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Abstract

In this paper, we apply di1erent software complexity measures to a set of shortest-path algorithms. Our
intention is to study what kind of new information about the algorithms the complexity measures (lines-of-code,
Halstead’s volume, and cyclomatic number) are able to give, to study which software complexity measures are
the most useful ones in algorithm comparison, and to analyze when the software complexity comparisons are
appropriate. The experiment indicates that the software complexity measures give a new dimension to empirical
algorithm comparison. The results explicitly show the trade-o1 between speed and implementation complexity:
a faster algorithm typically requires a more complex implementation. Di1erent complexity measures correlate
strongly. Therefore, even the simple lines-of-code measure gives useful results. As the software complexity
measures are easy to calculate and since they give useful information, the study suggests that such measures
should be included in empirical algorithm comparisons. Unfortunately, for meaningful results, all the algorithms
have to be developed in the same fashion which makes the comparison of independent implementations
di9cult.

Scope and purpose

For practical use an algorithm has to be fast and accurate as well as easy to implement, test, and maintain. In
this work, we investigate whether software complexity measures could make the implementation aspects more
explicit and allow algorithm comparisons also in this dimension. We calculate lines-of-code, Halstead’s volume,
and cyclomatic number measures for di1erent shortest-path algorithms. We investigate if such measures are
applicable to algorithm comparison and study what can be learned from algorithms when they are also
compared in implementation dimension.
The main purpose of the work is to understand if it is possible to explicitly measure the implementation

complexity of an algorithm. Having such measures available would help the practitioner to choose the algorithm
that best matches the need. The optimal algorithm for a given task would have adequate performance with
minimal implementation complexity. For algorithm research implementation, complexity measures would o1er

∗Tel.: +358-7180-36855; fax: +358-7180-36229.
E-mail address: jukka.k.nurminen@nokia.com (J.K. Nurminen).

0305-0548/03/$ - see front matter ? 2002 Elsevier Science Ltd. All rights reserved.
PII: S0305-0548(02)00060-6



1122 J.K. Nurminen / Computers & Operations Research 30 (2003) 1121–1134

a new analysis dimension and make easy implementation a parallel goal with algorithm performance.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Algorithms are frequently assessed by the execution time and by the accuracy or optimality of the
results. For practical use, a third important aspect is the implementation complexity. An algorithm
which is complex to implement requires skilled developers, longer implementation time, and has a
higher risk of implementation errors. Moreover, complicated algorithms tend to be highly specialized
and they do not necessarily work well when the problem changes [1].
Algorithms can be studied theoretically or empirically. Theoretical analysis allows mathematical

proofs of the execution times of algorithms but can typically be used for worst-case analysis only.
Empirical analysis is often necessary to study how an algorithm behaves with “typical” input, see
e.g. [2] or [3]. Empirical analysis tends to focus on the execution time and optimality.
Ball and Magazine [4] listed criteria for the comparison of heuristic algorithms that in addition to

execution time included ease of implementation, Nexibility, and simplicity. Likewise, in our study
of the evolution of routing algorithms [1], we noted that it would be useful if some measure of the
implementation complexity would be available.
Unfortunately, the details of the implementation complexity are hardly ever reported in empirical

algorithm comparisons. This can be due to several reasons. Firstly, implementation aspects are “soft”
and there is no speciOc measure that would accurately characterize them. Secondly, it can be argued
that the implementation complexity is implicitly visible in the algorithm description and thus available
to the interested readers. Finally, it can be that the importance of implementation complexity is not
fully understood by researchers who do not have to worry about issues like time-to-market, robustness
of implementation and maintainability.
In this study, we experiment with software complexity measures [5,6] to see if they could supple-

ment the speed and optimality attributes and provide useful insight into algorithm implementation.
Software complexity a1ects the testability, maintainability, defect rate, and evolution potential. Sev-
eral studies, e.g. [7–10], have found that the software complexity measures can be successfully used
to estimate the maintenance e1ort of software.
The established use of software complexity measures is, as part of the implementation process,

to Ond critical program modules and to make predictions about the maintenance e1ort. Contrary
to that, our idea is to use software complexity measures proactively to compare alternative algo-
rithms and, in this way, to assist in the selection of the most appropriate algorithm for a given
task.
In particular, we try to answer the following questions:

