
Fast Shortest Path Algorithms for Large
Road Networks

Faramroze Engineer

Department of Engineering Science
University of Auckland

New Zealand

Abstract

Shortest Path problems are among the most studied network flow optimisation
problems, with interesting applications in a range of fields. One such application is in
the field of GPS routing systems. These systems need to quickly solve large shortest
path problems but are typically embedded in devices with limited memory and external
storage. Conventional techniques for solving shortest paths within large networks
cannot be used as they are either too slow or require huge amounts of storage. In this
project we have tried to reduce the runtime of conventional techniques by exploiting the
physical structure of the road network and using network pre-processing techniques.
Our algorithms may not guarantee optimal results but can offer significant savings in
terms of memory requirements and processing speed.

Our work uses heuristic estimates to bound the search and direct it towards a
destination. We also associate a radius with each node that gives a measure of
importance for roads in the network. The further we get from either the origin or
destination the more selective we become about the roads we travel on, giving priority
to roads with greater importance (i.e. roads with larger radii).

By using these techniques we were able to dramatically reduce the runtime
performance compared to conventional techniques while still maintaining an acceptable
level of accuracy.

1.0 Introduction

Due to the nature of routing applications, we need flexible and efficient shortest path
procedures, both from a processing time point of view and also in terms of the memory
requirements. Unfortunately prior research does not provide a clear direction for
choosing an algorithm when one faces the problem of computing shortest paths on real
road networks.

Past research in testing different shortest path algorithms suggests that Dijkstra’s
implementation with double buckets is the best algorithm for networks with non-
negative arc lengths [1,2]. However like most popular papers on Shortest Path
algorithms, they have concentrated their focus on algorithms that guarantee optimality
and have worked on tuning data structures used in implementing these algorithms.

Since no “best” algorithm currently exists for every kind of transportation problem,
research in this field has recently moved to the design and implementation of “heuristic”
shortest path procedures, which are able to capture the peculiarities of the problem

under consideration and improve the run time performance of a search, but at the cost of
not guaranteeing optimality.

As it is impossible to cover all search implementations, we use Dijkstra’s algorithm
as a building block to create an efficient search algorithm that implements an artificial
intelligence approach to the routing problem that may not guarantee optimal results but
gives significant savings in terms of memory requirements and processing speed.

To test these algorithms we used parts of the London road network (courtesy of
Talon Technologies). The network concerned covers a physical area of approximately
22,500 km2, has approximately 140,000 nodes and 298,000 directed arcs. We focussed
on finding paths that minimised the expected travel time in this network.

2.0 Intelligent Transport Systems (ITS)

To fully appreciate the merits of a search technique it is important to understand the
commercial environment in which these techniques are implemented. Many route
finding systems are currently in development worldwide and the majority form part of
much larger systems to manage and operate the road network more efficiently. These
management infrastructures are known as Intelligent Transport Systems (ITS) and vary
in complexity and size. These systems fall into two main categories, centralised and
decentralised systems [3].

Centralised systems are linked to an information centre which collates and processes
traffic and network information. Typically a driver requests a particular route from on-
board electronics. The route is then relayed to a central location that carries out all the
processing of the route.

Decentralised systems on the other hand offer information to the driver which is
computed onboard using local information sources. Typically such systems contain road
network information on optical storage devices and electronics to feed a GPS. The
Auckland based company Talon Technologies is developing a decentralised routing
system; this work forms part of their research effort.

3.0 Network Definitions

Before continuing let us introduce some notation and formally define the shortest path
problem. A network is a graph G = (N, A) consisting of a unique indexed set of nodes N
with n = |N| and a spanning set of directed arcs A with m = |A|. Each arc a is
represented as an ordered pair of nodes, in the form “from node i to j”, denoted by
a = (i,j). Each arc (i,j) has an associated numerical value lij, which represents the
distance, time or cost incurred by traversing the arc. Each node i has a set of successors
S(i) (i.e. the set of all nodes j: (i,j)∈A) and predecessors P(i) (i.e. set of all nodes j: (j,i):
∈A).

