-words
of src1 and src2 is written to the odd destination register, dst_o.

SMPY2

5-209 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

a_hi a_lo src1

SMPY2

b_hi b_lo src2

=
63 32 31 0

SAT((a_hi*b_hi) << 1) SAT((a_lo*b_lo) << 1) dst_o: dst_e

Note:

If either product saturates, the SAT bit is set in the CSR on the cycle that the
result is written. If neither product saturates, the SAT bit in the CSR is left un-
affected.

This instruction helps reduce the number of instructions required to perform
two 16-bit by 16-bit saturated multiplies on both the lower and upper halves
of two registers.

The following code:

 SMPY .M1 A0, A1, A2

 SMPYH .M1 A0, A1, A3

may be replaced by:

 SMPY2 .M1 A0, A1, A3:A2

Execution if (cond) {

SAT((lsb16(src1) x lsb16(src2)) << 1) → dst_e ;

SAT((msb16(src1) x msb16(src2)) <<1) → dst_o

}

else nop

SMPY2

5-210

Pipeline __

Pipeline

Stage E1 E2 E3 E4

__

Read src1, src2

Written dst

Unit in use .M

__

Instruction Type Four-cycle

Delay Slots 3

See Also MPY2, SMPY, SMPYH

Example 1 SMPY2 .M1 A5,A6,A9:A8

Before instruction 4 cycles after instruction

A5 6A32 1193h 27186 4499 A5 6A32 1193h 27186 4499

A6 B174 6CA4h –20108 27812 A6 B174 6CA4h –20108 27812

.

A9:A8 XXXX XXXXh XXXX XXXXh A9:A8 BED5 6150h 0EEA 8C58h

–1,093,312,176 250,252,376

SMPY2

5-211 TMS320C64x Fixed-Point Instruction Set

Example 2 SMPY2 .M2 B2, B5, B9:B8

Before instruction 4 cycles after instruction

B2 1234 3497h 4660 13463 B2 1234 3497h 4660 13463

B5 21FF 50A7h 8703 20647 B5 21FF 50A7h 8703 20647

.

B9:B8 XXXX XXXXh XXXX XXXXh B9:B8 04D5 AB98h 2122 FD02h

 81,111,960 555,941,122

SPACK2

5-212

Saturate and Pack into Signed Packed 16-BitSPACK2

Syntax SPACK2 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

int
xint
s2

.S1 .S2 0010

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SPACK2 instruction takes two signed 32-bit quantities in src1 and src2
and saturates them to signed 16-bit quantities. The signed 16-bit results are
then packed into a signed, packed 16-bit format and written to dst. Specifically,
the saturated 16-bit signed value of src1 is written to the upper half word of dst,
and the saturated 16-bit signed value of src2 is written to the lower half word
of dst.

Saturation is performed on each input value independently. The input values
start as signed 32-bit quantities, and are saturated to 16-bit quantities according
to the following rules:

� If the value is in the range – 215 to 215 – 1, inclusive, then no saturation
is performed and the value is merely truncated to 16 bits.

� If the value is greater than 215 – 1, then the result is set to 215 – 1.

� If the value is less than – 215, then the result is set to – 215.

SPACK2

5-213 TMS320C64x Fixed-Point Instruction Set

31 16 15 0

00000000ABCDEFGH IJKLMNOPQRSTUVWX src1

SPACK2SPACK2

0000000000000000 00YZ123456789ABC src2

0111111111111111 00YZ123456789ABC dst

This instruction is useful in code which manipulates 16-bit data at 32-bit preci-
sion for its intermediate steps, but which requires the final results to be in a 16-bit
representation. The saturate step ensures that any values outside the signed
16-bit range are clamped to the high or low end of the range before being trun-
cated to 16 bits.

Note:

This operation is performed on each 16-bit value separately. This instruction
does not affect the SAT bit in the CSR.

Execution if (cond) {

if src2 > 0x00007FFF, then 0x7FFF → lsb16(dst) or

if src2 < 0xFFFF8000, then 0x8000 → lsb16(dst)

else truncate(src2) → lsb16(dst);

if src1 > 0x00007FFF, then 0x7FFFF → msb16(dst) or

if src1 < 0xFFFF8000, then 0x8000 → msb16(dst)

else truncate(src1) → msb16(dst);

}

else nop

SPACK2

5-214

Pipeline __________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACK2, PACKH2, PACKHL2, PACKLH2, SPACKU4

Example 1 SPACK2 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 931,787,322 A2 3789 F23Ah 931,787,322

A8 04B8 4975h 79,186,293 A8 04B8 4975h 79,186,293

A9 XXXX XXXX h A9 7FFF 7FFFh 32767 32767

Example 2 SPACK2 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 A124 2451h –1,591,466,927 B2 A124 2451h –1,591,466,927

B8 01A6 A051h 27,697,233 B8 01A6 A051h 27,697,233

B12 XXXX XXXX h B12 8000 7FFFh –32768 32767

SPACKU4

5-215 TMS320C64x Fixed-Point Instruction Set

Saturate and Pack into Unsigned Packed 8-BitSPACKU4

Syntax SPACKU4 (.unit) src1,src2, dst
.unit = .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

s2
xs2
u4

.S1 .S2 0100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description The SPACKU4 instruction takes four signed 16-bit values and saturates them
to unsigned 8-bit quantities. The values in src1 and src2 are treated as signed,
packed 16-bit quantities. The results are written into dst in an unsigned,
packed 8-bit format.

Each signed 16-bit quantity in src1 and src2 is saturated to an unsigned 8-bit
quantity as described below. The resulting quantities are then packed into an
unsigned, packed 8-bit format. Specifically, the upper half word of src1 is used
to produce the most significant byte of dst. The lower half of src1 is used to
produce the second most significant byte (bits 16 to 23) of dst. The upper half
word of src2 is used to produce the third most significant byte (bits 8 to 15)
of dst. The lower half word of src2 is used to produce the least significant byte
of dst.

Saturation is performed on each signed 16-bit input independently, producing
separate unsigned 8-bit results. For each value, the following tests are ap-
plied:

� If the value is in the range 0 to 2 8 – 1, inclusive, then no saturation is per-
formed and the result is truncated to 8 bits.

� If the value is greater than 28 – 1, then the result is set to 28 – 1.

� If the value is less than 0, the result is set to 0.

SPACKU4

5-216

31 16 15 0

00000000ABCDEFGH 00000001IJKLMNOP 100000000ABCDEFGH 00000001IJKLMNOP src1

SPACKU4SPACKU4

00000000YZ123456 11111111QRSTUVWX 200000000YZ123456 11111111QRSTUVWX src2

31 24 23 16 15 8 7 0

ABCDEFGH FFFFFFFF YZ123456 00000000 dst

This instruction is useful in code which manipulates 8-bit data at 16-bit preci-
sion for its intermediate steps, but which requires the final results to be in an
8-bit representation. The saturate step ensures that any values outside the un-
signed 8-bit range are clamped to the high or low end of the range before being
truncated to 8 bits.

Note:

This operation is performed on each 8-bit quantity separately. This instruc-
tion does not affect the SAT bit in the CSR.

Execution if (cond) {

if msb16(src1) >> 0x00007FFF, then 0x7F → ubyte3(dst) or

if msb16(src1) << 0xFFFF8000, then 0 → ubyte3(dst)

 else truncate(msb16(src1)) → ubyte3(dst);

if lsb16(src1) >> 0x00007FFF, then 0x7F → ubyte2(dst) or

if lsb16(src1) << 0xFFFF8000, then 0 → ubyte2(dst)

 else truncate(lsb16(src1)) → ubyte2(dst);

if msb16(src2) >> 0x00007FFF, then 0x7F → ubyte1(dst) or

if msb16(src2) << 0xFFFF8000, then 0 → ubyte1(dst)

 else truncate(msb16(src2)) → ubyte1(dst);

if lsb16(src2) >> 0x00007FFF, then 0x7F → ubyte0(dst) or

if lsb16(src2) << 0xFFFF8000, then 0 → ubyte0(dst)

 else truncate(lsb16(src2)) → ubyte0(dst);

}

else nop

SPACKU4

5-217 TMS320C64x Fixed-Point Instruction Set

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also PACKH4, PACKL4, SPACK2

Example 1 SPACKU4 .S1 A2,A8,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 –3526 A2 3789 F23Ah 14217 –3526

A8 04B8 4975h 1208 18805 A8 04B8 4975h 1208 18805

A9 XXXX XXXXh A9 FF 00 FF FFh 255 0 255 255

Example 2 SPACKU4 .S2 B2,B8,B12

Before instruction 1 cycle after instruction

B2 A124 2451h –24284 9297 B2 A124 2451h –24284 9297

B8 01A6 A051h 422 –24495 B8 01A6 A051h 422 –24495

B12 XXXX XXXXh B12 00 FF FF 00h 0 255 255 0

SSHVL

5-218

Variable Shift Left, SignedSSHVL

Syntax SSHVL (.unit) src2,src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

 int
 xint
 int

.M1, .M2 11100

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The SSHVL instruction shifts the signed 32-bit value in src2 to the left or right
by the number of bits specified by src1, and places the result in dst.

The src1 argument is treated as a 2s-complement shift value which is automat-
ically limited to the range –31 to 31. If src1 is positive, src2 is shifted to the left.
If src1 is negative, src2 is shifted to the right by the absolute value of the shift
amount, with the sign-extended shifted value being placed in dst. It should also
be noted that when src1 is negative, the bits shifted right past bit 0 are lost.

31 8 0

abcdefghijklmnopqrstuvwxyzABCDEF src2

aaaaaaaaabcdefghijklmnopqrstuvwx dst

 (for src1 = –8)

Note:

If the shifted value is saturated, then the SAT bit is set in CSR in the same
cycle that the result is written. If the shifted value is not saturated, then the
SAT bit is unaffected.

SSHVL

5-219 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

if 0 < = src1 < = 31 then

SAT(src2 << src1)→ dst ;

if –31 < = src1 < 0 then

(src2 >> abs(src1)) → dst;

if src1 > 31 then

SAT(src2 << 31) → dst;

if src1 < –31 then

(src2 >> 31) → dst

}

else nop

Saturation is performed (shown as sat above) when the value is shifted left un-
der the following conditions:

� If the shifted value is in the range –231 to 231 – 1, inclusive, then no satura-
tion is performed, and the result is truncated to 32 bits.

� If the shifted value is greater than 231 – 1, then the result is saturated to
231 – 1.

� If the shifted value is less than – 231, then the result is saturated to – 231.

Pipeline _____________________________

Pipeline

Stage E1 E2

Read src1,src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHL, SHRU, SSHL, SSHVR

SSHVL

5-220

Example 1 SSHVL .M2 B2, B4, B5

Before instruction 2 cycles after instruction

B2 FFFF F000h B2 FFFF F000h

B4 FFFF FFE1h –31 B4 FFFF FFE1h –31

B5 XXXX XXXXh B5 FFFF FFFFh

Example 2 SSHVL .M1 A2,A4,A5

Before instruction 2 cycles after instruction

A2 F14C 2108h A2 F14C 2108h

A4 0000 0001Fh 31 A4 0000 0001Fh 31

A5 XXXX XXXXh A5 8000 0000h Note:

Saturated to
most negative
value

Example 3 SSHVL .M2 B12, B24, B25

Before instruction 2 cycles after instruction

B12 187A 65FCh B12 187A 65FCh

B24 FFFF FFFFh –1 B24 FFFF FFFFh –1

B25 XXXX XXXXh B25 03CD 32FEh

SSHVR

5-221 TMS320C64x Fixed-Point Instruction Set

Variable Shift Right, SignedSSHVR

Syntax SSHVR (.unit) src2,src1, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

 int
 xint
 int

.M1, .M2 11101

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 1 5 4 1 1

Description The SSHVR instruction shifts the signed 32-bit value in src2 to the left or right
by the number of bits specified by src1, and places the result in dst.

The src1 argument is treated as a 2s-complement shift value that is automati-
cally limited to the range –31 to 31. If src1 is positive, src2 is shifted to the right
by the value specified with the sign-extended shifted value being placed in dst.
It should also be noted that when src1 is positive, the bits shifted right past bit 0
are lost. If src1 is negative, src2 is shifted to the left by the absolute value of
the shift amount value and the result is placed in dst.

31 8 0

abcdefghijklmnopqrstuvwxyzABCDEF src2

aaaaaaaabcdefghijklmnopqrstuvwxy dst

 (for src1 = 7)

Note:

If the shifted value is saturated, then the SAT bit is set in CSR in the same
cycle that the result is written. If the shifted value is not saturated, then the
SAT bit is unaffected.

SSHVR

5-222

Execution if (cond) {

 if 0 < = src1 < = 31 then

(src2 >> src1) → dst;

 if –31 < = src1< 0 then

SAT(src2 << abs(src1)) → dst;

if src1 > 31 then

(src2 >> 31) → dst;

if src1 < –31 then

SAT(src2 << 31) → dst

}

else nop

Saturation (shown as sat above) is performed when the value is shifted left under
the following conditions:

� If the shifted value is in the range –231 to 231 – 1, inclusive, then no satura-
tion is performed, and the result is truncated to 32 bits.

� If the shifted value is greater than 231 – 1, then the result is saturated to
231 – 1.

� If the shifted value is less than – 231, then the result is saturated to – 231.

Pipeline _____________________________

Pipeline

Stage E1 E2

Read src1,src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also SHL, SHRU, SSHL, SSHVL

SSHVR

5-223 TMS320C64x Fixed-Point Instruction Set

Example 1 SSHVR .M2 B2,B4,B5

Before instruction 2 cycles after instruction

B2 FFFF F000h B2 FFFF F000h

B4 FFFF FFE1h –31 B4 FFFF FFE1h –31

B5 XXXX XXXXh B5 8000 0000h Note:

Saturates to
most negative
value

Example 2 SSHVR .M1 A2,A4,A5

Before instruction 2 cycles after instruction

A2 F14C 2108h A2 F14C 2108h

A4 0000 0001Fh 31 A4 0000 0001Fh 31

A5 XXXX XXXXh A5 FFFF FFFFh

SSHVR

5-224

Example 3 SSHVR .M2 B12, B24, B25

Before instruction 2 cycles after instruction

B12 187A 65FCh B12 187A 65FCh

B24 FFFF FFFFh –1 B24 FFFF FFFFh –1

B25 XXXX XXXXh B25 30F4 CBF8h

STDW

5-225 TMS320C64x Fixed-Point Instruction Set

Store Double WordSTDW

Syntax STDW (.unit) src,*mem
.unit = .D1, .D2

Opcode map field used... For operand type... Unit

srcd
baseR
offset

ullong
uint
uint

.D1, .D2,

srcd
baseR
offset

ullong
uint
ucst5

.D1 .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offset mode r y 1 0 0 0 1 s p

3 1 5 5 5 4 1 1 3 2 1 1

Description The STDW instruction stores a 64-bit quantity to memory from a 64-bit register,
srcd. The table below describes the addressing generator options. Alignment
to a 64-bit boundary is required. The effective memory address is formed from
a base address register (baseR) and an optional offset that is either a register
(offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given, the as-
sembler assigns an offset of zero.

Both offsetR and baseR must be in the same register file, and on the same
side, as the .D unit used. The y bit in the opcode determines the .D unit and
register file used: y = 0 selects the .D1 unit and baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file.

The offsetR/ucst5 is scaled by a left shift of 3 bits. After scaling, offsetR/ucst5
is added to, or subtracted from, baseR. For the pre-increment, pre-decrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For post-increment or
post-decrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed from memory.

The addressing arithmetic that performs the additions and subtractions defaults
to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed
to circular mode by writing the appropriate value to the AMR.

STDW

5-226

The srcd pair can be in either register file, regardless of the .D unit or baseR or
offsetR used. The s bit determines which file srcd will be loaded from: s = 0 indi-
cates srcd will be in the A register file and s = 1 indicates srcd will be in the B regis-
ter file. r is always zero.

Table 5–11. STDW Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Assembler Notes When no bracketed register or constant is specified, the assembler defaults
increments and decrements to 1 and offsets to 0. Stores that do no modifica-
tion to the baseR can use the assembler syntax *R. Square brackets, [], indi-
cate that the ucst5 offset is left-shifted by 3 for doubleword stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-
scaled, constant offset. The assember right shifts the constant by 3 bits for
double word stores before using it for the ucst5 field. After scaling by the STDW
instruction, this results in the same constant offset as the assembler source
if the least significant three bits are zeros.

For example, STDW (.unit) src, *+baseR (16) represents an offset of 16 bytes
(2 double words), and the assembler writes out the instruction with ucst5 = 2.
STDW (.unit) src, *+baseR [16] represents an offset of 16 double words, or
128 bytes, and the assembler writes out the instruction with ucst5 = 16.

STDW

5-227 TMS320C64x Fixed-Point Instruction Set

Either brackets or parentheses must be typed around the specified offset if the
optional offset parameter is used. The register pair syntax always places the
odd-numbered register first, a colon, followed by the even-numbered register
(that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Execution if (cond) {

src → mem

}

else nop

Pipeline _________________________________

Pipeline

Stage E1

Read baseR, offsetR, srcd

Written baseR

Unit in use .D

Instruction Type Store

Delay Slots 0

See Also LDDW, STW

Example 1 STDW .D1 A3:A2,*A0++

Before instruction 1 cycle after instruction

A0 0000 1000h A0 0000 1008h

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 A1 76 3B 28 60 41 AD 65

STDW

5-228

Example 2 STDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1004h A0 0000 100Ch

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 100D 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 00 A1 76 3B 28 60 41 AD 65 00

STNDW

5-229 TMS320C64x Fixed-Point Instruction Set

Store Non-Aligned Double WordSTNDW

Syntax STNDW (.unit) src,*mem
.unit = .D1, .D2

Opcode map field used... For operand type... Unit

srcd
baseR
offset

ullong
uint
uint

.D1, .D2

srcd
baseR
offset

ullong
uint
ucst5

.D1, .D2

Opcode

31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst sc baseR offset mode r y 1 1 1 0 1 s p

3 1 4 1 5 5 4 1 1 3 2 1 1

Description The STNDW instruction stores a 64-bit quantity to memory from a 64-bit register
pair, srcd. The table below describes the addressing generator options. The
STNDW instruction may write a 64-bit value to any byte boundary. Thus align-
ment to a 64-bit boundary is not required. The effective memory address is
formed from a base address register (baseR) and an optional offset that is either
a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side
as the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register file,
and y = 1 selects the .D2 unit and baseR and offsetR from the B register file.

The STNDW instruction suppports both scaled offsets and non-scaled offsets.
The sc field is used to indicate whether the offsetR/ucst5 is scaled or not. If sc
is 1 (scaled), the offsetR/ucst5 is shifted left 3 bits before adding or subtracting
from the baseR. If sc is 0 (non-scaled), the offsetR/ucst5 is not shifted before
adding to or subtracting from the baseR. For the pre-increment, pre-decrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For post-increment or post-
decrement addressing, the value of baseR before the addition or subtraction is
the address to be accessed from memory.

The addressing arithmetic that performs the additions and subtractions defaults
to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed
to circular mode by writing the appropriate value to the AMR.

STNDW

5-230

The srcd pair can be in either register file, regardless of the .D unit or baseR or
offsetR used. The s bit determines which file srcd will be loaded from: s = 0
indicates srcd will be in the A register file and s = 1 indicates srcd will be in the
B register file. r is always zero.

Table 5–12. STNDW Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Note:

No other memory access may be issued in parallel with a non-aligned
memory access. The other .D unit can be used in parallel, as long as it is not
performing a memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults
increments and decrements to 1, and offsets to 0. Loads that do no modifica-
tion to the baseR can use the assembler syntax *R. Square brackets, [], indi-
cate that the ucst5 offset is left-shifted by 3 for double word stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-
scaled offset.

For example, STNDW (.unit) src, *+baseR (12) represents an offset of 12 bytes
and the assembler writes out the instruction with offsetC = 12 and sc = 0.

STNDW

5-231 TMS320C64x Fixed-Point Instruction Set

STNDW (.unit) src, *+baseR [16] represents an offset of 16 double words, or
128 bytes, and the assembler writes out the instruction with offsetC = 16 and
sc = 1.

Either brackets or parentheses must be typed around the specified offset if the
optional offset parameter is used.

Execution if (cond) {

src → mem

}

else nop

Pipeline ___

Pipeline

Stage E1 E2 E3

Read baseR, offsetR, srcd

Written baseR

Unit in use .D

__

Instruction Type Store

Delay Slots 0

See Also LDNW, LDNDW, STNW

Example 1 STNDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1001h A0 0000 1009h

A3 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before
Store

00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 60 41 AD 65 00

STNDW

5-232

Example 2 STNDW .D1 A3:A2, *A0++

Before instruction 1 cycle after instruction

A0 0000 1003h A0 0000 100Bh

A3:A2 A176 3B28h 6041 AD65h A3:A2 A176 3B28h 6041 AD65h

Byte Memory Address 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 60 41 AD 65 00 00 00

STNW

5-233 TMS320C64x Fixed-Point Instruction Set

Store Non-Aligned WordSTNW

Syntax STNW (.unit) src,*mem
.unit = .D1, .D2

Opcode map field used... For operand type... Unit

src
baseR
offset

uint
uint
uint

.D1, .D2

src
baseR
offset

uint
uint
ucst5

.D1, .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0

creg z dst baseR offset mode r y 1 0 1 0 1 s p

3 1 5 5 5 4 1 1 3 2 1 1

Description The STNW instruction stores a 32-bit quantity to memory from a 32-bit register,
src. The table below describes the addressing generator options. The STNW
instruction may write a 32-bit value to any byte boundary. Thus alignment to a
32-bit boundary is not required. The effective memory address is formed from
a base address register (baseR),and an optional offset that is either a register
(offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file, and on the same
side, as the .D unit used. The y bit in the opcode determines the .D unit and
register file used: y = 0 selects the .D1 unit and baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file.

The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5
is added to, or subtracted from, baseR. For the pre-increment, pre-decrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For post-increment or
post-decrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed from memory.

The addressing arithmetic that performs the additions and subtractions defaults
to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed
to circular mode by writing the appropriate value to the AMR.

STNW

5-234

The src can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file src will be loaded from: s = 0 indicates src
will be in the A register file and s = 1 indicates src will be in the B register file.
is always zero.

Table 5–13. STNW Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Note:

No other memory access may be issued in parallel with a non-aligned
memory access. The other .D unit can be used in parallel as long as it is not
performing memory access.

Assembler Notes When no bracketed register or constant is specified, the assembler defaults
increments and decrements to 1 and offsets to 0. Loads that do no modification
to the baseR can use the assembler syntax *R. Square brackets, [], indicate
that the ucst5 offset is left-shifted by 2 for word stores.

Parentheses, (), can be used to tell the assembler that the offset is a non-
scaled, constant offset. The assember right shifts the constant by 2 bits for
word stores before using it for the ucst5 field. After scaling by the STNW in-

STNW

5-235 TMS320C64x Fixed-Point Instruction Set

struction, this results in the same constant offset as the assembler source if
the least significant two bits are zeros.

For example, STNW (.unit) src,*+baseR (12) represents an offset of 12 bytes
(3 words), and the assembler writes out the instruction with ucst5 = 3.

STNW (.unit) src,*+baseR [12] represents an offset of 12 words, or 48 bytes,
and the assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the
optional offset parameter is used.

