
MODSIM III

The Language for Object-Oriented
Programming

Tutorial

Title: (CACI Logo. eps)
Creator: Adobe Illustrator 88(TM) 1.9.3
CreationDate: (10/8/90) (9:11 AM)

 Products Company

3333 North Torrey Pines Court, La Jolla, California 92037 • (619) 824.5200 • Fax(619) 457-1184
 Watchmoor Park, Riverside Way, Camberley, Surrey GU15 3YL, UK • 1276 671 671 • Fax 1276 670 677
1600 Wilson Blvd., 13th Floor, Arlington, Virginia 22209 • (703) 875-2900 • Fax (703) 875-2904

MODSIM Tutorial

Contents

3

Copyright 1996 CACI Products Co.

December 1996

All rights reserved. No part of this publication may be reproduced by any means without written permission from
CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division

3333 North Torrey Pines Court Watchmoor Park

La Jolla, California 92037 Riverside Way

Phone: (619) 824.5200 Camberley, Surrey

Fax: (619) 457-1184 GU15 3YL, UK

Phone: 1276 671 671

Fax: 1276 670677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the
responsibility for any consequences resulting from the use thereof. The information contained herein is subject to
change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT II.5 and SIMGRAPHICS II are registered trademarks of CACI Products Company.

i

Contents

PREFACE .. a

SECTION I. INTRODUCTION..1

1. OVERVIEW OF MODSIM III ... 3

1.1 MODSIM III AS A PROGRAMMING LANGUAGE... 3

1.2 CONTROL STRUCTURES IN MODSIM III... 5

1.3 INPUT AND OUTPUT IN MODSIM III ... 7

1.4 OBJECT-ORIENTED PROGRAMMING.. 9

2. BACKGROUND.. 11

2.1 DATA STRUCTURES IN CONTEMPORARY LANGUAGES... 11

2.2 MODSIM III'S MODULAR STRUCTURE ... 12

2.3 WHAT IS COMPUTER SIMULATION? .. 14

2.4 PROCESS-ORIENTED VS EVENT-ORIENTED SIMULATION... 15

SECTION II. OBJECT-ORIENTED LANGUAGE FEATURES.....................................17

3. OBJECT ORIENTED PROGRAMMING.. 19

3.1 WHAT IS OBJECT-ORIENTED PROGRAMMING?... 20

3.2 MESSAGES AND BEHAVIORS ... 20

3.3 INHERITANCE .. 21

3.4 DECLARING AN OBJECT TYPE.. 22

3.5 METHODS OF AN OBJECT.. 22

3.6 REFERENCE VARIABLES ... 23

3.7 ANYOBJ, ANYREC AND ANYARRAY .. 25

3.8 ALLOCATING, DEALLOCATING AND INITIALIZING OBJECTS ... 25

3.9 COPYING OBJECTS WITH THE CLONE PROCEDURE .. 26

4. METHODS.. 29

4.1 REFERENCING FIELDS .. 30

4.2 DEFINING METHODS... 31

4.3 IMPLEMENTING METHODS ... 31

4.4 USING METHODS ... 33

4.5 FORMAL PARAMETER QUALIFIERS: IN, OUT, INOUT... 34

5. INHERITANCE ... 35

5.1 DECLARING AN INHERITANCE... 35

5.2 EXTENDING OBJECT PROPERTIES.. 36

MODSIM Tutorial

ii

5.3 OVERRIDING METHODS...37

5.4 EXTENDING INHERITED BEHAVIORS ..37

5.5 ASSIGNMENT COMPATIBILITY ...38

6. MULTIPLE INHERITANCE ...41

6.1 DECLARING MULTIPLE BASE TYPES..41

6.2 CONFLICTING FIELDS ..41

6.3 RESOLVING CONFLICTING METHODS ..42

6.4 COMBINING MULTIPLE METHODS..44

6.5 CONFLICTING FIELD AND METHOD NAMES...44

7. DATA HIDING...45

7.1 DEFINITION MODULES...45

7.2 PRIVATE FIELDS AND METHODS ...46

SECTION III. SIMULATING WITH MODSIM III ... 47

8. OBJECT-ORIENTED SIMULATION..49

8.1 SIMULATION TIME ...49

8.2 ELAPSING SIMULATION TIME IN TELL METHODS ..50

8.3 DELAYED METHOD CALLS ...51

9. OBJECT INTERACTION...53

9.1 CONCURRENCY IN MODSIM III ...53

9.2 SYNCHRONIZED ACTIVITIES ...53

9.3 ARBITRARY SYNCHRONIZATION WITH TRIGGER OBJECTS ..55

9.4 MULTIPLE PROCESS ACTIVITIES ...55

9.5 INTERRUPTING ACTIVITIES...56

9.6 HOW OBJECTS AND THEIR ACTIVITIES INTERACT..56

10. GROUPING OBJECTS ...59

10.1 ASSOCIATING OBJECTS...59

10.2 GROUPS ...59

10.3 THE QUEUE GROUP ...59

10.4 THE STACK GROUP ..60

10.5 THE RANKED GROUP..60

10.6 THE BTREE GROUP..61

10.7 ITERATING THROUGH A GROUP..61

11. A SIMPLE AIRPORT MODEL...63

11.1 WHY MODEL AN AIRPORT?..63

11.2 THE SOURCE CODE..63

11.3 RESULTS OF THE MODEL...71

Contents

iii

11.4 DISSECTION OF THE SIMPLE MODEL ... 72

SECTION IV. ANIMATED GRAPHICS - SIMGRAPHICS II ...73

12. SIMGRAPHICS II.. 77

12.1 BACKGROUND ... 77

12.2 WHAT IS SIMGRAPHICS II? ... 77

12.3 SIMGRAPHICS II OBJECT TYPES ... 77

12.4 EXAMPLE: DRAWING AN IMAGE IN A WINDOW ... 79

12.5 SIMDRAW - THE GRAPHICS EDITOR .. 80

12.6 CONSTRUCTING A USER INTERFACE... 82

12.7 PALETTES ... 84

13. AN ANIMATED AIRPORT MODEL... 87

13.1 THE MODEL DESIGN PROCESS.. 88

GLOSSARY.. 91

INDEX...93

MODSIM Tutorial

iv

a

 Preface

This Document

This manual is intended to help teach the MODSIM III language to any simulation analyst
with prior programming experience. The manual gives an overview of the language sy n-
tax, its object-oriented, modular, simulation and graphical features.

MODSIM III Documentation

There are four documents pertaining to MODSIM III:

• MODSIM III Reference Manual - The language reference. Contains information
about the syntax and structure of MODSIM III as a programming language. Also
covers object-oriented programming, simulation, graphics and I/O.

• MODSIM III Tutorial - This document.
• MODSIM III User's Manual - It contains information about: mscomp, the com-

pilation manager; MODBENCH, the development environment under Windows;
MODSIM III compiler options; and debugging MODSIM.

•• SIMGRAPHICS II User's Manual for MODSIM III - This manual contains in-
formation about SIMGRAPHICS II, the integrated graphics development and
animation environment for MODSIM III.

Free Trial & Training

MODSIM III is available exclusively from CACI Products Company. MODSIM III can
be sent to your organization for a free trial. We provide everything needed for a complete
evaluation on your computer: software, documentation, sample models, and immediate
support when you need it.

Training courses in MODSIM III are scheduled on a recurring basis in the following loc a-
tions:

La Jolla, California
Washington, D.C.
London, United Kingdom

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 N. Torrey Pines Ct. Watchmoor Park, Riverside Way
La Jolla, CA 92037 Camberley, Surrey
(619) 824.5200 United Kingdom
Fax (619) 457-1184 1276 671 671

Fax 0276 670 677

MODSIM Tutorial

b

1

Section I. Introduction

MODSIM Tutorial

2

3

1. Overview of MODSIM III
The Modular Simulation language, MODSIM III, is a general-purpose, modular, block
structured language which provides support for object-oriented programming, discrete
event simulation and animated graphics. It is intended to be used for building large pro c-
ess-based discrete event simulation models through modular and object-oriented develo p-
ment techniques.

1.1 MODSIM III as a Programming Language

MODSIM's syntax and control mechanisms are similar to those of Modula-2, Pascal and
Ada, so a simple MODSIM program which does not use the object or simulation exte n-
sions will look very much like a Modula-2, Pascal or Ada program.

For instance, the short program below computes the average of a sequence of numbers
which have been input:

MAIN MODULE Sample1;

VAR
 sum, number : REAL;
 count : INTEGER;

BEGIN
 OUTPUT("This program computes the average of a sequence of");
 OUTPUT("positive numbers. Enter a sequence of numbers...");
 OUTPUT("Terminate the sequence with a negative number:");
 INPUT(number);
 WHILE number >= 0.0
 INC(count); { increment the count }
 sum := sum + number;
 INPUT(number);
 END WHILE;
 IF count > 0
 OUTPUT(count, " numbers were entered");
 OUTPUT("Average is ", sum / FLOAT(count));
 ELSE
 OUTPUT("Nothing was entered.");
 END IF;
END MODULE.

Note: MODSIM III, like Modula-2, requires reserved words such as BEGIN,and
OUTPUT etc. to be capitalized. Also like Modula-2 and C, MODSIM is case sensitive.
Thus, the variable name number is different from NUMBER and Number.

The two most commonly-used areas where MODSIM III differs from Modula-2 are:

• Block structure: the END is always followed by a keyword. e.g.

IF …… END IF,
 FOR …… END FOR, etc.

MODSIM Tutorial

4

• Parameter declarations: the syntax for declaring variable parameters is comparable
to Ada, i.e. the direction in which parameters are passed is explicitly stated:

 IN, OUT, INOUT .

MODSIM III supports most Modula-2 features such as modules, strong typing, data hi d-
ing, records, enumerated types, symbolic constants and Modula-2 style control structures.

MODSIM III supports the standard simple and structured data types but it also includes
dynamic data types and monitored types which are used to collect statistics:

• Scalar types: INTEGER, REAL, CHAR, BOOLEAN

• String type: A full implementation of dynamic strings which manage their
own memory

• Dynamic Structured types: ARRAY, RECORD.

• Fixed Structured types: FIXED ARRAY , FIXED RECORD .

• Monitored Type: A variable to which a statistical monitoring probe is a t-
tached. Whenever an assignment is made to the variable or the variable is re f-
erenced, statistics can be gathered or user-specified procedures can be
automatically invoked.

• Enumerated types: Types in which the allowable values are explicitly en u-
merated in a TYPE declaration.

• Subrange types: Subranges of the existing scalar types and of enumerated
types.

The MODSIM INTEGER value is 32 bits long. The MODSIM REAL value is 64 bits long.
These are equivalent, respectively, to the C long int and double on a 32-bit architecture.
No “smaller” numeric types like the C short or float are supported. MODSIM supports
IEEE floating-point arithmetic on machines which provide this capability.

MODSIM is a modular language. This means that it provides formal support for import-
ing definitions and declarations from other modules. These are checked for consistency
when individual modules are compiled. There will be no surprises at link time. Non-
modular languages such as C and C++ do not provide this service.

MODSIM itself makes extensive use of this facility. The core of the language is quite
small. Most support facilities for I/O, simulation and animated graphics are made available
from standard modules.

The code example above is a simple case in which the entire MODSIM program is co n-
tained in one main program module.

A major innovation in MODSIM III is the provision of automated program building. This
means that the user does not have to write “make” scripts to tell the compiler how to
compile and link a MODSIM III program. Given the name of a main module, MODSIM’s
compiler knows how to compile and link all relevant parts of the program. It knows
which individual modules need to be compiled and which are already compiled. It also
keeps track of inter-module dependencies.

Chapter 1: Overview

5

Thus, there are two major types of modules in MODSIM:

• Main Modules

• Library Modules

Main modules may be compiled and executed on their own. They may IMPORT constants,
types, variables and procedures from library modules , but nothing can be IMPORTed from
a main module. A simple MODSIM program can consist solely of a main module.

Library modules are compiled separately. They contain declarations of types, constants,
variables, procedures and the actual implementation code for procedures and methods for
objects. Each library module typically contains a set of related procedures and objects.

There are two parts to a Library Module: the DEFINITION MODULE and the
IMPLEMENTATION MODULE . The DEFINITION MODULE contains descriptions of
those aspects of the library module which can be imported by other modules. The
IMPLEMENTATION MODULE contains the code which implements the functionality of the
library, but which does not have to be visible outside the library module itself.

1.2 Control Structures in MODSIM III

MODSIM's control structure syntax differs subtly from that of Modula-2. In most cases
the syntax is closer to that of Ada. MODSIM also includes a unique WAIT statement for
use in discrete simulation.

We will briefly cover the syntax and use of control statements here so that the examples of
MODSIM code used throughout this tutorial are easier to read. The MODSIM III Refer-
ence manual contains a detailed description of the entire language.

In the informal illustrations below, StatementSequence is zero or more statements
each separated by semicolons. The semicolon is a statement separator. Optional portions
of the syntax are enclosed in brackets. Alternatives are separated by a vertical bar.

IF:
IF Boolean Expression
 StatementSequence
[ELSE
 StatementSequence]
END IF;

or

IF Boolean Expression1
 StatementSequence
[ELSIF Boolean Expression2
 StatementSequence
ELSIF Boolean Expression3
 StatementSequence
 . . .]
[ELSE
 StatementSequence]
END IF;

MODSIM Tutorial

6

CASE:
CASE [ordinal type | string]
 WHEN a..e, m: StatementSequence
 WHEN p: StatementSequence
 WHEN x..z: StatementSequence
[OTHERWISE
 StatementSequence]
END CASE;

LOOP:
LOOP
 StatementSequence
END LOOP;

WHILE Boolean Expression
 StatementSequence
END WHILE;

REPEAT
 StatementSequence
UNTIL Boolean Expression;

FOR ident := expression TO | DOWNTO expression
 [BY expression]
 StatementSequence
END FOR;

FOREACH object IN group [REVERSED]
 StatementSequence
END FOREACH;

EXIT:

The EXIT statement causes control to pass to the end of the enclosing loop. U n-
like Modula-2, MODSIM's EXIT works in all loop constructs.

WAIT:

The WAIT statement is used to elapse simulation time. Its syntax is similar to that
of the IF statement. It contains a statement sequence to be executed if the wait
was completed successfully and an optional statement sequence to be executed if
the wait was interrupted.

WAIT reason
 [StatementSequence]
END WAIT;

or

WAIT reason
 [StatementSequence] executed if WAIT completed
[ON INTERRUPT
 StatementSequence executed if WAIT interrupted]
END WAIT;

The reason in the WAIT statement can be one of two types:

Chapter 1: Overview

7

DURATION: an interval of simulation time

FOR: another time-elapsing method to be invoked and completed.

1.3 Input and Output in MODSIM III

MODSIM provides a complete and coherent I/O facility. Module IOMod provides device-
independent text stream input and output to and from any device or file.

IOMod also supports block-oriented, random access I/O . Binary files can be created and
read. The Position method is used to seek to a particular block while the ReadBlock
and WriteBlock methods are used to read and write binary, random access files.

The number of files and/or devices which can be open simultaneously is limited only by the
operating system of the machine on which MODSIM is running.

Facilities are also provided for defining I/O streams, opening and closing files, checking
for the existence of files before attempting to open them, determining access status (Read,
Write, Read/Write, etc.) and determining file size and last modified or access time.