4.0 Search Algorithms

One possible approach to solving shortest path problems would be to pre-calculate and
store the shortest path from every node to every possible other node, which would allow
us to answer a shortest path query in constant time. Unfortunately the required storage
size and computation time grows with the square of the number of nodes. With realistic
road networks in mind this processing would take years if not decades and be virtually

impossible to store. Hence to overcome this problem we require real time search
techniques.

From previous studies [1,2,4] we know that the implementation of labelling
algorithms are the fastest for one-to-one searches. Two aspects are particularly
important to the shortest path algorithms discussed in this project:

1. the strategies used to select the next node to be visited during a search, and

2. the data structures utilised to maintain the set of previously visited nodes.

A number of data structures can be used to manipulate the set of nodes in order to
support search strategies. These data structures include arrays, singly and doubly linked
lists, stacks, heaps, buckets and queues. Detailed definitions and operations related to
these data structures are standard knowledge and are well documented. Past research
has concentrated mainly on the issue of data structures, which can be manipulated and
bounded to form clever techniques in creating priority queues for selecting nodes to be
scanned. A good example of this is the Dijkstra implementation with double buckets [1].

In a labelling algorithm, the number of visited nodes during a search is a good
indication of the size of the search space. This means that a search strategy which visits
fewer nodes during a search is generally more efficient in terms of processing speed.
The number of nodes visited depends on the depth d (i.e. the number of arcs on the
optimal path) of the destination from the origin, and the branching factor b. For a ‘best
first search’ the number of nodes explored during a search is of the order O(bd) [3]. This
exponential growth in the number of explored nodes is known as “combinatorial
explosion” and is the main obstacle in computing shortest paths in large networks.
(Note that even though Dijkstra’s algorithm is polynomial in the number of nodes n in
the graph, this bound is no restriction on how the number of nodes visited varies with
d). For general search this exponential growth with depth makes many problems
unsolvable on current hardware, as memory is soon exhausted and a solution may take
an unreasonable time to compute. These effects can be lessened by using artificial
intelligence (heuristic type) techniques which will be discussed later. However let us
first define and implement Dijkstra’s labelling algorithm.

5.0 Dijkstra’s Naive Implementation

Dijkstra’s labelling method is a central procedure in most shortest path algorithms. The
output of the labelling method is an out-tree from a source node s, to a set of nodes L.
An out-tree is a tree originating from the source node to other nodes to which the
shortest distance from the source node is known. This out-tree is constructed iteratively,
and the shortest path from s to any destination node t in the tree is obtained upon
termination of the method.

Three pieces of information are required for each node i in the labelling method
while constructing the shortest path tree:

• the distance label, d(i),
• the parent-node/predecessor p(i),
• the set of permanently labelled nodes L.

The distance label d(i) stores an upper bound on the shortest path distance from s to i,
while p(i) records the node that immediately precedes node i in the out-tree. If a node
has not yet been added to the out-tree, it is considered ‘unreached’. Normally the
distance label of an unreached node is set to infinity. When we know that the shortest

path from node s to node i is also the absolute shortest path, then node i is called
permanently labelled. When further improvement is expected to be made on the
distance from the origin to node i, then node i is considered only temporarily labelled. It
follows that d(i) is an upper bound on the shortest path distance to node i if node i is
temporarily labelled, and d(i) represents the final optimal shortest path distance to node
i if the node is permanently labelled [1,2]. By iteratively adding a temporarily labelled
node with the smallest distance label d(i) to the set of permanently labelled nodes L,
Dijkstra’s algorithm guarantees optimality.

One advantage with Dijkstra’s labelling algorithm is that the algorithm can be
terminated when the destination node is permanently labelled. Most other algorithms
guarantee optimal shortest paths only upon termination when the entire shortest path
tree has been explored.

