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Abstract

Let M(k) denote the maximum number of cycles in a Hamiltonian graph of order n and size n+ k.

We prove that M(k)�2k+(5/2)k2−(21/2)k+14 and M(k)�2k+1−1−k
( √

k−2
log2 (k)+2 − 1

4 log2(k)
)

for k�4. Furthermore, we determine M(k) and the structure of the extremal graphs for 5�k�10
exactly. Our results give partial answers to a problem raised by Shi [The number of cycles in a hamilton
graph, Discrete Math. 133 (1994) 249–257].
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider finite, simple graphs and use standard terminology (cf. e.g. [1]). Motivated
by questions posed by Yap and Teo in [5], Shi [3] studied the maximum number of cycles
M(k) in a Hamiltonian graph G=(V (G), E(G)) of order n=|V (G)| and size n+k=|E(G)|.
Let �k denote the set of all such graphs. Clearly, if f (G) denotes the number of cycles of
a graph G, then M(k) = max{f (G) |G ∈ �k}.

Throughout the paper we will tacitly assume that for each graph G in �k one Hamiltonian
cycle CG : u1u2 . . . un has been fixed and we call the additional edges in E(G)\E(CG)

chords. Two chords u1v1 and u2v2 of some G ∈ �k are called skew, if their endvertices

E-mail addresses: rauten@or.uni-bonn.de (D. Rautenbach), stella@math2.rwth-aachen.de (I. Stella).

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.09.007

http://www.elsevier.com/locate/disc
mailto:rauten@or.uni-bonn.de
mailto:stella@math2.rwth-aachen.de


102 D. Rautenbach, I. Stella / Discrete Mathematics 304 (2005) 101–107

appear in the cyclic order u1, u2, v1, v2 on CG. Two chords are parallel, if they are not
skew.

Shi’s main results in [3] concerning M(k) are that for k�1

2k + k(k − 1) + 1�M(k)�2k+1 − 1 (1)

and that for 1�k�4 equality holds in the left inequality of (1).
We will first prove some properties of the extremal graphs, i.e. those graphs G in �k for

which f (G) = M(k). As our main results we improve (1) and determine M(k) and the
structure of the extremal graphs exactly for 5�k�10.

Our research was initially motivated by the hope of finding some regularity in the structure
of the extremal graphs which would have allowed to determine M(k) exactly for all (or
several) k. Unfortunately, we were unable to do so and have to leave it as a challenging
open problem. The interested reader may find similar results in [2] or [4] and the references
mentioned therein.

2. Results on M(k) for general k

We need some more notation and observations already used by Shi. Let G ∈ �k and let
S ⊆ E(G)\E(CG). The number of cycles C of G such that S = E(C)\E(CG) is denoted
by gG(S). Therefore, f (C) = ∑

S⊆E(G)\E(CG) g(S). Shi observed that gG(S)�2 for all
S ⊆ E(G)\E(CG) (Theorem 3.1 in [3]).

The next lemma describes some properties of extremal graphs.

Lemma 1. (i) If G ∈ �k and f (G)=M(k), then no two chords are incident with the same
vertex, i.e. the maximum degree �(G) of G is at most 3.

(ii) If G ∈ �k with f (G) = M(k), then there is no set of chords S ⊆ E(G)\E(CG) such
that ∅ �= S �= E(G)\E(CG) and each chord in S is parallel to each chord not in S.

(iii) For k�2 there is a 3-regular graph G ∈ �k with f (G) = M(k).
(iv) For k�2 every graph H ∈ �k with f (H) = M(k) arises from a 3-regular graph

G ∈ �k with f (G) = M(k) by replacing the edges of CG by non-trivial paths.

Proof. (i) Assume to the contrary that there are chords u1v, u2v ∈ E(G)\E(CG). Let
NG(v) ∩ V (CG) = {v−, v+} and let the graph G′ ∈ �k arise from G by replacing v by a
path v1v2 on two vertices such that NG′(v1)∩V (CG)={v−}, NG′(v2)∩V (CG)={v+} and
replacing u1v, u2v by u1v1, u2v2 such that u1v2 and u2v2 are skew (this can be ensured by
appropriately renaming of u1, u2).

Clearly, to every cycle of G corresponds a unique cycle of G′. Furthermore, we have
gG({u1v, u2v})=1 < 2=gG′({u1v2, u2v2}) which implies the contradiction f (G′) > f (G).

(ii) Assume to the contrary that such a set S = {u1v1, u2v2, . . . , ulvl} exists.
We may assume that uv ∈ E(G)\(E(CG) ∪ S) is such that u and u1 partition CG into

two paths P1 and P2 such that all interior vertices of P1 have degree 2. Let G′ arise from G
by replacing uv and u1v1 by uv1 and u1v.