The I/O capability is implemented in a style familiar to Modula-2 and Ada users. Each
variable type has its own input and output procedure. Each input or output statement o p-
erates on one variable at a time.

Each I/O stream in MODSIM is an object. Stream I/O objects provide a facility which is
consistent with the object oriented architecture of MODSIM.

IOMod defines the following type:
FileUseType = (Input, Output, InOut, Append, Update, CreateBinary);

FileUseType is used when a file is opened to indicate how it should be handled. Input,
Output, InOut and Append are used to open text files. CreateBinary is used to cre-
ate a binary file. Update is used to open a binary file for read and write.

Excerpted below is a partial list of MODSIM's stream I/O methods. The ASK methods
will be covered under the topic of object oriented programming. For now it would be a p-
propriate to understand the word PROCEDURE wherever ASK METHOD appears below.

ASK METHOD Open(IN FileName: STRING;
 IN IOdirection: FileUseType);

ASK METHOD Close;

ASK METHOD Delete;

ASK METHOD ReadChar (OUT ch: CHAR);

ASK METHOD ReadInt(OUT n: INTEGER);

ASK METHOD ReadReal (OUT x: REAL);

ASK METHOD ReadString (OUT s: STRING);

ASK METHOD ReadLine (OUT str: STRING);

ASK METHOD WriteChar (IN ch: CHAR);

MODSIM Tutorial

8

ASK METHOD WriteInt (IN num, fieldwidth: INTEGER);

ASK METHOD WriteHex (IN num, fieldwidth: INTEGER);

ASK METHOD WriteReal (IN num: REAL;
 IN fieldwidth,
 precision: INTEGER);

ASK METHOD WriteExp (IN num: REAL;
 IN fieldwidth,
 precision: INTEGER);

ASK METHOD WriteString (IN str: STRING);

ASK METHOD WriteLn;

ASK METHOD Position(IN moveTo : INTEGER);
 { random access file seek }

PROCEDURE ExistsFile (IN fname: STRING) : BOOLEAN;

PROCEDURE DeleteFile (IN fname: STRING);

PROCEDURE FileSize(IN fname: STRING) : INTEGER;

Each Stream I/O object also has two fields which can be used to control I/O:
eof: BOOLEAN;

ioResult: INTEGER;

MODSIM also provides several standard procedures, INPUT, OUTPUT and PRINT ...
WITH for doing non-object oriented, free formatted I/O.

The INPUT procedure takes one or more arguments. The OUTPUT procedure takes zero
or more arguments. The arguments may be any of the following types :

INTEGER, REAL, CHAR, STRING, ENUMERATION

For example:
OUTPUT("Input height & weight for item number", n);
INPUT(height, weight); OUTPUT;

The INPUT procedure reads values for each argument from standard input. The OUTPUT
procedure writes the value of each argument to standard output, followed by a newline
character. When it is used without arguments, it writes a newline character alone.

The PRINT ... WITH procedure supports formatted output to standard I/O:
VAR
 formatStr : STRING;
BEGIN
...
 formatStr := "At time ****.** the number waiting is **";
 PRINT (SimTime(), numWait) WITH formatStr;

Chapter 1: Overview

9

1.4 Object-oriented Programming

Programs written in MODSIM are organized around object types . Each object type has
two interrelated sets of properties. These respective properties are fields and methods.
The state of an object instance at any instant is described by the values in a series of fields,
similar to those of a record. Its behavior , or the actions it is capable of performing, are
described in its methods which are executable routines with special characteristics assoc i-
ated with the object type.

This formal association of data and code provides an inherent encapsulation of the data,
because the information in an object's fields can be changed only by a method which be-
longs to the object or by a method which it has inherited.

In other words, the fields of an object may not be directly modified except by the object
itself. Other parts of a MODSIM program external to a particular object can change the
value of the object's fields only indirectly. For instance a controller object might want
a vehicle object's speed to be zero. The controller object could ASK Vehicle TO
Stop. The vehicle object's Stop method would then set the vehicle's speed field to zero
in response to this message.

Other parts of a MODSIM program may request the value of an object's fields by sending
it a message. e.g. CarSpeed := ASK Vehicle speed , where Vehicle is an object
and speed is one of its fields.

Essentially, an object's fields are “read only” from the perspective of code not included in
the object, but are “read and write” from within the object itself.

Experience with the object-oriented approach shows that it is even more effective at
modularizing the interactions of a program than the structured programming techniques
which spawned Algol, Pascal, Modula-2 and Ada. The part of the program which invokes
some behavior or action can always invoke an action in the same way over a wide range of
object types; e.g. ASK Car TO Stop , ASK Aircraft TO Stop . Each object, how-
ever, may have a different behavior in response to this same message. In this case the ai r-
craft will want to land before stopping!

Note that, in any program, there will likely be a number of different methods which have
the same name. Since each is encapsulated within an object, this does not lead to any a m-
biguity. Each invocation of a method is accomplished by “sending a message” to the o b-
ject requesting it to execute one of its methods.

Thus, the calling entity need not have detailed knowledge of how an object will acco m-
plish the action it is being told to do. It simply asks for a generic action to be performed
and the object which receives the request message has its own, tailored routine to perform
that action.

New object types can be defined in terms of existing object types. When this is done, all
of the fields and methods of the existing object are incorporated as a proper subset of the
new object type. This capability is known as inheritance. Where an inherited method is
inappropriate, it can be overridden and a more appropriate method substituted.

MODSIM Tutorial

10

The appropriate use of inheritance encourages software reusability more effectively than
any library of procedures. Unlike procedural libraries, a properly-structured object library
allows selective redefinition of some of the code while incorporating other code u n-
changed. In contrast, replacing fundamental algorithms or assumptions in a procedural
library normally requires a wholesale abandonment or re-implementation of the library and
the code which depends on it.

The design of a MODSIM program, then, encourages a careful separation of the data re p-
resentation and behaviors for each object type, as well as the declaration of related types
using a common inheritance. This technique is referred to as object-oriented program-
ming, and will be examined in greater detail in Chapter 3.

11

2. Background
This chapter reviews a number of programming concepts which have been used in the d e-
sign of MODSIM III and may prove helpful to users of the language. Those familiar with
process oriented simulation and contemporary programming languages may wish to skip
this chapter.

2.1 Data Structures in Contemporary Languages

Among the many features which distinguish contemporary computer languages from their
predecessors is the ability to organize data into formal structures. These languages are
able to organize disparate types of data into records which can be handled as a unit of i n-
formation. Some languages, typically used for simulation, also have the ability to orga n-
ize, manage and manipulate groups and ordered sets of data.

All of these capabilities are implemented in MODSIM. The ability to handle sets or
groups will be covered in some detail in Chapter 10; however, since an understanding of
the concept of record data structures is basic to this tutorial, we will briefly review the
subject here.

To illustrate the concept of records, we can declare a simple personnel record in
MODSIM. The record contains fields for the person's last name, first name, middle initial,
age and department. We allow ages in the range from 17 to 65 years old. The allowed
departments are specified in an enumeration.

In MODSIM III the structure of a record is declared in a TYPE statement. The user then
typically declares a variable of that type. The MODSIM III RECORD type is dynamically
allocated. MODSIM also supports the FIXED RECORD which is statically allocated. The
TYPE declaration for our personnel record would look like this:

PersRecType = RECORD
 lName, fName : STRING;
 middleInit : CHAR;
 age : [17 .. 65];
 department : (Ops, Research, Finance, Sales)
END RECORD;

Note that we have used the subrange type to describe the field for age. MODSIM will
provide run-time checking to ensure that the user does not assign a value outside of that
range to the field age.

The field for department has been described using an enumerated type . In other
words, we have enumerated each of the legal values of the type.

To use the record type we have just declared, we might declare an array of type
PersRecType :

VAR
 staff: ARRAY INTEGER OF PersRecType;

MODSIM Tutorial

12

This uses the MODSIM III ARRAY type which is dynamically allocated and sized at pro-
gram run time. The statement declares an array which will hold records of type
PersRecType and will be indexed using integers. We could also have indexed the array
by characters or by a type such as DayOfWeek . In the program code we would allocate
the array with a statement like this:

NEW(staff, 1..95);

This would allocate a copy of the array called staff and size it to fit 95 elements which
would be numbered in the range 1..95.

We could also declare a single variable of that RECORD type which we would use to shut-
tle information back and forth from a file:

VAR
 employee: PersRecType;

We could then access the information in the various fields in the following way:
employee.lNname := "Smith";
staff[9].department:= Finance;
employee.age := 27;

The MODSIM III Reference Manual provides a detailed discussion of the differences
between the dynamic RECORD and the FIXED RECORD .

2.2 MODSIM III's Modular Structure

The sample program presented at the beginning of this tutorial showed how a
MODSIM III program can exist in just one MAIN module . For larger programs it is more
typical to see MODSIM programs which consist of a main module and any number of
supporting modules. These modules can be separately compiled to ease the task of deve l-
opment and maintenance.

Each module typically contains declarations for a set of related procedures and objects and
the executable code which constitutes the procedures and methods.

MODSIM modules can be:

• Used to support a single program.

• Compiled into support libraries to be shared by many programs.

MODSIM itself provides much of its capability through support modules such as IOMod.

A library module actually consists of two modules, each of which is stored in its own file
and can be compiled separately. One is the definition module and the other is the imple-
mentation module.

The DEFINITION MODULE contains declarations for all of the constants, types, variables,
and procedures which will be available for import by other modules. Only the headings of
procedures and methods are declared. There is no executable code in a definition module.
Items declared in a definition module will be accessible or visible to any other module

Chapter 2: Background

13

which imports them. For instance, another module may import a type definition from a
definition module and then declare variables of that type.

The IMPLEMENTATION MODULE contains the actual code which implements all proc e-
dures and methods. It may include CONST, TYPE and VAR declarations which are needed
solely within that library module. A variable or data structure which is declared globally
within an implementation module is considered global to all procedures and objects in that
particular module but is not visible outside of that module.

Anything declared in a definition module is implicitly known in the companion impleme n-
tation module. The implementation module, of course, may also explicitly import defin i-
tions from other definition modules as well.

To illustrate the organization of the three types of modules we have split a small sample
program into modules. The library module contains one simple procedure which reverses
a string passed to it.

MAIN MODULE Sample2;
FROM TextLib IMPORT Reverse;
VAR
 someText : STRING;
BEGIN
 OUTPUT("Enter string: ");
 INPUT(someText);
 Reverse(someText);
 OUTPUT("Reversed string: ");
 OUTPUT(text);
END MODULE.

The following two modules constitute the library module called TextLib:
DEFINITION MODULE TextLib;
 PROCEDURE Reverse(INOUT str: STRING);
END MODULE.

IMPLEMENTATION MODULE TextLib;
 PROCEDURE Reverse(INOUT str: STRING);
 VAR { reverses the input string }
 k : INTEGER;
 tempStr : STRING;
 BEGIN
 FOR k := STRLEN(str) DOWNTO 1
 tempStr := tempStr + SUBSTR(k, k, str);
 END FOR;
 str := tempStr;
 END PROCEDURE;
END MODULE.

We would run this sample program by:

1. Compiling the TextLib definition module.

2. Compiling the TextLib implementation module.

MODSIM Tutorial

14

3. Compiling the Sample2 main program module.

4. Linking Sample2.

5. Running Sample2.

Since this is a complicated series of steps which have to be accomplished in a certain o r-
der, MODSIM provides a compilation manager to simplify this process. The compilation
manager, which is called mscomp, offers a variety of services to help in the management
of both large and small projects. Among its options it offers the following compilation
choices to the user:

• Compile and link everything

• Compile & link only those modules which have been changed since the last co m-
pilation or are affected by changes in modules they import from

• Compile a single module

• Passively determine which modules need to be compiled and linked.

Once this process has been done once, the user may make changes to the implementation
modules or the main module and later will be able to recompile only those modules which
have been changed without having to recompile the entire program.

This mscomp facility is integrated into the MODSIM III Windows user interface called
MODBENCH.

It is important to note that MODSIM supports separate compilation as opposed to in-
dependent compilation. This means that dependencies are checked. If a change is made
which will affect other modules, these are scheduled for recompilation as well. The real
benefit of modularity and separate compilation is seen in large programs with multiple l i-
brary modules where the effect of changes can be localized, yet effects of changes which
affect other modules are correctly handled.

The MODSIM III User's Manual covers mscomp, the compilation manager, in greater
detail, but one feature which deserves a mention is that mscomp does not require a script,
project or “make” file to operate. It operates using the syntax of the language and info r-
mation from the computer's file system.

2.3 What is Computer Simulation?

There are two general categories of computer simulation : continuous simulation and dis-
crete-event simulation.

Continuous simulation describes events using sets of equations which are solved numer i-
cally with respect to time. Examples of problems in this area are fluid-flow or hydraulics
problems and financial modeling. Typically a time step is chosen. The continuous simul a-
tion program then steps forward by the increment of time chosen for the time step and r e-
calculates all equations which describe the model.

Discrete-event simulation describes a system in terms of logical relationships which cause
changes of state at discrete points in time rather than continuously over time. Examples of

Chapter 2: Background

15

problems in this area are most queuing situations: Objects (customers in a gas station, ai r-
craft on a runway, jobs in a computer) arrive and change the state of the system instant a-
neously. Varying amounts of time elapse between events.

In discrete-event simulation, large or small amounts of simulation time can pass between
events, but the state of the system is only of interest when one of its component parts
changes state. MODSIM takes the capabilities of discrete systems modeling languages
like Simula and SIMSCRIPT II.5 and adds object-oriented programming capability and
the modular constructs of Modula-2.

2.4 Process-Oriented vs Event-Oriented Simulation

The classical approach to discrete-event simulation is event-oriented . In this approach,
routines are written to describe discrete events in the operation of a system. For instance,
in a simple bank model the event routines might be:

• Customer arrives

• Customer enters queue

• Customer engages services of teller

• Customer leaves.

No time passes during any event routine. Instead, passage of time is handled by schedu l-
ing the next event for the object currently being manipulated. In the simple bank model,
the event “Customer engages services of teller” would schedule the next event,
“Customer leaves”, at some future time.

This event-oriented approach is adequate for smaller models, but in larger models it is o f-
ten difficult to follow or modify the flow of logic which describes the behavior of an o b-
ject, such as a customer. Consider the simple bank model if we added a janitor, a security
guard and some management functions. There would be many unrelated event routines.
Following the logic flow which describes the behavior of a customer would be like tracing
through a sequence of GOTO statements in a large BASIC program.

The process approach simplifies larger models by allowing many aspects of an object’s
behavior in a model (e.g. bank customers) to be described in one method which allows for
the passage of time at one or more points in its code.

There is a further advantage to the process technique. Once the actions of a class of o b-
jects (such as customers in a bank) have been gathered together in an object, the simul a-
tion program can create multiple, concurrent instances of the object. In our bank, for
example, the simulation program would generate a new instance of the customer object
each time a customer arrived. It could also pass information about the customer in the
parameter list of the object's initialization method. Perhaps it would pass in information
about the sort of customer (young or elderly) and the expected service time for the cus-
tomer. While there would be multiple, distinct copies of the customer object operating
simultaneously, each could have different values of their fields to describe the particular
customer's properties.

MODSIM Tutorial

16

Finally, objects can interact. In our example , an instance of the customer object with the
young attribute might yield its place in the queue to a customer object with the elderly at-
tribute.

This process approach is the one supported in MODSIM. It exploits object-oriented pr o-
gramming features to simplify both the original development and the subsequent maint e-
nance of large models.