• do implementation complexity measures provide useful information about algorithms,
• when and under what conditions can the measures be used to compare algorithms, and
• which of the measures would be most suitable for algorithm comparison.
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The rest of the paper is structured as follows. Section 2 reviews the main measures used in this
study. Section 3 presents the material we have used in this study and describes our setting for the
experiment. Section 4 gives the results, which are discussed in Section 5. In Section 6, we present
some conclusion and ideas for future work.

2. Software complexity measures

There are a large number of implementation complexity measures available. In this study, we
have concentrated on three established measures: lines-of-code, Halstead’s volume, and cyclomatic
number. Since there are slight variations in how di1erent tools implement the measures, the following
deOnitions deOne how the tool CMT++, which we have used in this study, calculates the measures
[11].

2.1. Lines-of-code (LOCpro)

Lines-of-code are the most traditional measures used to quantify software complexity. They are
simple, easy to count, and very easy to understand. They do not, however, take into account the
intelligence content and the layout of the code. In this study, we use a LOCpro measure, which
counts the number of program lines (declarations, deOnitions, directives, and code).

2.2. Volume (V)

Halstead’s volume V [5] describes the size of the implementation of an algorithm. Computation of
V is based on the number of operations performed and operands handled in the algorithm. Therefore,
V is less sensitive to code layout than the lines-of-code measures. You could roughly think of V as
the number of bits the code portion could be represented with when comments are stripped away,
possible code layout variations are stripped away and the short=long identiOer naming issue has been
Oltered away.

2.3. Cyclomatic number V(G)

Cyclomatic number V (G) [6] describes the complexity of the control Now of the program. For a
single function, V (G) is one less than the number of conditional branching points in the function.
V (G) is also increased for each ‘and’ and ‘or’ logical operator met in condition expressions. The
greater the cyclomatic number is the more execution paths there are through the function, and the
harder it is to understand.
Note that cyclomatic number is insensitive to complexity of data structures, data Nows, and module

interfaces.

3. Experiment with the shortest-path algorithms

For the experiment, we used the shortest-path algorithms that were developed and empirically
compared in [12]. We focused only on the comparison of di1erent algorithms (Sections 6–9 in [12])
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Table 1
Summary of studied algorithms

Brief description Worst-case complexity

BFP FIFO order selection (Bellman–Ford–Moore algorithm)
with parent-checking O(nm)

DIKBD Minimum label selection using double buckets O(m+ n(2 + C1=2))a

DIKH Minimum label selection using k-ary heaps O(m log n)a

GOR Topological order selection for general graphs O(nm)
GOR1 GOR with scans during topological sort O(nm);O(m+ n) with acyclic

networks
PAPE Selection using a double-ended queue

(Pape-Levit algorithm) O(n2n)
THRESH Threshold selection O(nm)a

TWO-Q Two queue selection (Pallottino’s algorithm) O(n2m)
aComplexity with nonnegative length function.
C, biggest absolute value of an arc length; n, number of nodes; m, number of arcs.

and ignored the experiments with the Dijkstra variations. We used the data of only the largest problem
in each table. In most cases, there were no signiOcant di1erences between the relative behavior of
the algorithms with the di1erent problem sizes. The code for these algorithms is available in the
SPLIB that can be found at http://www.intertrust.com/star/goldberg/soft.html.
Table 1 describes brieNy the algorithms and the worst-case complexities of their running times.