Clearly, to every cycle of G that does not contain both of uv and u1v1 corresponds a
unique cycle of G′. By the properties of S, every cycle of G that contains uv and u1v1 must
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go along P1. This implies that also to every cycle of G that contains both of uv and u1v1
corresponds a unique cycle of G′. Finally, gG({uv, u1v1}) = 1 and gG′({uv1, u1v}) = 2
which implies the contradiction f (G′) > f (G).

(iii) and (iv) are immediate consequences of (i) and (ii). �

Before we proceed to the main result of this section we give some auxiliary results. The
first lemma deals with the number of cycles in two special graphs and the second lemma is
a straightforward consequence of Ramsey theory.

Lemma 2. (i) [cf. Theorem 4.3 in [3]] If G ∈ �k is such that CG : u1u2 . . . ukv1v2 . . . vk

and E(G)\E(CG) = {uivi | 1� i�k}, then f (G) = 1 + 2k + 2
(

k
2

)
.

(ii) If G ∈ �k is such that CG : u1u2 . . . ukwvkvk−1 . . . v1w
′ and E(G)\E(CG) =

{uivi | 1� i�k}, then f (G) = 1 + 2k +
(

k
2

)
.

Proof. (i) Was proved by Shi [3] and (ii) is easy and left to the reader. �

Lemma 3. Let G = (V (G), E(G)) be a graph of order n and let r = 	log2(
√

n) + 1
.
There are 	n/2r
+ 1 disjoint subsets of V (G) of size r such that each of the sets induces

either a clique or an independent set.

Proof. Let l = 	n/2r
 + 1. Note that, by the choice of r and l, n/2�22r−3 and n − (l −
1)r �n/2.

It is well-known from Ramsey theory (cf. e.g. [1]) that every graph of order at least 22r−3

has either a clique of size r or an independent set of size r. Repeatedly deleting such sets
from the graph yields the desired result. �

Theorem 1. For k�5

M(k)�2k + 5

2
k2 − 21

2
k + 14 (2)

and

M(k)�2k+1 − 1 − k

( √
k − 2

log2(k) + 2
− 1

4
log2(k)

)
. (3)

Proof. In order to prove (2) we determine f (H) for the graph H ∈ �k with CH :
u1u2u3u4u5u6 . . . ukv2v1v4v3v5v6 . . . vk and E(H)\E(CH ) = {ei = uivi | 1� i�k}. We
make repeated use of the following two claims, the first of which is obvious and the second
of which has a simple proof that we leave to the reader.

Claim 1. Contracting edges that are incident to a vertex of degree 2 or subdividing edges
does not change the number of cycles of a graph.

Claim 2. Let G ∈ �k and let S ⊆ E(G)\E(CG) contain two edges a1b1 and a2b2 that
are skew such that a1a2, b1b2 ∈ E(CG). Let G′ = (V (G′), E(G′)) be such that V (G′) =
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V (G) ∪ {a′, a′′, b′, b′′} and

E(G′) = (E(G)\{a1a2, b1b2}) ∪ {a1a
′, a′a′′, a′′a2, b1b

′, b′b′′, b′′b2} ∪ {a′b′, a′′b′′}.

(i) If every cycle C of G with S = E(C)\E(CG) satisfies |E(C) ∩ {a1a2, b1b2}| = 1, then
gG(S) = gG′(S ∪ {a′b′, a′′b′′}).

(ii) If every cycle C of G with S = E(C)\E(CG) satisfies |E(C) ∩ {a1a2, b1b2}| �= 1, then
gG′(S ∪ {a′b′, a′′b′′}) = 0.

We now consider the different subsets of S ⊆ E(H)\E(CH ).
Clearly, gH (∅) = 1.
SincegH ({e1, e2, e3, e4, e5})=2, Claims 1 and 2 implygH (S)=2 for allS ⊆ E(H)\E(CH )

with |S ∩ {e1, e2, e3, e4}| = 4 and |S| odd. There are 2k−5 such sets.
Since gH ({e1, e2, e3, e4})=gH ({e1, e2, e3, e4, e5, e6})=1, Claims 1 and 2 imply gH (S)=

1 for all S ⊆ E(H)\E(CH ) with |S ∩ {e1, e2, e3, e4}| = 4 and |S| ∈ {4, 6}. There are

1 +
(

k−4
2

)
such sets.

Since gH ({e1, e2, e5}) = 2, Claims 1 and 2 imply gH (S) = 2 for all S ⊆ E(H)\E(CH )

with S ∩ {e1, e2, e3, e4} ∈ {{e1, e2}, {e3, e4}} and |S| is odd. There are 2 · (2k−5 + 2 · 2k−5
)

such sets.
Since gH ({e1, e2}) = gH ({e1, e2, e5, e6}) = 1, Claims 1 and 2 imply gH (S) = 1 for all

S ⊆ E(H)\E(CH ) with S ∩ {e1, e2, e3, e4} ∈ {{e1, e2}, {e3, e4}} and |S| ∈ {2, 4}. There

are 2 + 2 ·
((

k−4
2

)
+ 2 · (k − 4)

)
such sets.