A simulation model written in MODSIM defines a system in terms of processes because
the process technique provides a powerful structure for expressing most categories of
simulation problems, and provides significant advantages over the direct use of discrete
events.

The advantages of processes are both conceptual and labor-saving. The process stat e-
ments are expressed sequentially, in a manner which is analogous to the system being d e-
scribed. This practice is recommended by standard design methodologies.

17

Section II. Object-Oriented Language Features

MODSIM Tutorial

18

19

3. Object Oriented Programming
Objects in MODSIM are dynamically allocated data structures coupled with routines,
called methods. The fields in the object's data structure define its state at any instant in
time while its methods describe the actions which the object can perform. The values of
the fields of an object can be modified only by its own methods. Since no other part of the
program can modify these values, program maintenance and de bugging is greatly simpli-
fied.

Other entities can query the value of an object's fields or ask it to perform its methods by
sending messages to the object. This is an important feature of objects. Instead of i n-
voking an object's methods by a call, the user invokes the method by sending a message to
the object requesting it to perform the method. e.g. ASK Car54 TO ReportPos i-
tion. This small refinement in the way code is invoked is responsible for many of the a d-
vantages in object-oriented programming.

It allows the code to be executed against a specific set of data, the fields of a particular
object. It also allows several different object types to have a method of the same name.
Each one responds to a method call by executing its own code.

Below is a list of facts about objects in MODSIM. The remainder of this chapter and the
next chapter will expand on these facts.

• A MODSIM object consists of fields (variables) which describe its state at any i n-
stant and methods (procedures) which describe the actions it is capable of pe r-
forming. The fields and methods are sometimes described as attributes and
behaviors of an object.

• Object types are declared in the TYPE section of a program in a manner similar to
the declaration of record types. Variables of the object type are then declared in
the VAR section of a program.

• The user creates new instances of any object type dynamically, as needed, and di s-
poses of the object instances when they are no longer needed.

• There can be (and usually are) multiple instances of each type of object existing
concurrently in a MODSIM program.

• Code in any part of a MODSIM program can ask an object instance the value of
any of its fields.

• Only an object instance itself can change the value of any of its fields.

• One invokes an object instance's methods by sending a message to the object ask-
ing it to perform a particular method. e.g. ASK SomeObj TO DoSomething

• New object types can be defined in terms of existing object types. This capability
is know as inheritance.

MODSIM Tutorial

20

3.1 What is Object-oriented Programming?

The significance of object oriented programming is that disparate types of objects which
share the same ancestry can each have their own distinct methods which have the same
name as methods in other objects. This means that generic operations can be invoked with
one method name which will cause appropriate (and distinctly different) behavior in each
different object type.

An example of a generic operation might be a command to refuel. For instance, when the
MODSIM statement TELL …… TO Refuel is received by objects such as trucks, cars,
helicopters, etc., each would react differently. The helicopter might take on 1,200 Lbs of
jet fuel, the car would take on 11 gallons of unleaded regular and the truck would take on
380 liters of diesel fuel. Although each vehicle has inherited all of the attributes of a g e-
neric VehicleObj type, each has chosen to provide its own, specific Refuel behavior.

The logic which describes how each vehicle type which underlies VehicleObj performs
refueling is associated with each vehicle object type. So if new vehicle types are added,
the only change required is to add code for each new object type which describes how that
particular vehicle type performs the act of refueling. The procedure associated with an
object type is known as a method for that object.

One of the most important features of object-oriented programming is illustrated in the
above vehicle example. If we add a new vehicle type called mule, its refueling method
might be to eat a bale of hay. But it would still be appropriate to use the original calling
code without changing it. It would still be appropriate to TELL …… TO Refuel even
though a new vehicle type has been added.

In traditional strongly-typed languages, the type of each operand is fixed at compile time,
thus statically determining the operation that will be performed when the program is run.
However, an object-oriented language requires the determination of an action to be d e-
ferred until the program is run. This allows dynamic selection at run-time of the code a p-
propriate for the given object type. This process is known as dynamic binding.

In many object-oriented languages, new object types can be defined in terms of an existing
object type. This allows structuring of related object types. By default, the new object
retains all properties of the existing object. It can selectively replace or extend any of
those properties, and add new properties. The definition of a new object type in terms of
an existing type is referred to as inheritance.

It is the combination of both dynamic binding and inheritance that gives the object-
oriented approach its power and flexibility.

3.2 Messages and Behaviors

One common way to describe interactions in object-oriented programs is the object-
message analogy, in which an operation in a program is described in terms of a message
sent to an object. The object, in turn, “decides” what to do in response to the message.

Although this anthropomorphic description makes a compiled program seem more human
than it is, it does help to illustrate the object concept, and thus is frequently found in the
literature. The object-message metaphor emphasizes the apparent active selection made

Chapter 3: MODSIM Objects

21

“by” each object, even though the actual implementation is through more prosaic proc e-
dural calls.

Within this framework, objects are active data structures that have associated behaviors in
response to each message. As implemented by most languages, an object is a data stru c-
ture (usually dynamically allocated) that has one or more associated procedures. These
procedures are called methods to differentiate them from standard procedures. They d e-
scribe the method used by an object to perform the action requested by a message.

An object-oriented program can issue a message requesting a specific action to a group of
disparate objects. Each reacts according to its particular method for that request. All o b-
jects of the same type will have the same behavior which is implemented in the objects'
methods. Methods differ from ordinary procedures in two ways:

1. First, there can be more than one method with the same name. In the vehicle e x-
ample above we could have as many methods named Refuel as there are different
object types derived from VehicleObj . Refuel would be the message name,
while the behavior for all objects of a given type would be defined by the corr e-
sponding method for that object type. Thus , we would have a Refuel method for
a helicopter, a different Refuel method for a car and a very different Refuel
method for a mule.

2. Second, each method includes an implied parameter referencing the associated
object data structure. A Refuel method for a truck would, for example, always
reference a particular truck-type object. Within an object's methods, this object is
referred to by the system defined variable SELF in MODSIM and in most object-
oriented languages. For example, if the truck object were running low on fuel, one
of its own methods might TELL SELF TO Refuel .

3.3 Inheritance

Often, when defining a new type of object, we want a new one just like some other exis t-
ing one but with a few changes and a few new features. In these cases we can simply d e-
fine the new object type in terms of the existing object type, and then add new fields and
methods or modify existing ones. When the new object type is defined in terms of an old
object type, we say the new object type inherits properties from the older object type.
The term property refers to the fields and methods of an object type.

Consider a generic vehicle which has fields to define its position, direction of movement
and speed. It has methods to ProceedTo a new location and to Stop. A helicopter is a
vehicle which has these same properties, both in terms of the data fields which describe its
status and the methods it executes in response to messages. A helicopter also has at least
one new property, altitude. Thus, you could define a helicopter object type in terms of a
generic vehicle object, and then add new methods and data fields to handle the helicopter
behaviors and its new properties.

Another case where inheritance can be useful is when two object types have several things
in common, and thus it may be useful to define an ancestor object type to describe those
properties shared by both types.

MODSIM Tutorial

22

The object types that are inherited are called underlying types. The most immediate un-
derlying object type is also called by the more specific term base type. The newly defined
object type is called a derived type of its base or underlying types.

It does not matter how remote the derivation is. A new object type inherits the properties
of its base object type and obviously all of the underlying types. The new object type can
then supplement these with its own new properties.

A new object type can also define particular methods differently than those existing for its
base types. We say that the derived type overrides the methods of its base type.

A derived type only overrides and redefines those methods which must be different from
those of its base type. The new object can start from scratch and provide a totally new
method. It also has the option of using the inherited method, but specifying additional b e-
havior.

A library of object types can be even more powerful than a subroutine library, in that small
differences from library routines which are required for user-defined operations can be
specified without replacing the library methods. We merely supplement existing methods.
This is one of the principle benefits an object-oriented library has over its procedural
counterpart.

3.4 Declaring an Object Type

An object type declaration is similar to a record type declaration in that each includes a list
of fields:

TYPE
 VehicleObj = OBJECT
 course : [0 .. 359]; { direction of movement }
 speed : INTEGER;
 posX,
 posY : REAL;
 END OBJECT;

Object types are declared in the TYPE section of a module.

3.5 Methods of an Object

An object differs from a record in that it also has methods associated with it to describe
actions it can perform. The name and parameter list of each method forms a method
heading which is specified as part of the object type declaration. The actual code which
implements each method is specified in the corresponding object implementation block.

There are two kinds of methods: ASK methods and TELL methods. ASK methods are
similar to those found in other object-oriented languages. The TELL method is used to
model the passage of time in simulations.

The distinction between them will be covered in Chapters 8 and 9.

Elaborating on the preceding example, here is a complete declaration for the Vehi-
cleObj:

Chapter 3: MODSIM Objects

23

TYPE
 VehicleObj = OBJECT
 course : [0 .. 359];
 speed : INTEGER;
 posX,
 posY : REAL;
 ASK METHOD ProceedTo(IN x, y: REAL);
 ASK METHOD Stop;
 END OBJECT;

In this declaration, both ProceedTo and Stop are methods for type VehicleObj . The
actual implementation code for the two methods would be contained in a corresponding
object implementation block:

OBJECT VehicleObj; the object implementation block
 ASK METHOD ProceedTo(IN x, y: REAL);
 BEGIN
 implementation code would go here
 END METHOD

 ASK METHOD Stop;
 BEGIN
 implementation code would go here
 END METHOD;
END OBJECT;

There is a reason why the object declaration is split into two sections. In large MODSIM
programs, the object type declaration would likely be placed in a definition module and the
object implementation block would be placed in an implementation module. In a small
program which consists of only one main module, the object type declaration would come
first, followed later by the object implementation block.

3.6 Reference Variables

The declaration of an object type implicitly defines a new data type of the same name,
known as the reference type. This type is similar to a pointer type. Variables declared as
reference types are known as reference variables. When a variable of that type is de-
clared, it initially assumes a value of NILOBJ, which is analogous to NILREC for records
and NILARRAY for arrays.

This is an important point. Declaring a variable of type VehicleObj , for instance, does
not actually allocate space for the object and create it. This is done dynamically, at run-
time, with a call to NEW:

VAR
 car54: VehicleObj;
BEGIN
 . object instance “car54” doesn't exist yet
 .
 NEW(car54);
 . object instance “car54” now exists
 .

MODSIM Tutorial

24

 DISPOSE(car54);
 . object instance “car54” no longer exists
 .
 NEW(car54);
 . a fresh object instance “car54” now exists
END.

A reference variable contains a reference value which identifies a particular instance of an
object type. Programs will often have many instances of a given object type at any given
time. All of these instances share an identical structure, but have separate and distinct
states, represented by different values in their fields. Each new instance of an object has
its own place in the computer system’s memory where the value of its fields are stored.

Building on the earlier definition of a Vehicle object, we can expand by defining the object
type AircraftObj which inherits from the VehicleObj type. Doing so implicitly de-
fines a corresponding reference type AircraftObj . MODSIM handles this job auto-
matically. In other languages, such as Modula-2 or Pascal, the user would have to
explicitly declare a pointer variable of type AircraftObj . Here is how it would have to
be done in Modula-2:

TYPE
 AircraftObjPointerType = POINTER TO AircraftObj;
VAR
 plane : AircraftObjPointerType;

MODSIM eliminates this extra step by automatically making every object type, such as
AircraftObj, into a reference type from which reference variables can be declared. In
the example below, the global variable Airline, and the local variables American75
and United15 are all reference variables for objects of type AircraftObj .

In this example, we also improve the way position information is expressed by defining
and using a FIXED RECORD type which wraps up the x and y position information. This
makes the position information easier to refer to and handle.

TYPE
 locationType = FIXED RECORD
 x, y : REAL;
 END RECORD;

 VehicleObj = OBJECT
 course : [0 .. 359];
 speed : INTEGER;
 position : locationType;
 ASK METHOD ProceedTo(IN Dest: LocationType);
 ASK METHOD Stop;
 ASK METHOD ReportStatus(): INTEGER;
 END OBJECT;

 AircraftObj = OBJECT(VehicleObj) inherits from VehicleObj
 altitude : INTEGER; adds two new fields
 backupAC : AircraftObj;

Chapter 3: MODSIM Objects

25

 ASK METHOD Land; adds a new method
 END OBJECT;

VAR
 Airline: ARRAY INTEGER OF AircraftObj;
.
ASK METHOD . . .;
VAR
 American75, United15, plane: AircraftObj;
BEGIN
 ...
END METHOD;

Reference variables can be used in a manner similar to any other type of variable. The
declaration:

Airline: ARRAY INTEGER OF AircraftObj;

is an example.

Fields of objects containing reference variables can indicate relationships between objects.
In the example above, the field backupAC is a reference variable of type AircraftObj
which is used to access the plane’s backup aircraft, which is another object instance of
type AircraftObj .

We have shown that a reference variable is used in a manner which is analogous to a
pointer variable, however the similarity is superficial. A pointer variable simply points to a
type of storage such as a record and carries information needed to de-reference the fields
of a record. A reference variable for an object “points” to an object in the same way, but
it also has hidden behind it the sophisticated mechanism by which the object's methods are
dynamically invoked.

3.7 Allocating, Deallocating and Initializing Objects

An object instance is allocated by calling the standard procedure NEW, which takes as its
argument a reference variable of the desired type. The reference value for the object i n-
stance is returned in the argument, and each field of the instance is automatically initialized
to zero, NILREC, NILOBJ, or NILARRAY, as appropriate.

For example:
VAR
 United15: AircraftObj;
 .
 .
NEW(United15);

The above call to NEW allocates an instance of type AircraftObj and returns its refer-
ence value in United15.

MODSIM Tutorial

26

Note that it is not sufficient to simply declare the reference variable to obtain access to a
new object instance. The reference variable contains NILOBJ until it is explicitly assigned
a reference value to a new object instance by a call of NEW.

An object instance is deallocated by calling the standard procedure DISPOSE, which takes
as its argument a reference value.

For example:
DISPOSE(United15);

de-allocates the object instance which was allocated in the previous example.

Some objects may require initialization before they are used. An example is the Rando-
mObj from MODSIM's RandMod. Each instance of an object derived from RandomObj
must be initialized so that the random object's seed can be set. Such initialization can be
accomplished automatically. The built-in procedure NEW checks to see if a method named
ObjInit has been defined for the object. If such a method exists, it is automatically i n-
voked by NEW. Note that ObjInit takes no parameters. The user can override Ob-
jInit and add more code to the behavior, but the user's replacement for the overridden
ObjInit should always invoke the original ObjInit with an INHERITED statement.
The INHERITED statement, which we will cover later in more detail, simply executes the
original ObjInit method which was overridden.

Note that the method name ObjInit is reserved for this use. If the user builds an object
“from scratch” and includes a method with the name ObjInit, it will be automatically
invoked by NEW.

If the user requires a more elaborate initialization method or one which takes a parameter
list, this can be accomplished with an explicit call to the user's own special initialization
method after the call to NEW. Obviously, the more elaborate init method would need a
name other than ObjInit!

A complementary procedure is used to perform “cleanup” before deallocating objects. If a
method with the name ObjTerminate has been defined for an object, the method will
automatically be invoked by DISPOSE before it deallocates an object instance. The
DISPOSE procedure will correctly execute the ObjTerminate method for an object,
even when the object is passed in a reference variable of type ANYOBJ.