The algorithms are analyzed in detail in [12]. All the studied algorithms are based on the labeling
method. In graph G = (V; E) for every node v, the method maintains its distance label d(v), parent
�(v), and status S(v)∈{unreached; labeled; scanned}. Initially, for every node v; d(v)=∞; �(v)=nil,
and S(v)=unreached. The method starts by setting for the source node s; d(s)=0 and S(s)=labeled,
and applies the following SCAN operation to the labeled nodes until none exists, in which case, the
method terminates.

Procedure SCAN(v)
for all (v, w) ∈ E do
if d(v) + distance(v, w) ¡ d(w) then

d(w) ← d(v) + distance(v, w);
S(w) ← labeled;
� (w) ← v;

end if.
S(v) ← scanned;

end for.
end procedure.

Di1erent algorithms use di1erent strategies to select the labeled nodes to be scanned next. Bellman–
Ford–Moore (BFP) algorithm uses an FIFO queue. Dijkstra’s algorithm selects a labeled node with
the minimum distance label as the next node to be scanned. The variants of Dijkstra’s algorithms

http://www.intertrust.com/star/goldberg/soft.html
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di1er by how the nodes with the minimum distance labels are found. DIKH uses a heap while
DIKBD uses a double bucket implementation.
Pape–Levit (PAPE) algorithm and Pallottino’s algorithm (TWO-Q) divide the labeled nodes into

two sets. High-priority set (S1) contains nodes which have been scanned at least once and low-priority
set (S2) contains the rest of the labeled nodes. The next node to be scanned is always selected
from S1. If S1 is empty the node is selected from S2. Pape–Levit algorithm maintains S1 as an
LIFO stack and S2 as an FIFO queue. Pallottino’s algorithm maintains both S1and S2 as FIFO
queues.
The threshold (THRESH) algorithm also divides the labeled nodes into two sets, S1 and S2, which

are maintained as FIFO queues. The set selection is done by comparing the distance label of a node
v with a threshold parameter t, which is set to a weighted average of the minimum and average
distance labels of the nodes in S2. An iteration starts when S1 is empty and the algorithm moves
all the nodes with distance labels less than t from S2 to S1. During an iteration, nodes that become
labeled are added to S2.
The Goldberg–Radzik algorithms (GOR and GOR1) also use two sets, S1 and S2. At the beginning

of each iteration, the algorithm computes S1 by adding the reachable nodes from S2 and applying
topological sort to order S1 using the parent–child links. GOR implements the topological sort
using depth-Orst search. GOR1 combines the depth-Orst search with the shortest-path scanning (the
if-statement within the above SCAN procedure).
Table 2 gives an overview of the test problems. As described in detail in [12] the problems

are from three di1erent families. Rectangular grid networks (Grid-∗) consist of points in the plane.
Points with a Oxed x-coordinate form a layer which is a doubly connected cycle. The problems in
this family di1er by the shape of the rectangular grid and by the lengths of the arcs connecting the
layers. The second problem family (Rand-∗) is constructed by creating a hamiltonian cycle and then
adding arcs with distinct random end points. The Onal problem family (Asyc-∗) consists of acyclic
networks. The nodes are numbered from 1 to n, and there is a path of arcs (i; i + 1), 16 i¡n. In
addition to these path arcs, additional arcs exist between random nodes leading from lower to the
higher numbered nodes.
Based on the running times, we ranked the algorithms so that the fastest one was given a ranking

of 1, the second fastest 2, and so on. We then calculated the average ranking over the di1erent
problem types, and ranked the algorithms based on their average ranking. The rationale behind this
idea was to base the ranking on good general-purpose behavior—not on exceptionally good behavior
on some particular problem type.
All the algorithms were not able to solve all the problems. For those algorithms, which were

not able to solve a problem, we gave a ranking which equaled the number of algorithms in the
comparison.
As the code of [12] was properly structured, one Ole contained exactly one algorithm. Executor

code (∗ t.c and ∗ run.c) was ignored since it only contained input and output code.
Additionally, in order to compare di1erent, independent implementations we used our own

shortest path algorithm implementations for a network planning tool, NPS=10 [13] and the Dijkstra
implementation from Generic Graph Component Library (GGCL). [14], that is available in
http://www.lsc.nd.edu/research/ggcl/. In these implementations, the algorithms were not as cleanly
isolated as in [12]. They contained extra code for debugging, for interfacing with other programs,
and for the reuse of common data structures. To study their e1ect on algorithm complexity, we

http://www.lsc.nd.edu/research/ggcl/.
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Table 3
Shortest-path running times