6.0 Symmetrical Dijkstra Algorithm

Pohl adapted Dijkstra’s shortest path algorithm to decrease the size of the search
space [1]. Pohl’s algorithm was the first to use a bi-directional search method. This
algorithm consists of a forward search from an origin node to the destination node and a
backwards search from the destination node to the origin node. This was done in an
attempt to reduce the search complexity to O(bd/2) compared to O(bd) as with Dijkstra’s
algorithm. This search method assumes that the two searches grow symmetrically and
will meet in some middle area. Sometimes this might not be the case, and as a worst-
case scenario this might instead become two O(bd) searches.

The Symmetrical or Bi-directional Dijkstra’s algorithm by Pohl grows two search
trees, one from the origin, giving a tree spanning a set of nodes LF for which the
minimum distance/time from the origin is known, and a second from the destination that
gives a tree spanning a set of nodes LB for which the minimum distance/time to the
destination is known. We iteratively add one node to either LF or LB until there exists an
arc crossing from LF to LB.

Like Dijkstra’s algorithm Pohl’s bi-directional search chooses the node with the
smallest cost label to label permanently. By selecting the new permanently labelled
node from either the forward or backward phases we maintain the Dijkstra criterion
required for optimality.

7.0 A* Search

So far we have examined search techniques that can be generalised for any network
(as long as it does not contain negative length cycles). However the physical nature of
real road networks motivates investigation into the possible use of heuristic solutions
that exploit the near-Euclidean network structure to reduce solution times while
hopefully obtaining near optimal paths. For most of these heuristics the goal is to bias a
more focused search towards the destination. As we shall see, incorporating heuristic
knowledge into a search can dramatically reduce solution times.

When the underlying network is Euclidean or approximately Euclidean as is the case
of road networks, then it is possible to improve the average case run time of the Dijkstra
and Symmetrical Dijkstra algorithms. This is usually at the expense of optimality;
solutions are now not guaranteed to be the best. Typically when solving problems on

such networks the inherent geometric information is ignored by algorithms that are
directly based or variations on Dijkstra’s labelling algorithm.

The A* algorithm by Hart and Nilsson [2] formalised the concept of integrating a
heuristic into a search procedure. Instead of choosing the next node to label permanently
as that with the least cost (as measured from the start node), the choice of node is based
on the cost from the start node plus an estimate of proximity to the destination (a
heuristic estimate) [4]. To build a shortest path from the origin s to the destination t, we
use the original distance from s accumulated along the edges (as in Dijkstra’s algorithm)
plus an estimate of the distance to t. Thus we use global information about our network
to guide the search for the shortest path from s to t. This algorithm places more
importance on paths leading towards t than paths moving away from t.

In essence the A* algorithm combines two pieces of information:

1. the current knowledge available about the upper bounds (given by the
distance labels d(i)), and

2. an estimate of the distance from a leaf node of the search tree to the
destination.

There are several ways to estimate the lower bound from a leaf node in the search
tree to the destination node. These estimations are carried out by so called “evaluation”
functions [3]. The closer this estimate is to a tight lower bound on the distance to the
destination, the better the quality of the A* Search. Hence the merits of an A* search
depends highly on the evaluation function h(i,j). There are two main evaluation
functions used in the A* search. A true lower bound between two points is the length of
a straight line between those two points (i.e. the Euclidean distance):

22))()(())()((),(tyiytxixtihE −+−=

where x(i), y(i) and x(t), y(t) are the coordinates for node i and the destination node t
respectively. The other commonly used evaluation function is the Manhattan distance
hM. In this case the estimated lower bound distance is the sum of distance in the x and y
coordinates.

)()()()(),(tyiytxixtihM −+−=

The Manhattan distance is not the true lower bound between two points and hence will
typically yield non-optimal results.

By using time as a measure of cost, the network becomes near-Euclidean. This is
because of the varying speeds of roads in the network. Roads of similar lengths might
have different times associated with using those roads. If the network is not strictly
Euclidean but near-Euclidean then our selection criteria for the next node to label
permanently will not yield optimal results.