3.8 Copying Objects with the CLONE Procedure

MODSIM supports a CLONE function procedure which is used to make a copy of an o b-
ject. The CLONE function takes a reference variable as an argument. It then accomplishes
four steps:

1. Allocate space for a new object instance of the same type passed in.

2. Copy the values in the fields of object instance passed in to the new copy.

3. Invoke the new object instance's ObjInit method, if one exists.

4. Invoke the object type's ObjClone method, if one exists.

Chapter 3: MODSIM Objects

27

Finally, it returns a reference to the new copy. The ObjClone method is analogous to
the ObjInit and ObjTerminate methods. The ObjClone method can be used to
perform any more complex behaviors which the user wants to associate with the copy.

If the programmer overrides an existing ObjClone method, the overridden method
should be invoked with the INHERITED statement to ensure that all behaviors associated
with copying defined by ancestors are carried forward.

MODSIM Tutorial

28

29

4. Methods
The declaration of an object type is accompanied by the code for its associated methods .
The implementation code for the methods is supplied in the object implementation block.
Methods are similar to procedures. Each method may have zero or more parameters, and
ASK methods may also return a single function value.

Methods come in two forms: ASK methods and TELL methods. There are important
distinctions between ASK and TELL as pertains to simulation, but for now we will simplify
the distinction somewhat.

An ASK call works the same way as a procedure call. When the ASK statement is exe-
cuted, a message is sent to the object requesting it to invoke the method. The calling code
then waits for the invoked method to finish before proceeding past the ASK statement.
ASK methods are not allowed to pass any simulation time, so, in a simulation, the action
just described takes place at one instant of simulation time. Another way to describe an
ASK call is as a synchronous call.

The TELL call, which is known as a delayed method call, is essentially an asynchronous
call which is used to build simulation models. The calling code executes the TELL state-
ment which sends a message requesting the object to invoke the method. The calling code
then proceeds past the TELL statement without waiting for the invoked method to com-
plete execution or, for that matter, even to start. TELL methods are allowed to pass
simulation time.

Typically, the invoked TELL method will start execution, under the control of MODSIM’s
simulation engine, as soon as the currently executing code has finished.

With ASK and TELL methods, the programmer has complete control over the way met h-
ods are invoked in a simulation, and, therefore, whether time is allowed to elapse. Using
ASK or TELL to invoke a method of an object is often referred to as “sending a message”
to that object.

It is important to note that the distinction between ASK and TELL methods starts when
they are declared. The user can not turn an ASK method into a simulation method by us-
ing the TELL syntax to call it.

Methods of an object are invoked from outside of the object using the ASK or TELL key-
word, the object's reference variable, the method name, and any arguments to the method.
For example:

TELL United20 TO ProceedTo(OHare);

would request the object instance known by the reference variable United20 to perform
the method ProceedTo with parameter OHare.

Within any method, the system-defined, or built-in reference variable SELF contains the
reference value of the object instance for which the method was invoked. SELF is implied
throughout the method and need not be specified to reference the fields or methods of the

MODSIM Tutorial

30

object instance. It may also be used when an object wants to identify itself to another o b-
ject, as in

ASK United20 TO ReportDistance(SELF);

This would request United20 to report its distance from the object making the request.

The fields of an object can only be modified within its own methods. Within a method for
AircraftObj, the fields of the object may be accessed as if they were ordinary local
variables. For example:

altitude := 1000; or backupAC := United25;

Also, the object's methods can be invoked as if they were ordinary procedures. For exa m-
ple:

ProceedTo(HomeBase);

is equivalent to:
TELL SELF TO ProceedTo(HomeBase);

4.1 Referencing Fields

The value of an object's fields may be interrogated using a syntax similar to that for a
function method. The form is:

ASK object field

For example:
aircraftAltitude := ASK United20 altitude;

would request the object United20 to report the value of its field called altitude and
then assign that value to the variable aircraftAltitude.

Code which lies outside of an object cannot directly change the value of an object's fields.
The values of an object's fields can only be changed by the object's own methods. Ther e-
fore, in order to change the value of an object's fields, code which lies outside an object
must invoke a method of the object to do so.

The following example shows how fields of an object are referenced from outside the o b-
ject:

IF ASK United20 position <> HomeBase
 TELL United20 TO ProceedTo(HomeBase);
 OUTPUT("Not at home base, but returning");
ELSE
 OUTPUT("Already at home base");
END IF;

If the same piece of code were in one of the object's own methods, it would look like this:
IF position <> HomeBase
 ProceedTo(HomeBase);
 OUTPUT("Not at home base, but returning");
ELSE

Chapter 4: Methods

31

 OUTPUT("Already at home base");
END IF;

In the second line above we could also have used:
TELL SELF TO ProceedTo(HomeBase);

4.2 Defining Methods

Other than the use of the keywords ASK METHOD or TELL METHOD instead of
PROCEDURE , methods are defined using a syntax similar to procedure declarations.

For example, the definition below found in an object type declaration:
VehicleObj = OBJECT
 ...
 TELL METHOD ProceedTo(IN Dest: locationType);
 ...
END OBJECT;

defines a method ProceedTo that operates on objects of type VehicleObj . The body
of the method which contains the executable code is found in the corresponding object
implementation block. Typically, the object type declaration is contained in the
DEFINITION module and the object implementation block is found in the
IMPLEMENTATION module.

A method which returns a function result is referred to as a function method. A method
that does not return a function result is known as a proper method. In the example
above, ProceedTo is a proper method.

The method may optionally include a list of parameters. The type of the parameters, as
well as the return type of a function method, may be any valid MODSIM type or a type
defined by the user. The parameter list does not include the object itself, since that is su p-
plied as an implied parameter, SELF, to all methods.

TELL methods are not allowed to have OUT or INOUT parameters and may not be func-
tion methods. This is because they are invoked asynchronously by code which does not
wait for the results. Because of this there is no place to which information can be r e-
turned!

4.3 Implementing Methods

After an object type has been declared, its methods must be coded in a corresponding o b-
ject implementation block. Typically the object type declaration is placed in a
DEFINITION MODULE so it is available for import to other modules, and the corr e-
sponding object implementation block is placed in an IMPLEMENTATION MODULE .

The implementation code for the methods of an object type is placed within an OBJECT
... END OBJECT block labeled with the name of the object type. This placement of the
implementation code within a named block allows different objects to have methods with
the same name.

MODSIM Tutorial

32

For example, if the previous declaration of VehicleObj were part of DEFINITION
MODULE TrafficModule , the corresponding implementation module might include
statements such as:

IMPLEMENTATION MODULE TrafficModule;

 VAR
 { Variables common to all Object types in this module }
 kindOfVehicle:ARRAY INTEGER OF STRING;

 OBJECT VehicleObj;
 TELL METHOD ProceedTo(IN Dest: locationType);
 BEGIN
 implementation code ...
 END METHOD;
 TELL METHOD Stop;
 BEGIN
 implementation code ...
 END METHOD;
 ASK METHOD ReportStatus(): INTEGER;
 BEGIN
 implementation code ...
 RETURN Status;
 END METHOD;
 END OBJECT;

 OBJECT AircraftObj;
 ...
 TELL METHOD Land;
 BEGIN
 implementation code ...
 END METHOD;
 END OBJECT;
END MODULE.

This module illustrates several important points about the nature and scope of variables in
a MODSIM program:

• Any variable declared within a module (prior to any object implementation blocks)
is global to the entire module. There will be only one copy of the variable. The
variable is visible to every object instance's methods as well as to every procedure
in the module. If the variable is declared in the definition module instead of the
implementation module, it will also be visible in any other module of the program
which chooses to import it.

• Any field declared within the definition of an object will be visible in the usual
sense within that object's methods. From outside the object, we can ASK an object
instance for the value of any of its fields, but we cannot directly change their value
with an assignment. Each instance of an object type has its own separate copies of
all of the fields.

Chapter 4: Methods

33

• Any variable declared within the body of a method will be visible only within that
method. There will be a unique copy of that local variable for each invocation of
that method. Note that it is possible to have more than one invocation of a pa r-
ticular TELL method for a particular object instance running concurrently with r e-
spect to simulation time. Chapter 9 will explain how this can happen and why it is
useful.

4.4 Using Methods

Methods differ in one crucial way from procedures; they are always invoked with refe r-
ence to a specific object:

ASK | TELL object [TO] method[(parameter list)]

TO is a “noise word” which can be optionally specified in method calls to make the code
more readable.

Function methods are invoked using a syntax similar to that used for accessing fields of an
object:

value := ASK object method()

This syntax is the same as that used to access the values of a field. However, a reference
to a function method may also include arguments, which follow the method name, as in

value := ASK object method(arguments);

Within a method for a particular object, any of the fields of the object can be referenced
directly since the object's fields are global to its methods. The ASK syntax is not required.
For example, the method Land might be implemented as

TELL METHOD Land;
BEGIN { implied argument SELF: AircraftObj }
 ...
 speed := 0;
 ...
END METHOD;

A method invoking another method of the current object can omit the
ASK | TELL object.

For example, a function method ReportStatus can be referenced from within an
AircraftObj method with either:

OUTPUT(ReportStatus());

or
OUTPUT(ASK SELF TO ReportStatus());

Similarly:
ProceedTo(HomeBase);

and
TELL SELF TO ProceedTo(HomeBase);

MODSIM Tutorial

34

have the same significance.

However, if a method is being referenced from outside of the object, the method must be
qualified by an appropriate reference variable.

TELL plane TO ProceedTo(HomeBase);

4.5 Formal Parameter Qualifiers: IN, OUT, INOUT

MODSIM, like Ada, makes a distinction between input and output parameters . Each pa-
rameter is declared as one of three possible variants:

IN: value may only be passed in to procedure from caller (pass by value)

INOUT: value may be passed in either direction (pass by reference)

OUT: value may only be passed out from procedure to caller (pass by reference).

Note: Constants and literals cannot be used as OUT or INOUT parameters for the same
reason that they cannot be used on the left side of an assignment statement.

As an example of formal parameter qualifiers, a procedure which updates a counter might
be declared in MODSIM as:

PROCEDURE Update(INOUT counter: INTEGER);

The direction specifier is used only in declarations, not in calls. Thus the call to procedure
Update would be: Update(TheValue) .

These rules apply to both METHOD and PROCEDURE declarations. For example, a method
of AircraftObj might be declared as:

ASK METHOD reportPosit(OUT posit : locationType;
 OUT alt : INTEGER);

Only ASK methods can include INOUT or OUT parameters. TELL methods cannot use
INOUT or OUT parameters because the invoking code would proceed past the TELL
statement before the invoked method was able to supply the return values.

35

5. Inheritance
A new object type can be defined in terms of an existing object type. The newly derived
object type is then termed a derived type of the base type.

The derived type will normally include new fields and/or methods not present in the base
type. It may also redefine (override) the implementation of a method defined in an unde r-
lying object type, after explicitly declaring the override.

A overridden method can invoke the method of the same name in an underlying or base
type, by use of the INHERITED keyword.

Any method not overridden by the derived type is automatically inherited from the nearest
underlying object type. Similarly, the derived type also inherits all fields of its underlying
object types.

While a derived type can redefine inherited methods, it cannot redefine inherited fields. It
can, however, add new fields of its own.

A reference value for an object can safely be stored in a reference variable of one of its
underlying object types. This corresponds to redefining the reference variable from the
specific to the more general object type. The converse assignment is not always safe, and
thus requires an explicit action by the programmer to circumvent the strong type checking
rules.

5.1 Declaring an Inheritance

A new type of object can be declared in terms of a previously-declared object type. This
provides the new object type with the fields and methods of the earlier type, or, to use the
idiom of object-oriented programming, the new type inherits the properties of the earlier
type.

In fact, the simple object type declarations shown in earlier examples will only be used for
the least interesting types of object. Most MODSIM object types are built upon the def i-
nition of other objects, either those from the standard MODSIM library, or user-defined
object types.

For example, objects in a simulation often need to have the capability to contain a queue
of other objects. We can define object type VehicleObj as inheriting the properties of
QueueObj by the syntax:

VehicleObj = OBJECT(QueueObj)
 . . .
END OBJECT;

We say that QueueObj is a base type of VehicleObj . VehicleObj is termed a de-
rived type of QueueObj. Any number of new object types can be derived from a single
base type. A derived type can have more than one base type by means of multiple inher i-
tance which is explained in Chapter 6.

MODSIM Tutorial

36

New object types can also be defined in terms of other derived types. A hierarchy of o b-
ject types occupying multiple layers is shown here.

Figure 5-1. Sample Inheritance Tree

Any object type that is either a base type of SomeObject , or a type n levels below
SomeObject , is referred to as an underlying type of SomeObject ; and SomeObject
includes all the properties of the underlying types.

In the illustration, VehicleObj is a base type of AircraftObj, as well as underlying
type of HelicopterObj and ShipObj. HelicopterObj is a derived type of Air-
craftObj.

5.2 Extending Object Properties

A derived object type can, in addition to any properties inherited from the base type, d e-
fine its own additional properties, as in the declaration:

HelicopterObj = OBJECT(AircraftObj)
 InHover : BOOLEAN;
 TELL METHOD Hover(IN Posit : locationType;
 IN Alt : INTEGER);
END OBJECT;

The derived object has access to all of the properties of its base type, in addition to its
own unique properties, so we could implement Hover using properties of both Air-
craftObj and HelicopterObj.

OBJECT HelicopterObj;
 ...
 TELL METHOD Hover(IN Posit : locationType;

Chapter 5: Inheritance

37

 IN Alt : INTEGER);
 BEGIN
 ProceedTo(Posit);
 Stop;
 altitude := Alt;
 InHover := TRUE;
 ...
 END METHOD;
END OBJECT;

5.3 Overriding Methods

It often occurs in inheritance that a derived object type may wish to modify a method
which it has inherited from an underlying object type.

For example, the VehicleObj type defines a rudimentary mechanism for moving an o b-
ject between two locations in two dimensions. However, a more elaborate method would
be needed for AircraftObj , which would have specific constraints for climbing, d e-
scending and turning in three dimensions.

Since AircraftObj already has inherited a standard ProceedTo method, it must ex-
plicitly override this method and define a new method. This is accomplished by noting the
override in the object type declaration of the new object and supplying the replacement
method in the object implementation block.

The declaration of AircraftObj would look like:
AircraftObj = OBJECT(VehicleObj)
 OVERRIDE
 TELL METHOD ProceedTo(IN dest : locationType);
END OBJECT;

The object implementation blocks for VehicleObj and AircraftObj would respec-
tively contain definitions for the original method and the method which AircraftObj is
substituting for the overridden one:

OBJECT VehicleObj;
 TELL METHOD ProceedTo(IN dest: locationType);
 ..original vehicle code here.

OBJECT AircraftObj;
 TELL METHOD ProceedTo(IN dest: locationType);
 ..replacement code for aircraft here.

The original, inherited, behavior was coded in the ProceedTo method for Vehi-
cleObj, while the ProceedTo method which describes the new behavior for Air-
craftObj is described in the object implementation block for AircraftObj .

5.4 Extending Inherited Behaviors

In some cases, the overriding method completely replaces the method from the underlying
type. However, it is more typical that the original code will be invoked and new code
added. We extend the underlying method. In these cases the new method can invoke the

MODSIM Tutorial

38

overridden method, as appropriate, and then provide additional code which describes the
modified behavior.

Invoking the inherited method which has been overridden is accomplished by preceding
the method call with the INHERITED keyword.