Execution if (cond) {

 src → mem

 }

else nop

Pipeline __

Pipeline

Stage E1 E2 E3

__

Read baseR, offsetR, srcd

Written baseR

Unit in use .D

__

Instruction Type Store

Delay Slots 0

See Also LDNW, LDNDW, STNDW

STNW

5-236

Example 1 STNW .D1 A3, *A0++

Before instruction 1 cycle after instruction

A0 0000 1001h A0 0000 1005h

A3 A176 3B28h A3 A176 3B28h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00

Data Value After Store 00 00 00 A1 76 3B 28 00

Example 2 STNW .D1 A3, *A0++

Before instruction 1 cycle after instruction

A0 0000 1003h A0 0000 1007h

A3 A176 3B28h A3 A176 3B28h

Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000

Data Value Before Store 00 00 00 00 00 00 00 00

Data Value After Store 00 A1 76 3B 28 00 00 00

SUB2

5-237 TMS320C64x Fixed-Point Instruction Set

Two 16-Bit Integer Subtractions on Upper and Lower Register HalvesSUB2

Syntax SUB2 (.unit) src1,src2, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i2
xi2
i2

.L1, .L2 0000100

src1
src2
dst

i2
xi2
i2

.S1, .S2 010001

src1
src2
dst

i2
xi2
i2

.D1, .D2 0101

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

 .D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

Description In the SUB2 instruction, the upper and lower halves of src2 are subtracted from
the upper and lower halves of src1 and the result is placed in dst. Any borrow
from the lower-half subtraction does not affect the upper-half subtraction. Spe-
cifically, the upper-half of src2 is subtracted from the upper-half of src1 and

SUB2

5-238

placed in the upper-half of dst. The lower-half of src2 is subtracted from the
lower-half of src1 and placed in the lower-half of dst.

This is the same SUB2 instruction found on the C62, but with the added flexibil-
ity of being able to perform this instruction on the .L and .D units as well as the
.S unit.

31 16 15 0

a_hi a_lo src1

SUB2

b_hi b_lo src2

31 16 15 0

a_hi–b_hi a_lo–b_lo dst

Note:

Unlike the SUB instruction, the argument ordering on the .D unit form of .S2
is consistent with the argument ordering for the .L and .S unit forms.

Execution if (cond) {

(lsb16(src1) – lsb16(src2)) → lsb16(dst);

(msb16(src1) – msb16(src2)) → msb16(dst);

 }

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L,.S,.D

SUB2

5-239 TMS320C64x Fixed-Point Instruction Set

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SUB, SUB4

Example 1 SUB2 .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208

A4 1105 6980h 4357 27008 A4 1105 6980h 4357 27008

A5 XXXX XXXXh A5 0000 04B0h 0 1200

Example 2 SUB2 .D2 B2, B8, B15

Before instruction 1 cycle after instruction

B2 F23A 3789h –3526 14217 B2 F23A 3789h –3526 14217

B8 04B8 6732h 1208 26418 B8 04B8 6732h 1208 26418

B15 XXXX XXXXh B15 ED82 D057h –4734 –12201

SUB4

5-240

Subtract Without Saturation, Signed Packed 8-BitSUB4

Syntax SUB4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

i4
xi4
i4

.L1, .L2 1100110

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The SUB4 instruction performs 2s-complement subtraction between packed
8-bit quantities. The values in src1 and src2 are treated as packed 8-bit quanti-
ties, and the results are written into dst in a packed 8-bit format.

For each pair of 8-bit quantities in src1 and src2, the difference between the
8-bit value from src1 and the 8-bit value from src2 is calculated to produce an
8-bit result. The result is placed in the corresponding position in dst.

Specifically, the difference between src1 byte0 and src2 byte0 is placed in
byte0 of dst. The difference between src1 byte1 and src2 byte1 is placed in
byte1 of dst. The difference between src1 byte2 and src2 byte2 is placed in
byte2 of dst. The difference between src1 byte3 and src2 byte3 is placed in
byte3 of dst.

No saturation is performed.

31 24 23 16 15 8 7 0

3 2 1 0 1a_3 a_2 a_1 a_0 src1

SUB4SUB4

b 3 b 2 b 1 b 0 2b_3 b_2 b_1 b_0 src2

31 24 23 16 15 8 7 0

a_3–b_3 a_2–b_2 a_1–b_1 a_0–b_0 dst

SUB4

5-241 TMS320C64x Fixed-Point Instruction Set

Execution if (cond) {

(byte0(src1) – byte0(src2)) → byte0(dst);

(byte1(src1) – byte1(src2)) → byte1(dst);

(byte2(src1) – byte2(src2)) → byte2(dst);

(byte3(src1) – byte3(src2)) → byte3(dst);

 }

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD4, SUB, SUB2

Example SUB4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah A2 37 89 F2 3Ah

A8 04 B8 49 75h A8 04 B8 49 75h

A9 XXXX XXXXh A9 33 D1 A9 C5h

SUBABS4

5-242

Subtract With Absolute Value, Unsigned Packed 8-BitSUBABS4

Syntax SUBABS4 (.unit) src1,src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

u4
xu4
u4

.L1, .L2 1011010

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

Description The SUBABS4 instruction calculates the absolute value of the differences be-
tween the packed 8-bit data contained in the source registers. The values in
src1 and src2 are treated as unsigned, packed 8-bit quantities. The result is
written into dst in an unsigned, packed 8-bit format.

For each pair of unsigned 8-bit values in src1 and src2, the absolute value of
the difference is calculated. This result is then placed in the corresponding
position in dst.

Specifically, the absolute value of the difference between src1 byte0 and src2
byte0 is placed in byte0 of dst. The absolute value of the difference between
src1 byte1 and src2 byte1 is placed in byte1 of dst. The absolute value of the
difference between src1 byte2 and src2 byte2 is placed in byte2 of dst. And the
absolute value of the difference between src1 byte3 and src2 byte3 is placed
in byte3 of dst.

SUBABS4

5-243 TMS320C64x Fixed-Point Instruction Set

31 24 23 16 15 8 7 0

3 2 1 0 1ua_3 ua_2 ua_1 ua_0 src1

SUBABS4SUBABS4

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

31 24 23 16 15 8 7 0

ABS(ua_3–ub_3) ABS(ua_2–ub_2) ABS(ua_1–ub_1) ABS(ua_0–ub_0) dst

The SUBABS4 instruction aids in motion-estimation algorithms, and other al-
gorithms, that compute the “best match” between two sets of 8-bit quantities.

Execution if (cond) {

ABS(ubyte0(src1) – ubyte0(src2)) → ubyte0(dst);

ABS(ubyte1(src1) – ubyte1(src2)) → ubyte1(dst);

ABS (ubyte2(src1) – ubyte2(src2)) → ubyte2(dst);

ABS (ubyte3(src1) – ubyte3(src2)) → ubyte3(dst);

 }

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ABS, SUB, SUB4

SUBABS4

5-244

Example SUBABS4 .L1 A2, A8, A9

Before instruction 1 cycle after instruction

A2 37 89 F2 3Ah 55 137 242 58 A2 37 89 F2 3Ah 55 137 242 58

unsigned unsigned

A8 04 B8 49 75h 4 184 73 117 A8 04 B8 49 75h 4 184 73 117

unsigned unsigned

A9 XXXX XXXXh A9 33 2F A9 3Bh 51 47 169 59

unsigned

SWAP2

5-245 TMS320C64x Fixed-Point Instruction Set

Swap Bytes in Each Half-Word (Pseudo-Operation)SWAP2

Syntax SWAP2 (.unit) src2, dst
.unit = .L1, .L2 or .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src2
dst
src2
dst

s2
s2
s2
s2

.L1, .L2

.S1, .S2

0011011

010000

Opcode See PACKLH2 instruction.

Description The SWAP2 is a pseudo-operation that takes the lower half-word from src2
and places it in the upper half-word of dst, while the upper-half word from src2
is placed in the lower half-word of dst.

31 16 15 0

b_hi b_lo src2

SWAP2SWAP2

b_lo b_hi dst

The SWAP2 instruction can be used in conjunction with the SWAP4 instruction
to change the byte ordering (and therefore, the endianess) of 32-bit data.

Execution if (cond) {

msb16(src2) → lsb16(dst);

lsb16(src2) → msb16(dst);

 }

else nop

SWAP2

5-246

Pipeline _________________________

Pipeline

Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 SWAP2 .L1 A2,A9

Before instruction 1 cycle after instruction

A2 3789 F23Ah 14217 –3526 A2 3789 F23Ah 14217 –3526

A9 XXXX XXXXh A9 F23A 3789h –3526 14217

Example 2 SWAP2 .S2 B2,B12

Before instruction 1 cycle after instruction

B2 0124 2451h 292 9297 B2 0124 2451h 292 9297

B12 XXXX XXXXh B12 2451 0124h 9297 292

SWAP4

5-247 TMS320C64x Fixed-Point Instruction Set

Swap Bytes in Each Half-Word SWAP4

Syntax SWAP4 (.unit) src2, dst
.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xu4
u4

.L1, .L2 00001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 10 1 1

Description The SWAP4 instruction exchanges pairs of bytes within each half-word
of src2, placing the result in dst. The values in src2 are treated as unsigned,
packed 8-bit values.

Specifically the upper byte in the upper half-word is placed in the lower byte
in the upper halfword, while the lower byte of the upper half-word is placed in
the upper byte of the upper half-word. Also the upper byte in the lower half-
word is placed in the lower byte of the lower half-word, while the lower byte in
the lower half-word is placed in the upper byte of the lower half word.

31 24 23 16 15 8 7 0

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

SWAP4SWAP4

b 2 b 3 b 0 b 1 d tub_2 ub_3 ub_0 ub_1 dst

By itself, this instruction changes the ordering of bytes within half words. This
effectively changes the endianess of 16-bit data packed in 32-bit words. The
endianess of full 32-bit quantities can be changes by using the SWAP4 instruc-
tion in conjunction with the SWAP2 instruction.

SWAP4

5-248

Execution if (cond) {

ubyte0(src2) → ubyte1(dst);

 ubyte1(src2) → ubyte0(dst);

ubyte2(src2) → ubyte3(dst);

ubyte3(src2) → ubyte2(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also SWAP2

Example SWAP4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 XXXX XXXXh A2 52 9E 30 6Eh

UNPKHU4

5-249 TMS320C64x Fixed-Point Instruction Set

Unpack High Unsigned Packed 8-Bit to Unsigned Packed 16-BitUNPKHU4

Syntax UNPKHU4 (.unit) src2, dst
.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xu4
 u2

.L1, .L2 00011

src2
dst

 xu4
 u2

.S1, .S2 00011

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 10 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 10 1 1

Description The UNPKHU4 instruction moves the two most significant bytes of src2 into
the two low bytes of the two half-words of dst.

Specifically the upper byte in the upper half-word is placed in the lower byte
in the upper halfword, while the lower byte of the upper half-word is placed in
the lower byte of the lower half-word. The src2 bytes are zero-extended when
unpacked, filling the two high bytes of the two half-words of dst with zeros.

31 24 23 16 15 8 7 0

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

UNPKHU4UNPKHU4

00000000 b 3 00000000 b 2 d t00000000 ub_3 00000000 ub_2 dst

UNPKHU4

5-250

Execution if (cond) {

ubyte3(src2) → ubyte2(dst);

 0 → ubyte3(dst);

ubyte2(src2) → ubyte0(dst);

 0 → ubyte1(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single cycle

Delay Slots 0

See Also UNPKLU4

Example 1 UNPKHU4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 XXXX XXXXh A2 00 9E 00 52h

Example 2 UNPKHU4 .L2 B17,B18

Before instruction 1 cycle after instruction

B17 11 05 69 34h B17 11 05 69 34h

B18 XXXX XXXXh B18 00 11 00 05h

UNPKLU4

5-251 TMS320C64x Fixed-Point Instruction Set

Unpack Low Unsigned Packed 8-Bit to Unsigned Packed 16-BitUNPKLU4

Syntax UNPKLU4 (.unit) src2, dst
.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xu4
u2

.L1, .L2 00010

src2
dst

xu4
u2

.S1, .S2 00010

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 10 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 10 1 1

Description The UNPKLU4 instruction moves the two least significant bytes of src2 into the
two low bytes of the two half-words of dst.

Specifically the upper byte in the lower half-word is placed in the lower byte
in the upper halfword, while the lower byte of the lower half-word is kept in the
lower byte of the lower half-word. The src2 bytes are zero-extended when
unpacked, filling the two high bytes of the two half-words of dst with zeros.

31 24 23 16 15 8 7 0

b 3 b 2 b 1 b 0 2ub_3 ub_2 ub_1 ub_0 src2

UNPKLU4UNPKLU4

00000000 b 1 00000000 b 0 d t00000000 ub_1 00000000 ub_0 dst

UNPKLU4

5-252

Execution if (cond) {

ubyte0(src2) → ubyte0(dst);

 0 → ubyte1(dst);

ubyte1(src2) → ubyte2(dst);

 0 → ubyte3(dst);

}

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src2

Written dst

Unit in use .L, .S

Instruction Type Single cycle

Delay Slots 0

See Also UNPKHU4

Example 1 UNPKLU4 .L1 A1,A2

Before instruction 1 cycle after instruction

A1 9E 52 6E 30h A1 9E 52 6E 30h

A2 XXXX XXXXh A2 00 6E 00 30h

UNPKLU4

5-253 TMS320C64x Fixed-Point Instruction Set

Example 2 UNPKLU4 .L2 B17,B18

Before instruction 1 cycle after instruction

B17 11 05 69 34h B17 11 05 69 34h

B18 XXXX XXXXh B18 00 69 00 34h

XOR

5-254

Bitwise XORXOR

Syntax XOR (.unit) src1, src2, dst
.unit = .L1, .L2, .S1, .S2, .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xint
uint

.L1, .L2 1101111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1101110

src1
src2
dst

uint
xunit
uint

.S1, .S2 001011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 001010

src
src2
dst

uint
xuint
uint

.D1, .D2 1110

src1
src2
dst

scst5
xuint
uint

.D1, .D2 1111

Opcode

.L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 1 0 s p

3 1 5 5 5 1 7 3 1 1

.S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 0 0 0 s p

3 1 5 5 5 1 6 4 1 1

.D unit

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst5 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 2 4 4 1 1

XOR

5-255 TMS320C64x Fixed-Point Instruction Set

Description In the XOR instruction, a bitwise exclusive OR is performed between src1
and src2. The result is placed in dst. The scst5 operands are sign extended
to 32 bits. This is the same XOR instruction that is found on the C62x, but with
the added flexibility of being able to perform this operation on the .D unit as well
as the .L and .S units.

Execution if (cond) src1 XOR src2 → dst

else nop

Pipeline _________________________

Pipeline

Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single cycle

Delay Slots 0

See Also AND, ANDN, OR

Example 1 XOR .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 0721 325Ah A3 0721 325Ah

A4 0019 0F12h A4 0019 0F12h

A5 XXXX XXXXh A5 0738 3D48h

XOR

5-256

Example 2 XOR .D2 B1,0dh,B8

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B8 XXXX XXXXh B8 0000 102Eh

XPND2

5-257 TMS320C64x Fixed-Point Instruction Set

Expand Bits to Packed 16-Bit MasksXPND2

Syntax XPND2 (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

 xuint
 uint

.M1, .M2 11001

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The XPND2 instruction reads the two least-significant bits of src2 and expands
them into two half-word masks written to dst. Bit 1 of src2 is replicated and
placed in the upper half-word of dst. Bit 0 of src2 is replicated and placed in
the lower half-word of dst. Bits 2 through 31 of src2 are ignored.

31 24 23 16 15 8 7 0

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX10 2XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX10 src2

31 16 15 8 7 0

11111111 11111111 00000000 00000000 d t11111111 11111111 00000000 00000000 dst

The XPND2 instruction is useful, when combined with the output of CMPGT2
or CMPEQ2, for generating a mask that corresponds to the individual half-
word positions that were compared. That mask may then be used with ANDN,
AND or OR instructions to perform other operations like compositing. This is
an example:

CMPGT2 .S1 A3, A4, A5 ; Compare two registers, both upper and
 ; lower halves.

XPND2 .M1 A5, A2 ; Expand the compare results into two 16-bit
 ;masks.

NOP

AND .D1 A2, A7, A8 ; Apply the mask to a value to create result.

XPND2

5-258

Because XPND2 only examines the two least-significant bits of src2, it is pos-
sible to store a large bit mask in a single 32-bit word and expand it using multi-
ple SHR and XPND2 pairs. This can be useful for expanding a packed 1-bit
per pixel bitmap into full 16-bit pixels in imaging applications.

Execution if (cond) {

XPND2(src2 & 1) → lsb16(dst);

XPND2(src2 & 2) → msb16(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also CMPEQ2, CMPGT2, XPND4

Example 1 XPND2 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA1h 2 LSBs are 01 A1 B174 6CA1h 2 LSBs are 01

A2 XXXX XXXXh A2 0000 FFFFh

XPND2

5-259 TMS320C64x Fixed-Point Instruction Set

Example 2 XPND2 .M2 B1,B2

Before instruction 2 cycles after instruction

B1 0000 0003h 2 LSBs are 11 B1 0000 0003h 2 LSBs are 11

B2 XXXX XXXXh B2 FFFF FFFFh

XPND4

5-260

Expand Bits to Packed 8-Bit MasksXPND4

Syntax XPND4 (.unit) src2, dst
.unit = .M1, .M2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.M1, .M2 11000

Opcode

31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z dst src op x 0 0 0 0 1 1 1 1 0 0 s p

3 1 5 5 5 1 10 1 1

Description The XPND4 instruction reads the four least-significant bits of src2 and
expands them into four-byte masks written to dst. Bit 0 of src2 is replicated and
placed in the least significant byte of dst. Bit 1 of src2 is replicated and placed
in second least significant byte of dst. Bit 2 of src2 is replicated and placed in
second most significant byte of dst. Bit 3 of src2 is replicated and placed in
most significant byte of dst. Bits 4 through 31 of src2 are ignored.

31 24 23 16 15 8 7 0

XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001 2XXXXXXXX XXXXXXXX XXXXXXXX XXXX1001 src2

31 24 23 16 15 8 7 0

11111111 00000000 00000000 11111111 dst

XPND4

5-261 TMS320C64x Fixed-Point Instruction Set

The XPND4 instruction is useful, when combined with the output of CMPGT4
or CMPEQ4, for generating a mask that corresponds to the individual byte
positions that were compared. That mask may then be used with ANDN, AND
or OR instructions to perform other operations like compositing. This is an exam-
ple:

CMPEQ4 .S1 A3, A4, A5 ; Compare two 32-bit registers all four bytes.

XPND4 .M1 A5, A2 ; Expand the compare results into four 8-bit
 ; masks.

NOP

AND .D1 A2, A7, A8 ; Apply the mask to a value to create result.

Because XPND4 only examines the four least-significant bits of src2, it is pos-
sible to store a large bit mask in a single 32-bit word and expand it using multi-
ple SHR and XPND4 pairs. This can be useful for expanding a packed, 1-bit
per pixel bitmap into full 8-bit pixels in imaging applications.

Execution if (cond) {

XPND4(src2 & 1) → byte0(dst);

XPND4(src2 & 2) → byte1(dst);

XPND4(src2 & 4) →byte2(dst);

XPND4(src2 & 8) →byte3(dst);

}

else nop

Pipeline __________________________

Pipeline

Stage E1 E2

Read src2

Written dst

Unit in use .M

Instruction Type Two-cycle

Delay Slots 1

See Also CMPEQ4, CMPGTU4, XPND2

XPND4

5-262

Example 1 XPND4 .M1 A1,A2

Before instruction 2 cycles after instruction

A1 B174 6CA4h 4 LSBs are 0100 A1 B174 6CA4h 4 LSBs are 0100

A2 XXXX XXXXh A2 00 FF 00 00h

Example 2 XPND4 .M2 B1,B2

Before instruction 2 cycles after instruction

B1 0000 000Ah 4 LSBs are 1010 B1 00 00 00 0Ah 4 LSBs are 1010

B12 XXXX XXXXh B2 FF 00 FF 00h

6-1 August 1996

TMS320C62x/C64x Pipeline

The TMS320C62x /TMS320C64x DSP pipeline provides flexibility to sim-
plify programming and improve performance. These two factors provide this
flexibility:
1) Control of the pipeline is simplified by eliminating pipeline interlocks.
2) Increased pipelining eliminates traditional architectural bottlenecks in pro-

gram fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:
� The pipeline can dispatch eight parallel instructions every cycle.
� Parallel instructions proceed simultaneously through each pipeline

phase.
� Serial instructions proceed through the pipeline with a fixed relative phase

difference between instructions.
� Load and store addresses appear on the CPU boundary during the same

pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and de-
code, but require a varying number of execute phases. This chapter contains
a description of the number of execution phases for each type of instruction.
The C62x /C64x generally requires fewer execution phases than the
C67x because the C62x/C64x executes only fixed-point instructions.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully opti-
mizing a program and taking full advantage of the pipeline, see the
TMS320C6000 Programmer’s Guide (SPRU198).

Topic Page

6.1 Pipeline Operation Overview 6-2.

6.2 Pipeline Execution of Instruction Types 6-14.

6.3 Performance Considerations 6-21.

Chapter 6

Pipeline Operation Overview

 6-2

6.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the C62x/C64x instruction set flow through the fetch, decode,
and execute stages of the pipeline. The fetch stage of the pipeline has four
phases for all instructions, and the decode stage has two phases for all instruc-
tions. The execute stage of the pipeline requires a varying number of phases,
depending on the type of instruction. The stages of the C62x/C64x pipeline are
shown in Figure 6–1.

Figure 6–1. Fixed-Point Pipeline Stages

Fetch Decode Execute

6.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The C62x/C64x uses a fetch packet (FP) of eight instructions. All eight of the
instructions proceed through fetch processing together, through the PG, PS,
PW, and PR phases. Figure 6–2(a) shows the fetch phases in sequential order
from left to right. Figure 6–2(b) is a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is gener-
ated in the CPU. In the PS phase, the program address is sent to memory. In
the PW phase, a memory read occurs. Finally, in the PR phase, the fetch pack-
et is received at the CPU. Figure 6–2(c) shows fetch packets flowing through
the phases of the fetch stage of the pipeline. In Figure 6–2(c), the first fetch
packet (in PR) is made up of four execute packets, and the second and third
fetch packets (in PW and PS) contain two execute packets each. The last fetch
packet (in PG) contains a single execute packet of eight instructions.

Pipeline Operation Overview

6-3TMS320C62x/C64x Pipeline

Figure 6–2. Fetch Phases of the Pipeline

PRPWPSPG

PW

Memory

PS

PR

PG

Registers

units
Functional

(a) (b)

CPU

PR

PW

PS

PG

256

MVKLDWLDWSHLADDMVKLDWLDW

NOP

MVK

MV

BSADD

SMPYH

SADD

SHR

SMPY

SHR

SMPYH

LDW

LDW

LDW

LDW

MVKBSMPYSMPYHMVMVKLHLDWLDW

Fetch

SMPYH

Decode

(c)

Pipeline Operation Overview

 6-4

6.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel in-
structions. During the DP phase, the instructions in an execute packet are as-
signed to the appropriate functional units. In the DC phase, the the source reg-
isters, destination registers, and associated paths are decoded for the execu-
tion of the instructions in the functional units.

Figure 6–3(a) shows the decode phases in sequential order from left to right.
Figure 6–3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 6–3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232

NOP†ADDKSTWSTWADD

DCMPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.

Pipeline Operation Overview

6-5TMS320C62x/C64x Pipeline

6.1.3 Execute

The execute portion of the fixed-point pipeline is subdivided into five phases
(E1–E5). Different types of instructions require different numbers of these
phases to complete their execution. These phases of the pipeline play an im-
portant role in your understanding the device state at CPU cycle boundaries.
The execution of different types of instructions in the pipeline is described in
section 6.2, Pipeline Execution of Instruction Types. Figure 6–4(a) shows the
execute phases of the pipeline in sequential order from left to right.
Figure 6–4(b) and (c) show the portion of the functional block diagram in which
execution occurs on the C62x and C64x, respectively.

Pipeline Operation Overview

 6-6

Figure 6–4. Execute Phases of the Pipeline and Functional Block Diagram of the
TMS320C62x/C64x

E4E3E2E1 E5(a)

(b) C62x

Register file A Register file B

LD2LD1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

E1

.D1
STH

.D2
STH

Execute

ST2ST1

32 32

DA1 DA2

Pipeline Operation Overview

6-7TMS320C62x/C64x Pipeline

Figure 6–4.Execute Phases of the Pipeline and Functional Block Diagram of the
TMS320C62x/C64x (Continued)

64

29

Data address 2

(c) C64x

Register file A Register file B

LD2LD1
3232

Data address 1
L1 Data cache control

32

.L1
SADD

.S1
B

.M1
SMPY

568 71028 93031 012345678910

..
28293031

.L2
SADD

.S2
SUBSMPYH

.M2

E1

.D1
STH

.D2
STH

Execute

ST2
64

ST1

..

