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Chapter 4

The Traveling Salesman

Problem

5. Lecture

4.1 The Problem

The input to the Traveling Salesman Problem (TSP) is an undirected complete
graph G = (V,E) with edge lengths c : E → IN. The problem is to find a
shortest round trip (called a tour) in the graph, i.e., a minimum weight cycle
visiting each node at least once. Such a cycle is called a TSP tour.

Theorem 4.1.1. TSP is NP-complete. ut

4.2 Approximation Algorithms

Since TSP is a very important problem (in Operations Research, for example),
people have designed good approximation algorithms and powerful heuristics
that can even (often) solve rather large TSP instances in reasonable time.

In this section, we will only consider Metric TSP, where the edge lengths
obey the triangle inequality (i.e., no detour can be shorter than a direct con-
nection). This is an important special case of TSP; it arises, for example, when
we plan shortest tours visiting all cities in some country. Metric TSP is still
NP-complete. Here are a few (non-)approximability results without proofs.

(a) Let c ≥ 1. If P 6= NP then there is no polynomial time c-approximation
algorithm for general TSP.

(b) TSP is NPO-complete (NPO is the class of hardest optimization problems,
analogously to NP-complete), so there is no 2nε

-approximation for small
ε (Orponen, Mannila ’87).

(c) For Metric TSP, an approximation factor of 5381
5380

− ε for any ε > 0 is
impossible (Engebretsen ’99).

(d) For Geometric TSP (cities in the plane) there is a PTAS (Arora ’96), even
in IRd for d ≥ 3 (Arora ’97). A PTAS (polynomial time approximation
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scheme) can compute an (1+ε)-approximation for any ε > 0 in polynomial
time (but time is usually exponential in 1

ε
). ut

4.2.1 MST Approximation

We start with a simple approximation algorithm based on computing a MST
of G.

Algorithm Approx-TSP

• Compute a minimum spanning tree T of G (see Fig-
ure 4.1).

• Start at an arbitrary node v of the graph and “walk
around the tree T”. Let L be the list of nodes encoun-
tered on this tour. L is not a simple cycle because interior
nodes of T appear at least twice in L. If we remove all but
the first appearance of each node from L, then we obtain
a simple cycle C (note that G is the complete graph, so
all shortcuts exist).

Note that C is just a preorder traversal of T rooted at v.

Theorem 4.2.1. In metric graphs, Approx-TSP computes in time O(n2) a 2-
approximation C of the shortest TSP-tour.

Proof. The running time is dominated by the time for computing a minimum
spanning tree. Prim’s algorithm can do this in time O(m + n log n) which is
equal to O(n2) in a complete graph.

Let C∗ be an optimal TSP-tour. Removing any edge from C ∗ gives a span-
ning tree of G (actually a spanning path). Thus, the cost of C ∗ is at least the
cost of the minimum spanning tree T . Since walking around T will visit every
edge of T exactly twice, the cost of L is exactly twice the cost of T , and thus
at most twice the cost of C∗. Introducing shortcuts in L to obtain C can only
reduce the cost (here we need Metric TSP). ut

4.2.2 Christofides’ Algorithm

In 1976, Christofides refined Approx-TSP so that it even computes a 3
2
-approximation.

To describe the algorithm, we first need a few definitions and lemmas. A node
is called odd if it has odd degree.

Lemma4.2.2. Any graph G has an even number of odd nodes.



4 CHAPTER 4. THE TRAVELING SALESMAN PROBLEM

v v

v
T

L

C

Figure 4.1: A minimum spanning tree T for eight cities in the plane (top left),
the walk L around T starting at v (top right), the simple cycle C derived from L

by introducing shortcuts (bottom right), and the minimum tour (bottom left).

Proof. If m is the number of edges in G, then
∑

v deg(v) = 2m. Splitting the
sum into two sums, Se for the nodes of even degree and So for nodes of odd
degree, we see that So must be even. Since all terms in So are odd, there must
be an even number of terms in So, i.e., there must be an even number of odd
nodes. ut

A matching M is a set of pairwise disjoint edges, i.e., each node is hit by at
most one edge in M . In a perfect matching, all nodes are hit exactly once. Of
course, only graphs with an even number of nodes can have a perfect matching.
A minimum weight perfect matching is a perfect matching of least cost. We
will learn later in the course that a minimum weight perfect matching can be
computed in polynomial time.

A graph is called Eulerian if there exists a cycle that visits every edge exactly
once. Such a cycle is called an Eulerian tour.

Lemma4.2.3. A graph is Eulerian if and only if it is connected and all nodes
have even degree. An Eulerian tour can be computed in linear time.