For example, to implement the proper method ProceedTo for an AircraftObj , it may
be easier to build upon existing ProceedTo code defined for its base type, Vehi-
cleObj. This would be done in its implementation module using statements such as:

OBJECT AircraftObj;
 TELL METHOD ProceedTo(IN dest: locationType);
 VAR
 deltaltitude: REAL;
 BEGIN
 deltaltitude := altitude - dest.z;
 { more flying-specific code here }
 INHERITED ProceedTo(dest);
 END METHOD;
END OBJECT;

Thus the ProceedTo method for an AircraftObj would perform some unique calcul a-
tions, and then invoke the ProceedTo method from the underlying object type, in this
case VehicleObj .

An inherited call can be performed for a function method as well. Operations to be pe r-
formed “before” and “after” a particular method can be handled in MODSIM by the o r-
dering of code before and after the inherited call. In general, each method that uses
inherited code will take the form:

ASK METHOD thisMethod(args);
BEGIN
 { code prior to invoking original method }
 INHERITED thisMethod(args);
 { code after invoking original method }
END METHOD;

This mechanism is both simple and versatile, and is appropriate for all single inheritance
combinations of methods. When an object inherits methods from more than one object
type, a slightly different approach is used. This approach is described in Chapter 6.

5.5 Assignment Compatibility

A reference value for an object type can always be assigned to a reference variable of a
base or underlying type. This is because all fields and methods of the base or underlying
type are, by definition, known to the derived object. For example, using the previous r e-
lationships, we might have:

VAR
 flyer : AircraftObj;
 helo : HelicopterObj; derived from AircraftObj
 ...

Chapter 5: Inheritance

39

BEGIN
 flyer := helo;

This relaxed assignment compatibility also applies to parameters of procedures and met h-
ods.

The relaxed compatibility works only in one direction since it is not always safe to assign a
variable to a reference variable of a more specific object type. The compiler will not a l-
low:

helo := flyer;

because the HelicopterObj may have defined new fields or methods which are u n-
known in the realm of AircraftObjs. An attempt to reference the fields or invoke the
methods would be undefined. For instance, if we allowed the above assignment and then
tried to ASK helo TO Hover , we would have a problem, since the object stored in the
reference variable called helo is really an AircraftObj and it does not have a method
called Hover.

MODSIM Tutorial

40

41

6. Multiple Inheritance
MODSIM III allows an object type to be defined in terms of more than one base object
type. This capability is called multiple inheritance.

When a new object type is defined in this way, it has a copy of each field and each method
of its base types. Like many powerful features in any system, this can be a two-edged
sword. If the base types from which the new object type has been derived have used the
same names for any of their fields or methods, we are left with an ambiguous situation.
MODSIM provides facilities to resolve some of these conflicts.

6.1 Declaring Multiple Base Types

A derived object type may be defined in terms of multiple base types. They are listed in
the declaration, as in:

MissileObj = OBJECT(AircraftObj, WeaponObj)
...
END OBJECT;

This declaration corresponds to the illustration in figure 6-1.

Figure 6-1. Multiple-path Inheritance

6.2 Conflicting Fields

If field identifiers of the same name exist in two or more of the base types, the derived
object type will contain a field for each one. Obviously, any attempt to reference those
fields in the derived object type would be ambiguous, particularly if some of the fields with

MODSIM Tutorial

42

matching names were of differing types. Because of this, MODSIM does not allow refe r-
ences of this sort and will flag them as a compile time error.

If a field from a base type must be accessed and some other base type has a field of the
same name, extra code must be provided to disambiguate the field. This code can assign
the reference value of the object to an object of the desired base type, and then unambi-
guously access the desired field.

Consider the situation which would occur if the AircraftObj and the WeaponObj
from which MissileObj was derived each had a weight field. And just to make things
more difficult, the WeaponObj's weight field is of type REAL and expressed in kilo-
grams. The AircraftObj's weight field is of type INTEGER and is expressed in
pounds.

Assume we have three reference variables called Aircraft, Weapon and Missile to
match their respective types. If we assign an instance of MissileObj to all three ref-
erence variables, we have the following situations:

Missile := ASK armory TO Issue(CruiseMissile);
Aircraft := Missile;
Weapon := Missile;

n := ASK Missile weight ⇐⇐ illegal reference
n := ASK Aircraft weight ⇐⇐ n gets Aircraft's weight (an INTEGER)
x := ASK Weapon weight ⇐⇐ x gets Weapon's weight (a REAL)

6.3 Resolving Conflicting Methods

Cases where two or more of the base types have methods of the same name are permitted
only when the method is derived from a common ancestor. If there is not a common an-
cestor, the MODSIM compiler produces an error message.

The definition of the object that joins the ancestors must override the common method if
any of the intervening ancestors overrides it. Otherwise, polymorphism will not be able
to work for this method and the MODSIM compiler will produce an error message.

You can supply a completely new method implementation or, as with normal inheritance,
the inherited method can be invoked as part of the implementation. When the method is
inherited from multiple ancestors, a qualified form of the inherited method invocation
can be used to specify the desired version of the method.

Chapter 6: Multiple Inheritance

43

Figure 6-2. Common Ancestor

As an example, we can consider the MissileObj which was derived from an
AircraftObj and a WeaponObj. Assume that each of the base types has a method
called FindTarget. Observe that the FindTarget method is itself a method of some
ComputingObj from which both AircraftObj and WeaponObj inherit:

DEFINITION MODULE ...
...
 ComputingObj = OBJECT
 ASK METHOD FindTarget(IN enemy: VehicleObj);
 END OBJECT;
 ...
 AircraftObj = OBJECT(VehicleObj, ComputingObj)
 ...
 OVERRIDE
 ASK METHOD FindTarget (IN enemy: VehicleObj);
 END OBJECT;

 WeaponObj = OBJECT(ComputingObj)
 ...
 OVERRIDE

 ASK METHOD FindTarget(IN enemy: VehicleObj);
 END OBJECT;

The inheriting object must override the common method and provide its own:

MissileObj = OBJECT(AircraftObj, WeaponObj)
 ...
 OVERRIDE
 ASK METHOD FindTarget(IN enemy: VehicleObj);
END OBJECT;

If the common method is to be invoked in the implementation of the inheriting object, a
qualified inherited call must be used. The qualified inherited call explicitly specifies the
desired version of the method.

PoweredObj

VehicleObj
ComputingObj

ShipObj AircraftObj WeaponObj

HelicopterObj MissileObj

MODSIM Tutorial

44

Continuing with the previous MissileObj as an example, the implementation might
provide the following method:

OBJECT MissileObj;
 ASK METHOD FindTarget(IN enemy: VehicleObj);
 BEGIN
 ...
 INHERITED FROM AircraftObj FindTarget(enemy);
 ...
 END METHOD;
END OBJECT;

A qualified inherited call requires the qualifier to be a base type of the object that is be-
ing defined. The INHERITED FROM syntax cannot be used to access methods of unre-
lated objects. In the example above this means that the inherited call for the
FindTarget method can only be qualified by one of the two base types of
MissileObj; either WeaponObj or AircraftObj. We could not inherit the Dive
method from SubmarineObj, since we are not descended from it.

6.4 Combining Multiple Methods

In many cases, it may be necessary to combine the inherited methods from multiple paths
in the derived type's method. This can be done as long as the INHERITED statement
qualifies the inheritance to avoid ambiguity.

Elaborating on the previous example, we could do the following:
OBJECT MissileObj;
 ASK METHOD Acquire(IN enemy: VehicleObj);
 BEGIN
 ...
 INHERITED FROM AircraftObj Acquire(enemy);
 INHERITED FROM WeaponObj Acquire(enemy);
 ...
 END METHOD;

 6.5 Conflicting Field and Method Names

If a method name from one base type is the same as a field name from another base type,
MODSIM flags this as a compile-time error. There is no way to resolve this conflict ex-
cept by renaming one of the fields. This is intentional.

No conflict resolution mechanism has been provided in this case since it would lead to
code which, although it could be understood by the compiler, would be confusing or
misleading to those responsible for code maintenance.

45

7. Data Hiding
MODSIM III separates the definition of methods from the details of their implementation.
It also allows the separation of the definition of procedures from the details of their i m-
plementation. This provides for separate compilation and data hiding in large projects.

The basic compilation unit is the module. Objects , etc. are typically defined in a
DEFINITION MODULE , and then implemented in an IMPLEMENTATION MODULE .

Some fields or methods will not be appropriate for use outside the object. Fields or met h-
ods declared as PRIVATE can be used only within the object itself, or within derived o b-
ject types.

7.1 Definition Modules

Objects types are declared in a MODSIM definition module. More than one object type
can be declared in the same module.

If an object type is imported from the definition module, all of its field and method ident i-
fiers are also imported.

The methods for an object type are defined in the corresponding implementation module.
They are contained in their own object implementation block which is named after the o b-
ject type.

For example, a subset of the object types from the previous section might be defined using
the structure:

DEFINITION MODULE FlightModule;
FROM MovingModule IMPORT VehicleObj;

TYPE
 AircraftObj = OBJECT(VehicleObj)
 altitude : REAL;
 TELL METHOD ClimbTo(IN height: REAL);
 TELL METHOD Circle;
 END OBJECT;

 HelicopterObj = OBJECT(VehicleObj)
 ...
 END OBJECT;
END MODULE.

IMPLEMENTATION MODULE FlightModule;

 OBJECT AircraftObj;

 TELL METHOD ClimbTo(IN height : REAL);
 BEGIN
 ...
 END METHOD;

MODSIM Tutorial

46

 TELL METHOD Circle;
 BEGIN
 ...
 END METHOD;

 END OBJECT;

 OBJECT HelicopterObj;
 ...
 END OBJECT;

END MODULE.

7.2 Private Fields and Methods

In defining an object type, it is often necessary to include properties which are internal to
the object's implementation. These component fields and/or methods should be unavai l-
able to external users of the object type.

This can be accomplished using a PRIVATE section within the object type declaration,
much as VAR, CONST and TYPE delimit sections of a module. In the declaration

TYPE
 AircraftObj = OBJECT(VehicleObj)
 altitude : REAL;
 TELL METHOD ClimbTo(IN height: REAL);
 TELL METHOD Circle;
 PRIVATE
 liftCoeff : REAL;
 ASK METHOD CalcLiftCoeff;
 END OBJECT;

we would refer to liftCoeff and CalcLiftCoeff as private properties. The private
properties of an object are visible only within that object type or a derived object type.

Up to the PRIVATE declaration, all properties are assumed public. The PRIVATE section
must precede the OVERRIDE section. Any method in the OVERRIDE section has the same
scope as the original definition.

47

Section III. Simulating with MODSIM III

MODSIM Tutorial

48

49

8. Object-Oriented Simulation
MODSIM III contains powerful and flexible tools to build discrete-event simulation mo d-
els. Each MODSIM object is capable of carrying on multiple, concurrent activities each of
which elapses simulation time. An activity is scheduled by an object instance using a
WAIT statement in a TELL method. An activity is what occurs in the model as time
elapses. An event is a point in time at which the state of the model changes in some way.
Any or all activities of an object can be interrupted, if necessary.

Another way to view the relationship between events and activities is to say that
MODSIM III is in a WAIT statement, not executing code, while an activity transpires . But,
during an event, MODSIM is executing code...; typically the code which is changing the
model’s state in some way.

During an activity, time is elapsing and no MODSIM code is executing to cause this to
happen. During an event, MODSIM code is executing to make the model’s state change,
but no simulation time is elapsing.

The TELL method is MODSIM’s tool for writing models. It has several unique and po w-
erful capabilities for modeling and simulation which standard object-oriented methods,
such as the ASK method do not have:

• It can elapse simulation time using a WAIT statement

• It can execute synchronously or asynchronously with respect to simulation time.
This means that it can operate concurrently, in a separate thread of execution.

• It can be scheduled to execute at some time in the future.

Not only can one object instance have multiple TELL methods carrying on activities si-
multaneously with respect to simulation time, but any one method of the object instance
can be invoked multiple times. Each of these method invocations can be carrying on an
activity at the same point in simulation time.

A method can perform a sequence of related actions. In a time-elapsing TELL method,
these actions may be punctuated by intervals during which simulation time elapses, i.e.
they perform a WAIT. When a WAIT statement is encountered, MODSIM saves the state
of the time-elapsing method and then suspends its execution until the WAIT is completed
or is interrupted. MODSIM then resumes execution of the time-elapsing method at the
appropriate simulation time. During the WAIT, other activities may be taking place.

8.1 Simulation Time

MODSIM III performs discrete event simulation using several unique capabilities. The
WAIT construct and the time-elapsing TELL method are built into the language itself.
Other constructs used to implement simulation models are contained in standard modules
such as SimMod (general simulation tools), ResMod (constrained resource modeling) ,
RandMod (random sampling from statistical distributions) and StatMod (automated gath-
ering and reporting of simulation statistics).

MODSIM Tutorial

50

The units of time used during simulation are dimensionless. They can represent whatever
time granularity is appropriate for the simulation - years, months, days, hours, minutes,
seconds, milliseconds, nanoseconds. Time is expressed as a standard REAL number, e.g.
a 64-bit floating point number.

Simulation time is maintained by MODSIM. It is available to the user through the REAL-
valued function SimTime() which can be imported from SimMod.

8.2 Elapsing Simulation Time in TELL Methods

The term activity describes what happens in a time-elapsing TELL method when a WAIT
statement is executed. In other words, an activity which elapses simulation time is occu r-
ring. A TELL method with three WAIT statements in its body can perform three activities.
One object can have a number of methods, each of which can have zero or more activities
/ WAIT statements. No simulation time passes while the code in a TELL method is being
executed. Simulation time only elapses during a WAIT.

A WAIT statement is thus used to specify that simulation time should elapse at some point
in a method while the model is engaged in an activity. It optionally specifies a sequence of
statements to be executed after the WAIT is successfully completed, and an optional se-
quence of statements to be executed if the WAIT is interrupted before completing nor-
mally.

The structure of a WAIT statement is similar to that of an IF statement. It has the general
form:

WAIT reason
 [StatementSequence]
[ON INTERRUPT
 StatementSequence]
END WAIT;

where reason is a keyword DURATION, which specifies how long to wait or the key-
word FOR which indicates that the method should wait until the method mentioned in the
FOR statement completes execution. The WAIT..FOR blocks until another activity is
completed / an event happens.

The ON INTERRUPT clause is optional. If the WAIT is “successful”, the first statement
sequence is executed. If the WAIT is “not successful”, the statement sequence after the ON
INTERRUPT is executed instead. In either case, execution continues after the END WAIT
unless one of the statement sequences executes a transfer of control, such as a
TERMINATE .

Although the ON INTERRUPT clause is optional, if it is omitted and a WAIT is interrupted,
a run-time error occurs.

A WAIT statement can only appear in a TELL method. If it is placed elsewhere, the com-
piler will flag the error at compile time.

The most basic WAIT is one for a specific period of time. A wait for a specified period of
simulation time is achieved by the WAIT DURATION statement. The syntax of the state-

Chapter 8: Object-Oriented Simulation

51

ment is:
WAIT DURATION timevalue
 [Statement Sequence]
[ON INTERRUPT
 Statement Sequence]
END WAIT;

where timevalue is an expression of type REAL.

8.3 Delayed Method Calls

MODSIM includes a straightforward extension to its basic framework to support object-
oriented interactions within a simulation. This allows for simple event-oriented simul a-
tions to be constructed with ordinary objects, and, more significantly, provides a general
mechanism which allows objects to interact while simulation time elapses.