DA1 DA2

64
64

01234

6.1.4 Summary of Pipeline Operation

Figure 6–5 shows all the phases in each stage of the C62x/C64x pipeline in
sequential order, from left to right.

Figure 6–5. Fixed-Point Pipeline Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

Figure 6–6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 6–6. When the instructions from FP n
reach E1, the instructions in the execute packet from FPn +1 are being de-
coded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are each
in one of four phases of program fetch. See section 6.3, Performance Consid-
erations, on page 6-21 for additional detail on code flowing through the pipe-
line.

Pipeline Operation Overview

 6-8

Figure 6–6. Pipeline Operation: One Execute Packet per Fetch Packet

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle

ÁÁÁÁ
ÁÁÁÁ

Fetch
packet
ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ

2
ÁÁÁ
ÁÁÁ

3
ÁÁÁ
ÁÁÁ

4
ÁÁÁ
ÁÁÁ

5
ÁÁÁ
ÁÁÁ

6
ÁÁÁ
ÁÁÁ

7
ÁÁÁ
ÁÁÁ

8
ÁÁÁ
ÁÁÁ

9
ÁÁÁ
ÁÁÁ

10
ÁÁÁ
ÁÁÁ

11
ÁÁÁ
ÁÁÁ

12
ÁÁÁ
ÁÁÁ

13
ÁÁÁÁ
ÁÁÁÁ

n PG PS PW PR DP DC E1 E2 E3 E4 E5
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
n+1 ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5ÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
n+2 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5

ÁÁÁÁn+3 ÁÁÁÁÁÁÁÁÁPG PS PW PR DP DC E1 E2 E3 E4ÁÁÁÁ
ÁÁÁÁn+4

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁPG PS PW PR DP DC E1 E2 E3ÁÁÁÁ

ÁÁÁÁ
n+5 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2

ÁÁÁÁ
ÁÁÁÁ

n+6 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1

ÁÁÁÁ
ÁÁÁÁ

n+7 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC

ÁÁÁÁ
ÁÁÁÁ

n+8 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁÁn+9 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PRÁÁÁÁ
ÁÁÁÁ

n+10
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW

Table 6–1 summarizes the pipeline phases and what happens in each.

Table 6–1. Operations Occurring During Fixed-Point Pipeline Phases

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Stage

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Phase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Symbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

During This Phase

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Instruction
Type

Completed

Program
fetch

Program address
generate

PG The address of the fetch packet is determined.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Program address
send

ÁÁÁÁ
ÁÁÁÁ

PS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The address of the fetch packet is sent to
memory.

ÁÁÁÁÁ
ÁÁÁÁÁProgram wait PW A program memory access is performed.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Program data
receive

ÁÁÁÁ
ÁÁÁÁ

PR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The fetch packet is at the CPU boundary. ÁÁÁÁÁ
ÁÁÁÁÁProgram

decode
Dispatch DP The next execute packet in the fetch packet is de-

termined and sent to the appropriate functional
units to be decoded.ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁDecode

ÁÁÁÁ
ÁÁÁÁDC

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁInstructions are decoded in functional units.

ÁÁÁÁÁ
ÁÁÁÁÁ

Execute Execute 1 E1 For all instruction types, the conditions for the in-
structions are evaluated and operands are read.

For load and store instructions, address genera-
tion is performed and address modifications are
written to a register file.†

For branch instructions, branch fetch packet in
PG phase is affected.†

For single-cycle instructions, results are written
to a register file.†

Single cycle

Pipeline Operation Overview

6-9TMS320C62x/C64x Pipeline

Table 6–1. Operations Occurring During Fixed-Point Pipeline Phases (Continued)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁStage

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁPhase

ÁÁÁ
ÁÁÁ
ÁÁÁSymbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring This Phase

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type

CompletedÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Execute 2
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For load instructions, the address is sent to
memory. For store instructions, the address and
data are sent to memory.†

Single-cycle instructions that saturate results set
the SAT bit in the control status register (CSR) if
saturation occurs.†

For single 16 x 16 multiply instructions, results
are written to a register file.† For C64x multiply
unit non-multiply instructions, results are written
to a register file.�

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Multiply

Execute 3 E3 Data memory accesses are performed. Any mul-
tiply instruction that saturates results sets the
SAT bit in the control status register (CSR) if sat-
uration occurs.†

Store

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Execute 4 ÁÁÁ
ÁÁÁ
ÁÁÁ

E4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For load instructions, data is brought to the CPU
boundary.† For C64x multiply extensions, results
are written to a register file.§

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Multiply
Extensions

Execute 5 E5 For load instructions, data is written into a regis-
ter.†

Load

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write any results or have any pipeline operation after E1.

‡ Multiply unit, non-multiply instructions are AVG2, AVG4, BITC4, BITR, DEAL, ROT, SHFL, SSHVL, and SSHVR.
§ Multiply extensions include MPY2, MPY4, DOTPx2, DOTPU4, MPYHIx, MPYLIx, and MVD.

Pipeline Operation Overview

 6-10

Figure 6–7 shows a C62x functional block diagram laid out vertically by stages
of the pipeline.

Figure 6–7. Functional Block Diagram of TMS320C62x Based on Pipeline Phases

32 Data 2 32

DP

PR

PW

PS

PG

3232323232323232

256

SMPYHSMPYHLDWLDW

BSUBSMPY

SMPYH

SMPYH

SMPYH

SADDSADD

SADD

STH

LDW

STH

LDW

BSUBSMPYSMPYHSADDSADDSTHSTH

BSUBSMPYSMPYHSADDSADDSTHSTH

Register file A Register file B
Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

DCLDW SHRSMPYH MVLDWSMPYHSHR

32

E1
.L1

SADD
.S1
B

.D1.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
MVK

.D2
SMPYH

.M2

Fetch

Decode

Execute

SADD

SADD

SADD

SHR SHR

SHR SHR

DA 1

ST 1 LD 1 LD 2 ST 2

DA 2

Pipeline Operation Overview

6-11TMS320C62x/C64x Pipeline

Figure 6–8 shows a C64x functional block diagram laid out vertically by stages
of the pipeline. It is identical to Figure 6–7 except for the additional registers
and functional unit hardware that are not being used in the code example being
shown.

Figure 6–8. Functional Block Diagram of TMS320C64x Based on Pipeline Phases

29

DP

PR

PW

PS

PG

3232323232323232

256

SMPYHSMPYHLDWLDW

BSUBSMPY

SMPYH

SMPYH

SMPYH

SADDSADD

SADD

STH

LDW

STH

LDW

BSUBSMPYSMPYHSADDSADDSTHSTH

BSUBSMPYSMPYHSADDSADDSTHSTH

Register file A Register file BData 1

6464

3232
Data cache control

DCLDW SHRSMPYH MVLDWSMPYHSHR

32

E1
.L1

SADD
.S1
B

.D1.M1
SMPY

0135 4 268 71028 93031 012345628293031

.L2
SADD

.S2
MVK

.D2
SMPYH

.M2

Fetch

Decode

Execute

SADD

SADD

SADD

SHR SHR

SHR SHR

DA 1

ST 1 LD 1 LD 2

DA 2

64

78910

....

ST 2
64

Data 2

Pipeline Operation Overview

 6-12

The pipeline operation is based on CPU cycles. A CPU cycle is the period dur-
ing which a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the C62x/C64x. Figure 6–7 and Figure 6–8 show a full pipeline with a fetch
packet in every phase of fetch. One execute packet of eight instructions is be-
ing dispatched at the same time that a 7-instruction execute packet is in de-
code. The arrows between DP and DC correspond to the functional units iden-
tified in the code in Example 6–1.

Example 6–1. Execute Packet in Figure 6–7 and Figure 6–8

 SADD .L1 A2,A7,A2 ; E1 Phase
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| B .S1 LOOP1
|| MVK .S2 117,B1

 LDW .D2 *B4++,B3 ; DC Phase
|| LDW .D1 *A4++,A3
|| MV .L2X A1,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

LOOP1:

 STH .D1 A5,*A8++[2] ; DP, PW, and PG
Phases
|| STH .D2 B5,*B8++[2]
|| SADD .L1 A2,A7.A2
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| [B1] B .S1 LOOP1
|| [B1] SUB .S2 B1,1,B1

 LDW .D2 *B4++,B3 : PR and PS Phases
|| LDW .D1 *A4++,A3
|| SADD .L1 A0,A1,A1
|| SADD .L2 B10,B0,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

Pipeline Operation Overview

6-13TMS320C62x/C64x Pipeline

In the DC phase portion of Figure 6–7 and Figure 6–8, one box is empty be-
cause a NOP was the eighth instruction in the fetch packet in DC and no func-
tional unit is needed for a NOP. Finally, the figure shows six functional units
processing code during the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 6–7 and
Figure 6–8. The multiplexers used for the input operands to the functional
units are also shaded in the figure. The bold crosspaths are used by the MPY
instructions.

Most C62x/C64x instructions are single-cycle instructions, which means they
have only one execution phase (E1). A small number of instructions require
more than one execute phase. The types of instructions, each of which require
different numbers of execute phases, are described in section 6.2, Pipeline Ex-
ecution of Instruction Types.

Pipeline Execution of Instruction Types

 6-14

6.2 Pipeline Execution of Instruction Types

The pipeline operation of the C62x/C64x instructions can be categorized into
seven instruction types. Six of these are shown in Table 6–2 (NOP is not in-
cluded in the table), which is a mapping of operations occurring in each execu-
tion phase for the different instruction types. The delay slots associated with
each instruction type are listed in the bottom row.

Table 6–2. Execution Stage Length Description for Each Instruction Type
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Single Cycle

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16 X 16 Single
Multiply/
C64x .M Unit
 Non-Multiply

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Store

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

C64x
Multiply
Extensions

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Load

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Branch

Execution
phases

E1 Compute
 result
and write to
register

Read operands
and start
computations

Compute
address

Reads oper-
ands and
start com-
putations

Compute
address

Target-
code
in PG‡

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute result
and write to
register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Send ad-
dress and
data to
memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Send ad-
dress to
memory

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

E3 Access
memory

Access
memory

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Write results
to register

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Send data
back to CPU

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

E5 Write data
into register

Delay
slots

0 1 0†
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3 4† 5‡

† See sections 6.2.3 and 6.2.5 for more information on execution and delay slots for stores and loads.
‡ See section 6.2.6 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

The execution of instructions can be defined in terms of delay slots. A delay
slot is a CPU cycle that occurs after the first execution phase (E1) of an instruc-
tion. Results from instructions with delay slots are not available until the end
of the last delay slot. For example, a multiply instruction has one delay slot,
which means that one CPU cycle elapses before the results of the multiply are
available for use by a subsequent instruction. However, results are available

Pipeline Execution of Instruction Types

6-15TMS320C62x/C64x Pipeline

from other instructions finishing execution during the same CPU cycle in which
the multiply is in a delay slot.

6.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line. Figure 6–9 shows the fetch, decode, and execute phases of the pipeline
that single-cycle instructions use.

Figure 6–9. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 6–10 shows the single-cycle execution diagram. The operands are
read, the operation is performed, and the results are written to a register, all
during E1. Single-cycle instructions have no delay slots.

Figure 6–10. Single-Cycle Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.L, .S, .M,
or .D

E1

6.2.2 Two-Cycle Instructions and C64x Non-multiply .M Unit Operations

Multiply instructions use both the E1 and E2 phases of the pipeline to complete
their operations. Figure 6–11 shows the pipeline phases two-cycle instruc-
tions use.

Figure 6–11.Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot

Pipeline Execution of Instruction Types

 6-16

Figure 6–12 shows the operations occurring in the pipeline for a multiply. In the
E1 phase, the operands are read and the multiply begins. In the E2 phase, the
multiply finishes, and the result is written to the destination register. Multiply
instructions have one delay slot. This execution block diagram also applies to
the other C64x non-multiply .M unit operations.

Figure 6–12. Single 16 x 16 Multiply Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁRegister file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.M

E1

E2

6.2.3 Store Instructions

Store instructions require phases E1 through E3 to complete their operations.
Figure 6–13 shows the pipeline phases the store instructions use.

Figure 6–13. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3
A

dd
re

ss
m

od
ifi

ca
tio

n

Figure 6–14 shows the operations occurring in the pipeline phases for a store.
In the E1 phase, the address of the data to be stored is computed. In the E2
phase, the data and destination addresses are sent to data memory. In the E3
phase, a memory write is performed. The address modification is performed
in the E1 stage of the pipeline. Even though stores finish their execution in the
E3 phase of the pipeline, they have no delay slots.

Pipeline Execution of Instruction Types

6-17TMS320C62x/C64x Pipeline

Figure 6–14. Store Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

There is additional explanation of why stores have zero delay slots in sec-
tion 6.2.5.

Pipeline Execution of Instruction Types

 6-18

6.2.4 Extended Multiply Instructions

The extended multiply instructions use phases E1 – E4 to complete their op-
erations. Figure 6–15 shows the pipeline phases used by the extended multi-
ply instructions.

Figure 6–15. Extended Multiply Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4

3 delay slots

Figure 6–16 shows the operations occurring in the pipeline for the multiply ex-
tensions. In the E1 phase, the operands are read and the multiplies begin. In
the E4 phase, the multiplies finish, and the results are written to the destination
register. Extended multiply instructions have three delay slots.

Figure 6–16. Multiply Extensions Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register file

Write results

Functional
unit
.M

E4

6.2.5 Load Instructions

Data loads require all five of the pipeline execute phases to complete their op-
erations. Figure 6–17 shows the pipeline phases the load instructions use.

Figure 6–17. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
dd

re
ss

m
od

ifi
ca

tio
n

Pipeline Execution of Instruction Types

6-19TMS320C62x/C64x Pipeline

Figure 6–18 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Figure 6–18. Load Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary. Final-
ly, in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Because pointer
results are written to the register in E1, there are no delay slots associated with
the address modification.

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW .D1 *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.

Pipeline Execution of Instruction Types

 6-20

6.2.6 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code. Figure 6–19
shows the pipeline phases used by the branch instruction and branch target
code. The delay slots are shaded.

Figure 6–19. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

5 delay slots

PG PS PW PR DP DC E1

Figure 6–20 shows a branch execution block diagram. If a branch is in the E1
phase of the pipeline (in the .S2 unit in the figure), its branch target is in the
fetch packet that is in PG during that same cycle (shaded in the figure). Be-
cause the branch target has to wait until it reaches the E1 phase to begin exe-
cution, the branch takes five delay slots before the branch target code exe-
cutes.

Figure 6–20. Branch Execution Block Diagram

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DCLDWLDW

E1

.L1 .S1
MVK

.D1.M1
SMPY

.S2
B

.D2
SMPYH

.M2

Fetch

Decode

Execute

.L2

Performance Considerations

6-21TMS320C62x/C64x Pipeline

6.3 Performance Considerations
The C62x/C64x pipeline is most effective when it is kept as full as the algo-
rithms in the program allow it to be. It is useful to consider some situations that
can affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes seri-
ally with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 6.3.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is con-
sidered. The access of program and data memory is discussed, along with
memory stalls.

6.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Again referring to Figure 6–6 on page 6-8, pipeline operation is shown with
eight instructions in every fetch packet. Figure 6–21, however, shows the pipe-
line operation with a fetch packet that contains multiple execute packets. Code
for Figure 6–21 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D
|| instruction E

instruction F ; EP k + 2 FP n
|| instruction G
|| instruction H

instruction I ; EP k + 3 FP n + 1
|| instruction J
|| instruction K
|| instruction L
|| instruction M
|| instruction N
|| instruction O
|| instruction P

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.

Performance Considerations

 6-22

Figure 6–21. Pipeline Operation: Fetch Packets With Different Numbers of Execute
Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13
n k PG PS PW PR ÉÉÉ

ÉÉÉ
DP DC E1 E2 E3 E4 E5

n k+1 ÉÉDP DC E1 E2 E3 E4 E5

n k+2
ÉÉÉ
ÉÉÉ

DP DC E1 E2 E3 E4 E5

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3

n+3 k+5 PG PS stall PW PR DP DC E1 E2

n+4 k+6 PG PS PW PR DP DC E1

n+5 k+7 PG PS PW PR DP DC

n+6 k+8 PG PS PW PR DP

In Figure 6–21, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one exe-
cute packet (containing eight parallel instructions). The first fetch
packet (n) goes through the program fetch phases during cycles 1–4. During
these cycles, a program fetch phase is started for each of the fetch packets
that follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and de-
tects that there are three execute packets (k through k + 2) in fetch packet n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was re-
leased in cycle 8. The pipeline continues operation as shown with fetch pack-
ets n + 5 and n + 6 until another fetch packet containing multiple execution
packets enters the DP phase, or an interrupt occurs.

Performance Considerations

6-23TMS320C62x/C64x Pipeline

6.3.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY’s results
will be available for use by instructions in the next execute packet.

Figure 6–22 shows how a multicycle NOP can drive the execution of other in-
structions in the same execute packet. Figure 6–22(a) shows a NOP in an exe-
cute packet (in parallel) with other code. The results of the LD, ADD, and MPY
will all be available during the proper cycle for each instruction. Hence NOP
has no effect on the execute packet.

Figure 6–22(b) shows the replacement of the single-cycle NOP with a multi-
cycle NOP (NOP 5) in the same execute packet. The NOP 5 will cause no op-
eration to perform other than the operations from the instructions inside its ex-
ecute packet. The results of the LD, ADD, and MPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 6–22. Multicycle NOP in an Execute Packet

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD

(b)

Performance Considerations

 6-24

Figure 6–23 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch tar-
get begins execution five delay slots after the branch was issued.

Figure 6–23. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

�

�

�

�

�

Branch
EP7

See Figure 6–22(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 will force the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coin-
cide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it exe-
cutes.

Performance Considerations

6-25TMS320C62x/C64x Pipeline

6.3.3 Memory Considerations

The C62x/C64x has a memory configuration typical of a DSP, with program
memory in one physical space and data memory in another physical space.
Data loads and program fetches have the same operation in the pipeline, they
just use different phases to complete their operations. With both data loads
and program fetches, memory accesses are broken into multiple phases. This
enables the C62x/C64x to access memory at a high speed. These phases are
shown in Figure 6–24.

Figure 6–24. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the C62x/C64x
and perform the same types of operations (listed in Table 6–3) to accommo-
date those memories. Table 6–3 shows the operation of program fetches pipe-
line versus the operation of a data load.

Table 6–3. Program Memory Accesses Versus Data Load Accesses

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Program
Memory
Access
Phase

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data
Load

 Access
Phase

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Compute address ÁÁÁÁ
ÁÁÁÁ

PG ÁÁÁÁÁ
ÁÁÁÁÁ

E1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send address to memory
ÁÁÁÁ
ÁÁÁÁ

PS
ÁÁÁÁÁ
ÁÁÁÁÁ

E2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory read/write
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PW
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PR ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: send instruction to functional units
Data load: send data to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DP ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5

Depending on the type of memory and the time required to complete an ac-
cess, the pipeline may stall to ensure proper coordination of data and instruc-
tions. This is discussed in section 6.3.3.1, Memory Stalls.

Performance Considerations

 6-26

In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 6.3.3.2, Memory Bank Hits.

6.3.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory ac-
cess and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle, caus-
ing execution to take additional clock cycles to finish. The results of the pro-
gram execution are identical whether a stall occurs or not. Figure 6–25 illus-
trates this point.

Figure 6–25. Program and Data Memory Stalls

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Fetch
packet

(FP)

ÁÁ
ÁÁ
ÁÁ

1

ÁÁÁ
ÁÁÁ
ÁÁÁ

2

ÁÁÁ
ÁÁÁ
ÁÁÁ

3

ÁÁ
ÁÁ
ÁÁ

4

ÁÁÁ
ÁÁÁ
ÁÁÁ

5

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁ
ÁÁ
ÁÁ

7 8 9

ÁÁ
ÁÁ
ÁÁ

10

ÁÁÁ
ÁÁÁ
ÁÁÁ

11

ÁÁÁ
ÁÁÁ
ÁÁÁ

12

ÁÁ
ÁÁ
ÁÁ

13

ÁÁÁ
ÁÁÁ
ÁÁÁ

14

ÁÁ
ÁÁ
ÁÁ

15

ÁÁÁ
ÁÁÁ
ÁÁÁ

16
ÁÁÁÁ
ÁÁÁÁ

n PG PS PW PR DP DC E1 E2ÉÉÉ
ÉÉÉ

E3 E4 E5

ÁÁÁÁ
ÁÁÁÁ

n+1 ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁÁn+2 ÁÁÁÁÁPG PS PW PR DP Program DC E1 E2 E3ÁÁÁÁ
ÁÁÁÁ

n+3
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR memory stall DP DC Data E1 E2
ÁÁÁÁ
ÁÁÁÁ

n+4 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS
ÉÉ
ÉÉ

PW PR DP memory stall DC E1

ÁÁÁÁ
ÁÁÁÁ

n+5 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC

ÁÁÁÁ
ÁÁÁÁ

n+6 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁÁn+7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PRÁÁÁÁ
ÁÁÁÁ

n+8
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

PG PS PWÁÁÁÁ
ÁÁÁÁ

n+9 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS

ÁÁÁÁ
ÁÁÁÁ

n+10ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG

Performance Considerations

6-27TMS320C62x/C64x Pipeline

6.3.3.2 Memory Bank Hits

Most C62x devices use an interleaved memory bank scheme, as shown in
Figure 6–26. The C6211, C6711, and C64x devices use a two-level cache
memory scheme. Thus the example below does not pertain to these devices.
Each number in the diagram represents a byte address. A load byte (LDB) in-
struction from address 0 loads byte 0 in bank 0. A load halfword (LDH) from
address 0 loads the halfword value in bytes 0 and 1, which are also in bank 0.
An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Figure 6–26. 4-Bank Interleaved Memory

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are al-
lowed without any stall, as long as they do not access the same bank.

Consider the code in Example 6–2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank 0
on cycle i + 3 (in the E3 phase). See Table 6–4 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loads must access data from different banks (B4 address
would need to be in bank 1). For more information on programming topics, see
the TMS320C62x/C64x/C67x Programmer’s Guide.

Example 6–2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0

 6-28

Table 6–4. Loads in Pipeline From Example 6–2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 � E4 E5

LDW .D2
Bank 0

E1 E2 � E3 E4 E5

† Stall due to memory bank hit

For devices that have more than one memory space (see Figure 6–27), an ac-
cess to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

Figure 6–27. 4-Bank Interleaved Memory With Two Memory Spaces

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

8M + 6 8M + 78M + 58M + 48M + 2 8M + 38M + 18M

Memory
space 0

Memory
space 1

Bank 3Bank 2Bank 1Bank 0

The internal memory of the C62x/C64x family varies from device to device.
See the TMS320C6000 Peripherals Reference Guide to determine the
memory spaces in your particular device.

7-1 August 1996

TMS320C67x Pipeline

The TMS320C67x DSP pipeline provides flexibility to simplify programming
and improve performance. Two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through each pipeline
phase.

� Serial instructions proceed through the pipeline with a fixed relative phase
difference between instructions.

� Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and de-
code, but require a varying number of execute phases. This chapter contains
a description of the number of execution phases for each type of instruction.
The TMS320C67x generally has more execution phases than the
TMS320C62x DSP because it processes floating-point instructions.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully opti-
mizing a program and taking full advantage of the pipeline, see the
TMS320C6000 Programmer’s Guide (SPRU198).

Topic Page

7.1 Pipeline Operation Overview 7-2.

7.2 Pipeline Execution of Instruction Types 7-13.

7.3 Functional Unit Constraints 7-20.

7.4 Performance Considerations 7-52.

Chapter 7

Pipeline Operation Overview

 7-2

7.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the C67x instruction set flow through the fetch, decode, and
execute stages of the pipeline. The fetch stage of the pipeline has four phases
for all instructions, and the decode stage has two phases for all instructions.
The execute stage of the pipeline requires a varying number of phases, de-
pending on the type of instruction. The stages of the C67x pipeline are shown
in Figure 7–1.