BFP GOR GOR1 DIKH DIKBD PAPE TWO-Q THRESH

Grid-SSquare 231.33 7.18 42.5 16.28 8.9 4.33 4.48 7.02
Grid-SSquare-S 351.96 20.39 36.74 53.86 12.78 19.46
Grid-SWide 6 6.15 7.31 23.68 7.94 4.5 4.68 8.16
Grid-SLong 3.03 18.25 3.85 3.68 1.73 1.82 2.48
Grid-PHard 18.82 19.25 6.86 4.23
Grid-NHard 29.38 19.34
Rand-4 235.63 194.31 143.54 63.27 21.09 257.31 302.76 186.23
Rand-1:4 8.37 13.45 11.41 1.95 2.02 16.18 16.51 9.21
Rand-Len 35.09 26.27 11.99 6.23 2.23 41.64 43.64 27.25
Rand-P 23.18 19.2 15.65 147.31 46.32 25.01 28 58.88
Acyc-Pos 42.86 54.96 7.24 9.67 5.38 46.43 48.66 23.39
Acyc-Neg 8.65 8.51
Acyc-P2N 313.34 0.43 0.43 1078.63 939.29

calculated the measures separately for the whole implementation and for a limited subset which
contained only the core algorithmic parts.
For NPS=10, we calculated a separate measure for the whole shortest-path algorithm and heap

code, while another measure after the debugging output and extra functions for interfacing with
other parts of the software had been removed.
Similar to GGCL, we calculated the measures separately for all the needed code and for only the

essential parts (dijkstra.h, best Orst search.h, mutable queue.h, mutable heap.h, and array binary tree.h).
For the calculation of the complexity measures, we used CMT++, which is a static

analysis=metric tool for C and C++ code [11]. We executed the analysis using the Ole summary
option (-s) which gave a Ogure for each Ole in the implementation.

4. Results

4.1. Shortest-path algorithms

We have collected the running times, from [12] in Table 3 (the largest problem instances only).
Table 4 contains the ranking of the algorithms based on their running times. When a result was

not available, the ranking of 8 (the number of algorithms) was used.
The average ranking in Table 5 summarizes the main results. Average ranking is calculated using

the rankings of Table 4. A further ranking based on the average ranking is derived and it is used
as a basis for the rest of the study. Volume (V ), cyclomatic number (V (G)), and lines-of-code
(LOCpro) measures were calculated for each algorithm and the algorithms were also ranked with
these measures.
Figs. 1–3 plot the complexity measures for di1erent algorithms. The algorithms on the x-axis have

been sorted based on their average ranking (the fastest algorithm on the left).
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Table 4
Ranking based on execution time

BFP GOR GOR1 DIKH DIKBD PAPE TWO-Q THRESH

Grid-SSquare 8 4 7 6 5 1 2 3
Grid-SSquare-S 6 3 4 5 1 8 8 2
Grid-SWide 3 4 5 8 6 1 2 7
Grid-SLong 8 4 7 6 5 1 2 3
Grid-PHard 8 3 4 2 1 8 8 8
Grid-NHard 8 2 1 8 8 8 8 8
Rand-4 6 5 3 2 1 7 8 4
Rand-1:4 3 6 5 1 2 7 8 4
Rand-Len 6 4 3 2 1 7 8 5
Rand-P 3 2 1 8 6 4 5 7
Acyc-Pos 5 8 2 3 1 6 7 4
Acyc-Neg 8 2 1 8 8 8 8 8
Acyc-P2N 3 1 1 8 5 8 8 4