Since gH ({e1}) = gH ({e1, e3, e5}) = 2, Claims 1 and 2 imply gH (S) = 2 for all S ⊆
E(H)\E(CH ) with |S ∩ {e1, e2}| �= 2, |S ∩ {e3, e4}| �= 2 and |S| is odd. There are 2k−5 +
4 · 2k−5 + 4 · 2k−5 such sets.

Since gH ({e1, e3})= 2, Claims 1 and 2 imply gH (S)= 2 for all S ⊆ E(H)\E(CH ) with

|S ∩ {e1, e2}| �= 2, |S ∩ {e3, e4}| �= 2 and |S| = 2. There are
(

k−4
2

)
+ 4 + 4(k − 4) such

sets.
Altogether, we obtain

f (H) =
∑

S⊆E(H)\E(CH )

gH (S)

�1 + 2 · 2k−5 + 1 +
(

k − 4

2

)
+ 2 · 2 ·

(
2k−5 + 2 · 2k−5

)

+ 2 + 2 ·
((

k − 4

2

)
+ 2 · (k − 4)

)
+ 2 ·

(
2k−5 + 4 · 2k−5 + 4 · 2k−5

)

+ 2 ·
((

k − 4

2

)
+ 4 + 4 · (k − 4)

)

= 2k + 5

2
k2 − 21

2
k + 14.

We now proceed to the proof of (3). Let G ∈ �k be such that f (G) = M(k). By Lemma 1,
�(G)�3.
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Let r = 	log2
(√

k
) + 1
 and l = 	k/2r
 + 1. By Lemma 3, there are l disjoint sets

S1, S2, . . . , Sl ⊆ E(G) each containing r chords such that for 1� i� l the chords in Si are
either all pairwise skew or all pairwise parallel. Clearly, we have

f (G) =
∑

S⊆E(H)\E(CH )

gG(S)

�

⎛
⎝ ∑

S⊆E(H)\E(CH )

2

⎞
⎠− (2 − gG(∅)) −

l∑
i=1

∑
∅�=S⊆Si

(2 − gG(S))

= 2k+1 − 1 −
l∑

i=1

⎛
⎝2r+1 − 2 −

∑
∅�=S⊆Si

gG(S)

⎞
⎠ .

Claim 3. 2r+1 − 2 −∑
∅�=S⊆Si

gG(S)�2r − r(r − 1) − 2 for 1� i� l.

Proof of Claim 3. If the chords in Si are pairwise skew, then Lemma 2 (i) implies

2r+1 − 2 −
∑

∅�=S⊆Si

gG(S) = 2r+1 − 2 − 2r − 2
( r

2

)
= 2r − r(r − 1) − 2.

If the chords in Si are pairwise parallel, then Lemma 2(ii) implies

2r+1 − 2 −
∑

∅�=S⊆Si

gG(S) = 2r+1 − 2 − 2r −
( r

2

)
�2r − r(r − 1) − 2

and the proof of the claim is complete. �
Altogether, we obtain

f (G)�2k+1 − 1 − l
(
2r − r(r − 1) − 2

)
�2k+1 − 1 −

(⌊
k

2r

⌋
+ 1

) (
2r − r(r − 1) − 2

)
�2k+1 − 1 − k

2
(

log2

(√
k
)

+ 1
) (√k −

(
log2

(√
k
)

+ 1
)

log2

(√
k
)

− 2
)

= 2k+1 − 1 − k

( √
k − 2

log2(k) + 2
− 1

4
log2(k)

)

and the proof is complete. �

Note that the upper bound in (3) is better than Shi’s upper bound in (1) only for large
enough k.

3. Results on M(k) for 5�k�10

In this section we report computational results regarding M(k) for 5�k�10. In order
to determine M(k) and the structure of the extremal graphs for fixed k, Lemma 1 (iv)
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Fig. 1. Extremal graph for k = 4 with 29 cycles.

Fig. 2. Extremal graph for k = 5 with 56 cycles.

Fig. 3. Extremal graphs for k = 6 with 109 cycles.

Fig. 4. Extremal graph for k = 7 with 213 cycles.

implies that we can restrict our considerations to Hamiltonian, 3-regular graphs of order 2k

having 3k edges. Using a computer program we generated all such graphs and calculated
the number of their cycles. This yields M(k) and also the collection of extremal graphs
possibly containing several copies of each graph. Using a generic isomorphism test, we
determine all isomorphism types of extremal graphs (Figs.1–7). In the following figures,
we report M(k) and give representatives of these isomorphism types.
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Fig. 5. Extremal graph for k = 8 with 401 cycles.

Fig. 6. Extremal graph for k = 9 with 783 cycles.

Fig. 7. Extremal graphs for k = 10 with 1484 cycles.

As we already mentioned in the introduction, we were not able to find some regularity in
these configurations.
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