
Fast Shortest Path
Algorithms for Large Road
Networks

廖明傑

2005.08.18

2005/8/22 MCSE 2

Reference
Faramroze Engineer
Fast Shortest Path Algorithms for Large
Road Networks
ORSNZ Conference Twenty Naught One 30
November to 1 December, 2001
University of Canterbury, Christchurch, NZ

2005/8/22 MCSE 3

Outline
Introduction
Shortest Path Algorithms
Search Performance Analysis
Conclusion

2005/8/22 MCSE 4

Introduction
Due to the nature of routing applications, we need
flexible and efficient shortest path procedures,
both from a processing time point of view and also
in terms of the memory requirements.
Since no “best” algorithm currently exists for
every kind of transportation problem, research in
this field has recently moved to the design and
implementation of “heuristic” shortest path
procedures.

2005/8/22 MCSE 5

Goal
As it is impossible to cover all search
implementations, we use Dijkstra’s
algorithms a building block to create an
efficient search algorithm.
It may not guarantee optimal results but
gives significant savings in terms of
memory requirements and processing speed.

2005/8/22 MCSE 6

Shortest Path Algorithms
Dijkstra’s Algorithm
Symmetrical Dijkstra’s Algorithm
A* Search
Radius Search

2005/8/22 MCSE 7

Dijkstra’s Algorithm
It functions by constructing a shortest-path
tree from the initial vertex to every other
vertex in the graph .(Example)

2005/8/22 MCSE 8

Symmetrical Dijkstra’s
Algorithm

The Symmetrical algorithm grows two search trees,
one from the origin (), and the other from the
destination ().
We iteratively add one node to either or until
there exists an arc crossing from to .

FL

FL
BL

BL

BLFL

2005/8/22 MCSE 9

A* Search
A* typically searches outward from the starting node until
it reaches the goal node, always expanding the current
fringe node that looks like it is along the best path from the
start node to the goal node.
The best node is the current fringe node with the minimum
cost from the start node to the fringe node, plus the
expected remaining cost (the heuristic cost) to get from the
fringe node to the goal node.
The heuristic used to estimate the remaining cost from any
node to the goal plays a key role in A*.

2005/8/22 MCSE 10

The Difference between
Dijkstra’s and A*

2005/8/22 MCSE 11

Radius Search
A Radius search is a hierarchical search
with a continuous range of hierarchy levels.
When looking for a shortest path from s to t,
a node i is considered as a possible node to
include in the search only if s or t lies inside
a circle of radius r(i) centered at node i.
If both distances are greater than the node
radius, the node is simply ignored.

2005/8/22 MCSE 12

The Optimal Radius for a Node i

Let be an optimal path
(sequence of nodes) from an origin node to a
destination node .
Let R= be the set of all optimal paths
on G.
Let R(i) be the set of all optimal paths that use node
i , R(i)={ R: }

[1] [2] [| |](,)= pR R R R
[1]R

[| |]pR

1 2(,)RR R R

ÎR []{1,2..... | | 1: }$? =hh R R i
max

() [1] []() {min{ (,), (,)}}Î= R i E E RRr i h i R h i R

2005/8/22 MCSE 13

Radius Search-phase 1
Divide Network into grids of approximately 2000
nodes
Initial Radii of all nodes to 0

while time permits
Select a random node
Select random node t within the same grid as s
Solve the shortest path R from s to t
UpdateNodeRadii(R)

loop

Îs N

1 ÎSUBN N
În N

2005/8/22 MCSE 14

UpdateNodeRadii(R)
{

for all

next n
}

[1] []() max((),min((,), (,))= E E Rr n r n h n R h n R
În R

2005/8/22 MCSE 15

Radius Search-phase 2
for all nodes do

if r(n) = 0 and ClosedNode(n) = false then
Define a sub-graph containing:

200 of the closest nodes to n
All shortest paths defined on

for every shortest path do
UpdateNodeRadii(R)

next R
end if

next n

2SUBG
2SUBN

2SUBR

2Î SUBR R
2SUBG

2005/8/22 MCSE 16

Radius Search-phase 3
Define extreme nodes
for all shortest paths R from to

UpdateNodeRadii(R)
next R

Î EXTREMEt NÎ EXTREMEs N
EXTREMEN

2005/8/22 MCSE 17

Search Performance Analysis
To test these algorithms we used parts of the London
road network(22,500 , has approximately
140,000 nodes and 298,000 directed arcs)
4 search algorithms:

Dijkstra’s(Dijkstra’s)
Dijkstra’s Bi-directional (Symmetric)
A* algorithm (A*)
Dijkstra's Bi-directional algorithm with radius restriction
(Radius)

2km

2005/8/22 MCSE 18

2005/8/22 MCSE 19

Note: (PIR) Path Inaccuracy Rate

2005/8/22 MCSE 20

Conclusion
By exploiting the physical structure of road
networks, the A* algorithm is able to bias its
search towards a goal and reduce the search space.
By using the concept of radii as a measure of
importance of nodes, we are able to incorporate
pre-processing within our shortest path algorithm
to further restrict the search space.
This dramatically reduces the search complexity in
terms of the run time performance while still
maintaining an acceptable level of inaccuracy.