Table 5
Ranking of shortest-path algorithms by di1erent measures

BFP GOR GOR1 DIKH DIKBD PAPE TWO-Q THRESH

Average ranking 5.77 3.69 3.38 5.15 3.85 5.69 6.31 5.15
Ranking by average ranking 7 2 1 4 3 6 8 4

V 1829 4116 4456 4034 8005 2196 2478 4070
Ranking by V 1 6 7 4 8 2 3 5

V (G) 8 22 25 15 35 9 12 17
Ranking by V (G) 1 6 7 4 8 2 3 5

LOCpro 78 147 160 140 242 87 100 149
Ranking by LOCpro 1 5 7 4 8 2 3 6
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Fig. 1. Volume (V ) of shortest-path algorithms.
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Cyclomatic complexity (V(G))
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Fig. 2. Cyclomatic complexity (V (G)) of shortest-path algorithms.
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Fig. 3. Lines of code metrics of shortest-path algorithms.

Table 6
Correlation between speed ranking and complexity measures

V V (G) LOCpro

Correlation −0:706 −0:842 −0:799
ConOdence 0.811 0.890 0.863

Table 6 calculates the correlation between the ranking based on the algorithm speed and the
di1erent complexity measures. The conOdence line is the probability that the hypothesis that the
measure depends on the ranking is valid.
Table 7 contains the correlations between di1erent measures.
Table 8 compares implementation from di1erent sources. The NPS=10 and GGCL lines show the

measures for the whole implementation, the ‘Alg only’ line shows the measures only for the core
algorithm.
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Table 7
Correlation of di1erent metrics

V V (G) LOCpro

V 1.0000 0.9560 0.9950
V (G) 1.0000 0.9678
LOCpro 1.0000

Table 8
Comparison of di1erent implementations of the same algorithm

V V (G) LOCpro

NPS10 23700 55 438
Alg only 14507 30 301

GGCL 126983 223 3208
Alg only 17593 21 401

DIKH 4034 15 140

Table 9
Function metrics compared to recommended limits

File Measured object V V (G) LOCpro

bfp.c bf( ) 1894 8 78
dikbd.c dikbd( ) 8005 35 242
dikh.c Init heap( ) 271 1 10
dikh.c Heap decrease key( ) 322 3 16
dikh.c Insert to heap( ) 118 1 7
dikh.c Extract min( ) 917 8 34
dikh.c dikh( ) 1145 6 46
gor.c gor( ) 4116 22 147
pape.c pape( ) 2196 9 87
thresh.c thresh( ) 4070 17 149
two q.c two q( ) 2478 12 100

Recommended limit 1000 15 40

Table 9 shows the measures of each function. The items in bold exceeded the recommended limits.

5. Discussion

5.1. Complexities of the shortest-path algorithms

As shown in Table 5, there are considerable di1erences between the implementation complexities
of the di1erent algorithms. Depending on the used measure the most complex algorithm (DIKBD)
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is 3–4 times as complex as the simplest one (BFP). The average complexity was about twice the
complexity of the simplest algorithm.
These are signiOcant di1erences, in particular, if the complexity measures, as experimental studies

[7,10]. suggest, correlate strongly with debugging time, implementation time, number of errors and
future maintenance e1ort. The beneOt of a better algorithm has to be signiOcant to justify a 2–4
times longer development time, higher bug probability, and higher maintanance cost in the future.
In this setting, the simplier algorithms are very attractive especially when considering the shortage
of skilled developers and the increasing pressure to reduce the time-to-market.
Since all the analyzed algorithms are based on the labeling method the complexity di1erences

are caused by the use of advanced data structures and ingenious ordering of nodes to be scanned.
By inspection, the implementation of the algorithms in the study looks very clear and clean sug-
gesting that the complexity is a result of the complexity of the algorithm, not a result of a poor
implementation.
Another interesting observation is that the results show that implementing algorithms is di9cult.