Figure 7–1. Floating-Point Pipeline Stages

Fetch ExecuteDecode

7.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The C67x uses a fetch packet (FP) of eight instructions. All eight of the instruc-
tions proceed through fetch processing together, through the PG, PS, PW, and
PR phases. Figure 7–2(a) shows the fetch phases in sequential order from left
to right. Figure 7–2(b) shows a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is gener-
ated in the CPU. In the PS phase, the program address is sent to memory. In
the PW phase, a memory read occurs.

Finally, in the PR phase, the fetch packet is received at the CPU. Figure 7–2(c)
shows fetch packets flowing through the phases of the fetch stage of the pipe-
line. In Figure 7–2(c), the first fetch packet (in PR) is made up of four execute
packets, and the second and third fetch packets (in PW and PS) contain two
execute packets each. The last fetch packet (in PG) contains a single execute
packet of eight single-cycle instructions.

Pipeline Operation Overview

7-3TMS320C67x Pipeline

Figure 7–2. Fetch Phases of the Pipeline

PRPWPSPG

PW

Memory

PS

PR

PG

Registers

units
Functional

(a) (b)

CPU

PR

PW

PS

PG

256

MVKLDWLDWSHLADDMVKLDWLDW

NOP

MVK

MV

BSADD

SMPYH

SADD

SHR

SMPY

SHR

SMPYH

LDW

LDW

LDW

LDW

MVKBSMPYSMPYHMVMVKLHLDWLDW

Fetch

SMPYH

Decode

(c)

Pipeline Operation Overview

 7-4

7.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel in-
structions. During the DP phase, the instructions in an execute packet are as-
signed to the appropriate functional units. In the DC phase, the the source reg-
isters, destination registers, and associated paths are decoded for the execu-
tion of the instructions in the functional units.

Figure 7–3(a) shows the decode phases in sequential order from left to right.
Figure 7–3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 7–3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232

NOP†ADDKSTWSTWADD

DC MPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.

Pipeline Operation Overview

7-5TMS320C67x Pipeline

7.1.3 Execute

The execute portion of the floating-point pipeline is subdivided into ten phases
(E1–E10), as compared to the fixed-point pipeline’s five phases. Different
types of instructions require different numbers of these phases to complete
their execution. These phases of the pipeline play an important role in your un-
derstanding the device state at CPU cycle boundaries. The execution of differ-
ent types of instructions in the pipeline is described in section 7.2, Pipeline Ex-
ecution of Instruction Types. Figure 7–4(a) shows the execute phases of the
pipeline in sequential order from left to right. Figure 7–4(b) shows the portion
of the functional block diagram in which execution occurs.

Figure 7–4. Execute Phases of the Pipeline and Functional Block Diagram of the
TMS320C67x

E4E3E2E1 E5(a)

(b)

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

Execute E1

.D1
STH

.D2
STH

E9E8E7E6 E10

Pipeline Operation Overview

 7-6

7.1.4 Summary of Pipeline Operation

Figure 7–5 shows all the phases in each stage of the C67x pipeline in sequen-
tial order, from left to right.

Figure 7–5. Floating-Point Pipeline Phases

Fetch ExecuteDecode

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Figure 7–6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 7–6. When the instructions from FP n
reach E1, the instructions in the execute packet from FPn +1 are being de-
coded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are each
in one of four phases of program fetch. See section 7.4, Performance Consid-
erations, on page 7-52 for additional detail on code flowing through the pipe-
line.

Figure 7–6. Pipeline Operation: One Execute Packet per Fetch Packet

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle
ÁÁÁÁ
ÁÁÁÁ

Fetch
packet
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ2
ÁÁ
ÁÁ3
ÁÁÁ
ÁÁÁ4
ÁÁÁ
ÁÁÁ5
ÁÁ
ÁÁ6
ÁÁÁ
ÁÁÁ7
ÁÁ
ÁÁ8
ÁÁÁ
ÁÁÁ9
ÁÁ
ÁÁ10
ÁÁÁ
ÁÁÁ11
ÁÁ
ÁÁ12
ÁÁÁ
ÁÁÁ13
ÁÁ
ÁÁ14
ÁÁÁ
ÁÁÁ15
ÁÁÁ
ÁÁÁ16
ÁÁ
ÁÁ17ÁÁÁÁ

ÁÁÁÁ
n PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

ÁÁÁÁ
ÁÁÁÁ

n+1 ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

ÁÁÁÁ
ÁÁÁÁ

n+2 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

ÁÁÁÁ
ÁÁÁÁ

n+3 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8

ÁÁÁÁn+4 ÁÁÁÁÁÁÁÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7ÁÁÁÁ
ÁÁÁÁn+5

ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5 E6ÁÁÁÁ

ÁÁÁÁ
n+6
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5

ÁÁÁÁ
ÁÁÁÁ

n+7 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁÁ
ÁÁÁÁ

n+8 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3

ÁÁÁÁ
ÁÁÁÁ

n+9 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2

ÁÁÁÁn+10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PR DP DC E1

Pipeline Operation Overview

7-7TMS320C67x Pipeline

Table 7–1 summarizes the pipeline phases and what happens in each.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 7–1. Operations Occurring During Floating-Point Pipeline Phases
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Stage

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Phase

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

Symbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

During This Phase

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type Com-

pleted

Program
fetch

Program ad-
dress gener-
ation

PG The address of the fetch packet is determined.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Program ad-
dress sent

ÁÁÁ
ÁÁÁ
ÁÁÁ

PS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The address of the fetch packet is sent to the memory.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Program
wait

PW A program memory access is performed.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Program
data receive

ÁÁÁ
ÁÁÁ
ÁÁÁ

PR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The fetch packet is at the CPU boundary.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Program
decode

Dispatch DP The next execute packet of the fetch packet is determined
and sent to the appropriate functional unit to be decoded.

Decode DC Instructions are decoded in functional units.

Execute Execute 1 E1 For all instruction types, the conditions for the instructions
are evaluated and operands are read.

For load and store instructions, address generation is
performed and address modifications are written to the
register file.†

For branch instructions, branch fetch packet in PG phase
is affected.†

For single-cycle instructions, results are written to a regis-
ter file.†

For DP compare, ADDDP/SUBDP, and MPYDP instruc-
tions, the lower 32-bits of the sources are read. For all oth-
er instructions, the sources are read.†

For 2-cycle DP instructions, the lower 32 bits of the result
are written to a register file.†

Single-cycle

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.

Pipeline Operation Overview

 7-8

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 7–1. Operations Occurring During Floating-Point Pipeline Phases (Continued)

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Instruction
Type Com-

pleted

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring This Phase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁPhase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁStage

Execute 2 E2 For load instructions, the address is sent to memory. For
store instructions, the address and data are sent to
memory.†

Single-cycle instructions that saturate results set the SAT
bit in the SCR if saturation occurs.†

For multiply, 2-cycle DP, and DP compare instructions,
results are written to a register file.†

For DP compare and ADDDP/SUBDP instructions, the
upper 32 bits of the source are read.†

For the MPYDP instruction, the lower 32 bits of src1 and
the upper 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are read.†

Multiply
2-cycle DP

DP compare

Execute 3 E3 Data memory accesses are performed. Any multiply in-
struction that saturates results sets the SAT bit in the CSR
if saturation occurs.†

For MPYDP instruction, the upper 32 bits of src1 and the
lower 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are read.†

Store

Execute 4 E4 For load instructions, data is brought to the CPU
boundary

For the MPYI and MPYID instructions, the sources are
read.†

For the MPYDP instruction, the upper 32 bits of the
sources are read.†

For MPYI and MPYID instructions, the sources are read.†

For 4-cycle instructions, results are written to a register
file.†

For INTDP instruction, the lower 32 bits of the result are
written to a register file.†

4-cycle

Execute 5 E5 For load instructions, data is written into a register file.†

For the INTDP instruction, the upper 32 bits of the result
are written to a register file.†

Load INTDP

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.

Pipeline Operation Overview

7-9TMS320C67x Pipeline

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 7–1. Operations Occurring During Floating-Point Pipeline Phases (Continued)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type Com-

pleted

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring This Phase

ÁÁÁ
ÁÁÁ
ÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁPhase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁStage

Execute 6 E6 For ADDDP/SUBDP instructions, the lower 32 bits of the
result are written to a register file.†

Execute 7 E7 For ADDDP/SUBDP instructions, the upper 32 bits of the
result are written to a register file.†

ADDDP/
SUBDP

Execute 8 E8 Nothing is read or written.

Execute 9 E9 For the MPYI instruction, the result is written to a register
file.†

For MPYDP and MPYID instructions, the lower 32 bits of
the result are written to a register file.†

MPYI

Execute 10 E10 For MPYDP and MPYID instructions, the upper 32 bits of
the result are written to a register file.

MPYDP
MPYID

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.

Pipeline Operation Overview

 7-10

Figure 7–7 shows a C67x functional block diagram laid out vertically by stages
of the pipeline.

Figure 7–7. Functional Block Diagram of TMS320C67x Based on Pipeline Phases

CMPLTSP

DP

PR

PW

PS

PG

3232323232323232

256

ABSSPSUBLDDW

MVK

CMPLTSP

ABSSP

B

ADDSP

SUBSP

SUB

ZERO

LDDW

LDDW

ABSSP CMPLTSPADDSPMVLDDW

BMPYSPSUBSPLDDW

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

DCMPYSP ADDSPLDDWMPYSP

32

E1
.L1

ADDSP
.S1

ABSSP
.D1.M1

MPYSP

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SUBSP

.S2.D2
MPYSP

.M2

Fetch

Decode

Execute

ADDSP

SUBSP

ADDSP

ADDSP

SUBSP MVK

ADDSP MPYSP CMPLTSP

ADDSP ABSSP

LDDW

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

ZERO

Pipeline Operation Overview

7-11TMS320C67x Pipeline

The pipeline operation is based on CPU cycles. A CPU cycle is the period dur-
ing which a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the C67x. Figure 7–7 shows a full pipeline with a fetch packet in every phase
of fetch. One execute packet of eight instructions is being dispatched at the
same time that a 7-instruction execute packet is in decode. The arrows be-
tween DP and DC correspond to the functional units identified in the code in
Example 7–1.

In the DC phase portion of Figure 7–7, one box is empty because a NOP was
the eighth instruction in the fetch packet in DC, and no functional unit is needed
for a NOP. Finally, the figure shows six functional units processing code during
the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 7–7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. The bold crosspaths are used by the MPY and SUBSP instructions.

Many C67x instructions are single-cycle instructions, which means they have
only one execution phase (E1). The other instructions require more than one
execute phase. The types of instructions, each of which require different num-
bers of execute phases, are described in section 7.2, Pipeline Execution of In-
struction Types.

Pipeline Operation Overview

 7-12

Example 7–1. Execute Packet in Figure 7–7

 LDDW .D1 *A0––[4],B5:B4 ; E1 Phase
|| ADDSP .L1 A9,A10,A12
|| SUBSP .L2X B12,A2,B12
|| MPYSP .M1X A6,B13,A11
|| MPYSP .M2 B5,B13,B11
|| ABSSP .S1 A12,A15

 LDDW .D1 *A0++[5],A7:A6 ; DC Phase
|| ADDSP .L1 A12,A11,A12
|| ADDSP .L2 B10,B11,B12
|| MPYSP .M1X A4,B6,A9
|| MPYSP .M2X A7,B6,B9
|| CMPLTSP .S1 A15,A8,A1
|| ABSSP .S2 B12,B15

LOOP:
 [!B2] LDDW .D1 *A0++[2],A5:A4 ; DP and PS Phases
||[B2] ZERO .D2 B0
|| SUBSP .L1 A12,A2,A12
|| ADDSP .L2 B9,B12,B12
|| MPYSP .M1X A5,B7,A10
|| MPYSP .M2 B4,B7,B10
||[B0] B .S1 LOOP
||[!B1] CMPLTSP .S2 B15,B8,B1
 [!B2] LDDW .D1 *A0––[4],B5:B4 ; PR and PG Phases
||[B0] SUB .D2 B0,2,B0
|| ADDSP .L1 A9,A10,A12
|| SUBSP .L2X B12,A2,B12
|| MPYSP .M1X A6,B13,A11
|| MPYSP .M2 B5,B13,B11
|| ABSSP .S1 A12,A15
||[A1] MVK .S2 1,B2

 [!B2] LDDW .D1 *A0++[5],A7:A6 ; PW Phase
||[B1] MV .D2 B1,B2
|| ADDSP .L1 A12,A11,A12
|| ADDSP .L2 B10,B11,B12
|| MPYSP .M1X A4,B6,A9
||[!A1] CMPLTSP .S1 A15,A8,A1
|| ABSSP .S2 B12,B15

Pipeline Execution of Instruction Types

7-13TMS320C67x Pipeline

7.2 Pipeline Execution of Instruction Types

The pipeline operation of the C67x instructions can be categorized into four-
teen instruction types. Thirteen of these are shown in Table 7–2 (NOP is not
included in the table), which is a mapping of operations occurring in each exe-
cution phase for the different instruction types. The delay slots and functional
unit latency associated with each instruction type are listed in the bottom row.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 7–2. Execution Stage Length Description for Each Instruction Type

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Single Cycle ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16�16 Multiply ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Store ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Load ÁÁÁÁÁ
ÁÁÁÁÁ

Branch

Execution
phases

E1 Compute result
and write to reg-
ister

Read operands
and start com-
putations

Compute ad-
dress

Compute ad-
dress

Target code
in PG‡

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute result
and write to reg-
ister

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send address
and data to
memory

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send address to
memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3 Access memory Access memory
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send data back
to CPU

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5 Write data into
register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁE7

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

E8ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

E9
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁDelay slots 0 1 0† 4† 5‡

Functional
unit latency

1 1 1 1 1

† See sections 7.3.7 (page 7-40) and 7.3.8 (page 7-42) for more information on execution and delay slots for stores and loads.
‡ See section 7.3.9 (page 7-44) for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

Pipeline Execution of Instruction Types

 7-14

Table 7–2. Execution Stage Length Description for Each Instruction Type (Continued)

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
2-Cycle DP ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
4-Cycle ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
INTDP ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
DP Compare

Execution
phases

E1 Compute the lower
results and write to
register

Read sources and
start computation

Read sources and
start computation

Read lower sources
and start computa-
tion

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute the upper
results and write to
register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper
sources, finish com-
putation, and write
results to register

E3 Continue computa-
tion

Continue computa-
tion

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write results
to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion and write lower
results to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁE5 Complete computa-

tion and write upper
results to register

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁE7

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E9

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Delay slots 1 3 4 1

Functional
unit latency

1 1 1 2

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

Pipeline Execution of Instruction Types

7-15TMS320C67x Pipeline

Table 7–2. Execution Stage Length Description for Each Instruction Type (Continued)

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADDDP/SUBDP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYI ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYID ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYDP

Execution
phases

E1 Read lower sources
and start computa-
tion

Read sources and
start computation

Read sources and
start computation

Read lower sources
and start computa-
tion

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E2ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper sources
and continue com-
putation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read lower src1 and
upper src2 and con-
tinue computation

E3 Continue computa-
tion

Read sources and
continue computa-
tion

Read sources and
continue computa-
tion

Read lower src2 and
upper src1 and con-
tinue computation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E4ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper sources
and continue com-
putation

E5 Continue computa-
tion

Continue computa-
tion

Continue computa-
tion

Continue computa-
tionÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E6
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Compute the lower
results and write to
register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

E7 Compute the upper
results and write to
register

Continue computa-
tion

Continue computa-
tion

Continue computa-
tion

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E8ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion

E9 Complete computa-
tion and write results
to register

Continue computa-
tion and write lower
results to register

Continue computa-
tion and write lower
results to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E10
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write upper
results to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write upper
results to register

Delay slots 6 8 9 9

Functional
unit latency

2 4 4 4

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as
false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

Pipeline Execution of Instruction Types

 7-16

The execution of instructions can be defined in terms of delay slots. A delay
slot is a CPU cycle that occurs after the first execution phase (E1) of an instruc-
tion. Results from instructions with delay slots are not available until the end
of the last delay slot. For example, a multiply instruction has one delay slot,
which means that one CPU cycle elapses before the results of the multiply are
available for use by a subsequent instruction. However, results are available
from other instructions finishing execution during the same CPU cycle in which
the multiply is in a delay slot.

If an instruction has a multicycle functional unit latency, it locks the functional
unit for the necessary number of cycles. Any new instruction dispatched to that
functional unit during this locking period causes undefined results. If an in-
struction with a multicycle functional unit latency has a condition that is evalu-
ated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following
constraints:

DP compare No other instruction can use the functional unit on
cycles i and i + 1.

ADDDP/SUBDP No other instruction can use the functional unit on
cycles i and i + 1.

MPYI No other instruction can use the functional unit on
cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction can use the functional unit on
cycles i, i + 1, i + 2, and i + 3.

MPYDP No other instruction can use the functional unit on
cycles i, i + 1, i + 2, and i + 3.

If a cross path is used to read a source using an instruction with multicycle
functional unit latency, ensure that no other instructions executing on the same
side use the cross path.

Pipeline Execution of Instruction Types

7-17TMS320C67x Pipeline

An instruction of the following types scheduled on cycle i, using a cross path
to read a source, has the following constraints:

DP compare No other instruction on the same side can use the cross
path on cycles i and i + 1.

ADDDP/SUBDP No other instruction on the same side can use the cross
path on cycles i and i + 1.

MPYI No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYDP No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

Other constraints exist because instructions have varying numbers of delay
slots, and the instructions need the functional unit read and write ports for vary-
ing numbers of cycles. A read or write constraint occurs when two instructions
on the same functional unit attempt to read or write, respectively, to the register
file on the came cycle.

An instruction scheduled on cycle i has the following constraints:

2-cycle DP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 1 due to a write
constraint on cycle i + 1.

Another 2-cycle DP instruction cannot be scheduled on
the same functional unit on cycle i + 1 due to a write
constraint on cycle i + 1.

4-cycle A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 3 due to a write
constraint on cycle i + 3.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 2 due to a write
constraint on cycle i + 3.

INTDP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 3 or i + 4 due to a write
constraint on cycle i + 3 or i + 4, respectively.

An INTDP instruction cannot be scheduled on the same
functional unit on cycle i + 1 due to a write constraint on
cycle i + 1.

A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 1 due to a write constraint on
cycle i + 1.

Pipeline Execution of Instruction Types

 7-18

MPYI A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 6 due to a write
constraint on cycle i + 7.

MPYID A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 7 or i + 8 due to
a write constraint on cycle i + 8 or i + 9, respectively.

MPYDP A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYI instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYID instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 7 or i + 8 due to
a write constraint on cycle i + 8 or i + 9, respectively.

ADDDP/SUBDP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 5 or i + 6 due to a write
constraint on cycle i + 5 or i + 6, respectively.

A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 2 or i + 3 due to a write
constraint on cycle i + 5 or i + 6, respectively.

An INTDP instruction cannot be scheduled on the same
functional unit on cycle i + 2 or i + 3 due to a write
constraint on cycle i + 5 or i + 6, respectively.

The 4-cycle case is important for the following single-precision floating-point
instructions:

� ADDSP
� SUBSP
� SPINT
� SPTRUNC
� INTSP
� MPYSP

Pipeline Execution of Instruction Types

7-19TMS320C67x Pipeline

All of the preceding cases deal with double-precision floating-point instruc-
tions or the MPYI or MPYID instructions except for the 4-cycle case. A 4-cycle
instruction consists of both single- and double-precision floating-point instruc-
tions. Therefore, the 4-cycle case is important for the following single-preci-
sion floating-point instructions:

The .S and .L units share their long write port with the load port for the 32 most
significant bits of an LDDW load. Therefore, the LDDW instruction and the
.S or .L unit writing a long result cannot write to the same register file on the
same cycle. The LDDW writes to the register file on pipeline phase E5. Instruc-
tions that use a long result and use the .L and .S unit write to the register file
on pipeline phase E1. Therefore, the instruction with the long result must be
scheduled later than four cycles following the LDDW instruction if both instruc-
tions use the same side.

Functional Unit Constraints

 7-20

7.3 Functional Unit Constraints

If you wish to optimize your instruction pipeline, consider the instructions that
are executed on each unit. Sources and destinations are read and written dif-
ferently for each instruction. If you analyze these differences, you can make
further optimization improvements by considering what happens during the
execution phases of instructions that use the same functional unit in each exe-
cution packet.

The following sections provide information about what happens during each
execute phase of the instructions within a category for each of the functional
units.

Functional Unit Constraints

7-21TMS320C67x Pipeline

7.3.1 .S-Unit Constraints

Table 7–3 shows the instruction constraints for single-cycle instructions exe-
cuting on the .S unit.

Table 7–3. Single-Cycle .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

DP compare �

2-cycle DP �

Branch �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

Load �

Store �

INTDP �

ADDDP/SUBDP �

16 � 16 multiply �

4-cycle �

MPYI �

MPYID �

MPYDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

 7-22

Table 7–4 shows the instruction constraints for DP compare instructions exe-
cuting on the .S unit.

Table 7–4. DP Compare .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

DP compare R RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xrw �

DP compare Xr �

2-cycle DP Xrw �

Branch† Xr �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr �

Load Xr �

Store Xr �

INTDP Xr �

ADDDP/SUBDP Xr �

16 � 16 multiply Xr �

4-cycle Xr �

MPYI Xr �

MPYID Xr �

MPYDP Xr �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode constraint
Xrw Next instruction cannot enter E1 during cycle–read/decode/write constraint
† The branch on register instruction is the only branch instruction that reads a

general-purpose register

Functional Unit Constraints

7-23TMS320C67x Pipeline

Table 7–5 shows the instruction constraints for 2-cycle DP instructions execut-
ing on the .S unit.

Table 7–5. 2-Cycle DP .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

2-cycle RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xw �

DP compare � �

2-cycle DP Xw �

Branch � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single cycle � �

Load � �

Store � �

INTDP � �

ADDDP/SUBDP � �

16 � 16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write constraint

Functional Unit Constraints

 7-24

Table 7–6 shows the instruction constraints for branch instructions executing
on the .S unit.

Table 7–6. Branch .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

Branch† R

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � � � �

DP compare � � � � � � �

2-cycle DP � � � � � � �

Branch � � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � � � �

Load � � � � � � �

Store � � � � � � �

INTDP � � � � � � �

ADDDP/SUBDP � � � � � � �

16 � 16 multiply � � � � � � �

4-cycle � � � � � � �

MPYI � � � � � � �

MPYID � � � � � � �

MPYDP � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
� Next instruction can enter E1 during cycle
† The branch on register instruction is the only branch instruction that reads a

general-purpose register

Functional Unit Constraints

7-25TMS320C67x Pipeline

7.3.2 .M-Unit Constraints

Table 7–7 shows the instruction constraints for 16 X 16 multiply instructions
executing on the .M unit.

Table 7–7. 16 X 16 Multiply .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

16 X 16 multiply R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 X 16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � �

Load � �

Store � �

DP compare � �

2-cycle DP � �

Branch � �

4-cycle � �

INTDP � �

ADDDP/SUBDP � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

 7-26

Table 7–8 shows the instruction constraints for 4-cycle instructions executing
on the .M unit.

Table 7–8. 4-Cycle .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply � Xw � �

4-cycle � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

Load � � � �

Store � � � �

DP compare � � � �

2-cycle DP � � � �

Branch � � � �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write constraint

Functional Unit Constraints

7-27TMS320C67x Pipeline

Table 7–9 shows the instruction constraints for MPYI instructions executing on
the .M unit.