By using the A* search, the shortest path tree should now grow towards t (unlike
Dijkstra’s algorithm where the tree grows approximately radially). As before, the search
for the shortest path is terminated as soon as t is added to the shortest path tree. Earlier
we discussed the problem of combinatorial explosion with a blind search time
complexity in the order of O(bd). With A* search this is reduced to O(be

d) where be is
the effective branching factor. The A* search reduces the search space by reducing the
number of node expansions. Although A* is still susceptible to the problem of
combinatorial explosion, it decreases the effect by reducing the size of the base in the
complexity term.

8.0 Weighted A* Search

By choosing an appropriate multiplicative factor we can increase the contribution of
the estimated component in calculating the label of a vertex (i.e. increase the
contribution of the evaluation function) [4]. From an intuitive standpoint this
corresponds to further biasing the forward search towards the destination and the
backward search towards the origin. The heuristic is parameterised by the multiplicative
factor termed the “overdo” parameter used to weight the evaluation function. This
modification will generally not yield optimal paths, but we would expect it to further
reduce the search space. The aim is to find an “optimal” multiplicative or overdo factor
for which the running time is significantly improved while the solution quality is still
acceptable. Thus there will be an empirical time/performance trade-off as a function of
the overdo parameter.

9.0 Radius Search

To eliminate or minimise the effects of combinatorial explosion we need to adopt a
search technique similar to the way humans approach navigation problems. So far we
have not implemented any intelligence within a search which can filter out roads that
are less likely to be travelled on. This type of intelligence requires some form of
historical knowledge about the network. Since the road network does not change very
often it is possible to calculate auxiliary information in a pre-processing step. Perhaps
the most obvious way to classify the roads in the network is to identify the class of each
road (i.e. motorways, highways, local roads etc), and then to exploit these classes in the
search. This is similar to the way humans approach routing problems and is known as
Hierarchical Search [3,5].

Hierarchical methods offer the prospect of greatly reducing the size of any search by
simplifying the search through a series of simplified levels, where each of these levels is
an abstraction of the previous level. These abstractions reduce the overall size of the
search space that an algorithm addresses and thus the complexity of any search is
reduced. For route finding, hierarchical levels are constructed in which higher speed
roads are placed higher up in the hierarchy. However by introducing these arbitrary
hierarchies the path optimality is often lost [3].

The hierarchical algorithm uses a discrete number of hierarchy levels. A Radius
search is a hierarchical search with a continuous range of hierarchy levels. A Radius
search takes advantage of the fact that the fastest path between two junctions is more
likely to use a highway than a local road, especially if the two junctions are far apart. In
this method each node i has an associated radius r(i). Before we consider how r(i) is
calculated, we first examine how radii can be used to restrict a search.

When looking for a shortest path from s to t, a node i is considered as a possible
node to include in the search only if s or t lies inside a circle of radius r(i) centred at
node i. If both distances are greater than the node radius, the node is simply ignored [5].
For any given origin and destination node, we can immediately simplify the network by
removing all the nodes (and associated arcs) whose radii do not encircle the origin or
destination nodes. The radius search is not a search algorithm by itself, but an
independent mechanism of reducing search complexity. Hence the radius concept can
be used in conjunction with any search algorithm.

The effectiveness of the Radius search depends on the way we calculate the radii.
The optimal radius for a node i is the smallest radius r(i) for which the radius centred at
node i encircles either the origin or destination node for all optimal paths that include
node i. If the radii are calculated as a maximum over all such shortest paths, then it is
guaranteed that the radius search algorithm is exact (i.e. guaranteed optimality). The
radii are also minimal since with any smaller radius at least one optimal shortest path
will not be found.

The optimal radius for a node i can be defined formally in the following way:

Let),....,,(|][|]2[]1[PRRRR = be an optimal path (sequence of nodes) from an

origin node R[1] to a destination node R[|P|].
Let },....;,{ ||21 ℜ=ℜ RRR be the set of all optimal paths on G.