The data in Table 9 compare the complexities of the key functions to the recommended guidelines.
All shortest-path functions exceed the recommended limits when lines-of-code and Halstead’s volume
measures were used. With the cyclomatic number measure this happened in 50% of the algorithms.
The results indicate that high implementation complexity is typical to the shortest-path algorithms.

Our practical experience of algorithm implementation as part of application development corresponds
with this Onding. It seems likely that this observation also applies to other numeric and combina-
torial algorithms. The practical implication of this is that particular attention should be paid to the
correctness and testing of the algorithmic parts of the software.
Software reuse and the use of program libraries reduce the importance of implementation com-

plexity. When the algorithms are already implemented, the user of the library does not have to worry
about their implementation e1ort. What is important in this case is the e1ort to convert the problem
to such a form that an existing software module is able to solve it. This conversion can be quite
complex. It is sometimes reasonable to reimplement the algorithm to avoid a complex conversion
from one presentation to another.

5.2. Algorithm e7ciency vs. implementation complexity

Since the shortest-path problem can be solved to an optimum in polynomial time we can focus
our analyses on two attributes: speed and implementation complexity. With NP-hard problems and
heuristic solution procedures, even a third dimension, optimality, would have to be included in the
comparison since the deviation from strict optimum varies with di1erent heuristics and algorithms.
Figs. 1–3 plot the complexity as a function of the algorithm. Since the algorithms on the x-axis

are sorted by their speed ranking, the chart e1ectively shows the dependency between the algorithm
speed and implementation complexity. The decreasing curve shows that typically a faster algorithm
requires a more complex implementation than a slower one (Dikbd is a major and TWO-Q a minor
deviation from this). As can be seen from Table 6, the correlation between the speed ranking and
the complexity measures is quite strong.
This result is intuitively appealing indicating that a gain in one dimension (increased speed)

requires a loss in another dimension (more complex implementation). For instance, in terms of
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speed, GOR1 is a better algorithm than DIKH. If only speed dimension is considered then there
would not be much point to use DIKH at all. However, when the software complexity dimension is
considered the situation changes. If a fast and simple implementation is required, then DIKH might
be a better choice than GOR1. Selecting the algorithm to implement becomes explicitly a multicriteria
optimization problem where there are multiple optimal choices depending on the importance of speed
vs. simple implementation.
According to our experience, the implementation complexity dimension is very important in prac-

tice. The speed has to exceed a threshold to be adequate but after that extra speed is not a major
beneOt. Simpler implementation, on the other hand, is always useful by reducing the development
time and e1ort, risk, probability of bugs, and maintenance e1ort.
With this data the DIKBD algorithm looks like a poor algorithm. It is inferior to another algorithm

in both dimensions. The performance is worse than with DIKH while the implementation is more
complex. As we use the average ranking as our criteria, this conclusion is a bit too strong. For certain
problem types DIKBD is very fast. But if we are looking for a good general-purpose algorithm,
DIKBD does not look like a good algorithm with this analysis.
A general conclusion is that for good algorithms the speed-complexity function should be a de-

creasing curve. An increase in the curve would indicate that the algorithm is both slower and more
complex to implement compared to some other algorithm.
An interesting issue to speculate is why the curves in Figs. 1–3 are actually descending. Can it

be that even if the implementation complexity is seldom explicitly measured, it, however, implicitly
a1ects the choice of good algorithms. Developers are implicitly able to judge if the extra imple-
mentation e1ort of a more complex algorithm is useful. As a result the “natural selection” process
eliminates those algorithms with poorer speed and complexity.
The analysis results naturally contain various sources of errors. The “typical” input used in the

speed analysis may be quite far from the type of input that is needed in a particular task. Some
algorithms are very good at certain speciOc problems, while others are perform reasonably well
with a wide variety of di1erent problem types. The implementation complexity measurement tries to
cover in a single Ogure many di1erent aspects: implementation e1ort, maintenance e1ort, probability
of implementation errors, needed developer competence, etc. Naturally, the multitude of di1erent
aspects cannot be captured in a single Ogure.