An earlier chapter introduced the ASK and TELL methods. Although both “send a mes-
sage” to the receiving object, the two statements differ in how they interact with simul a-
tion time.

In many cases, when an object is sent a message to invoke one of its methods, we want to
know that the invoked method has completed before we perform the next step. For e x-
ample, for an AircraftObj to land on a runway, it first must have one properly assigned
to it, as in:

ASK controller TO AssignRunway(myrunway, assignOK);
IF assignOK
 destination := myrunway;
ELSE
 destination := alternateAirport;
END IF;
...

In this case, the simulation logic requires that the AssignRunway method for object
controller be complete before the following IF statement is executed. The invoca-
tion of an ASK METHOD is comparable to an ordinary procedure call, i.e., the Assign-
Runway method is required to complete before the next statement is executed.

We say that the program blocks while waiting for the AssignRunway method to com-
plete execution. Another way to describe this on a traditional sequential or single-
processor architecture is to say that the invoking code relinquishes the processor to the
routine being called, AssignRunway in this case, and then regains control and continues
execution after the invoked method has completed execution. A single thread of exec u-
tion results. Another way to describe this standard way of doing business is to say that the
activities are synchronous.

While an activity simulated by a method elapses simulation time, it may not be necessary
or appropriate for the invoker to pause while that method completes. The invoking code
may wish to do other things while the invoked routine is running. It may want to send a
message to the object, invoking one of its time-elapsing methods, and then continue, with-
out waiting for the activity to complete.

MODSIM Tutorial

52

This capability is provided by the TELL method. The invoking process executes the TELL
statement and then continues on without waiting for the invoked time-elapsing method to
complete (or even to start) execution. When a TELL method is invoked, the code which
invokes it does not block. We then have two processes executing simultaneously with r e-
spect to simulation time. The activities are asynchronous and there are multiple threads of
execution with respect to simulation time.

The complete syntax of the TELL statement is:
TELL object [TO] method[(arguments)] [IN delay]

The TELL statement can appear anywhere in a program. It is used to invoke TELL meth-
ods, and may not be used to invoke ASK methods. TELL methods are proper methods
with IN parameters only.

A TELL method cannot be a function method and cannot have OUT or INOUT parameters
since there is no place to which this returned information can be passed. The invoking
code has proceeded past the TELL statement without waiting for any return information.

To take an example, a dispatcher might want to start a truck enroute to a particular loc a-
tion, using code such as:

TELL METHOD DispatchTruck(IN dest: Point);
VAR
 truck : VehicleObject;
BEGIN
 ...
 TELL truck TO ProceedTo(dest);
 ...
END METHOD;

In this case, the DispatchTruck method would complete execution at the same simul a-
tion time at which it began, no matter how long it eventually took the truck to Pro-
ceedTo the destination. Another way to describe the behavior is to say that the
DispatchTruck method schedules the ProceedTo method but does not relinquish
control of the processor so that the ProceedTo method can execute. The ProceedTo
method in this example will actually execute at some point later in real time, but at the
same point in simulation time, when the DispatchTruck method eventually completes
or performs a WAIT. In either of those two conditions, the DispatchTruck method
would relinquish the processor and the ProceedTo method would have a chance to start
executing.

Also note that, even though this is a TELL METHOD , it performs no WAITs. TELL meth-
ods need not perform a WAIT. Since it is a TELL method, however, this means that it can
be scheduled to execute at some time in the future as in:

TELL truck TO ProceedTo(dest) IN 20.0;

53

9. Object Interaction
Operations involving objects may be combined into more complex arrangements than d e-
scribed in the previous chapter.

Each object may perform several concurrent activities with respect to simulation time.
Time-elapsing methods may synchronize by awaiting the completion of another method.
Or a method may suspend execution and .await a continuation signal from a trigger object.

An object instance may have several methods which are concurrently carrying out activ i-
ties with respect to simulation time.

Any single time elapsing TELL method of an object instance may be invoked multiple
times such that there are multiple instances of one method carrying out activities concu r-
rently with respect to simulation time. Each method instance has its own distinct, u n-
shared set of local variables.

9.1 Concurrency in MODSIM III

At this point it is worth reviewing how MODSIM supports concurrency. Note that when
we speak of concurrency we mean that a number of activities can be happening simultan e-
ously with respect to simulation time. On traditional sequential computer architectures,
each method which must execute at the same instant in simulation time actually takes turns
(in real time) using the one processor. On parallel computer architectures however, a c-
tivities could actually take place concurrently with respect to real time.

For the purposes of this discussion we will consider sequential architectures where co n-
currency is defined to be with respect to simulation time only.

• Two distinct object instances can each be carrying out activities at the same point
of simulation time.

• One object instance can have two different TELL methods carrying out activities
at the same point of simulation time.

• One particular TELL method of one object instance can be invoked multiple times
so that distinct instances of that one method are each carrying out activities at the
same point of simulation time.

9.2 Synchronized Activities

In some scenarios, two methods must operate synchronously. One method starts a second
method and then waits over a period of simulation time for the second method to co m-
plete before the first one resumes execution.

To accomplish this, MODSIM provides the WAIT FOR statement:
WAIT FOR object [TO] Time-elapsing method[(arg)]
 [Statement Sequence]
[ON INTERRUPT
 Statement Sequence]
END WAIT;

MODSIM Tutorial

54

The effect of this statement is to:
TELL object TO Time-elapsing method();

and then wait for the method to complete. Once the invoked method completes, the
statement sequence after the WAIT FOR is executed.

If the invoking method is interrupted while still waiting for the invoked method to co m-
plete, the statement sequence after the ON INTERRUPT is executed.

If the invoked method TERMINATEs, i.e. prematurely finishes execution, then the invoking
method which was waiting for execution of the invoked method to complete also TERMI-
NATEs.

In the other forms of the WAIT statement two conditions can occur:

• The WAIT completes normally

• The WAIT is interrupted before it is finished.

In the WAIT FOR statement a third condition is possible:

• The routine invoked by the WAIT FOR terminates, and the method which
contains the WAIT FOR also terminates.

The effect of TERMINATE is recursive. If method 1 does a WAIT FOR method 2 which
does a WAIT FOR method 3, and method 3 then TERMINATEs, then method 2 TERMI-
NATEs and this causes method 1 to TERMINATE .

As with other forms of the WAIT, the WAIT FOR can only be used in TELL methods of
an object.

The time-elapsing TELL method being waited for can belong to any object; this includes
another method of SELF.

To illustrate use of the WAIT FOR, suppose a simulation includes a transportation cap a-
bility. The shipping process for some freight might include a method which waits while an
AircraftObj flies the freight to its desired destination:

TELL METHOD Ship(IN dest : Point);
VAR
 ourtransport : TransportObject;
BEGIN
 ourtransport := TransportManager.nextTransport;
 WAIT FOR ourtransport TO FlyTo(dest)
 TELL Operations MyStatusIs(Arrived);
 ON INTERRUPT
 TELL Operations MyStatusIs(Delayed);
 END WAIT;
END METHOD;

When the WAIT FOR statement is encountered, ourtransport is asked to execute its
FlyTo method. The Ship method waits for the FlyTo method to complete before it
proceeds to its next statement.

Chapter 9: Object Interaction

55

9.3 Arbitrary Synchronization with Trigger Objects

Some processes will need to wait until a specified condition occurs. For these situations,
MODSIM provides a special object type, TriggerObj , which, along with the WAIT
FOR statement, allows a method to pause and wait until some condition occurs.

The syntax of the statement is:
WAIT FOR trigger object [TO] Fire
 [Statement Sequence]
[ON INTERRUPT
 Statement Sequence]
END WAIT;

When the WAIT FOR ... Fire statement is encountered, the method suspends and
waits until the trigger object's Trigger method is invoked by some other method. At
that time, the statement sequence after the WAIT FOR ... Fire is executed. If the
trigger object's InterruptTrigger method is invoked, the suspended method's stat e-
ment sequence after the ON INTERRUPT is executed instead. A trigger object can have
any number of methods waiting for it to Trigger or InterruptTrigger .

Taking the example of an AircraftObj , a refueling method might prudently wait until
the plane is on the ground before requesting that the tanks be “topped off”, as in:

TYPE
 landedSignal: TriggerObj;
...
 IF flying
 WAIT FOR landedSignal TO Fire i.e. wait until some other
 END WAIT; method releases
 END IF; trigger landingSignal

 ASK airport TO assignRefueler(tankTruck);

 WAIT FOR tankTruck TO refuel(SELF, fuelCapacity);
 END WAIT;

9.4 Multiple Process Activities

To construct realistic simulation models, it is often necessary to model a physical object
which can perform several operations simultaneously. An aircraft in an airport model, for
instance, may be required to perform movement, communications and collision avoidance
activities simultaneously. Although this is a fairly common situation, it has traditionally
been difficult to model, particularly when the activities may interact.

To support such models, MODSIM allows an object to do more than one thing at once.
For instance, an object can receive multiple messages and handle those messages simult a-
neously, even when some actions will require time-elapsing sequences of activities.

MODSIM code can be written so that the messages are handled in a way that resolves
potentially contradictory states. For example, an object may be in the middle of one o p-

MODSIM Tutorial

56

eration when it receives a message to perform a different, conflicting operation. In r e-
sponse, the object can:

• Interrupt the conflicting time-elapsing method which is waiting

• Ignore the new request

• Defer the new request.

An operation which an object is to perform over a span of simulation time is termed an
activity and is handled by a WAIT statement in one of the methods of the object.

Several simple activities could be coded in one time-elapsing method which has several
WAITs or a complicated behavior could be composed of several different methods.

9.5 Interrupting Activities

MODSIM has provisions for interrupting and stopping any or all activities prematurely.
Any time-elapsing method which is WAITing can be interrupted. This is done by invoking
the Interrupt procedure which can be imported from SimMod. For example:

Interrupt(AircraftObj, "ProceedTo");

The procedure takes two arguments; the object whose activity is to be interrupted and the
particular method of that object instance which is to be interrupted.

Interrupting the currently executing activity has no effect. Interrupting an activity that is
waiting will cause it to execute the ON INTERRUPT clause of the WAIT statement. If
there is no ON INTERRUPT clause, a run time error will occur.

If it is necessary to interrupt all WAITing activities of an object instance, the Interrup-
tAll procedure of SimMod can be used:

InterruptAll(AircraftObj);

9.6 How Objects and Their Activities Interact

In MODSIM, every object maintains an ActivityList which is a sorted group of ac-
tivities. The activities are ranked by timeNext, the time each activity is scheduled to
finish its WAIT.

An activity record is placed on an object instance's activity list each time one of the object
instance's time-elapsing methods executes a WAIT. The activity record contains all of the
information needed to resume execution of a time-elapsing method after its WAIT is com-
plete or has been interrupted.

When the Interrupt procedure is invoked, it scans the particular object's activity list
and interrupts the most imminent activity which matches the given name. If there are no
matches, nothing happens. We could do the following:

Interrupt(AircraftObj, "flyTo");

Chapter 9: Object Interaction

57

and the flyTo method's WAIT would be interrupted. If a method contains multiple WAIT
statements, then whichever one is currently waiting is interrupted. If it is important to the
user to conditionally control which WAITs are interrupted, then the method can be broken
into separate methods for each activity, or a status can be set before each wait, and then
checked by the interrupting code. For more precision control, MODSIM allows the pr o-
grammer to get a “handle” to the particular wait of a particular method invocation and
specify the interrupt by using this handle.

The TERMINATE statement is used by any time-elapsing method which wants to finish
execution prematurely. It not only stops execution of the current method, but also TER-
MINATEs the method which invoked it using a WAIT FOR. The effect of the TERMINATE
is recursive. In other words, the invoking routine becomes TERMINATEed and, therefore,
TERMINATEs the method which invoked it. Like the WAIT statement, the TERMINATE
statement may only appear within a TELL method.

To summarize:

• The Interrupt procedure is used from outside an object's time-elapsing method
to “wake up” the method before it completes the WAIT. The interrupted method
resumes execution by performing the statement sequence after ON INTERRUPT .

• The TERMINATE statement is used from inside an object's TELL METHOD to pre-
maturely stop execution of the method and the method which called this method if
it used the WAIT FOR construct.

MODSIM Tutorial

58

59

10. Grouping Objects
Multiple objects in MODSIM are associated through groups . Objects may be selectively
added or removed from a group, and a MODSIM program can iterate through the me m-
bers of a group. A group can hold any type of object.

Each MODSIM III group has a variant which is capable of automatically gathering d e-
tailed statistics on the operation of the group.

10.1 Associating Objects

When making extensive use of dynamic data structures, such as objects, a language needs
a way to associate multiple objects for common manipulation.

This is especially true for simulations, which typically group objects queuing for a resource
(the proverbial bank teller or barber) or a series of events scheduled to happen at a specific
time. Such associations are referred to as groups in MODSIM.

10.2 Groups

A group may contain zero or more of any type of object. An object can belong to any
number of groups. All of MODSIM’s groups support prototyping. This means that the
user can derive a new group object from one of MODSIM III’s built-in groups and specify
the type of object that the group is meant to hold.

Probably the most commonly used group is QueueObj, which is a First-In-First-Out
(FIFO) group. Objects are added to the back and removed from the front.

The StackObj is a Last-In-First-Out (LIFO) group. Objects are added and removed
from the front.

The RankedObj is ranked according to the value of an object's field or fields. The user
specifies the ranking by overriding the RankedObj’s Rank method and providing code to
compare two objects for sorting purposes. The object uses this Rank method to sort each
added object into its correct position in the ranked group.

For more efficient handling of large ordered groups which will be added and removed ra n-
domly, MODSIM III supports the BTreeObj which orders objects according to the value
of a string which is used as a key.

10.3 The Queue Group

For the QueueObj type, the following methods are defined:
ASK METHOD Includes (IN candidate: ANYOBJ) : BOOLEAN;
ASK METHOD Add(IN NewMember: ANYOBJ); { behind Last }
ASK METHOD Remove() { removes First } : ANYOBJ;
ASK METHOD First() : ANYOBJ;
ASK METHOD Last() : ANYOBJ;
 { First ... candidate ... Last
 <- Prev | Next -> }
ASK METHOD Next(IN candidate: ANYOBJ) : ANYOBJ;

MODSIM Tutorial

60

ASK METHOD Prev(IN candidate: ANYOBJ) : ANYOBJ;
ASK METHOD RemoveThis (IN member: ANYOBJ);
ASK METHOD AddBefore (IN ExistingMember,
 NewMember: ANYOBJ);
ASK METHOD AddAfter (IN ExistingMember,
 NewMember: ANYOBJ);

QueueObj also has defined the field numberIn which can be queried to determine the
number of objects in a group.

The Add method places an object at the back end of the group while Remove takes it
from the front of the group. First, Last, Next and Prev return reference values for
those objects without changing the composition of the group. RemoveThis removes the
specified object from a group. AddBefore and AddAfter add an object next to the
specified object in the group.

The Includes method determines whether a specific object is part of a particular group
without traversing the group. This is an important efficiency consideration. Each object
in MODSIM III keeps an internal list of groups to which it belongs. The Includes
method interrogates this list, which is likely to be shorter than most groups, to determine
its answer.

10.4 The Stack Group

The StackObj type inherits all of the fields and methods of the QueueObj. It overrides
the QueueObj 's Add method and substitutes an Add method which places objects at the
front of the group instead of the back.