Let)(iℜ be the set of all optimal paths that use node i

{ }iRRhRi h =−∈∃ℜ∈=ℜ][:}1||...,2,1{:)(

{ })},(),,(min{
)(

max
)(|][|]1[REE RihRih

iR
ir

ℜ∈
=

One possible difficulty is that the calculation of the radii by examining all paths over
a particular node takes much too long since every possible shortest path in the network
has to be calculated at least once. Instead we implemented a heuristic approach to
calculate these radii [5].

In the first phase of this heuristic approach we divide the network into overlapping
grids of approximately 2000 nodes and initialise all node radii to be 0. We then select a
random starting node s from all possible nodes N and a random destination node t
within the same grid as s. Using the Symmetric Dijkstra algorithm we solve for the
shortest path R from s to t. We then update the radii of nodes in the path R using the
following algorithm:

UpdateNodeRadii(R)
{

for all Rn∈ do
r(n) = max(r(n), min(hE(n , R[1]), hE(n , R[|R|]))

next n
}

We continue this process of selecting random starting and destination nodes and
updating the radii of nodes in the shortest path as many times as possible.

If we do not generate enough random paths in the first phase then the radii of some
nodes will never have been updated and hence will still be 0. However if a node is a
‘closed node’ (i.e. the node is only used in a shortest path if it is either the origin or
destination of that shortest path) then it will never be part of a shortest path unless we
start or finish at that node. Hence the radii of closed nodes will always be 0. In the
second phase of this modified algorithm we go through all nodes in the network and
examine their radii. If a node is not closed and has 0 radius, then we conduct shortest
path searches in the vicinity of the node that generate a reasonable lower bound on its
radius. We do this in the second phase by creating a sub graph of 200 of the closest
nodes and associated arcs GSUB2 to the node with 0 radius and solve all-to-all shortest
paths on GSUB2. This should force some shortest paths R through this node and give it a
better radius lower bound than 0.

So far in the first two phases we have calculated shortest paths within grids. Hence
the radii are no larger than the grids they are created in. As a result, after the first two
phases we have a fairly good coverage of local radii only (i.e. these radii only restrict a
search for shortest paths within grids). If we were to use these radii to restrict a search
over a large distance (i.e. over several grids) then we would not be able to find a path
because no nodes exist which have radii greater than the size of a single grid. To travel
over large distances we need to calculate radii of roads such as highways and
motorways. To do this we selected 50 nodes along the extremities (i.e. the
circumference) of the network, and solved all-to-all shortest paths from these extreme
nodes to further update the radii. By computing shortest paths over these extreme
points, we are able to determine nodes used frequently over large distances and as a
result give them large radii. The following is our heuristic algorithm to estimate the
radii of nodes:

• Phase 1.
Divide Network into grids of approximately 2000 nodes NSUB1 ∈ N.
Initialise Radii of all nodes n∈ N to 0
while time permits

Select a random node s ∈ N
Select random node t within the same grid as s (i.e. t ∈ NSUB1).
Solve the shortest path R from s to t
UpdateNodeRadii(R)

loop
• Phase 2

for all nodes n ∈ N do
if r(n) = 0 and ClosedNode(n) = false then

Define a sub-graph GSUB2 containing:
��200 of the closest nodes NSUB2 to n
��All shortest paths RSUB2 defined on GSUB2
for every shortest path R ∈ RSUB2 do

UpdateNodeRadii(R)
next R

end if
next n

• Phase 3
Define extreme nodes NEXTREME
for all shortest paths R from s ∈ NEXTREME to t ∈ NEXTREME : s≠ t do

UpdateNodeRadii(R)
next R

The key to the performance of this algorithm is the loop condition “while time

permits” in ‘Phase 1’. The more iterations performed in this loop, the more shortest
paths are going to explored, hence giving a better estimate of the lower bound of the
radii. We ran the first phase for approximately 70 hours, and explored approximately a
quarter of a million shortest paths.