Table 7–9. MPYI .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10

MPYI R R R R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw � �

4-cycle Xr Xr Xr Xu Xw Xu � � �

MPYI Xr Xr Xr � � � � � �

MPYID Xr Xr Xr � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � �

Load Xr Xr Xr � � � � � �

Store Xr Xr Xr � � � � � �

DP compare Xr Xr Xr � � � � � �

2-cycle DP Xr Xr Xr � � � � � �

Branch Xr Xr Xr � � � � � �

4-cycle Xr Xr Xr � � � � � �

INTDP Xr Xr Xr � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode constraint
Xw Next instruction cannot enter E1 during cycle–write constraint
Xu Next instruction cannot enter E1 during cycle–other resource conflict

Functional Unit Constraints

 7-28

Table 7–10 shows the instruction constraints for MPYID instructions executing
on the .M unit.

Table 7–10. MPYID .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYID R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr � � � � � � �

MPYID Xr Xr Xr � � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load Xr Xr Xr � � � � � � �

Store Xr Xr Xr � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode constraint
Xw Next instruction cannot enter E1 during cycle–write constraint
Xu Next instruction cannot enter E1 during cycle–other resource conflict

Functional Unit Constraints

7-29TMS320C67x Pipeline

Table 7–11 shows the instruction constraints for MPYDP instructions execut-
ing on the .M unit.

Table 7–11. MPYDP .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYDP R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr Xu Xu Xu � � � �

MPYID Xr Xr Xr Xu Xu Xu � � � �

MPYDP Xr Xr Xr � � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load Xr Xr Xr � � � � � � �

Store Xr Xr Xr � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode constraint
Xw Next instruction cannot enter E1 during cycle–write constraint
Xu Next instruction cannot enter E1 during cycle–other resource conflict

Functional Unit Constraints

 7-30

7.3.3 .L-Unit Constraints

Table 7–12 shows the instruction constraints for single-cycle instructions exe-
cuting on the .L unit.

Table 7–12. Single-Cycle .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

4-cycle �

INTDP �

ADDDP/SUBDP �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

DP compare �

2-cycle DP �

4-cycle �

Load �

Store �

Branch �

16 � 16 multiply �

MPYI �

MPYID �

MPYDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

7-31TMS320C67x Pipeline

Table 7–13 shows the instruction constraints for 4-cycle instructions executing
on the .L unit.

Table 7–13. 4-Cycle .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

DP compare � � � �

2-cycle DP � � � �

4-cycle � � � �

Load � � � �

Store � � � �

Branch � � � �

16 � 16 multiply � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write constraint

Functional Unit Constraints

 7-32

Table 7–14 shows the instruction constraints for INTDP instructions executing
on the .L unit.

Table 7–14. INTDP .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

INTDP R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw Xw �

4-cycle Xw � � � �

INTDP Xw � � � �

ADDDP/SUBDP � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

4-cycle � � � � �

Load � � � � �

Store � � � � �

Branch � � � � �

16 � 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write constraint

Functional Unit Constraints

7-33TMS320C67x Pipeline

Table 7–15 shows the instruction constraints for ADDDP/SUBDP instructions
executing on the .L unit.

Table 7–15. ADDDP/SUBDP .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

ADDDP/SUBDP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xr � � � Xw Xw �

4-cycle Xr Xw Xw � � � �

INTDP Xrw Xw Xw � � � �

ADDDP/SUBDP Xr � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � � � � �

DP compare Xr � � � � � �

2-cycle DP Xr � � � � � �

4-cycle Xr � � � � � �

Load Xr � � � � � �

Store Xr � � � � � �

Branch Xr � � � � � �

16 � 16 multiply Xr � � � � � �

MPYI Xr � � � � � �

MPYID Xr � � � � � �

MPYDP Xr � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode constraint
Xw Next instruction cannot enter E1 during cycle–write constraint
Xrw Next instruction cannot enter E1 during cycle–read/decode/write constraint

Functional Unit Constraints

 7-34

7.3.4 D-Unit Instruction Constraints

Table 7–16 shows the instruction constraints for load instructions executing on
the .D unit.

Table 7–16. Load .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

Load RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � �

Load � � � � �

Store � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

Branch � � � � �

4-cycle � � � � �

INTDP � � � � �

ADDDP/SUBDP � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

7-35TMS320C67x Pipeline

Table 7–17 shows the instruction constraints for store instructions executing
on the .D unit.

Table 7–17. Store .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4

Store RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � �

Load � � �

Store � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply � � �

MPYI � � �

MPYID � � �

MPYDP � � �

Single-cycle � � �

DP compare � � �

2-cycle DP � � �

Branch � � �

4-cycle � � �

INTDP � � �

ADDDP/SUBDP � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

 7-36

Table 7–18 shows the instruction constraints for single-cycle instructions exe-
cuting on the .D unit.

Table 7–18. Single-Cycle .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

Load �

Store �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply �

MPYI �

MPYID �

MPYDP �

Single-cycle �

DP compare �

2-cycle DP �

Branch �

4-cycle �

INTDP �

ADDDP/SUBDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle

Functional Unit Constraints

7-37TMS320C67x Pipeline

Table 7–19 shows the instruction constraints for LDDW instructions executing
on the .D unit.

Table 7–19. LDDW Instruction With Long Write Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

LDDW RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Instruction with
long result

� � � Xw �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write constraint

Functional Unit Constraints

 7-38

7.3.5 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line (see Table 7–20). Figure 7–8 shows the fetch, decode, and execute
phases of the pipeline that single-cycle instructions use. Figure 7–9 is the
single-cycle execution diagram. The operands are read, the operation is per-
formed, and the results are written to a register, all during E1. Single-cycle in-
structions have no delay slots.

Table 7–20. Single-Cycle Execution

Pipeline
Stage E1

Read src1
src2

Written dst

Unit in use .L, .S., .M, or
.D

Figure 7–8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 7–9. Single-Cycle Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.L, .S, .M,
or .D

E1

Functional Unit Constraints

7-39TMS320C67x Pipeline

7.3.6 16 � 16-Bit Multiply Instructions

The 16 � 16-bit multiply instructions use both the E1 and E2 phases of the
pipeline to complete their operations (see Table 7–21). Figure 7–10 shows the
pipeline phases the multiply instructions use. Figure 7–11 shows the opera-
tions occurring in the pipeline for a multiply. In the E1 phase, the operands are
read and the multiply begins. In the E2 phase, the multiply finishes, and the
result is written to the destination register. Multiply instructions have one delay
slot.

Table 7–21. 16 � 16-Bit Multiply Execution

Pipeline
Stage E1 E2

Read src1
src2

Written dst

Unit in use .M

Figure 7–10. Multiply Instruction Phases

PG PS PW PR DP DC E1 E2
1

delay
slot

Figure 7–11.Multiply Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.M

E1

E2

Functional Unit Constraints

 7-40

7.3.7 Store Instructions

Store instructions require phases E1 through E3 to complete their operations
(see Table 7–22). Figure 7–12 shows the pipeline phases the store instruc-
tions use. Figure 7–13 shows the operations occurring in the pipeline phases
for a store. In the E1 phase, the address of the data to be stored is computed.
In the E2 phase, the data and destination addresses are sent to data memory.
In the E3 phase, a memory write is performed. The address modification is per-
formed in the E1 stage of the pipeline. Even though stores finish their execu-
tion in the E3 phase of the pipeline, they have no delay slots.

Table 7–22. Store Execution

Pipeline
Stage E1 E2 E3

Read baseR,
offsetR

src

Written baseR

Unit in use .D2

Figure 7–12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3
A

dd
re

ss
m

od
ifi

ca
tio

n

Functional Unit Constraints

7-41TMS320C67x Pipeline

Figure 7–13. Store Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

There is additional explanation of why stores have zero delay slots in sec-
tion 7.3.8.

Functional Unit Constraints

 7-42

7.3.8 Load Instructions

Data loads require five of the pipeline execute phases to complete their opera-
tions (see Table 7–23). Figure 7–14 shows the pipeline phases the load in-
structions use.

Table 7–23. Load Execution

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Figure 7–14. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
dd

re
ss

m
od

ifi
ca

tio
n

Figure 7–15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Functional Unit Constraints

7-43TMS320C67x Pipeline

Figure 7–15. Load Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary.
Finally, in the E5 phase, the data is loaded into a register. Because data is not
written to the register until E5, load instructions have four delay slots. Because
pointer results are written to the register in E1, there are no delay slots associ-
ated with the address modification.

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW .D1 *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.

Functional Unit Constraints

 7-44

7.3.9 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code (see Table 7–24).
Figure 7–16 shows the pipeline phases used by the branch instruction and
branch target code. The delay slots are shaded.

Table 7–24. Branch Execution

Pipeline
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

�

Unit in use .S2

Figure 7–16. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

PG PS PW PR DP DC E1

5 delay slots

Functional Unit Constraints

7-45TMS320C67x Pipeline

Figure 7–17 shows a branch execution block diagram. If a branch is in the E1
phase of the pipeline (in the .S2 unit in the figure), its branch target is in the
fetch packet that is in PG during that same cycle (shaded in the figure). Be-
cause the branch target has to wait until it reaches the E1 phase to begin exe-
cution, the branch takes five delay slots before the branch target code exe-
cutes.

Figure 7–17. Branch Execution Block Diagram

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DCLDWLDW

E1

.L1 .S1
MVK

.D1.M1
SMPY

.S2
B

.D2
SMPYH

.M2

Fetch

Decode

Execute

.L2

Functional Unit Constraints

 7-46

7.3.10 2-Cycle DP Instructions

Two-cycle DP instructions use the E1 and E2 phases of the pipeline to com-
plete their operations (see Table 7–25). The following instructions are two-
cycle DP instructions:

� ABSDP
� RCPDP
� RSQDP
� SPDP

The lower and upper 32 bits of the DP source are read on E1 using the src1
and src2 ports, respectively. The lower 32 bits of the DP source are written on
E1 and the upper 32 bits of the DP source are written on E2. The 2-cycle DP
instructions are executed on the .S units. The status is written to the FAUCR
on E1. Figure 7–18 shows the pipeline phases the 2-cycle DP instructions use.

Table 7–25. 2-Cycle DP Execution

Pipeline
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

Figure 7–18. 2-Cycle DP Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot

Functional Unit Constraints

7-47TMS320C67x Pipeline

7.3.11 4-Cycle Instructions

Four-cycle instructions use the E1 through E4 phases of the pipeline to com-
plete their operations (see Table 7–26). The following instructions are 4-cycle
instructions:

� ADDSP
� DPINT
� DPSP
� DPTRUNC
� INTSP
� MPYSP
� SPINT
� SPTRUNC
� SUBSP

The sources are read on E1 and the results are written on E4. The 4-cycle in-
structions are executed on the .M or .L units. The status is written to the FMCR
or FADCR on E4. Figure 7–19 shows the pipeline phases the 4-cycle instruc-
tions use.

Table 7–26. 4-Cycle Execution

Pipeline
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L or .M

Figure 7–19. 4-Cycle Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4

3 delay slots

7.3.12 INTDP Instruction

The INTDP instruction uses the E1 through E5 phases of the pipeline to com-
plete its operations (see Table 7–27). src2 is read on E1, the lower 32 bits of
the result are written on E4, and the upper 32 bits of the result are written
on E5. The INTDP instruction is executed on the .L units. The status is written
to the FADCR on E4. Figure 7–20 shows the pipeline phases the INTDP in-
structions use.

Functional Unit Constraints

 7-48

Table 7–27. INTDP Execution

Pipeline
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

Figure 7–20. INTDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

7.3.13 DP Compare Instructions

The DP compare instructions use the E1 and E2 phases of the pipeline to com-
plete their operations (see Table 7–28). The lower 32 bits of the sources are
read on E1, the upper 32 bits of the sources are read on E2, and the results
are written on E2. The following instructions are DP compare instructions:

� CMPEQDP
� CMPLTDP
� CMPGTDP

The DP compare instructions are executed on the .S unit. The functional unit
latency for DP compare instructions is 2. The status is written to the FAUCR
on E2. Figure 7–21 shows the pipeline phases the DP compare instructions
use.

Table 7–28. DP Compare Execution

Pipeline
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Figure 7–21. DP Compare Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot

Functional Unit Constraints

7-49TMS320C67x Pipeline

7.3.14 ADDDP/SUBDP Instructions

The ADDDP/SUBDP instructions use the E1 through E7 phases of the pipeline
to complete their operations (see Table 7–29). The lower 32 bits of the result
are written on E6, and the upper 32 bits of the result are written on E7. The
ADDDP/SUBDP instructions are executed on the .L unit. The functional unit
latency for ADDDP/SUBDP instructions is 2. The status is written to the
FADCR on E6. Figure 7–22 shows the pipeline phases the ADDDP/SUBDP
instructions use.

Table 7–29. ADDDP/SUBDP Execution

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

Figure 7–22. ADDDP/SUBDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7

6 delay slots

Functional Unit Constraints

 7-50

7.3.15 MPYI Instructions

The MPYI instruction uses the E1 through E9 phases of the pipeline to com-
plete its operations (see Table 7–30). The sources are read on cycles E1
through E4 and the result is written on E9. The MPYI instruction is executed
on the .M unit. The functional unit latency for the MPYI instruction is 4.
Figure 7–23 shows the pipeline phases the MPYI instructions use.

Table 7–30. MPYI Execution

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Figure 7–23. MPYI Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

8 delay slots

7.3.16 MPYID Instructions

The MPYID instruction uses the E1 through E10 phases of the pipeline to com-
plete its operations (see Table 7–31). The sources are read on cycles E1
through E4, the lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYID instruction is executed on
the .M unit. The functional unit latency for the MPYID instruction is 4.
Figure 7–24 shows the pipeline phases the MPYID instructions use.

Table 7–31. MPYID Execution

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M

Functional Unit Constraints

7-51TMS320C67x Pipeline

Figure 7–24. MPYID Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots

7.3.17 MPYDP Instructions

The MPYDP instruction uses the E1 through E10 phases of the pipeline to
complete its operations (see Table 7–32). The lower 32 bits of src1 are read
on E1 and E2, and the upper 32 bits of src1 are read on E3 and E4. The lower
32 bits of src2 are read on E1 and E3, and the upper 32 bits of src2 are read
on E2 and E4. The lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYDP instruction is executed on
the .M unit. The functional unit latency for the MPYDP instruction is 4. The sta-
tus is written to the FMCR on E9. Figure 7–25 shows the pipeline phases the
MPYDP instructions use.

Table 7–32. MPYDP Execution

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

Figure 7–25. MPYDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots

Performance Considerations

 7-52

7.4 Performance Considerations
The C67x pipeline is most effective when it is kept as full as the algorithms in
the program allow it to be. It is useful to consider some situations that can affect
pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes seri-
ally with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 7.4.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is con-
sidered. The access of program and data memory is discussed, along with
memory stalls.

7.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Again referring to Figure 7–6 on page 7-6, pipeline operation is shown with
eight instructions in every fetch packet. Figure 7–26, however, shows the
pipeline operation with a fetch packet that contains multiple execute packets.
Code for Figure 7–26 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D
|| instruction E

instruction F ; EP k + 2 FP n
|| instruction G
|| instruction H

instruction I ; EP k + 3 FP n + 1
|| instruction J
|| instruction K
|| instruction L
|| instruction M
|| instruction N
|| instruction O
|| instruction P

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.

Performance Considerations

7-53TMS320C67x Pipeline

Figure 7–26. Pipeline Operation: Fetch Packets With Different Numbers of Execute
Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
n k PG PS PW PR ÉÉ

ÉÉ
DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+1 ÉÉDP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+2
ÉÉÉ
ÉÉÉ

DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3 E4 E5 E6 E7

n+3 k+5 PG PS stall PW PR DP DC E1 E2 E3 E4 E5 E6

n+4 k+6 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+5 k+7 PG PS PW PR DP DC E1 E2 E3 E4

n+6 k+8 PG PS PW PR DP DC E1 E2 E3

In Figure 7–26, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one exe-
cute packet (containing eight parallel instructions). The first fetch
packet (n) goes through the program fetch phases during cycles 1–4. During
these cycles, a program fetch phase is started for each of the fetch packets
that follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and de-
tects that there are three execute packets (k through k + 2) in fetch packet n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was re-
leased in cycle 8. The pipeline continues operation as shown with fetch pack-
ets n + 5 and n + 6 until another fetch packet containing multiple execution
packets enters the DP phase, or an interrupt occurs.

Performance Considerations

 7-54

7.4.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY’s results
will be available for use by instructions in the next execute packet.

Figure 7–27 shows how a multicycle NOP can drive the execution of other in-
structions in the same execute packet. Figure 7–27(a) shows a NOP in an exe-
cute packet (in parallel) with other code. The results of the LD, ADD, and MPY
will all be available during the proper cycle for each instruction. Hence NOP
has no effect on the execute packet.

Figure 7–27(b) shows the replacement of a single-cycle NOP with a multi-
cycle NOP (NOP 5) in the same execute packet. The NOP 5 will cause no op-
eration to perform other than the operations from the instructions inside its ex-
ecute packet. The results of the LD, ADD, and MPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 7–27. Multicycle NOP in an Execute Packet

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD
(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD(b)

Performance Considerations

7-55TMS320C67x Pipeline

Figure 7–28 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch tar-
get begins execution five delay slots after the branch was issued.

Figure 7–28. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

�

�

�

�

�

Branch
EP7

See Figure 7–27(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 will force the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coin-
cide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it exe-
cutes.

Performance Considerations

 7-56

7.4.3 Memory Considerations

The C67x has a memory configuration typical of a DSP, with program memory
in one physical space and data memory in another physical space. Data loads
and program fetches have the same operation in the pipeline, they just use dif-
ferent phases to complete their operations. With both data loads and program
fetches, memory accesses are broken up into multiple phases. This enables
the C67x to access memory at a high speed. These phases are shown in
Figure 7–29.

Figure 7–29. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the C67x and per-
form the same types of operations (listed in Table 7–33) to accommodate
those memories. Table 7–33 shows the operation of program fetches pipeline
versus the operation of a data load.

Table 7–33. Program Memory Accesses Versus Data Load Accesses

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Program
Memory
Access
Phase

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data
Load

 Access
Phase

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Compute address ÁÁÁÁ
ÁÁÁÁ

PG ÁÁÁÁÁ
ÁÁÁÁÁ

E1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send address to memory
ÁÁÁÁ
ÁÁÁÁ

PS
ÁÁÁÁÁ
ÁÁÁÁÁ

E2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory read/write
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PW
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PR ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: send instruction to functional units
Data load: send data to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DP ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5

Depending on the type of memory and the time required to complete an ac-
cess, the pipeline may stall to ensure proper coordination of data and instruc-
tions. This is discussed in section 7.4.3.1, Memory Stalls.

Performance Considerations

7-57TMS320C67x Pipeline

In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 7.4.3.2, Memory Bank Hits.

7.4.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory ac-
cess and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle, caus-
ing execution to take additional clock cycles to finish. The results of the pro-
gram execution are identical whether a stall occurs or not. Figure 7–30 illus-
trates this point.

Figure 7–30. Program and Data Memory Stalls

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle

ÁÁÁ
ÁÁÁ
ÁÁÁ

Fetch
packet

(FP)

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁ
ÁÁ
ÁÁ

2

ÁÁÁ
ÁÁÁ
ÁÁÁ

3

ÁÁÁ
ÁÁÁ
ÁÁÁ

4

ÁÁ
ÁÁ
ÁÁ

5

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁÁ
ÁÁÁ
ÁÁÁ

7 8 9

ÁÁÁ
ÁÁÁ
ÁÁÁ

10

ÁÁ
ÁÁ
ÁÁ

11

ÁÁÁ
ÁÁÁ
ÁÁÁ

12

ÁÁÁ
ÁÁÁ
ÁÁÁ

13

ÁÁ
ÁÁ
ÁÁ

14

ÁÁÁ
ÁÁÁ
ÁÁÁ

15

ÁÁÁ
ÁÁÁ
ÁÁÁ

16
ÁÁÁ
ÁÁÁ

n PG PS PW PR DP DC E1 E2 ÉÉ
ÉÉ

E3 E4 E5

ÁÁÁ
ÁÁÁ

n+1ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁn+2ÁÁÁÁÁ PG PS PW PR DP Program DC E1 E2 E3ÁÁÁ
ÁÁÁ

n+3
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR memory stall DP DC Data E1 E2
ÁÁÁ
ÁÁÁ

n+4ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS
ÉÉÉ
ÉÉÉ

PW PR DP memory stall DC E1

ÁÁÁ
ÁÁÁ

n+5ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC

ÁÁÁ
ÁÁÁ

n+6ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁn+7ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PRÁÁÁ
ÁÁÁ

n+8
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

PG PS PWÁÁÁ
ÁÁÁ

n+9ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS

ÁÁÁ
ÁÁÁ

n+10ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG

Performance Considerations

 7-58

7.4.3.2 Memory Bank Hits

Most C67x devices use an interleaved memory bank scheme, as shown in
Figure 7–31. Each number in the diagram represents a byte address. A load
byte (LDB) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) instruction from address 0 loads the halfword value in bytes 0 and 1,
which are also in bank 0. A load word (LDW) instruction from address 0 loads
bytes 0 through 3 in banks 0 and 1. A load double-word (LDDW) instruction
from address 0 loads bytes 0 through 7 in banks 0 through 3.

Figure 7–31. 8-Bank Interleaved Memory

16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N16N

0 1

16 17

Bank 0

2 3

18 19

Bank 1

4 5

20 21

Bank 2

6 7

22 23

Bank 3

8 9

24 25

Bank 4

10 11

26 27

Bank 5

12 13

28 29

Bank 6

14 15

30 31

Bank 7

+ + + + + + + + + + + + + + +1 2 3 4 5 6 7 8 9 01 11 12 13 14 15

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are al-
lowed without any stall, as long as they do not access the same bank.

Consider the code in Example 7–2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank 0
on cycle i + 3 (in the E3 phase). See Table 7–34 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loads must access data from different banks (B4 address
would need to be in bank 1). For more information on programming topics, see
the TMS320C62x/C67x Programmer’s Guide.

Example 7–2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0

Performance Considerations

7-59TMS320C67x Pipeline

Table 7–34. Loads in Pipeline From Example 7–2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 – E4 E5

LDW .D2
Bank 0

E1 E2 – E3 E4 E5

For devices that have more than one memory space (see Figure 7–32), an ac-
cess to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

The internal memory of the C67x family varies from device to device. See the
TMS320C62x/C67x Peripherals Reference Guide to determine the memory
spaces in your particular device.

Figure 7–32. 8-Bank Interleaved Memory With Two Memory Spaces

Bank 7Bank 6Bank 5Bank 4Bank 3Bank 2Bank 1

+1M

Bank 0

16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N16N

0 1

16 17

Bank 0

2 3

18 19

Bank 1

4 5

20 21

Bank 2

6 7

22 23

Bank 3

8 9

24 25

Bank 4

10 11

26 27

Bank 5

12 13

28 29

Bank 6

14 15

30 31

Bank 7

+ + + + + + + + + + + + + + +1 2 3 4 5 6 7 8 9 01 11 12 13 14 15

16 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M16M + + + + + + + + + + + + + +2 3 4 5 6 7 8 9 01 11 12 13 14 15

Memory space 1

Memory space 0

8-1

9

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable
interrupt (NMI). It details the related CPU control registers and their functions
in controlling interrupts. It also describes interrupt processing, the method the
CPU uses to detect automatically the presence of interrupts and divert pro-
gram execution flow to your interrupt service code. Finally, the chapter de-
scribes the programming implications of interrupts.

Topic Page

8.1 Overview of Interrupts 8-2.

8.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR) 8-11.

8.3 Individual Interrupt Control 8-13.

8.4 Interrupt Detection and Processing 8-18.

8.5 Performance Considerations 8-24.

8.6 Programming Considerations 8-25.

Chapter 8

Overview of Interrupts

 8-2

8.1 Overview of Interrupts

Typically, DSPs work in an environment that contains multiple external asyn-
chronous events. These events require tasks to be performed by the DSP
when they occur. An interrupt is an event that stops the current process in the
CPU so that the CPU can attend to the task needing completion because of
the event. These interrupt sources can be on chip or off chip, such as timers,
analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, com-
pleting the interrupt task, restoring the registers and the process context, and
resuming the original process. There are eight registers that control servicing
interrupts.