10.5 The Ranked Group

The RankedObj type inherits all of the fields and methods of the QueueObj. It over-
rides the QueueObj 's Add method and substitutes an Add method which inserts new
objects into the group using a Rank method to determine their proper position.

ASK METHOD Rank(IN a, b: ANYOBJ) : INTEGER;

The user overrides the default Rank method and substitutes one which returns the fo l-
lowing values:

-1 if a < b
 0 if a = b
 1 if a > b

The user specifies how the comparisons, e.g. a > b, are made.

Since the IN parameters to method Rank are of type ANYOBJ, the user will need to as-
sign them to variables of the appropriate type before attempting comparison of any fields.
As an example, the following implementation for method Rank could be used to rank a
group of cargo objects according to their weight field:

ASK METHOD Rank(IN a, b: ANYOBJ) : INTEGER;
VAR
 BoxA, BoxB: CargoObj;

Chapter 10: Grouping Objects

61

BEGIN
 BoxA := a; BoxB := b;
 IF ASK BoxA weight < ASK BoxB weight
 RETURN -1;
 END IF;
 IF ASK BoxA weight > ASK BoxB weight
 RETURN 1;
 END IF;
 RETURN 0;
END METHOD;

10.6 The BTree Group

The BTreeObj is an implementation of the group objects which uses the more efficient
Btree (balanced tree) data structure and algorithms to maintain a group which is ordered
according to the value of a string supplied by the user.

This is the group object which should be used in situation s where large ordered groups of
objects need to be maintained. The Btree will be more efficient for larger groups and the
Ranked group will be more efficient for smaller groups.

10.7 Iterating Through a Group

It is often necessary to iterate through a group to perform some action on selected mem-
bers of the group. The standard methods provided for group objects allow the user to
easily accomplish this by writing code, but MODSIM has a built-in construct to make the
job simpler. The FOREACH construct iterates through each member of a group and makes
each member available for inspection or removal.

FOREACH object IN group
 do something
END FOREACH

This is a robust construct which, aside from the convenience it offers, has a special cap a-
bility. It is impervious to the manipulations of the current object which take place within
the loop. If the logic inside the loop deletes the current object, this construct will still find
the next object. If a new object is added after the current object, the FOREACH will still go
to the “original” next object on the next iteration instead of the one which was just added.

To illustrate the FOREACH, we can go through a group of vehicles in a VehicleGroup
and schedule any vehicle which is loaded with less than a 60% fuel load to be refueled.
The group has truck objects, car objects, aircraft objects and boat objects. Each is derived
from VehicleObj which defines the fields fuelState .

VAR
 vehicle: VehicleObj;
 .
 FOREACH vehicle IN VehicleGroup
 IF vehicle.fuelState < 0.6
 TELL vehicle TO Refuel;
 END IF;

MODSIM Tutorial

62

 END FOREACH;
 .

63

11. A Simple Airport Model
This chapter examines a simple model of an airport . The model illustrates a number of the
basic simulation constructs built into MODSIM III, but does not use any of the more ad-
vanced constructs which have not been covered in this text. These include items such as
the Resource Object, Statistics Object and monitored variables.

This version of the model is meant to show a model in its most elemental form. A more
elaborate version of this same model will be described after the chapters on
SIMGRAPHICS II. That version uses animated graphics and other more advanced fe a-
tures of MODSIM III.

The source code for both versions of the model is included in the distribution media for
MODSIM III, so you can experiment with this model and try changes to it.

11.1 Why Model an Airport?

Airports and their operating rules are familiar to most people. In the case of a simple ai r-
port (such as this one!) there is one runway which is used for both arrivals and departures.
Arriving aircraft have priority over departing aircraft because their fuel capacity does not
permit them to wait for long periods while flying circles around the airport. Departing
aircraft, which wait on the ground, are less constrained.

An airport is conceptually easy to model because it has clearly stated operating rules and a
limited set of behaviors to be modeled. It can be an interesting system to model because
landing and departing aircraft are both competing for one limited resource, the runway.
The interaction of the landing and departing aircraft objects and the controller object pr o-
vides ample opportunities to illustrate object oriented programming.

Finally, it is a classic discrete-event simulation model characterized by randomly occurring
events and queues which grow as demand on the resource exceeds capacity.

11.2 The Source Code

The source code for the model is presented here in its entirety. The code and its embe d-
ded comments are shown in Courier font. The code is interspersed with explanatory r e-
marks using the Times Roman font. The model is fairly short and uncomplicated, so it is
written in one module.

Initially, the most important thing to do is to read the rules by which the airport operates
and the goal of this model. These are all stated at the start of the source code as a long
comment.

MAIN MODULE airprt;

{ Simple non-graphic airport model --

 Rules for the airport:

MODSIM Tutorial

64

 1. Takeoff: The controller may clear an aircraft for
takeoff if no arriving aircraft is in the 6 mile ap-
proach path and the runway is clear. Arriving
aircraft have priority over those waiting to take off.
Departing aircraft are placed in a FIFO queue if they

cannot be
 cleared immediately upon requesting takeoff clearance.

 2. Landing : The approach corridor is 6 miles long. No
other aircraft may be cleared to commence an approach
if the approach path is occupied. If the runway is not
clear when an arriving aircraft reaches its threshold,
it must go around for another approach. It then has
priority for landing ahead of other arriving aircraft.
Go-arounds always take 5 minutes to complete. At the
end of 5 minutes, the aircraft commences another ap-
proach or is placed in the arrival queue ahead of ar-
riving traffic.

 3. Arriving aircraft which cannot be immediately cleared
for landing are place in a FIFO queue for landing.

 The controller clears each aircraft to commence landing
 approach if no aircraft is using the approach path.

Now we have a description of the airport’s operating rules, but we do not know why we
are writing a model of the airport. What is it that we hope to learn by running the model?
The answer to this question will determine how we design the model and how we conduct
experiments with it. It will also determine the level of detail we will include.

Goals for the model:

 1. Run the model with various traffic rates

 2. Measure the following parameters which will be impor-
tant to users of the airport:

 a. Arriving and departing queues:

 - max size
 - average size
 - average delay time (time in a queue)

 b. Number of aircraft which arrived & departed
 c. Number of arriving aircraft which executed a go-

around.

Now we know the goal for the model. We will use it to determine the maximum rate at
which aircraft can arrive and depart without causing arrival and departure queues which
are “too long”.

The next task is to design the model. We start by thinking about the objects involved in
the model and how they will interact. In an object-oriented model this step is, literally, the
top level of the model design. All we need to do is write the object type definitions and
then flesh out the objects’ methods with code to describe their behaviors:

Chapter 11: A Simple Airport Model

65

Objects involved in the simulation:

 Controller - Modeled behaviors:

 a. Clear aircraft to land
 b. Clear aircraft to takeoff
 c. Receive notification of arriving and departing air-

craft.
 d. Receive notification when arriving and departing

aircraft have cleared the runway.
 e. Receive progress reports from aircraft making ap-

proaches.

 Aircraft - Modeled behaviors:

 a. Perform takeoff when controller gives takeoff
clearance

 b. Perform landing when controller gives landing
clearance

 c. Perform go-around if runway is occupied.

 Traffic Generator - Modeled behavior:

 a. Generate arriving & departing aircraft and request
landing or takeoff clearance.

What is this traffic generator object? It wasn’t a literal part of the airport description, o p-
erating rules or model goals, however there is an implicit requirement to generate traffic
for the airport. Nearly every model needs a mechanism to generate arriving objects such
as aircraft, customers, phone calls, etc.

Next we state some of the assumptions used in the model. A very important item is a
statement about the units used to measure time and distance in the model.

Time base for the model is minutes.
 Distance is measured in Nautical Miles - 1 NM = 1.15

Miles = 1.85 Km
 Speed is measured in Knots (Nautical Miles per Hour)
 AC = aircraft }

FROM GrpMod IMPORT StatQueueObj;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj;
FROM IOMod IMPORT ReadKey;

TYPE
 trafficType = (arrive, depart);
 statusType = (clear, inUse);
 priorityType = (normal, goAround);

 AircraftObj = OBJECT; { virtual aircraft type with common
attributes }

 ovhdTime : REAL; { overhead time: taxi onto runway for
TO
 or roll out after landing }

MODSIM Tutorial

66

 taskTime : REAL; { time required to takeoff or fly ap-
proach }

 startTime : REAL; { sim time at which AC starts Land or TO }
 END OBJECT;

 TakeoffObj = OBJECT(AircraftObj);
 TELL METHOD Takeoff;
 ASK METHOD ObjInit; { set takeoff performance attributes }
 ASK METHOD ObjTerminate; { report statistics before DISPOSing }
 END OBJECT;

 LandObj = OBJECT(AircraftObj);
 landPriority : priorityType; { normal or goAround which is higher }
 TELL METHOD Land;
 TELL METHOD GoAround;
 ASK METHOD ObjInit; { set landing performance attributes }
 ASK METHOD ObjTerminate; { report statistics before DISPOSing
}
 END OBJECT;

 TrafficGenObj = OBJECT
 numACgen : INTEGER; { number of AC generated }
 numACcomp : INTEGER; { number of AC completed landing/takeoff }
 totTimeSpent : REAL; { total time spent by AC completing task }
 ranGen : RandomObj; { random number gen. used by this obj }
 TELL METHOD GenTraffic(IN interarrivalRate : REAL;
 IN kindOfAC : traffic-
Type);
 ASK METHOD LogCompletion(IN whenStarted: REAL); { when done }
 ASK METHOD ObjInit;
 END OBJECT;

 ControllerObj = OBJECT;
 arriveQ : StatQueueObj;
 departQ : StatQueueObj;
 ASK METHOD LandingClearance(IN plane : LandObj);
 ASK METHOD TakeoffClearance(IN plane : TakeoffObj);
 TELL METHOD ClearOfRunway;
 TELL METHOD ClearOfApproach;
 ASK METHOD ObjInit;
 END OBJECT;

VAR
 runway : statusType;
 approachPath : statusType; { approach corridor }
 ArriveGen : TrafficGenObj;
 DepartGen : TrafficGenObj;
 Controller : ControllerObj;
 randSeed : INTEGER; { each new generator uses a new seed }
 trafficRanGen : RandomObj; { used by aircraft to set their fields }
 goAroundCount : INTEGER;
 interRate : REAL; { interarrival rate }
 ch : CHAR;

CONST
 stopTime = 1440.0; { minutes }

Chapter 11: A Simple Airport Model

67

 sequenceDelay = 1.0; { interval between departing AC }

 OBJECT TakeoffObj;
 TELL METHOD Takeoff;
 BEGIN
 WAIT DURATION ovhdTime + taskTime { taxi into position & takeoff
}
 END WAIT;
 TELL Controller ClearOfRunway;
 DISPOSE(SELF);
 END METHOD;

Note that once the aircraft has completed its take off or landing, it is no longer needed in
the model, so it is discarded by having it DISPOSE of itself:

 ASK METHOD ObjInit; { takeoff }
 BEGIN
 ovhdTime := trafficRanGen.Exponential(0.9);
 taskTime := trafficRanGen.UniformReal(0.5, 0.9);
 startTime := SimTime();
 END METHOD;

In this simple model, the operating parameters are “hard wired” into the aircraft. It would
be more realistic to allow the user to change these parameters at runtime to facilitate e x-
perimentation. This is done in the graphical version of the model. The only parameter in
this model which can be changed at run time is the interarrival rate of the aircraft.

Note that each new aircraft samples its operating parameters from one random number
generator, trafficRanGen . If each aircraft created its own random number generator it
would be necessary to seed each one with a unique seed and the random number generator
object would only be used a few times in the ObjInit method. It would then be dis-
carded. It is simpler and more efficient to set up one random number generator to be used
by all aircraft.

 ASK METHOD ObjTerminate;
 BEGIN
 ASK DepartGen LogCompletion(startTime);
 END METHOD;
 END OBJECT;

 OBJECT LandObj;
 TELL METHOD Land;
 BEGIN
 WAIT DURATION taskTime
 END WAIT;
 TELL Controller ClearOfApproach;
 IF (runway <> clear) { is runway clear? }
 GoAround;
 RETURN; landing has been aborted, so exit this method
 END IF;
 runway := inUse;
 WAIT DURATION ovhdTime { roll out time }
 END WAIT;

MODSIM Tutorial

68

 TELL Controller ClearOfRunway;
 DISPOSE(SELF);
 END METHOD;

 TELL METHOD GoAround;
 BEGIN
 INC(goAroundCount);
 WAIT DURATION 5.0
 END WAIT;
 landPriority := goAround;
 ASK Controller LandingClearance(SELF);
 END METHOD;

 ASK METHOD ObjInit; { land }
 BEGIN
 taskTime := trafficRanGen.UniformReal(2.8, 3.0);
 ovhdTime := trafficRanGen.UniformReal(0.8, 1.2);
 landPriority := normal;
 startTime := SimTime();
 END METHOD;

 ASK METHOD ObjTerminate;
 BEGIN
 ASK ArriveGen LogCompletion(startTime);
 END METHOD;
 END OBJECT { AircraftObj };

The traffic generator object creates either landing or departing aircraft. It’s GenTraffic
method runs continuously in a loop until simulation time exceeds the stop time. It uses a
random number generator which it creates at the time it is initialized.