The basic idea behind this heuristic algorithm is to iteratively improve the lower
bound on the radii. In the first and second phases we improve the lower bound on the
radii of nodes to give coverage of local paths (i.e. paths within grids). In the third phase
we essentially have just one grid covering the entire network. By solving all-to-all

shortest paths along extreme nodes we are able to update radii so that we can achieve
coverage of global paths. The end result of this pre-processing is a radius arrangement
that directs searches over large distances through fast roads. We can then use these pre-
processed radii in conjunction with a search algorithm to restrict the search space. These
radii will have the property that the further in distance we get from either the origin or
destination the more selective the search becomes on the type of roads it uses. This
helps alleviate the combinatorial effects suffered by the original search algorithm.

8.0 Search Performance Analysis

In this project we implemented 4 search algorithms:

1. Dijkstra’s Labelling algorithm (termed ‘Dijkstra’ in our results)
2. Dijkstra’s Bi-directional algorithm (termed ‘Symmetric’ in our results)
3. A* algorithm (termed ‘A*’ in our results)
4. Dijkstra’s Bi-directional algorithm with radius restriction (termed ‘Radius’ in

our results)
From the experimental results plotted in Figure 1, we can see that the Symmetric
Dijkstra algorithm is almost twice as fast as the Dijkstra algorithm and the A* algorithm
is almost three times faster than the Dijkstra Algorithm. However the most impressive
reduction in time is through the Symmetric Dijkstra algorithm used in conjunction with
radius restriction which is almost 50 times faster on average.

Time to compute path Vs Number of nodes in final path

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600 700 800 900

Number of nodes in final path

 T
im

e
to

 c
o

m
p

u
te

 p
at

h
 (

C
P

U
 C

lo
ck

C

yc
le

s)

A*

Symmetric

Dijkstra

Radius

Figure 1: Time to compute paths using different algorithms

Although this shows that the Radius algorithm can significantly reduce the search
time when compared with Dijkstra’s algorithm, we have to put this into perspective by
comparing these gains in reduced search space to the inaccuracies created by using a
heuristic approach. Figure 2 shows the Path Inaccuracy Rate (PIR), defined as the
relative increase in cost over the optimal value, for the implemented algorithms.

Both the Dijkstra and the Symmetrical Dijkstra algorithm guarantee optimality,
hence we would expect them to have 0 PIR. However our implementations of the A*
and Radius algorithms do not guarantee optimal results. From Figure 2 we can see that
the average PIR of the A* algorithm is almost level at approximately 0.5%. However

the inaccuracies of the Radius algorithms grow approximately exponentially with the
number of nodes in the path. But even with this exponential growth in errors, the largest
PIR for our network is within 5%.

Average PIR Vs Number of nodes in path

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 100 200 300 400 500 600 700 800 900

Number of nodes in path

A
ve

ag
e

P
IR

A*

Radius

Figure 2: Average Path Inaccuracy Rate (PIR) vs the number of nodes in the path

9.0 Conclusions

By exploiting the physical structure of road networks, the A* algorithm is able to
bias its search towards a goal and reduce the search space. By using the concept of radii
as a measure of importance of nodes, we are able to incorporate pre-processing within
our shortest path algorithm to further restrict the search space. This dramatically reduces
the search complexity in terms of the run time performance while still maintaining an
acceptable level of inaccuracy.

References

1. Cherkassy B V, Goldberg A V and Radzik T. (1993) Shortest Paths Algorithms:
Theory and Experimental Evaluation. Research project, Department of Computer
Science, Cornell and Stanford Universities and Krasikova Institute for Economics
and Mathematics.

2. Hart P E and Nilson N J. (1968) A formal basis of the heuristic determination of
minimum cost paths. IEEE Transactions of Systems Science and Cybernetics 4(2),
100-107.

3. Pearsons J. (1998) Heuristic Search in Route Finding. Master’s Thesis, University
of Auckland.

4. Sedgewick R and Vitter J S. (1986) Shortest Paths in Euclidean Graphs.
Algorithmica 1, 31-48.

5. Ertl G.(1996) Optimierung und Kontrolle, Shortest Path Calculations in Large Road
Networks. Project in Discrete Optimisation, Karl-Franzens-Universitat Graz .