An appropriate transition on an interrupt pin sets the pending status of the in-
terrupt within the interrupt flag register (IFR). If the interrupt is properly en-
abled, the CPU begins processing the interrupt and redirecting program flow
to the interrupt service routine.

8.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the CPUs of the TMS320C6000 DSPs.
These three types are differentiated by their priorities, as shown in Table 8–1.
The reset interrupt has the highest priority and corresponds to the RESET sig-
nal. The nonmaskable interrupt is the interrupt of second highest priority and
corresponds to the NMI signal. The lowest priority interrupts are interrupts
4–15. They correspond to the INT4–INT15 signals. RESET, NMI, and some
of the INT4–INT15 signals are mapped to pins on C6000 devices. Some of the
INT4–INT15 interrupt signals are used by internal peripherals and some may
be unavailable or can be used under software control. Check your data sheet
to see your device’s interrupt specifications.

Overview of Interrupts

8-3Interrupts

Table 8–1. Interrupt Priorities

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Priority

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Interrupt
Name

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Highest ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Reset

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNMIÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁINT4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT6

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT7

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT8

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁINT9ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT11
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT12

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT13

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁINT14ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Lowest
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT15

8.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return
it to a known state. The reset interrupt is unique in a number of ways:

� RESET is an active-low signal. All other interrupts are active-high signals.

� RESET must be held low for 10 clock cycles before it goes high again to
reinitialize the CPU properly.

� The instruction execution in progress is aborted and all registers are re-
turned to their default states.

� The reset interrupt service fetch packet must be located at address 0.

� RESET is not affected by branches.

8.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the
CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in
the interrupt enable register must be set to 1. If NMIE is set to 1, the only condi-
tion that can prevent NMI processing is if the NMI occurs during the delay slots
of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared
at the occurrence of an NMI to prevent another NMI from being processed. You
cannot manually clear NMIE, but you can set NMIE to allow nested NMIs.
While NMI is cleared, all maskable interrupts (INT4–INT15) are disabled.

Overview of Interrupts

 8-4

8.1.1.3 Maskable Interrupts (INT4–INT15)

The CPUs of the C6000 DSPs have 12 interrupts that are maskable. These
have lower priority than the NMI and reset interrupts. These interrupts can be
associated with external devices, on-chip peripherals, software control, or not
be available.

Assuming that a maskable interrupt does not occur during the delay slots of
a branch (this includes conditional branches that do not complete execution
due to a false condition), the following conditions must be met to process a
maskable interrupt:

� The global interrupt enable bit (GIE) bit in the control status register (CSR) is
set to1.

� The NMIE bit in the interrupt enable register (IER) is set to1.

� The corresponding interrupt enable (IE) bit in the IER is set to1.

� The corresponding interrupt occurs, which sets the corresponding bit in
the IFR to 1 and there are no higher priority interrupt flag (IF) bits set in the
IFR.

8.1.1.4 Interrupt Acknowledgment (IACK and INUMx)

The IACK and INUMx signals alert hardware external to the C6000 that an in-
terrupt has occurred and is being processed. The IACK signal indicates that
the CPU has begun processing an interrupt. The INUMx signals
(INUM3–INUM0) indicate the number of the interrupt (bit position in the IFR)
that is being processed.

For example:

INUM3 = 0 (MSB)
INUM2 = 1
INUM1 = 1
INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being
processed.

Overview of Interrupts

8-5Interrupts

8.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt ser-
vice table (IST). The IST is a table of fetch packets that contain code for servic-
ing the interrupts. The IST consists of 16 consecutive fetch packets. Each in-
terrupt service fetch packet (ISFP) contains eight instructions. A simple inter-
rupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 8–1. Because
each fetch packet contains eight 32-bit instruction words (or 32 bytes), each
address in the table is incremented by 32 bytes (20h) from the one adjacent
to it.

Figure 8–1. Interrupt Service Table

Interrupt service table
(IST)

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Overview of Interrupts

 8-6

8.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 8–2 shows an
ISFP that contains an interrupt service routine small enough to fit in a single
fetch packet (FP). To branch back to the main program, the FP contains a
branch to the interrupt return pointer instruction (B IRP). This is followed by a
NOP 5 instruction to allow the branch target to reach the execution stage of
the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five exe-
cute packets that are associated with the next ISFP.

Figure 8–2. Interrupt Service Fetch Packet

Instr3

Interrupt service table
(IST)

Instr2

Instr4

Instr5

Instr6

B IRP

NOP 5

ISFP for INT6

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service rou-
tine for INT6 is short

enough to be contained
in a single fetch packet.

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Instr1

If the interrupt service routine for an interrupt is too large to fit in a single FP,
a branch to the location of additional interrupt service routine code is required.
Figure 8–3 shows that the interrupt service routine for INT4 was too large for
a single FP, and a branch to memory location 1234h is required to complete
the interrupt service routine.

Overview of Interrupts

8-7Interrupts

Figure 8–3. IST With Branch to Additional Interrupt Service Code Located Outside the IST

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for INT4

1220h

The interrupt service routine
for INT4 includes this 7-in-

struction extension of the in-
terrupt ISFP. Instr1

Instr2

B 1234h

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for INT4

080h

084h

088h

08Ch

090h

094h

098h

09Ch

Program memory

–

–

–

–

–

Instr9

Instr11

1224h

1228h

122Ch

1230h

1234h

1238h

123Ch

B IRP

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Additional ISFP for INT4

1240h Instr12

Instr13

Instr14

Instr15

–

–

–

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

–

Note:

The instruction B 1234h branches into the middle of a fetch packet
(at 1220h) and processes code starting at address 1234h. The CPU ignores
code from address 1220–1230h, even if it is in parallel to code at ad-
dress 1234h.

Overview of Interrupts

 8-8

8.1.2.2 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer (ISTP) register is used to locate the interrupt
service routine. One field, ISTB identifies the base portion of the address of
the IST; another field, HPEINT, identifies the specific interrupt and locates the
specific fetch packet within the IST. Figure 8–4 shows the fields of the ISTP.
Table 8–2 describes the fields and how they are used.

Figure 8–4. Interrupt Service Table Pointer (ISTP)

31 0

R, +0

0

R, W, +0

10

HPEINTISTB 0000

59 4

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is cleared at reset

Table 8–2. Interrupt Service Table Pointer (ISTP) Field Descriptions

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Bits
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Field
Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁ
ÁÁÁÁ

0–4 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5–9 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HPEINT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Highest priority enabled interrupt. This field gives the number (related bit position in the IFR)
of the highest priority interrupt (as defined in Table 8–1) that is enabled by its bit in the IER.
Thus, the ISTP can be used for manual branches to the highest priority enabled interrupt.
If no interrupt is pending and enabled, HPEINT contains the value 00000b. The corre-
sponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10–31
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ISTB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt service table base portion of the IST address. This field is set to 0 on reset. Thus,
upon startup the IST must reside at address 0. After reset, you can relocate the IST by writ-
ing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never exe-
cuted via interrupt processing, because reset sets the ISTB to 0. See Example 8–1.

Overview of Interrupts

8-9Interrupts

The reset fetch packet must be located at address 0, but the rest of the IST can
be at any program memory location that is on a 256-word boundary. The loca-
tion of the IST is determined by the interrupt service table base (ISTB) field of
the ISTP. Example 8–1 shows the relationship of the ISTB to the table location.

Example 8–1. Relocation of Interrupt Service Table

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

820h

840h

860h

880h

8A0h

8C0h

8E0h

900h

920h

940h

96h0

980h

9A0h

9C0h

9E0h

Program memory

800h

RESET ISFP

1) Copy the IST, located between 0h and 200h, to the memory loca-
tion between 800h and A00h.

2) Write 800h to the ISTP register: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
 IER = 1230h = 0001 0010 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in the IFR indicate pending interrupts; the 1s in the IER indi-
cate the interrupts that are enabled. INT9 has a higher priority
than INT12, so HPEINT is encoded with the value for INT9, 01001b.

HPEINT corresponds to bits 9–5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs the CPU to the appropriate ISFP in the
relocated IST

(a) Relocating the IST to 800h

Overview of Interrupts

 8-10

8.1.3 Summary of Interrupt Control Registers

Table 8–3 lists the eight interrupt control registers on the C6000 devices. The
control status register (CSR) and the interrupt enable register (IER) enable or
disable interrupt processing. The interrupt flag register (IFR) identifies pending
interrupts. The interrupt set register (ISR) and interrupt clear register (ICR) can
be used in manual interrupt processing.

There are three pointer registers. ISTP points to the interrupt service table.
NRP and IRP are the return pointers used when returning from a nonmaskable
or a maskable interrupt, respectively. More information on all the registers can
be found at the locations listed in the table.

Table 8–3. Interrupt Control Registers

Abbreviation Name Description
Page

Number

CSR Control status register Allows you to globally set or disable interrupts 8-11

IER Interrupt enable register Allows you to enable interrupts 8-13

IFR Interrupt flag register Shows the status of interrupts 8-14

ISR Interrupt set register Allows you to set flags in the IFR manually 8-14

ICR Interrupt clear register Allows you to clear flags in the IFR manually 8-14

ISTP Interrupt service table pointer Pointer to the beginning of the interrupt service
table

8-8

NRP Nonmaskable interrupt return
pointer

Contains the return address used on return from
a nonmaskable interrupt. This return is accom-
plished via the B NRP instruction.

8-16

IRP Interrupt return pointer Contains the return address used on return from
a maskable interrupt. This return is accom-
plished via the B IRP instruction.

8-17

Globally Enabling and Disabling Interrupts

8-11Interrupts

8.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR)

The control status register (CSR) contains two fields that control interrupts:
GIE and PGIE, as shown in Figure 8–5 and Table 8–4. The other fields of the
registers serve other purposes and are discussed in section 2.6.3 on
page 2-17.

Figure 8–5. Control Status Register (CSR)
31 24

CPU ID

1623

Revision ID

R

15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +x R, W, +0R, C, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

Table 8–4. Control Status Register (CSR) Interrupt Control Field Descriptions

Bit
Field
Name Description

0 GIE Global interrupt enable; globally enables or disables all
maskable interrupts.
GIE = 1: maskable interrupts globally enabled
GIE = 0: maskable interrupts globally disabled

1 PGIE Previous GIE; saves the value of GIE when an interrupt is
taken. This value is used on return from an interrupt.

The global interrupt enable (GIE) allows you to enable or disable all maskable
interrupts by controlling the value of a single bit. GIE is bit 0 of the control status
register (CSR).

� GIE = 1 enables the maskable interrupts so that they are processed.
� GIE = 0 disables the maskable interrupts so that they are not processed.

Bit 1 of the CSR is PGIE and contains the previous value of GIE. During proc-
essing of a maskable interrupt, PGIE is loaded with GIE and GIE is cleared.
GIE is cleared during a maskable interrupt to keep another maskable interrupt
from occurring before the device state has been saved. Upon return from an
interrupt, by way of the B IRP instruction, the PGIE value is copied back to GIE
and remains unchanged. The purpose of PGIE is to allow proper clearing of
GIE when an interrupt has already been detected for processing.

Globally Enabling and Disabling Interrupts (Control Status Register–CSR)

Globally Enabling and Disabling Interrupts

 8-12

Suppose the CPU begins processing an interrupt. Just as the interrupt proc-
essing begins, GIE is being cleared by you writing a 0 to bit 0 of the CSR with
the MVC instruction. GIE is cleared by the MVC instruction prior to being cop-
ied to PGIE. Upon returning from the interrupt, PGIE is copied back to GIE, re-
sulting in GIE being cleared as directed by your code.

Example 8–2 shows how to disable maskable interrupts globally and
Example 8–3 shows how to enable maskable interrupts globally.

Example 8–2. Code Sequence to Disable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
AND -2,B0,B0 ; get ready to clear GIE
MVC B0,CSR ; clear GIE

Example 8–3. Code Sequence to Enable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
OR 1,B0,B0 ; get ready to set GIE
MVC B0,CSR ; set GIE

Globally Enabling and Disabling Interrupts (Control Status Register–CSR)

Individual Interrupt Control

8-13Interrupts

8.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of
interrupts: reset, nonmaskable, and maskable. Enabling and disabling individ-
ual interrupts is done with the interrupt enable register (IER). The status of
pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt
processing can be accomplished through the use of the interrupt set register
(ISR) and interrupt clear register (ICR). The interrupt return pointers restore
context after servicing nonmaskable and maskable interrupts.

8.3.1 Enabling and Disabling Interrupts (Interrupt Enable Register – IER)

You can enable and disable individual interrupts by setting and clearing bits
in the IER that correspond to the individual interrupts. An interrupt can trigger
interrupt processing only if the corresponding bit in the IER is set. Bit 0, corre-
sponding to reset, is not writeable and is always read as 1, so the reset inter-
rupt is always enabled. You cannot disable the reset interrupt. Bits IE4–IE15
can be written as 1 or 0, enabling or disabling the associated interrupt, respec-
tively. The IER is shown in Figure 8–6.

Figure 8–6. Interrupt Enable Register (IER)

31 16

Reserved

15 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4

R, W, +0

NMIE 1

R, +1

Rsv Rsv

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
Rsv = Reserved
+1 = Value after reset
+0 = Value after reset

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption
of an NMI. NMIE is cleared at reset to prevent any interruption of processor
initialization until you enable NMI. After reset, you must set NMIE to enable the
NMI and to allow INT15–INT4 to be enabled by GIE and the appropriate
IER bit. You cannot manually clear the NMIE; the bit is unaffected by a write
of 0. NMIE is also cleared by the occurrence of an NMI. If cleared, NMIE is set
only by completing a B NRP instruction or by a write of 1 to NMIE. Example 8–4
and Example 8–5 show code for enabling and disabling individual interrupts,
respectively.

Individual Interrupt Control

 8-14

Example 8–4. Code Sequence to Enable an Individual Interrupt (INT9)

MVK 200h,B1 ; set bit 9
MVC IER,B0 ; get IER
OR B1,B0,B0 ; get ready to set IE9
MVC B0,IER ; set bit 9 in IER

Example 8–5. Code Sequence to Disable an Individual Interrupt (INT9)

MVK FDFFh,B1 ; clear bit 9
MVC IER,B0
AND B1,B0,B0 ; get ready to clear IE9
MVC B0,IER ; clear bit 9 in IER

8.3.2 Status of, Setting, and Clearing Interrupts
(Interrupt Flag, Set, and Clear Registers–IFR, ISR, ICR)

The interrupt flag register (IFR) contains the status of INT4–INT15 and NMI.
Each interrupt’s corresponding bit in the IFR is set to 1 when that interrupt oc-
curs; otherwise, the bits have a value of 0. If you want to check the status of
interrupts, use the MVC instruction to read the IFR. Figure 8–7 shows the IFR.

Figure 8–7. Interrupt Flag Register (IFR)

31 16

Reserved

R, +0

15 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 Rsv Rsv NMIF 0

R, +0

Legend : R = Readable by the MVC instruction
+0 = Cleared at reset
rsv = Reserved

The interrupt set register (ISR), shown in Figure 8–8, and the interrupt clear
register (ICR), shown in Figure 8–9, allow you to set or clear maskable inter-
rupts manually in the IFR. Writing a 1 to IS4–IS15 of the ISR causes the corre-
sponding interrupt flag to be set in the IFR. Similarly, writing a 1 to a bit of the
ICR causes the corresponding interrupt flag to be cleared. Writing a 0 to any
bit of either the ISR or the ICR has no effect. Incoming interrupts have priority
and override any write to the ICR. You cannot set or clear any bit in the ISR
or ICR to affect NMI or reset.

Individual Interrupt Control

8-15Interrupts

Note:

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR
until two cycles after the write to the ISR or ICR.

Any write to the ICR is ignored by a simultaneous write to the same bit in the
ISR.

Example 8–6 and Example 8–7 show code examples to set and clear individu-
al interrupts.

Figure 8–8. Interrupt Set Register (ISR)

31 16

Reserved

W

15 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Rsv Rsv Rsv Rsv

Legend : W = Writeable by the MVC instruction
Rsv = Reserved

Figure 8–9. Interrupt Clear Register (ICR)

31 16

Reserved

W

15 0

IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 Rsv RsvRsv Rsv

Legend : W = Writeable by the MVC instruction
Rsv = Reserved

Example 8–6. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ISR
NOP
MVC IFR,B4

Example 8–7. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ICR
NOP
MVC IFR,B4

Individual Interrupt Control

 8-16

8.3.3 Returning From Interrupt Servicing

After RESET goes high, the control registers are brought to a known value and
program execution begins at address 0h. After nonmaskable and maskable
interrupt servicing, use a branch to the corresponding return pointer register
to continue the previous program execution.

8.3.3.1 CPU State After RESET

After RESET, the control registers and bits will contain the corresponding val-
ues:
� AMR, ISR, ICR, IFR, and ISTP = 0h
� IER = 1h
� IRP and NRP = undefined
� Bits 15–0 of the CSR = 100h in little-endian mode

= 000h in big-endian mode

8.3.3.2 Returning From Nonmaskable Interrupts (NMI Return Pointer Register–NRP)

The NMI return pointer register (NRP) contains the return pointer that directs
the CPU to the proper location to continue program execution after NMI proc-
essing. A branch using the address in the NRP (B NRP) in your interrupt ser-
vice routine returns to the program flow when NMI servicing is complete.
Example 8–8 shows how to return from an NMI.

Example 8–8. Code to Return From NMI

B NRP ; return, sets NMIE
NOP 5 ; delay slots

The NRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a nonmaskable interrupt. Although you
can write a value to this register, any subsequent interrupt processing may
overwrite that value. Figure 8–10 shows the NRP register.

Figure 8–10. NMI Return Pointer (NRP)
31 16

NRP

R, W, +x

15 0
NRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = value undefined after reset

Individual Interrupt Control

8-17Interrupts

8.3.3.3 Returning From Maskable Interrupts (Interrupt Return Pointer Register–IRP)

The interrupt return pointer register (IRP) contains the return pointer that di-
rects the CPU to the proper location to continue program execution after proc-
essing a maskable interrupt. A branch using the address in the IRP (B IRP)
in your interrupt service routine returns to the program flow when interrupt ser-
vicing is complete. Example 8–9 shows how to return from a maskable inter-
rupt.

Example 8–9. Code to Return from a Maskable Interrupt

B IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots

The IRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a maskable interrupt. Although you can
write a value to this register, any subsequent interrupt processing may over-
write that value. Figure 8–11 shows the IRP register.

Figure 8–11.Interrupt Return Pointer (IRP)

31 16
IRP

R, W, +x

15 0
IRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = Value undefined after reset

Interrupt Detection and Processing

 8-18

8.4 Interrupt Detection and Processing

When an interrupt occurs, it sets a flag in the IFR. Depending on certain condi-
tions, the interrupt may or may not be processed. This section discusses the
mechanics of setting the flag bit, the conditions for processing an interrupt, and
the order of operation for detecting and processing an interrupt. The similari-
ties and differences between reset and nonreset interrupts are also discussed.

8.4.1 Setting the Nonreset Interrupt Flag

Figure 8–12 and Figure 8–13 show the processing of a nonreset interrupt
(INTm) for the TMS320C62x /TMS320C64x and TMS320C67x DSPs,
respectively. The flag (IFm) for INTm in the IFR is set following the low-to-high
transition of the INTm signal on the CPU boundary. This transition is detected
on a clock-cycle by clock-cycle basis and is not affected by memory stalls that
might extend a CPU cycle. Once there is a low-to-high transition on an external
interrupt pin (cycle 1), it takes two clock cycles for the signal to reach the CPU
boundary (cycle 3). When the interrupt signal enters the CPU, it is has been
detected (cycle 4). Two clock cycles after detection, the interrupt’s corre-
sponding flag bit in the IFR is set (cycle 6).

In Figure 8–12 and Figure 8–13, IFm is set during CPU cycle 6. You could at-
tempt to clear bit IFm by using an MVC instruction to write a 1 to bit m of the
ICR in execute packet n + 3 (during CPU cycle 4). However, in this case, the
automated write by the interrupt detection logic takes precedence and IFm re-
mains set.

Figure 8–12 and Figure 8–13 assume INTm is the highest priority pending in-
terrupt and is enabled by GIE and NMIE as necessary. If it is not the highest
priority pending interrupt, IFm remains set until either you clear it by writing a 1
to bit m of the ICR, or the processing of INTm occurs.

8.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 8–12 and Figure 8–13, a nonreset interrupt in need
of processing is detected. For this interrupt to be processed, the following con-
ditions must be valid on the same clock cycle and are evaluated every clock
cycle:

� IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4
by the interrupt logic.)

� There is not a higher priority IFm bit set in the IFR.

� The corresponding bit in the IER is set (IEm = 1).

Interrupt Detection and Processing

8-19Interrupts

� GIE = 1

� NMIE = 1

� The five previous execute packets (n through n + 4) do not contain a
branch (even if the branch is not taken) and are not in the delay slots of
a branch.

Any pending interrupt will be taken as soon as pending branches are com-
pleted.

Figure 8–12. TMS320C62x/C64x Nonreset Interrupt Detection and Processing:
 Pipeline Operation

ISFP

n+10
n+9
n+8
n+7
n+6

Annulled Instructions

E5E4E3E2E1DCDPPRPWPSPG

PG
PSPG
PWPS
PRPW

PG
PS

DPPRPW
PG
PSPG

E5E4
E5

E3
E4
E5

DC
E1
E2
E3
E4

DP
DC
E1
E2
E3

PR
DP
DC
E1
E2

PW
PR
DP
DC
E1

PS
PW
PR
DP
DC

E5E4E3E2E1

n+5
n+4
n+3
n+2
n+1

n
Execute packet

INUM

IACK

IFm

External INTm

Clock cycle

0000000000m000000

17161514131211109876543210

Cycles 6–12: Nonreset
interrupt processing is

disabled.

17161514131211109876543210

�

�

CPU cycle

at pin

0

PG
PS
PW
PR
DP
DC

PG
PS
PW
PR
DP
DC E5E4E3E2E1

n+11

Contains no branch

† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.

Interrupt Detection and Processing

 8-20

Figure 8–13. TMS320C67x Nonreset Interrupt Detection and Processing:
 Pipeline Operation

21 22201917 18161514

000000000

E10

22212019

‡

18171615

E1DC

14

1211108 976

†

4 53

00000

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

m0000

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

IFm

0

External
INTm at

pin

00

IACK

INUM 0

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1

n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

0

E10

13

DP

E9

Cycles 6–14: Nonreset
interrupt processing is disabled

Annulled Instructions

Contains no branch

E8E7E6E4 E5E3E2

† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.

Interrupt Detection and Processing

8-21Interrupts

8.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6–12 of Figure 8–12 and cycles 6–14 of Figure 8–13, the
following interrupt processing actions occur:

� Processing of subsequent nonreset interrupts is disabled.

� For all interrupts except NMI, PGIE is set to the value of GIE and then GIE
is cleared.

� For NMI, NMIE is cleared.

� The next execute packets (from n + 5 on) are annulled. If an execute pack-
et is annulled during a particular pipeline stage, it does not modify any CPU
state. Annulling also forces an instruction to be annulled in future pipeline
stages.

� The address of the first annulled execute packet (n+5) is loaded in to the
NRP (in the case of NMI) or IRP (for all other interrupts).

� A branch to the address held in ISTP (the pointer to the ISFP for INTm)
is forced into the E1 phase of the pipeline during cycle 7 for the C62x
/C64x and cycle 9 for the C67x .

� During cycle 7, IACK is asserted and the proper INUMx signals are as-
serted to indicate which interrupt is being processed. The timings for these
signals in Figure 8–12 and Figure 8–13 represent only the signals’ char-
acteristics inside the CPU. The external signals may be delayed and be
longer in duration to handle external devices. Check the data sheet for
your specific device for particular timing values.

� IFm is cleared during cycle 8.

Interrupt Detection and Processing

 8-22

8.4.4 Setting the RESET Interrupt Flag for the TMS320C6000

RESET must be held low for a minimum of ten clock cycles. Four clock cycles
after RESET goes high, processing of the reset vector begins. The flag for RE-
SET (IF0) in the IFR is set by the low-to-high transition of the RESET signal
on the CPU boundary. In Figure 8–14, IF0 is set during CPU cycle 15. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected
by memory stalls that might extend a CPU cycle.