Proof. An Eulerian tour may visit a node several times, but each time it enters
and leaves the node on two different edges. Thus, in an Eulerian graph all nodes
have even degree.
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If all nodes have even degree, then we can greedily compute an Eulerian
tour as follows. Starting at an arbitrary node v, we always leave a node on
some arbitrary unused edge. Since nodes have even degree, there must always
be an unused edge when we have just entered a node. Except, if we enter v

later again there may be no unused edge, in which case we have closed a cycle
C. If C contains all edges, we are done. Otherwise, there is a node w on C with
unused adjacent edges (because the graph is connected). We compute a second
cycle C ′, starting in w (the edges of C are still classified as “used”). Then we
combine C and C ′ into a single larger cycle by splicing C ′ into C at w, i.e., we
follow C until we reach w for the first time, then follow C ′, then continue on C

from w. ut

In algorithm Approx-TSP, we walked around the tree T . In a more formal
way, we could say we take T twice to define a multi-graph F , i.e., the edges of T

appear exactly twice in F (in a multi-graph edges can appear several times). F

is Eulerian (each edge exists twice). Walking around T is one possible Eulerian
tour in F (there can also be others). Therefore, Approx-TSP is also sometimes
called Double-Tree Algorithm. The idea of Christofides’ algorithm is to make
T Eulerian by overlaying it with some smaller graph than T itself, thus reducing
the total cost of the overlay multi-graph.

Christofides’ Algorithm

• Compute a minimum spanning tree T of G (see Figure
4.2).

• Compute a minimum weight perfect matching M of the
odd nodes of T (by Lemma 4.2.2, there is an even number
of odd nodes).

• Consider the multi-graph F that is the overlay of T and
M . If M also contains edges of T , these edges will appear
as multiple edges in F . Since all odd nodes in T are
adjacent to exactly one edge in M , F is Eulerian (see
Lemma 4.2.3) and we can compute an Eulerian tour C ′.

• Introduce shortcuts in C ′ to obtain a TSP tour C in G.

Theorem 4.2.4. In metric graphs, Christofides’ algorithm computes a 3
2
-approximation

of the shortest TSP-tour in polynomial time.

Proof. Let c∗ be the cost of an optimal TSP tour C∗. Again, c∗ is at least as
large as the cost of T .

If we connect the odd nodes of T in the order of their cyclic appearance
on C∗ we obtain a cycle of cost at most c∗ (because of the triangle inequality).
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Figure 4.2: A minimum spanning tree T for eight cities in the plane (top left),
an Eulerian tour C ′ in T +M , where M is a minimum weight perfect matching
of the (black) odd nodes of T (top right), the simple cycle C derived from C ′

by introducing shortcuts (bottom right), and the minimum tour (bottom left).

The cycle has an even number of nodes and edges. If we choose every second
edge on the cycle, we partition its edges into two disjoint sets. Each set is a
perfect matching of the odd nodes of T . Thus, one of the two sets has cost at
most c∗

2
. Therefore, the cost of the minimum weight perfect matching M is at

most c∗

2
.

F is the overlay of T and M , so the Eulerian tour C ′ has cost cost(T ) +
cost(M) ≤ c∗ + c∗

2
. Introducing shortcuts to obtain a TSP tour can only reduce

the cost. ut

The running time of Christofides’ algorithm is actually O(n3). Without the
triangle inequality, there is no constant factor approximation for TSP.

4.2.3 Nearest Neighbour Rule

In the Nearest Neighbor Rule (NNR) algorithm, we form a path by starting
with an arbitrary node and proceeding by always joining the previously added
node to its nearest neighbour node that has not yet been selected, until we have
visited all nodes. Connecting the last node selected to the first one closes the
tour. Rosenkrantz, Stern and Lewis (1974) have shown the following theorem.
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Theorem 4.2.5. NNR computes a log n+1
2

-approximation to the optimal TSP

tour.

4.2.4 Nearest Insertion Rule

In the Nearest Insertion Rule (NIR) algorithm, we start with a single node tour
and then proceed by always choosing the node that is closest to the current tour
and adding it to the tour in a way that minimizes the cost. Rosenkrantz, Stern
and Lewis (1974) have shown the following theorem.

Theorem 4.2.6. NIR computes a 2-approximation to the optimal TSP tour.

4.2.5 Local Search Heuristics

Many heuristics start with some tour and then do local changes improving the
tour (thus the name local search heuristics). Unfortunately, local improvements
do not always lead to the overall optimum solution (thus the name heuristic).