5.3. Which measure to use

Table 7 conOrms the common Onding, e.g. [8,15], that the di1erent measures have a strong cor-
relation. This suggests that for algorithm comparison, the simple line-of-code measure would be
equally useful as the more complicated performance measures.
However, the trouble with all the measurements is that it is possible to bias the results to favor a

certain alternative. As noted in [2], a danger in empirical comparison of algorithms is that by careful
implementation an algorithm can outperform its less well-implemented competitors. The same prob-
lem applies to the implementation complexity measurements. Especially, the line-of-code measure is
very easily a1ected by using a di1erent coding style e.g. by changing the code layout or variable
naming. The other measures are probably less easy to mislead.
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5.4. When are the comparisons feasible

Table 8 shows that the measures vary a lot when di1erent implementations of the same algorithm
are compared. It indicates that it is di9cult to compare independent implementations with these mea-
sures. The selected programming style (procedural, algorithm only in DIKH; special purpose template
library in NPS=10; general-purpose template library in GGCL) a1ects the complexity measures a lot.
In the case of GGCL, the extra complexity coming mainly from the reuse of data structures and
subalgorithm results in the complexity that is 7–10 times higher than the core algorithm. Also, in
the case of NPS=10, there is 50% overhead coming from the necessary routines for data access and
for debugging support.
It seems that a comparison is reasonable only when the algorithms have been implemented in

exactly the same style, which typically can happen only when the algorithms have been implemented
by the same group of developers. This is unfortunate since it does not allow a cross-comparison
of the software complexity Ogures of di1erent studies. Furthermore, it is not possible to state any
universal implementation complexity values for di1erent algorithms. Only relative comparisons are
possible. To a lesser extent, the same argument also applies to the algorithm speed comparisons.

6. Conclusions

It can be argued that the implementation complexity is not a property of an algorithm. Complex-
ity changes from implementation to implementation and depends on how carefully the algorithm
is implemented. Therefore, it does not tell us how good the algorithms are per se, but about how
good their implementations are. However, in practice, the algorithms cannot be strictly separated
from their implementations. Any practical application using a certain algorithm must have it imple-
mented. Since the theoretical analysis of algorithms is not adequate, it is common practice to empir-
ically compare algorithms by running them with typical input and measuring the speed and possibly
some other relevant performance attributes. If speed, which is dependent on the implementation,
can be used to compare algorithms it is hard to see why implementation complexity would be any
di1erent.
We feel that using implementation complexity in empirical algorithm studies has at least three

major beneOts:

• People tend to focus on those aspects that are measured. As the algorithm studies currently focus
on speed and, if appropriate, optimality, there is little incentive to study how a simpler algorithm
would solve the same problem. Implementation complexity measurements would also bring into
light those cases where a highly complex algorithm is able to provide only a slightly better
performance.
• Simple implementation is one of the important practical issues of software. Measurement of im-
plementation complexity might focus the algorithm research to aspects that are more relevant to
the practitioner.
• Software complexity measures might help practitioners to choose, out of a large number of al-
ternatives, the algorithms that best match their needs. Understanding the trade-o1 between imple-
mentation and performance would give a Ormer basis to decision-making.
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This study suggests that the implementation complexity measures o1er a new insight into the com-
parison of algorithms. As it is easy to calculate the implementation complexity measures, it would
be useful to include them in empirical algorithm comparisons.
Unfortunately, the implementation complexity measures did not provide any useful results when

comparing di1erent implementations of the same algorithm. It would be better if some measure
would allow the comparisons even in this dimension. Other issues for further research are to apply
the complexity measures to another group of algorithms, to clarify which complexity measure is
the most suitable for algorithm comparison, and to investigate how well the complexity measures
estimate algorithm implementation, maintenance e1ort and evolution potential.
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