Figure 8–14. RESET Interrupt Detection and Processing: Pipeline Operation

Reset ISFP

n+7
n+6

Pipeline flush

E1DCDPPRPWPSPG

PG
PS

PW
PR
DP
DC

E1

n+5
n+4
n+3
n+2

n+1
n

Execute
packet

INUM

IACK

IF0

RESET

Clock cycle

0000000000000000

17161514131211109876543210

Cycles 15–21:
Nonreset interrupt

processing is disabled

17161514131211109876543210

�

�

CPU cycle

at pin

0

PG

PS
PW
PR
DP

DC
E2E1

00000

2221201918

0

2221201918

† IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.

Interrupt Detection and Processing

8-23Interrupts

8.4.5 Actions Taken During RESET Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once
RESET makes a high-to-low transition, the pipeline is flushed and CPU regis-
ters are returned to their reset values. GIE, NMIE, and the ISTB in the ISTP
are cleared. For the CPU state after reset, see section 8.3.3.1 on page 8-16.

During CPU cycles 15–21 of Figure 8–14, the following reset processing ac-
tions occur:

� Processing of subsequent nonreset interrupts is disabled because GIE
and NMIE are cleared.

� A branch to the address held in ISTP (the pointer to the ISFP for INT0) is
forced into the E1 phase of the pipeline during cycle 16.

� During cycle 16, IACK is asserted and the proper INUMx signals are as-
serted to indicate a reset is being processed.

� IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable GIE, NMIE, and
IER to allow interrupts to be processed.

Performance Considerations

 8-24

8.5 Performance Considerations

The interaction of the C6000 CPU and sources of interrupts present perfor-
mance issues for you to consider when you are developing your code.

8.5.1 General Performance

� Overhead . Overhead for all CPU interrupts is seven cycles for the
C62x/C64x and nine cycles for the C67x. You can see this in Figure 8–12
and Figure 8–13, where no new instructions are entering the E1 pipeline
phase during CPU cycles 6 through 12 for the C62x/C64x and CPU
cycles 6 through 14 for the C67x.

� Latency . Interrupt latency is 11 cycles for the C62x/C64x and 13 cycles
for the C67x (21 cycles for RESET). In Figure 8–13, although the interrupt
is active in cycle 2, execution of interrupt service code does not begin until
cycle 13 for the C62x//C64x and cycle 15 for the C67x.

� Frequency . The logic clears the nonreset interrupt (IFm) on cycle 8, with
any incoming interrupt having highest priority. Thus, an interrupt can be
recognized every second cycle. Also, because a low-to-high transition is
necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for inter-
rupt service and whether you reenable interrupts during processing,
thereby allowing nested interrupts. Effectively, only two occurrences of a
specific interrupt can be recognized in two cycles.

8.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC
and subsequent phases of the pipeline, no conflicts between code parallelism
and interrupts exist. There are three operations or conditions that can affect,
or are affected by, interrupts:

� Branches. Nonreset interrupts are delayed if any execute packets n
through n + 4 in Figure 8–12 or Figure 8–13 contain a branch or are in the
delay slots of a branch.

� Memory stalls. Memory stalls delay interrupt processing, because they
inherently extend CPU cycles.

� Multicycle NOPs. Multicycle NOPs (including IDLE) operate like other in-
structions when interrupted, except when an interrupt causes annulment
of any but the first cycle of a multicycle NOP. In that case, the address of
the next execute packet in the pipeline is saved in the NRP or the IRP. This
prevents returning to an IDLE instruction or a multicycle NOP that was in-
terrupted.

Programming Considerations

8-25Interrupts

8.6 Programming Considerations

The interaction of the C6000 CPUs and sources of interrupts present program-
ming issues for you to consider when you are developing your code.

8.6.1 Single Assignment Programming

Example 8–10 shows code without single assignment and Example 8–11
shows code using the single assignment programming method.

To avoid unpredictable operation, you must employ the single assignment
method in code that can be interrupted. When an interrupt occurs, all instruc-
tions entering E1 prior to the beginning of interrupt processing are allowed to
complete execution (through E5). All other instructions are annulled and re-
fetched upon return from interrupt. The instructions encountered after the re-
turn from the interrupt do not experience any delay slots from the instructions
prior to processing the interrupt. Thus, instructions with delay slots prior to the
interrupt can appear, to the instructions after the interrupt, to have fewer delay
slots than they actually have.

For example, suppose that register A1 contains 0 and register A0 points to a
memory location containing a value of 10 before reaching the code in
Example 8–10. The ADD instruction, which is in a delay slot of the LDW, sums
A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt
occurred between the LDW and ADD, the LDW would complete the update
of A1 (10), the interrupt would be processed, and the ADD would sum A1 (10)
with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation
produces incorrect results.

In Example 8–11, the single assignment method is used. The register A1 is as-
signed only to the ADD input and not to the result of the LDW. Regardless of
the value of A6 with or without an interrupt, A1 does not change before it is
summed with A2. Result A3 is equal to A2.

Example 8–10. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1

Example 8–11. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6

Programming Considerations

 8-26

8.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are dis-
abled. However, when the interrupt service routine is for one of the maskable
interrupts (INT4–INT15), an NMI can interrupt processing of the maskable in-
terrupt. In other words, an NMI can interrupt a maskable interrupt, but neither
an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be
interrupted by another (particularly higher priority) interrupt. Even though the
processor by default does not allow interrupt service routines to be interrupted
unless the source is an NMI, it is possible to nest interrupts under software con-
trol. The process requires you to save the original IRP (or NRP) and IER to
memory or registers (either registers not used, or registers saved if they are
used by subsequent interrupts), and if you desire, to set up a new set of inter-
rupt enables once the ISR is entered, and save the CSR. Then you could set
the GIE bit, which would reenable interrupts inside the interrupt service rou-
tine.

8.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to
the value held in the ISTP as shown below in Example 8–12.

The code sequence begins by copying the address of the highest priority inter-
rupt from the ISTP to the register B2. The next instruction extracts the number
of the interrupt, which is used later to clear the interrupt. The branch to the in-
terrupt service routine comes next with a parallel instruction to set up the ICR
word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return
address is stored in the B2 register and then copied to the interrupt return
pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1,
is used to shift the ICR word in B1 to clear the interrupt.

Example 8–12. Manual Interrupt Processing

MVC ISTP,B2 ; get related ISFP address
EXTU B2,23,27,B1 ; extract HPEINT

[B1] B B2 ; branch to interrupt
|| [B1] MVK 1,A0 ; setup ICR word

[B1] MVK RET_ADR,B2 ; create return address
[B1] MVKH RET_ADR,B2 ;
[B1] MVC B2,IRP ; save return address
[B1] SHL A0,B1,B1 ; create ICR word
[B1] MVC B1,ICR ; clear interrupt flag
RET_ADR: (Post interrupt service routine Code)

Programming Considerations

8-27Interrupts

8.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software.
The trap condition can be stored in any one of the conditional registers: A1,
A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler rou-
tine processes the trap and the return.

Example 8–13 and Example 8–14 show a trap call and the return code se-
quence, respectively. In the first code sequence, the address of the trap han-
dler code is loaded into register B0 and the branch is called. In the delay slots
of the branch, the context is saved in the B0 register, the GIE bit is cleared to
disable maskable interrupts, and the return pointer is stored in the B1 register.
If the trap handler were within the 21-bit offset for a branch using a displace-
ment, the MVKH instructions could be eliminated, thus shortening the code se-
quence.

The trap is processed with the code located at the address pointed to by the
label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap han-
dler, their contents must be stored to memory and restored before returning.
The code shown in Example 8–14 should be included at the end of the trap
handler code to restore the context prior to the trap and return to the
TRAP_RETURN address.

Example 8–13. Code Sequence to Invoke a Trap

[A1] MVK TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH TRAP_HANDLER,B0
[A1] B B0 ; branch to trap handler
[A1] MVC CSR,B0 ; read CSR
[A1] AND -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC B1,CSR ; write to CSR
[A1] MVK TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH TRAP_RETURN,B1
TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 8–14. Code Sequence for Trap Return

B B1 ; return
MVC B0,CSR ; restore CSR
NOP 4 ; delay slots

A-1

Appendix A

Glossary

A
address: The location of a word in memory.

addressing mode: The method by which an instruction calculates the location
of an object in memory.

ALU: arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

annul: To cause an instruction to not complete its execution.

B
bootloader: A built-in segment of code that transfers code from an external

source to program memory at power-up.

C
clock cycles: Cycles based on the input from the external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

CPU cycle: The period during which a particular execute packet is in a par-
ticular pipeline stage. CPU cycle boundaries always occur on clock cycle
boundaries; however, memory stalls can cause CPU cycles to extend
over multiple clock cycles.

D
data memory: A memory region used for storing and manipulating data.

delay slot: A CPU cycle that occurs after the first execution phase (E1) of
an instruction in which results from the instruction are not available.

Appendix A

 A-2

E

execute packet (EP): A block of instructions that execute in parallel.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

F

fetch packet (FP): A block of program data containing up to eight instruc-
tions.

G

global interrupt enable (GIE): A bit in the control status register (CSR)
used to enable or disable maskable interrupts.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

I

interrupt: A condition causing program flow to be redirected to a location in
the interrupt service table (IST).

interrupt service fetch packet (ISFP): See also fetch packet (FP). A fetch
packet used to service interrupts. If eight instructions are insufficient, the
user must branch out of this block for additional interrupt service. If the
delay slots of the branch do not reside within the ISFP, execution contin-
ues from execute packets in the next fetch packet (the next ISFP).

interrupt service table (IST): Sixteen contiguous ISFPs, each correspond-
ing to a condition in the interrupt flag register (IFR). The IST resides in
memory accessible by the program memory system. The IST must be
aligned on a 256-word boundary (32 fetch packets × 8 words/fetch
packet). Although only 16 interrupts are defined, space in the IST is re-
served for 32 for future expansion. The IST’s location is determined by
the interrupt service table pointer (ISTP) register.

Glossary

A-3Glossary

L
latency: The delay between when a condition occurs and when the device

reacts to the condition. Also, in a pipeline, the necessary delay between
the execution of two instructions to ensure that the values used by the
second instruction are correct.

LSB: least significant bit. The lowest-order bit in a word.

M
maskable interrupt : A hardware interrupt that can be enabled or disabled

through software.

memory stall: When the CPU is waiting for a memory load or store to finish.

MSB: most significant bit. The highest-order bit in a word.

N
nested interrupt: A higher-priority interrupt that must be serviced before

completion of the current interrupt service routine.

nonmaskable interrupt: An interrupt that can be neither masked nor manu-
ally disabled.

O
overflow: A condition in which the result of an arithmetic operation exceeds

the capacity of the register used to hold that result.

P
pipeline: A method of executing instructions in an assembly-line fashion.

program memory: A memory region used for storing and executing programs.

R
register: A group of bits used for holding data or for controlling or specifying

the status of a device.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

Glossary

 A-4

S

shifter: A hardware unit that shifts bits in a word to the left or to the right.

sign extension: An operation that fills the high order bits of a number with
the sign bit.

W

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle for every wait state.

Z

zero fill: A method of filling the low- or high-order bits with zeros when load-
ing a 16-bit number into a 32-bit field.

Glossary

Index

Index-1

Index

[] in code 3-16
|| in code 3-15
1X and 2X cross paths. See cross paths
1X and 2X paths. See crosspaths
40-bit data

conflicts 3-18
40-bit data 2-6 to 2-8
8-bank interleaved memory 7-58
8-bank interleaved memory with two memory

spaces 7-59

A
ABS instruction 3-28
ABS2 instruction 5-23
ABSDP instruction 4-16 to 4-18
ABSSP instruction 4-18 to 4-20
ADD instruction 3-30 to 3-34, 8-25
add instructions

using circular addressing 3-22
using linear addressing 3-21

ADD2 instruction 5-25
ADD2 instruction 3-37
ADD4 instruction 5-28
ADDAB instruction 3-22, 3-34 to 3-36
ADDAD instruction 4-20 to 4-22, 5-31 to 5-33
ADDAH instruction 3-22, 3-34 to 3-36
ADDAW instruction 3-22, 3-34 to 3-36
ADDDP instruction 4-22 to 4-25
ADDDP instruction

.L-unit instruction hazards 7-33
execution 7-49
figure of phases 7-49
pipeline operation 7-49

ADDK instruction 3-36
ADDKPC instruction 5-33

address A-1
address generation for load/store 3-23
address paths 2-12
addressing mode

circular mode 3-21
definition A-1
linear mode 3-21

addressing mode register (AMR) 2-13, 2-14
field encoding

table 2-15
figure 2-15

Addressing modes 5-18
ADDSP instruction 4-25 to 4-28
ADDU instruction 3-30 to 3-34
AMR. See addressing mode register (AMR)
AND instruction 5-35
AND instruction 3-38 to 3-40
ANDN instruction 5-38
architecture 1-7
assembler conflict detectability for writes 3-20
AVG2 instruction 5-40
AVGU4 instruction 5-42

B
B instruction

using a displacement 3-40 to 3-42
using a register 3-42 to 3-44

B IRP instruction 3-44 to 3-46, 8-6, 8-12, 8-17
B NRP instruction 3-46 to 3-48, 8-13, 8-16
base + index addressing syntax 3-23
BDEC instruction 5-44
BITC4 instruction 5-47
BITR instruction 5-49
block size calculations 2-16
BNOP instruction 5-51, 5-54

Index

Index-2

BPOS instruction 5-57

branch instruction
.S-unit instruction hazards 7-24
execution block diagram 6-19, 7-45
figure of phases 6-19, 7-44
pipeline operation 6-19, 7-44
using a displacement 3-40 to 3-42
using a register 3-42 to 3-44

branching
and multicycle NOPs 6-23, 7-55
performance considerations 8-24
to additional interrupt service routine 8-6
to the middle of an execute packet 3-15

C
circular addressing

block size calculations 2-16
block size specification 3-21
registers that perform 2-14

clearing
an individual interrupt 8-14
interrupts 8-14

clock cycle 6-11, 7-11

CLR instruction 3-48 to 3-51

CMPEQ instruction 3-51 to 3-53

CMPEQ2 instruction 5-59

CMPEQ4 instruction 5-62

CMPEQDP instruction 4-28 to 4-31

CMPEQSP instruction 4-31 to 4-34

CMPGT instruction 3-53 to 3-57

CMPGT2 instruction 5-66

CMPGTDP instruction 4-34 to 4-37

CMPGTSP instruction 4-37 to 4-40

CMPGTU instruction 3-53 to 3-57

CMPGTU4 instruction 5-69

CMPLT instruction 3-57 to 3-61

CMPLT2 instruction 5-73

CMPLTDP instruction 4-40 to 4-43

CMPLTSP instruction 4-43 to 4-46

CMPLTU instruction 3-57 to 3-61

CMPLTU4 instruction 5-75

code
definition A-1

conditional operations 3-16, 5-12

conditional registers 3-16, 5-12, 5-16

conflict detectability 3-20

constraints
on floating-point instructions 4-12 to 4-15

contraints
on crosspaths 3-17
on floatin-point instructions 7-16 to 7-19
on general-purpose registers 3-19 to 3-21
on instructions using the same functional

unit 3-17
on LDDW instruction 4-14
on loads and stores 3-18
on long data 3-18
on register reads 3-19
on resources 3-17, 5-13

control
individual interrupts 8-13
of interrupts 8-11

control register
file extension (C67x) 2-20
interrupt 8-10
list of 2-13
register addresses for accessing 3-89

control status register (CSR) 8-10
description 2-13, 2-18
figure 2-17, 8-11
interrupt control fields 8-11

CPU
control register file 2-13
cycle 6-11, 6-14, 7-11, 7-16
data paths

TMS320C62x 2-2
TMS320C64x 2-4
TMS320C67x 2-3

functional units 2-7
general-purpose register files 2-5
introduction 1-8
load and store paths 2-11
TMS320C62x block diagram 6-5
TMS320C67x block diagram 7-5

CPU data paths
relationship to register files 2-10
TMS320C62x 2-2
TMS320C64x 2-4
TMS320C67x 2-3

CPU ID field (CSR) 2-18

creg opcode field defined 3-16

cross paths 2-10, 3-17

Index

Index-3

CSR. See control status register (CSR)

D
.D functional unit

load hazard 7-34
store hazard 7-35
LDDW instruction with long write hazard 7-37
single-cycle 7-36

.D functional units 2-9

.D unit hazards
LDDW instruction with long write instruc-

tion 7-37
load instruction 7-34
single-cycle instruction 7-36
store instruction 7-35

DA1 and DA2. See data address paths

data address paths 2-12

data address pointer 6-17, 6-18, 7-42

data format (IEEE standard) 4-6

data load accesses
versus program memory accesses 6-24, 7-56

data storage format
40-bit 2-6

DC pipeline phase 6-4, 7-4

DCC field (CSR) 2-18

Deal instruction 5-78

decode pipeline stage 6-4, 7-4

decoding instructions 6-4, 7-4

delay slots
description 5-11, 6-14, 7-16
fixed-point instructions 3-12
floating-point instructions 4-11
stores 6-18, 7-43

DEN1,DEN2 fields
FADCR 2-20 to 2-22
FAUCR 2-22 to 2-24
FMCR 2-24 to 2-26

detection of interrupts 8-18

disabling an individual interrupt 8-14

disabling maskable interrupts globally 8-12

DIV0 fields (FAUCR) 2-22 to 2-24

DOTP2 instruction 5-80

DOTPN2 instruction 5-84

DOTPNRSU2 instruction 5-87

DOTPRSU2 instruction 5-92

DOTPRUS2 instruction 5-95

DOTPSU4 instruction 5-97

DOTPU4 instruction 5-102

DOTPUS4 instruction 5-100

double-precision data format 4-6

DP compare instructions
.S-unit instruction hazards 7-22
execution 7-48
figure of phases 7-48
pipeline operation 7-48

DP pipeline phase 6-4, 6-21, 7-4, 7-53

DPINT instruction 4-46 to 4-48

DPSP instruction 4-48 to 4-51

DPTRUNC instruction 4-51 to 4-53

E
E1 phase program counter (PCE1) 2-19

E1–E5 (or E10) pipeline phases 7-5

E1–E5 pipeline phases 6-5

Empty 5-90

EN field (CSR) 2-18

enabling an individual interrupt 8-14

enabling maskable interrupts globally 8-12

execute packet
multicycle NOPs in 6-22, 7-54
parallel operations 3-13
performance considerations (C67x) 7-52
pipeline operation 6-20

execute phases of the pipeline 6-24, 7-56
figure 6-5, 7-5

execution notations
fixed-point instructions 3-2
fixed-point instructions 5-2
floating-point instructions 4-2

execution table
ADDDP/SUBDP 7-49
INTDP 7-48
MPYDP 7-51
MPYI 7-50
MPYID 7-50

EXT instruction 3-61 to 3-64

EXTU instruction 3-64 to 3-67

Index

Index-4

F
FADCR. See floating-point adder configuration reg-

ister (FADCR)

FAUCR. See floating-point auxiliary configuration
register (FAUCR)

fetch packet (FP) 3-13, 6-20, 7-52, 8-6

fetch phases of the pipeline 6-24

fetch pipeline phase 6-2, 7-56

fetch pipline phase
TMS320C62x 6-3
TMS320C67x 7-2, 7-3

fixed-point instruction set 3-1 to 3-139, 5-1 to
5-139

flag
interrupt 8-18, 8-22

floating-point instruction constraints 4-12

floating-point instruction set 4-1 to 4-83

floating-point adder configuration register
(FADCR) 2-20 to 2-22

floating-point auxiliary configuration register
(FAUCR) 2-20, 2-22 to 2-24

floating-point multiplier configuration register
(FMCR) 2-20, 2-24 to 2-26

floating-point field definitions
double-precision 4-9
single-precision 4-8

floating-point operands
double precision 4-6
single precision 4-6

FMCR. See floating-point multiplier configuration
register (FMCR)

4-cycle instructions
.L-unit instruction hazards 7-31
.M-unit instruction hazards 7-26
execution 7-47
figure of phases 7-47
pipeline operation 7-47

Functional Unit Hazards 7-20

functional unit to instruction mapping 3-5, 4-4, 5-6

functional units 2-7
constraints on instructions 3-17
fixed-point operations 2-8
list of 2-8
operations performed on 2-8

G
general-purpose register files

cross paths 2-10
data address paths 2-12
description 2-5
memory, load, and store paths 2-11

GIE bit 2-18, 8-4, 8-11, 8-19, 8-21
GMPY4 instruction 5-104

H
HPEINT bit 8-8

I
IACK signal 8-4, 8-21, 8-23
ICR. See interrupt clear register (ICR)
IDLE instruction 3-67
IEEE standard formats 4-6
IEm bit 8-18
IER. See interrupt enable register (IER)
IFm bits 8-21, 8-23
IFR. See interrupt flag register (IFR)
individual interrupt control 8-13
INEX fields

FADCR 2-20 to 2-22
FAUCR 2-22 to 2-24
FMCR 2-24 to 2-26

INFO fields
FADCR 2-20
FAUCR 2-22
FMCR 2-24

instruction constraints 4-12
instruction descriptions

fixed-point instruction set 3-24, 5-22
floating-point instruction set 4-15

constraints 4-12
instruction operation

fixed-point
notations for 3-2, 5-2

floating-point
notations for 4-2

instruction to functional unit mapping 3-4, 4-4, 5-5
instruction types

2-cycle DP instructions 7-46
4-cycle instructions 7-47

Index

Index-5

instruction types (continued)
ADDDP instructions 7-49
ADDDP/SUBDP instructions 4-22 to 4-25, 4-84
branch instructions 6-19, 7-44
DP compare instructions 7-48
execution phases 6-13, 7-13
INTDP 4-53 to 4-55
INTDP instructions 7-47
load instructions 6-17, 7-42
MPYDP 4-60 to 4-62
MPYDP instructions 7-51
MPYI 4-62
MPYI instructions 7-50
MPYID 4-64 to 4-66
MPYID instructions 7-50
multiply instructions 6-14, 7-39
operation phases 7-7
pipeline execution 6-13, 7-13
single-cycle 6-14, 7-38
store instructions 6-15, 7-40
SUBDP instructions 7-49

INT4–INT15 interrupt signals 8-4
INTDP instruction 4-53 to 4-55

execution 7-48
figure of phases 7-48
.L-unit instruction hazards 7-32
pipeline operation 7-47

INTDPU instruction 4-53 to 4-55
interleaved memory bank scheme 6-26, 7-58

4-bank memory 6-26, 6-27
8-bank memory

single memory space 7-58
with two memory spaces 7-59

interrupt clear register (ICR) 2-13, 8-10, 8-14
figure 8-15
writing to 8-14

interrupt control 8-11
individual 8-13

interrupt control registers 8-10
interrupt detection and processing 8-18 to 8-23

actions taken during nonreset 8-21
actions taken during RESET 8-23
figure 8-22

interrupt enable register (IER) 2-13, 8-4, 8-10,
8-13
polling 8-26

interrupt flag
setting 8-18, 8-22

interrupt flag register (IFR)

interrupt flag register (IFR) (continued)
description 2-13, 8-10
figure 8-14
maskable interrupts 8-4
overview 8-2
polling 8-26
reading from 8-15
writing to 8-14

interrupt performance
frequency 8-24
latency 8-24
overhead 8-24

interrupt pipeline interaction
branching 8-24
code parallelism 8-24
memory stalls 8-24
multicycle NOPs 8-24

interrupt return pointer (IRP) 2-13, 8-10, 8-17, 8-26

interrupt service fetch packet (ISFP) 8-6

interrupt service table (IST)
figure 8-5
relocation of 8-9

interrupt service table pointer (ISTP) 2-13, 8-21,
8-23, 8-26
description 8-10
description of fields 8-8
figure 8-8
overview 8-8

interrupt set register (ISR) 2-13, 8-10, 8-14
figure 8-15

interrupts
branching 8-21, 8-23
clearing 8-14
control 8-13 to 8-17
detection 8-18 to 8-23
globally disabling 8-11 to 8-12
globally enabling 8-11 to 8-12
list of control registers 8-10
nesting 8-26
overview 8-2 to 8-10
performance considerations 8-24
priorities 8-3
processing 8-18 to 8-23
programming considerations 8-25 to 8-28
setting 8-14
signals used 8-2
traps 8-27
types of 8-2