4.2.5.1 k-Opt Exchange

The first heuristic is called k-Opt Exchange, where k ≥ 2 is some fixed param-
eter. A k-opt move consists of deleting some arbitrary k edges from the current
tour C and reconnecting the (at most k) paths in the best possible way. Figure
4.3 shows a 2-opt move.

Figure 4.3: A 2-opt move. In the left tour, we remove the two thick edges and
then reconnect the two pieces of the tour to obtain a shorter tour.

Algorithm k-Opt Exchange

• Let C be any tour in G.

• As long as there is a k-opt move that reduces the cost of
the current tour, do the k-opt move.
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Obviously, each iteration of k-Opt needs time O(nk), since there are
(n
k

)

possibilities to remove k edges from the current tour. For each set of k edges,
we must try all possible ways to reconnect the tour pieces. Therefore, we would
usually only choose k = 2 or k = 3.

We say a tour is k-opt if it cannot be improved by further k-opt moves. The
following theorem shows that k-Opt is a heuristic that can sometimes fail to
compute optimal TSP tours.

Theorem 4.2.7. For any k ≥ 2 there are TSP instances and k-opt tours that
are not (k + 1)-opt. ut

4.2.5.2 Lin-Kernighan

The Lin-Kernighan (LK) heuristic does not limit its search in each iteration to
a 2-opt or 3-opt move that immediately improves the current tour. Instead, it
tries a 3-opt move followed by several 2-opt moves, until a tour has been found
that is better than the one the iteration had started with. To bound the running
time, the heuristic limits the search depth and uses many other tricks to avoid
unnecessary re-computations of “bad” moves. Since these tricks allow many
degrees of freedom in the implementation, LK is actually a generic name for
a great number of rather different heuristics. Usually, these heuristics perform
much better than for example 3-Opt. Since the heuristic often cannot find 4-opt
moves that would improve the solution, one can improve the performance of LK
by trying to find a good 4-opt move whenever LK stops, and then continuing
with LK on that better tour.

4.3 Exact Solutions

There are two main methods to solve TSP exactly. The first one uses dynamic
programming, the second one uses an integer linear program (ILP) formulation.
Both methods have exponential running time. ILP based solution methods can
be much more effective than the dynamic programming approach.

4.3.1 Dynamic Programming

The dynamic programming solution to TSP is due to Held and Karp (1962).
Let the nodes be numbered N = {1, . . . , n}. For A ⊆ {2, . . . , n} and x ∈ A,
denote by TSP (A, x) the minimum cost path from 1 to x only using nodes in
A + {1}. We can compute these values recursively as follows:

TSP (A, x) =

{

cost(A, x) ifA = {x}
minx6=y∈A(TSP (A − x, y) + cost(y, x)) otherwise

The optimal TSP tour can then be obtained from

min
x

(TSP (N,x) + cost(x, 1)) .
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4.3.2 Integer Linear Program

A Linear Program (LP) consists of a set of variables x1, . . . , xn, a set of con-
straints C1, . . . , Cm, where each Cj is either a linear equation in the xi or a
linear inequality, and a linear function of the variables, the objective function.
The dimension of the LP is n, the number of variables. A feasible solution
to the LP is a vector of values for the variables fulfilling all constraints. An
optimal solution is a feasible solution that minimizes (maximizes) the objective
function.

Example 4.3.1. Consider the following LP in two variables

max x1 + 2x2

subject to x1 − x2 ≤ 0

x1 + x2 ≤ 4

x1, x2 ≥ 0.

A feasible solution is x1 = x2 = 1. An optimal solution is x1 = 0 and
x2 = 4. ut

An Integer Linear Program (ILP) is an LP with the additional constraint
that all variables must have integer values. The most famous algorithm to solve
LPs is the Simplex algorithm. Although it has an exponential running time, it
often runs very fast in practice. A rather unpractical algorithm to solve LPs in
polynomial time is the Ellipsoid Method due to Karmakar and Khatchian.

On the other hand, solving ILPs is NP-complete. Unfortunately, many
problems in real life, like for example TSP, can only be formulated as ILP, but
not as LP. Doing this does not seem to be advantageous compared with, let’s
say, the exponential time dynamic programming approach. However, there is a
rich theory on heuristics to solve ILPs in general, and these can be used to solve
practical instances of TSP, for example. These heuristics include LP relaxations
(solve the ILP as an LP and then somehow round the optimal solution to obtain
an integer solution) and cutting plane algorithms (add more constraints to the
ILP to make the LP relaxation more successful). Currently, the best commercial
LP and ILP solver is the CPLEX system.