INTSP instruction 4-55 to 4-57

Index

Index-6

INTSPU instruction 4-55 to 4-57

INUM3–INUM0 signals 8-4, 8-21, 8-23

INVAL fields
FADCR 2-20 to 2-22
FAUCR 2-22 to 2-24
FMCR 2-24 to 2-26

invoking a trap 8-27

IRP. See interrupt return pointer (IRP)

ISFP. See interrupt service fetch packet (ISFP)

ISR. See interrupt set register (ISR)

IST. See interrupt service table (IST)

ISTB field 8-8, 8-9

ISTP. See interrupt service table pointer (ISTP)

L
.L functional units 2-8, 2-20

.L unit hazards
ADDDP instruction 7-33
4-cycle .L-unit instruction hazards 7-31
INTDP instruction 7-32
single-cycle instruction 7-30
SUBDP instruction 7-33

latency
fixed-point instructions 3-12
floating-point instructions 4-11

LDB instruction
15-bit constant offset 3-73 to 3-76
5-bit unsigned constant offset or register off-

set 3-68 to 3-73
using circular addressing 3-21

LDBU instruction
15-bit constant offset 3-73 to 3-76
5-bit unsigned constant offset or register off-

set 3-68 to 3-73

LDDW instruction 5-107 to 5-129

LDDW instruction 4-57 to 4-60
instruction with long write instruction haz-

ards 7-37

LDH instruction
15-bit constant offset 3-73 to 3-76
5-bit unsigned constant offset or register off-

set 3-68 to 3-73
using circular addressing 3-21

LDHU instruction
15-bit constant offset 3-73 to 3-76
5-bit unsigned constant offset or register off-

set 3-68 to 3-73
LDNW instruction 5-114
LDW instruction 8-25

15-bit constant offset 3-73 to 3-76
5-bit unsigned constant offset or register off-

set 3-68 to 3-73
using circular addressing 3-21

linear addressing mode 3-21
LMBD instruction 3-76 to 3-78
load address generation

syntax 3-23
load and store paths

CPU 2-11
load from memory banks

example 6-26, 7-58
load instructions

conflicts 3-18
.D-unit instruction hazards 7-34
execution block diagram 6-17, 6-18, 7-43
figure of phases 7-42
phases 6-17
pipeline operation 6-17, 7-42
syntax for indirect addressing 3-23
types 6-17
using circular addressing 3-21
using linear addressing 3-21

load or store to the same memory location
rules 6-16, 7-41

load paths 2-11
loads

and memory banks 6-26, 7-58
long (40-bit) data 3-18

register pairs 2-6 to 2-8

M
.M functional units 2-9, 2-20
.M unit hazards

4-cycle instruction 7-26
MPYDP instruction 7-29
MPYI instruction 7-27
MPYID instruction hazards 7-28
multiply instruction 7-25

mapping
functional unit to instruction 3-5, 4-4, 5-6
instruction to functional unit 3-4, 4-4, 5-5

Index

Index-7

maskable interrupt
description 8-4
return from 8-17

MAX2 instruction 5-118

MAXU4 instruction 5-121
memory

considerations 6-24
internal 1-8
paths 2-11
pipeline phases used during access 6-24, 7-56
stalls 6-25, 7-57

memory bank hits 6-26, 7-58
memory paths 2-11
memory stalls 6-25, 7-57
million instructions per second (MIPS) 1-4
MIN2 instruction 5-124
MINU4 instruction 5-127

MPY instruction 3-78 to 3-81
MPY2 instruction 5-130
MPYDP instruction 4-60 to 4-62

.M-unit instruction hazards 7-29
execution 7-51
figure of phases 7-51
pipeline operation 7-51

MPYH instruction 3-81 to 3-83
MPYHI instruction 5-133
MPYHIR instruction 5-136
MPYHL instruction 3-83 to 3-85
MPYHLU instruction 3-83 to 3-85
MPYHSLU instruction 3-83 to 3-85
MPYHSU instruction 3-81 to 3-83
MPYHU instruction 3-81 to 3-83

MPYHULS instruction 3-83 to 3-85
MPYHUS instruction 3-81 to 3-83
MPYI instruction 4-62 to 4-64

.M-unit instruction hazards 7-27
execution 7-50
figure of phases 7-50
pipeline operation 7-50

MPYID instruction 4-64 to 4-66
.M-unit instruction hazards 7-28
execution 7-50
figure of phases 7-51
pipeline operation 7-50

MPYIH pseudo operation 5-138
MPYIHR pseudo–operation 5-139

MPYIL pseudo–operation 5-140
MPYILR pseudo–operation 5-141
MPYLH instruction 3-85 to 3-87
MPYLHU instruction 3-85 to 3-87
MPYLI instruction 5-142
MPYLIR instruction 5-144
MPYLSHU instruction 3-85 to 3-87
MPYLUHS instruction 3-85 to 3-87
MPYSP instruction 4-66 to 4-68
MPYSU instruction 3-78 to 3-81
MPYSU4 instruction 5-146
MPYU instruction 3-78 to 3-81
MPYU4 instruction 5-151
MPYUS instruction 3-78 to 3-81
MPYUS4 pseudo–operation 5-149
multicycle NOPs 6-22, 7-54

in execute packets 6-22, 7-54
multiply execution

execution block diagram 6-15
multiply instructions

.M-unit instruction hazards 7-25
execution 7-39
execution block diagram 7-39
figure of phases 6-14, 7-39
pipeline operation 6-14, 7-39

MV instruction 3-87
MVC instruction 3-88 to 3-91, 8-18

writing to IFR or ICR 8-14
MVD instruction 5-154
MVK instruction 5-156
MVK instruction 3-91 to 3-93, 3-95 to 3-97
MVKH instruction 3-93 to 3-95
MVKLH instruction 3-93 to 3-95

N
NEG instruction 3-97
nesting interrupts 8-26
NMI. See nonmaskable interrupt (NMI)
NMIE bit 8-4, 8-13, 8-19
nonmaskable interrupt (NMI) 8-3, 8-21, 8-26

return from 8-16
nonmaskable interrupt return pointer (NRP) 2-13,

8-10, 8-16
figure 8-16

NOP instruction 3-98 to 3-100, 6-4, 7-4, 8-6
NORM instruction 3-100 to 3-102

Index

Index-8

NOT instruction 3-102

notations
for fixed-point instructions 3-2 to 3-3, 5-2 to 5-4
for floating-point instructions 4-2

NRP. See nonmaskable interrupt return pointer
(NRP)

O
opcode map 3-9

figure 3-10 to 3-11
symbols and meanings 3-9, 5-10

operands
examples 3-25

OR instruction 5-159

OR instruction 3-103 to 3-105

overview
TMS320 family 1-2

P
p-bit 3-13

PACK2 instruction 5-162

PACKH2 instruction 5-165

PACKH4 instruction 5-168

PACKHL2 instruction 5-171

PACKL4 instruction 5-174

PACKLH2 instruction 5-177

parallel code
example 3-15

parallel fetch packets 3-14

parallel operations 3-13

partially serial fetch packets 3-15

PCC field (CSR) 2-18

PCE1. See program counter (PCE1)

performance considerations
pipeline 6-20, 7-52

PG pipeline phase 6-2, 7-2

PGIE bit 2-18, 8-11, 8-21

pipeline
decode stage 6-2, 6-4, 7-2, 7-4
execute stage 6-2, 6-5, 7-2, 7-5
execution 6-14, 7-13
factors that provide programming flexibility 6-1,

7-1

pipeline (continued)
fetch stage 6-2, 7-2
operation overview 6-2, 7-2
performance considerations 6-21, 7-52
phases 6-2, 6-6, 7-2, 7-6
stages 6-2, 7-2

pipeline execution 6-12, 7-13

pipeline operation
2-cycle DP instructions 7-46
4-cycle instructions 7-47
ADDDP instructions 7-49
branch instructions 6-20, 7-44
description 6-7 to 6-13, 7-6 to 7-12
DP compare instructions 7-48
fetch packets with different numbers of execute

packets 6-21, 7-53
INTDP instructions 7-47
load instructions 6-18, 7-42
MPYDP instructions 7-51
MPYI instructions 7-50
MPYID instructions 7-50
multiple execute packets in a fetch packet 6-21,

7-52
multiply instructions 6-15, 7-39
one execute packet per fetch packet 6-7, 7-6
single-cycle instructions 6-15, 7-38
store instructions 6-15, 7-40
SUBDP instructions 7-49

pipeline phases
functional block diagram 6-10, 6-11, 7-10
operations occurring during 6-8
used during memory accesses 6-25, 7-56

PR pipeline phase 6-2, 7-2

program access ready wait. See PW pipeline phase
program address generate. See PG pipeline phase

program address send. See PS pipeline phase
program counter (PCE1) 2-13, 2-19, 3-40

figure 2-19
program fetch counter (PFC) 3-40

program fetch packet receive. See PR pipeline
phase

program memory accesses
versus data load accesses 6-24, 7-56

PS pipeline phase 6-2, 7-2
push

definition A-3

PW pipeline phase 6-2, 7-2
PWRD field (CSR) 2-18

Index

Index-9

R
RCPDP instruction 4-68 to 4-70

RCPSP instruction 4-70 to 4-72

register files
cross paths 2-10
data address paths 2-12
general-purpose 2-5
memory, load, and store paths 2-11
relationship to data paths 2-10

register storage scheme
40-bit data

figure 2-6

registers
AMR. See addressing mode register (AMR)
CSR. See control status register (CSR)
FADCR. See floating-point adder configuration

register (FADCR)
FAUCR. See floating-point auxiliary configuration

register (FAUCR)
FMCR. See floating-point multiplier configuration

register (FMCR)
ICR. See interrupt clear register (ICR)
IER. See interrupt enable register (IER)
IFR. See interrupt flag register (IFR)
IRP. See interrupt return pointer (IRP)
ISR. See interrupt set register (ISR)
ISTP. See interrupt service table pointer (ISTP)
NRP. See nonmaskable interrupt return pointer

(NRP)
PCE1. See program counter (PCE1)
read constraints 3-19
write constraints 3-19

relocation of the interrupt service table (IST) 8-9

reset interrupt 8-3

RESET signal
as an interrupt 8-3
CPU state after 8-16

resource constraints 3-17, 5-13
using the same functional unit 3-17

returning from a trap 8-27

returning from interrupt servicing 8-16

returning from maskable interrupt 8-17

returning from NMI 8-16

ROTL instruction 5-180

RSQRDP instruction 4-72 to 4-75

RSQRSP instruction 4-75 to 4-78

S
.S functional units 2-8
.S unit hazards

2-cycle DP instruction 7-23
branch instruction 7-24
DP compare instruction 7-22
single-cycle instruction 7-21

SADD instruction 3-105 to 3-108
SADD2 instruction 5-182
SADDSU2 pseudo–operation 5-188
SADDU4 instruction 5-185
SADDUS2 instruction 5-190
SAT field (CSR) 2-18
SAT instruction 3-108 to 3-110
serial fetch packets 3-14
SET instruction 3-110 to 3-113
setting an individual interrupt

example 8-15
setting interrupts 8-14
setting the interrupt flag 8-18, 8-22
SHFL instruction 5-193
SHL instruction 3-113 to 3-115
SHLMB instruction 5-196
SHR instruction 3-115 to 3-117
SHR2 instruction 5-199
SHRMB instruction 5-202
SHRU instruction 3-117 to 3-119
SHRU2 instruction 5-205
single-cycle instructions

.L-unit instruction hazards 7-30

.S-unit instruction hazards 7-21

.D-unit instruction hazards 7-36
execution 7-38
execution block diagram 7-38
figure of phases 7-38
pipeline operation 7-38

single-cycle instructions
execution block diagram 6-14
figure of phases 6-14
pipeline operation 6-14

SMPY instruction 3-119 to 3-122
SMPY2 instruction 5-208
SMPYH instruction 3-119 to 3-122
SMPYHL instruction 3-119 to 3-122
SMPYLH instruction 3-119 to 3-122

Index

Index-10

SPACK2 instruction 5-212

SPACKU4 instruction 5-215

SPDP instruction 4-78 to 4-80

SPINT instruction 4-80 to 4-82

SPTRUNC instruction 4-82 to 4-84

SSHL instruction 3-122 to 3-124

SSHVL instruction 5-218

SSHVR instruction 5-221

SSUB instruction 3-124

STB instruction
15-bit offset 3-130 to 3-132
register offset or 5-bit unsigned constant off-

set 3-126 to 3-130
using circular addressing 3-21

STDW instruction 5-225

STH instruction
15-bit offset 3-130 to 3-132
register offset or 5-bit unsigned constant off-

set 3-126 to 3-130
using circular addressing 3-21

STNDW instruction 5-229

STNW instruction 5-233

store address generation
syntax 3-23

store instructions
conflicts 3-18
.D-unit instruction hazards 7-35
execution block diagram 6-16, 7-41
figure of phases 6-15, 7-40
pipeline operation 6-15, 7-40
syntax for indirect addressing 3-23
using circular addressing 3-21
using linear addressing 3-21

store or load to the same memory location
rules 6-16, 7-41

store paths 2-11

STW instruction
15-bit offset 3-130 to 3-132
register offset or 5-bit unsigned constant off-

set 3-126 to 3-130
using circular addressing 3-21

SUB instruction 3-132 to 3-135

SUB2 instruction 5-237

SUB2 instruction 3-139

SUB4 instruction 5-240

SUBAB instruction 3-22, 3-135 to 3-137

SUBABS4 instruction 5-242

SUBAH instruction 3-22, 3-135 to 3-137

SUBAW instruction 3-22, 3-135 to 3-137

SUBC instruction 3-137 to 3-139

SUBDP instruction 4-84 to 4-87
.L-unit instruction hazards 7-33
execution 7-49
figure of phases 7-49
pipeline operation 7-49

SUBSP instruction 4-87 to 4-89

subtract instructions
using circular addressing 3-22
using linear addressing 3-21

SUBU instruction 3-132 to 3-135

SWAP2 instruction 5-245

SWAP4 instruction 5-247

T
TMS320 family

advantages 1-2
applications 1-2 to 1-3
history 1-2
overview 1-2

TMS320C62x devices
architecture 1-7 to 1-10
block diagram 1-7
features 1-5
options 1-5 to 1-6
performance 1-4

TMS320C67x devices
architecture 1-7 to 1-10
block diagram 1-7
features 1-5
options 1-5 to 1-6
performance 1-4

traps 8-27

2-cycle DP instructions
.S-unit instruction hazards 7-23
figure of phases 7-46
pipeline operation 7-46

U
UNPKHU4 instruction 5-249

UNPKLU4 instruction 5-251

Index

Index-11

V
VelociTI architecture 1-1
VLIW (very long instruction word) architecture 1-1

X
XOR instruction 5-254

XOR instruction 3-140 to 3-142

XPND2 instruction 5-257

XPND4 instruction 5-260

Z
ZERO instruction 3-142

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Introduction
	TMS320 Family Overview
	History of TMS320 DSPs
	Typical Applications for the TMS320 Family

	Overview of the TMS320C6x Generation of Digital Signal Processors
	Features and Options of the TMS320C62x/C64x/C67x
	TMS320C62x/C64x/C67x Architecture
	Central Processing Unit (CPU)
	Internal Memory
	Memory and Peripheral Options

	CPU Data Paths and Control
	General-Purpose Register Files
	Functional Units
	Register File Cross Paths
	Memory, Load, and Store Paths
	Data Address Paths
	TMS320C6000 Control Register File
	Pipeline/Timing of Control Register Accesses
	Addressing Mode Register (AMR)
	Control Status Register (CSR)
	E1 Phase Program Counter (PCE1)

	TMS320C67x Control Register File Extensions
	Floating-Point Adder Configuration Register (FADCR)
	Floating-Point Auxiliary Configuration Register (FAUCR)
	Floating-Point Multiplier Configuration Register (FMCR)

	TMS320C64x Control Register File Extensions
	Galois Field
	Special Timing Considerations

	Summary of TMS320C64x Architecture Key Extensions

	TMS320C62x/C64x/C67x Fixed-Point Instruction Set
	Instruction Operation and Execution Notations
	Mapping Between Instructions and Functional Units
	TMS320C62x/C64x/C67x Opcode Map
	Delay Slots
	Parallel Operations
	Example Parallel Code
	Branching Into the Middle of an Execute Packet

	Conditional Operations
	Resource Constraints
	Constraints on Instructions Using the Same Functional Unit
	Constraints on Cross Paths (1X and 2X)
	Constraints on Loads and Stores
	Constraints on Long (40-Bit) Data
	Constraints on Register Reads
	Constraints on Register Writes

	Addressing Modes
	Linear Addressing Mode
	LD/ST Instructions
	ADDA/SUBA Instructions

	Circular Addressing Mode
	LD/ST Instructions
	ADDA/SUBA Instructions

	Syntax for Load/Store Address Generation

	Individual Instruction Descriptions
	Example
	ABS
	ADD(U)
	ADDAB/ADDAH/ADDAW
	ADDK
	ADD2
	AND
	B
	B IRP
	B NRP
	CLR
	CMPEQ
	CMPGT(U)
	CMPLT(U)
	EXT
	EXTU
	IDLE
	LDB(U)/LDH(U)/LDW
	LDB(U)/LDH(U)/LDW
	LMBD
	MPY(U/US/SU)
	MPYH(U/US/SU)
	MPYHL(U)/MPYHULS/MPYHSLU
	MPYHL(U)/MPYHULS/MPYHSLU
	MV
	MVC
	MVK
	MVKH/MVKLH
	MVKL
	NEG
	NOP
	NORM
	NOT
	OR
	SADD
	SAT
	SET
	SHL
	SHR
	SHRU
	SMPY (HL/LH/H)
	SSHL
	SSUB
	STB/STH/STW
	STB/STH/STW
	SUB(U)
	SUBAB/SUBAH/SUBAW
	SUBC
	SUB2
	XOR
	ZERO

	TMS320C67x Floating-Point Instruction Set
	Instruction Operation and Execution Notations
	Mapping Between Instructions and Functional Units
	Overview of IEEE Standard Single- and Double-Precision Formats
	Delay Slots
	TMS320C67x Instruction Constraints
	Individual Instruction Descriptions
	ABSDP
	ABSSP
	ADDAD
	ADDDP
	ADDSP
	CMPEQDP
	CMPEQSP
	CMPGTDP
	CMPGTSP
	CMPLTDP
	CMPLTSP
	DPINT
	DPSP
	DPTRUNC
	INTDP(U)
	INTSP(U)
	LDDW
	MPYDP
	MPYI
	MPYID
	MPYSP
	RCPDP
	RCPSP
	RSQRDP
	RSQRSP
	SPDP
	SPINT
	SPTRUNC
	SUBDP
	SUBSP

	TMS320C64x Fixed-Point Instruction Set
	Instruction Operation and Execution Notations
	Mapping Between Instructions and Functional Units
	TMS320C64x Opcode Map Symbols
	Delay Slots
	Conditional Operations
	Resource Constraints
	Constraints on Cross Paths (1X and 2X)
	Cross Path Stalls
	Constraints on Loads and Stores
	Constraints on Long (40-Bit) Data

	Addressing Modes
	Linear Addressing Mode
	LD/ST Instructions
	ADDA/SUBA Instructions

	Circular Addressing Mode
	LD/ST Instructions
	ADDA/SUBA Instructions
	Circular Addressing Considerations with Non-Aligned Memory

	Individual Instruction Descriptions
	ABS2
	ADD2
	ADD4
	ADDAD
	ADDKPC
	AND
	ANDN
	AVG2
	AVGU4
	BDEC
	BITC4
	BITR
	BNOP
	BNOP
	BPOS
	CMPEQ2
	CMPEQ4
	CMPGT2
	CMPGTU4
	CMPLT2
	CMPLTU4
	DEAL
	DOTP2
	DOTPN2
	DOTPNRSU2
	DOTPNRUS2
	DOTPRSU2
	DOTPRUS2
	DOTPSU4
	DOTPUS4
	DOTPU4
	GMPY4
	LDDW
	LDNDW
	LDNW
	MAX2
	MAXU4
	MIN2
	MINU4
	MPY2
	MPYHI
	MPYHIR
	MPYIH
	MPYIHR
	MPYIL
	MPYILR
	MPYLI
	MPYLIR
	MPYSU4
	MPYUS4
	MPYU4
	MVD
	MVK/MVKL
	OR
	PACK2
	PACKH2
	PACKH4
	PACKHL2
	PACKL4
	PACKLH2
	ROTL
	SADD2
	SADDU4
	SADDSU2
	SADDUS2
	SHFL
	SHLMB
	SHR2
	SHRMB
	SHRU2
	SMPY2
	SPACK2
	SPACKU4
	SSHVL
	SSHVR
	STDW
	STNDW
	STNW
	SUB2
	SUB4
	SUBABS4
	SWAP2
	SWAP4
	UNPKHU4
	UNPKLU4
	XOR
	XPND2
	XPND4

	TMS320C62x/C64x Pipeline
	Pipeline Operation Overview
	Fetch
	Decode
	Execute
	Summary of Pipeline Operation

	Pipeline Execution of Instruction Types
	Single-Cycle Instructions
	Two-Cycle Instructions and C64x Non-multiply .M Unit Operations
	Store Instructions
	Extended Multiply Instructions
	Load Instructions
	Branch Instructions

	Performance Considerations
	Pipeline Operation With Multiple Execute Packets in a Fetch Packet
	Multicycle NOPs
	Memory Considerations
	Memory Stalls
	Memory Bank Hits

	TMS320C67x Pipeline
	Pipeline Operation Overview
	Fetch
	Decode
	Execute
	Summary of Pipeline Operation

	Pipeline Execution of Instruction Types
	Functional Unit Constraints
	.S-Unit Constraints
	.M-Unit Constraints
	.L-Unit Constraints
	D-Unit Instruction Constraints
	Single-Cycle Instructions
	16 X 16-Bit Multiply Instructions
	Store Instructions
	Load Instructions
	Branch Instructions
	2-Cycle DP Instructions
	4-Cycle Instructions
	INTDP Instruction
	DP Compare Instructions
	ADDDP/SUBDP Instructions
	MPYI Instructions
	MPYID Instructions
	MPYDP Instructions

	Performance Considerations
	Pipeline Operation With Multiple Execute Packets in a Fetch Packet
	Multicycle NOPs
	Memory Considerations
	Memory Stalls
	Memory Bank Hits

	Interrupts
	Overview of Interrupts
	Types of Interrupts and Signals Used
	Reset (RESET\)
	Nonmaskable Interrupt (NMI)
	Maskable Interrupts (INT4–INT15)
	Interrupt Acknowledgment (IACK and INUMx)

	Interrupt Service Table (IST)
	Interrupt Service Fetch Packet (ISFP)
	Interrupt Service Table Pointer Register (ISTP)

	Summary of Interrupt Control Registers

	Globally Enabling and Disabling Interrupts (Control Status Register\CSR)
	Individual Interrupt Control
	Enabling and Disabling Interrupts (Interrupt Enable Register – IER)\
	Status of, Setting, and Clearing Interrupts (Interrupt Flag, Set, and C\lear Registers–IFR, ISR, ICR)
	Returning From Interrupt Servicing

	Interrupt Detection and Processing
	Setting the Nonreset Interrupt Flag
	Conditions for Processing a Nonreset Interrupt
	Actions Taken During Nonreset Interrupt Processing
	Setting the RESET\ Interrupt Flag for the TMS320C6000
	Actions Taken During RESET\ Interrupt Processing

	Performance Considerations
	General Performance
	Pipeline Interaction

	Programming Considerations
	Single Assignment Programming
	Nested Interrupts
	Manual Interrupt Processing
	Traps

	Glossary
	Index