OBJECT TrafficGenObj;
 TELL METHOD GenTraffic(IN interarrivalRate : REAL;
 IN kindOfAC : trafficType);
 VAR
 planeTO : TakeoffObj;
 planeLand : LandObj;
 BEGIN
 WHILE (SimTime <= stopTime)
 WAIT DURATION ranGen.Exponential(interarrivalRate);
 END WAIT;
 INC(numACgen);
 CASE (kindOfAC)
 WHEN arrive:
 NEW(planeLand);
 ASK Controller LandingClearance(planeLand);
 WHEN depart:
 NEW(planeTO);
 ASK Controller TakeoffClearance(planeTO);
 END CASE;
 END WHILE;
 END METHOD;

 ASK METHOD LogCompletion(IN whenStarted: REAL);

Chapter 11: A Simple Airport Model

69

 BEGIN
 totTimeSpent := totTimeSpent + (SimTime() - whenStarted);
 INC(numACcomp);
 END METHOD;

The ObjInit method creates a random number generator object which is used to provide
pseudo random interarrival times. Since there could be multiple instances of this object
(two are used in this program), each instance needs to use a different seed for the random
number generator object. If this was not done, every instance would generate planes at
the same exact times:

 ASK METHOD ObjInit;
 BEGIN
 NEW(ranGen);
 INC(randSeed); { each generator gets a unique seed }
 ASK ranGen TO SetSeed(randSeed);
 END METHOD;
 END OBJECT { TrafficGenObj };

 OBJECT ControllerObj;
 ASK METHOD LandingClearance(IN AC : LandObj);
 BEGIN
 IF ((arriveQ.numberIn = 0) AND (approachPath = clear))
 approachPath := inUse;
 TELL AC TO Land;
 ELSE { AC on go around are put first in arriveQ
}
 IF ((AC.landPriority = goAround) AND
 (arriveQ.numberIn > 0))
 ASK arriveQ TO AddBefore(arriveQ.First, AC);
 ELSE
 ASK arriveQ TO Add(AC);
 END IF;
 END IF;
 END METHOD;

 ASK METHOD TakeoffClearance(IN AC : TakeoffObj);
 BEGIN
 IF ((departQ.numberIn = 0) AND
 (runway = clear) AND
 (approachPath = clear))
 runway := inUse;
 TELL AC TO Takeoff;
 ELSE
 ASK departQ TO Add(AC);
 END IF;
 END METHOD;

 TELL METHOD ClearOfRunway;
 { AC which have completed landing rollout or takeoff
 use this method to report that they have cleared the
 runway. Controller then checks to see if an AC is
 waiting for takeoff }
 VAR
 AC : TakeoffObj;

MODSIM Tutorial

70

 BEGIN
 runway := clear;
 WAIT DURATION trafficRanGen.Exponential(sequenceDelay)
 END WAIT;
 IF ((departQ.numberIn > 0) AND
 (approachPath = clear) AND
 (runway = clear))
 AC := departQ.Remove;
 runway := inUse;
 TELL AC TO Takeoff;
 END IF;
 END METHOD;

 TELL METHOD ClearOfApproach;
 { AC which have cleared the approach corridor

 use this method to inform the controller. The control-
ler then clears the next arriving aircraft to land. }

 VAR
 AC : LandObj;
 BEGIN
 IF (arriveQ.numberIn > 0)
 AC := arriveQ.Remove;
 approachPath := inUse;
 TELL AC TO Land;
 ELSE
 approachPath := clear;
 END IF;
 END METHOD;

 ASK METHOD ObjInit;
 BEGIN
 NEW(arriveQ);
 ASK arriveQ TO SetDelayStats(TRUE); { turn ON stats collecting }
 NEW(departQ);
 ASK departQ TO SetDelayStats(TRUE);
 END METHOD;
 END OBJECT { ControllerObj };

 PROCEDURE ShowResults;
 BEGIN
 OUTPUT;
 OUTPUT("Simulation Run is Finished at SimTime ", SimTime());
 OUTPUT("Mean interarrival rate used for arrivals & depar-

tures: ", interRate);
 OUTPUT("# of arriving AC: ", ASK ArriveGen numACgen,
 " # of departing AC: ", ASK DepartGen numACgen);
 OUTPUT("# of go arounds = ", goAroundCount);
 OUTPUT("Max # AC waiting to takeoff & Mean # waiting to take

off: ", Controller.departQ.Maximum, " - ", Control-
ler.departQ.Mean);

 OUTPUT("Mean time spent departing: ",
 ASK DepartGen totTimeSpent / FLOAT(ASK DepartGen

numACcomp));
 OUTPUT("Max # AC waiting to land & Mean # waiting to land:
",

Chapter 11: A Simple Airport Model

71

 Controller.arriveQ.Maximum, " - ", Control-
ler.arriveQ.Mean);

 OUTPUT("Mean time spent landing: ",
 ASK ArriveGen totTimeSpent / FLOAT(ASK ArriveGen numAC-

comp));
 END PROCEDURE;

BEGIN
 OUTPUT("Mean time between arrivals / departures?");
 OUTPUT(" (optimum value is around 6 minutes)");
 INPUT(interRate);
 NEW(Controller);
 NEW(trafficRanGen);
 INC(randSeed);
 ASK trafficRanGen TO SetSeed(randSeed);
 NEW(ArriveGen);
 TELL ArriveGen TO GenTraffic(interRate, arrive);
 NEW(DepartGen);
 TELL DepartGen TO GenTraffic(interRate, depart);
 StartSimulation;
 ShowResults;
 OUTPUT;
 OUTPUT(".... Hit any key to terminate");
 ch := ReadKey; { on PC Windows holds window open till key is

hit }
END MODULE.

11.3 Results of the Model

These are the statistics which result when the model is run with the recommended 6 mi n-
ute inter-arrival time:

Simulation Run is Finished at SimTime 1466.567241
Mean interarrival rate used for arrivals & departures:
6.000000
of arriving AC: 243 # of departing AC: 230
of go arounds = 4
Max # AC waiting to takeoff & Mean # waiting to takeoff: 25 - 10.467890
Mean time spent departing: 60.910749
Max # AC waiting to land & Mean # waiting to land: 6 - 1.344961
Mean time spent landing: 6.098950

Note: The model did not finish exactly at the end of 1,440 minutes of simulated time.
That was the time at which the model stopped generating new aircraft traffic. There were
still aircraft landing or departing at that time, so the model did not actually finish until 26
minutes later.

We can audit some of the model’s results by simple consistency checks. This helps to
validate that the model is operating correctly and builds confidence in the results which we
can not easily compute.

The model was run with the recommended inter -arrival rate of 6 minutes. This means that
an average of 10 aircraft per hour would arrive and the same average number depart.
Since the model generated traffic for 1,440 minutes (24 hours), we would expect 24 x 10

MODSIM Tutorial

72

or 240 aircraft to arrive and depart. We had 243 arrivals and 230 departures. For a short
run with a small sample size this is reasonable.

Had we run the model for a longer time or over a number of replications , the number of
observed arrivals and departures would come closer to the anticipated number. In fact,
most of the model’s statistics would be of better quality. The one exception to this rule is
the maximum queue lengths. The longer we run the model, the more likely we are to e n-
counter some random combination of events which would lead to a long queue building
up. Since this would be a rare event and not characteristic of the system’s “normal” b e-
havior it is typically not a useful measure.

The solution to this problem is to run the model a number of times and average the max i-
mum queue lengths. We say we have run X number of replications of the model. Thus ,
instead of characterizing the maximum queue length as the “longest queue in a month’s
worth of operation” it might be more useful to offer “the average daily max imum queue
length resulting from a month’s worth of operations”.

11.4 Dissection of the Simple Model

With the introductory comments removed, the source code above contains about 340 lines
of code. It is a complete model of a plausible system which allows the user to conduct
experiments and arrive at some conclusion about the potential traffic capacity of the ai r-
port.

Is it a realistic model? Well, it is a realistic model of the airport which was described.
However, that description was kept deliberately simple so the model would be easy to
study.

In “real life” the airport and its model would be more complex. Here are some potential
shortcomings of this model:

• It does not consider the possible effects of adverse weather on traffic flow.

• Although traffic is generated randomly, it is always at the same average rate.
There are no peaks and valleys as the day progresses.

• It presents its data in aggregate form as a series of averages and max imums. It
would be useful to know more about the nature of operations. Animation would
help, as would some information about the variance of the performance data.

• In the real world, controllers would likely “break” the rules and take shortcuts to
improve efficiency, if safety could be assured. The model’s operating rules and
logic would have to be made more complex to reflect this.

• No allowance is made for the startup transient . Most models would be allowed to
“warm up” to a steady state, before starting to collecting statistics.

• There is a bug in the model! When aircraft are forced to go around because the
runway is not clear, they take 5 minutes to go around and then are placed ahead of
all other traffic in the landing queue. Unfortunately, there may be other aircraft

Chapter 11: A Simple Airport Model

73

which had to go around already in the queue. The latest aircraft to go around
would be placed in the queue ahead of other aircraft which had gone around. So
the logic in the Controller object’s LandingClearance method needs to be
changed so that aircraft on a go around are placed in the landing queue ahead of
“normal” aircraft, but behind all other “go around” aircraft.

There are obvious improvements which could be made, but this model has served its pu r-
pose which is to illustrate how a collection of interacting objects can be organized into a
model of a “real world” system. The program also illustrates how MODSIM III’s simula-
tion engine is unobtrusively embedded into the language. The WAIT DURATION stat e-
ments in the TELL METHODS are the only visible evidence of the simulation capability.
Note also that statistics on the models queues are automatically gathered behind the
scenes so the code is not cluttered with statistics statements which might obscure the logic
of the model.

Later we will expand this model to include animated graphics, more extensive statistics
gathering, presentation graphics and a graphical user interface. However, the fundamental
portions of that model will remain very similar to this code.

75

Section IV. Animated Graphics - SIMGRAPHICS II

MODSIM Tutorial

76

77

12. SIMGRAPHICS II

12.1 Background

SIMGRAPHICS II is a set of pre-defined objects used by MODSIM III programmers to
build portable programs which use the graphical user interface, graphics and animation
features of window systems such as Microsoft Windows and X Windows. It supports:

• Data visualization, charting and plotting.

• Animation and interactive graphics.

• User interface through dialog boxes, menus, palettes, etc.

• Editing of graphical and user interface objects.

• Three dimensional animation.

The two features which distinguish SIMGRAPHICS II from other graphics systems are its
portability and its close integration with MODSIM III’s simulation engine. This means
that the implementation of animated graphics is simple and the same code can be moved
from machine type to machine type without change. When MODSIM III programs which
use SIMGRAPHICS II are moved from one window system to another, the appearance of
the menus, dialog boxes, etc. change to conform with the “look and feel” of the particular
window system, but the functionality remains the same.

12.2 What is SIMGRAPHICS II?

By default, SIMGRAPHICS II uses vector graphics to draw icons, charts and back-
grounds, but it can also display and scale bit-mapped graphics . This means that photo-
graphs and other bit-mapped graphics can be displayed as part of a simulation.
Conversion programs to translate between most bit-mapped and vector graphics standards
are provided with the Unix versions of MODSIM III.

Vector graphics which use popular standards such as Autocad can be imported and used.
Finally, SIMGRAPHICS II produces Postscript output files which can be used in docu-
mentation and reports.

This section of the tutorial:

• Introduces the user to the principal components of SIMGRAPHICS II

• Provides example code which shows how to implement each major graphics cap a-
bility. The sections of code used for illustration are from sample programs. Each
of these programs is included in the MODSIM III distribution.

12.3 SIMGRAPHICS II Object Types

SIMGRAPHICS II is implemented using MODSIM III object types. This gives it a num-
ber of advanced features which are usually not available in most graphics systems:

MODSIM Tutorial

78

• The objects are adaptable through multiple inheritance. The user can take any
graphical object and add additional behavior to it through inheritance.

• Existing objects can be turned into graphical objects by simply inheriting from a
graphical object.

• The graphics system is portable. SIMGRAPHICS II is an integral part of
MODSIM III’s library and is always the same on every system. There are no parts
of the system which are machine or operating system dependent, so MODSIM
code which uses SIMGRAPHICS II can be moved from one machine / operating
system type to another by simply re-compiling it.

• The graphics are integrated with simulation. The animated objects in
SIMGRAPHICS II have their positions updated automatically by the simulation
engine. You only need to specify starting position and speed. When you tell the
object to MoveTo a new position, the job of re-drawing, scaling, etc. is handled
automatically.

There are approximately 40 modules in the SIMGRAPHICS II library. These contain o b-
jects used to build graphics images and user interface objects such as dialog boxes. The
modules also contain a number of virtual object types. These are building blocks from
which the other objects in the library are built. The virtual object types, whose names all
end with VObj, are used only to define other object types and are never used directly.

The virtual types are made visible and accessible because they are the “foundation” of the
graphics system and define many of the basic fields and methods inherited by the graphics
object types which are used to build graphics and user-interface windowed programs.

Listed here are the object types which define the core of SIMGRAPHICS II:

• GraphicVObj - This virtual object is the base graphic object type. It contains
fields and methods which are used by the graphics system to manipulate and ma n-
age graphical objects. Objects derived from GraphicVObj can be drawn/erased,
positioned, selected, hidden, copied and made selectable or non-selectable. They
are capable of loading/saving their graphical representation from/to a library o b-
ject, and adding/removing/manipulating child objects.

• ControlVObj - This virtual object type is the base class for object types which
support user interaction, such as dialog boxes and menus.

• WindowObj - Corresponds to a display window. This is the canvas upon which
all the graphic objects appear. It can be sized and positioned programatically or by
user interaction with the windowing system. Its default drawing area is the largest
centered square within a display window, but it can be made to appear anywhere
on the user’s screen, fill the entire screen or open as a rectangular rather than
square window. It defines a base coordinate system whose default is (0, 0) -
(32,767, 32,767). The origin is at the lower left corner of the window.

It contains an optional menu bar, palettes, status bar, and graphical images and has
associated dialog boxes. It supports mouse tracking and button click detection.

Chapter 12: SIMGRAPHICS II

79

The user can override its MouseClick and MouseMove methods and add custom
functionality to these actions.

Its appearance and the way in which users re-size and move it follow the standards
of the particular windowing system such as Microsoft Windows, OSF/Motif etc.

• ImageObj - This is the base class for all graphics other than dialog boxes, menus,
etc. It defines the fields which govern the object’s appearance. Objects derived
from ImageObj can be assigned color, and can be highlighted, scaled, rotated,
and translated. Hierarchies of these objects can be built, so child images can be
added to an ImageObj object and positioned relative to its coordinate system.

• GraphicLibObj - This object can hold descriptions of any graphic objects, i n-
cluding icons, dialog boxes and menus. It is typically loaded with these images
from a file produced by MODSIM’s graphics editor, SIMDRAW. SIMDRAW
allows the user to build all aspects of a graphical user interface from icons to dia-
log boxes. SIMDRAW stores the descriptions of graphic objects in files with the
extension “.SG2.” The files can be saved in text format, for portability, or in b i-
nary format for speed.

12.4 Example: Drawing an Image in a Window

This example assumes that the user has previously drawn a representation of the graphic
object called ‘airplane’ using the SIMDRAW graphical editor and stored this image in a
file called mypics.sg2 . The graphical depiction called airplane is then associated
with the ImageObj called myIcon in this program, and is then displayed.

MAIN MODULE demo1;

FROM Window IMPORT WindowObj;
FROM Image IMPORT ImageObj;
FROM Graphic IMPORT GraphicLibObj;

VAR
 win : WindowObj;
 lib : GraphicLibObj;
 myIcon : ImageObj;
 input : ANYOBJ;

BEGIN
 NEW(win); { Create a window }
 NEW(lib); { Create a library and load it from a file }
 ASK lib TO ReadFromFile ("mypics.sg2");
 NEW(myIcon); { Create an image and load its graphical
 representation from the library }
 ASK myIcon TO LoadFromLibrary (lib, "airplane");
 { Add icon to window and ask window to Draw }
 ASK win TO AddGraphic(myIcon);
 ASK win TO Draw;
 { Wait for user to click in window }

MODSIM Tutorial

80

 input := ASK win TO AcceptInput;
END MODULE.

This short program illustrates a powerful feature of SIMGRAPHICS II. The graphic
which the program displays is first drawn by the programmer using the S IMDRAW
graphics editor, and is then saved to a file. When the program runs, it loads this descri p-
tion of the image into a library and then associates that image with a graphical object
called myIcon and draws it in the Window. If the program had a menu bar or used dialog
boxes for user interaction, these could also be built using the Graphics Editor.

SIMGRAPHICS II also allows the programmer to make calls to the graphics libraries and
draw images, dialog boxes, menus, etc. programatically.

Unlike many windowed systems, SIMGRAPHICS II does not bind the graphic objects to
its executable. They exist in a separate file, in this case mypics.sg2, and are loaded by
the program when the program is run. This means that changes to icons and dialog boxes
can be made without recompiling and linking the program.

12.5 SIMDRAW - the Graphics Editor

SIMDRAW is the editor provided by the SIMGRAPHICS II system to create and edit
graphic images, charts and graphs and user interface items such as menu bars, dialog
boxes and palettes. The editor is portable across all systems on which MODSIM III is
available. It produces graphics files which are also portable.

SIMGRAPHICS II provides all of the methods and procedures needed to create and
modify graphic items programatically, but, since it is much simpler to do this kind of work
with SIMDRAW, the capability is usually used only when graphics or user interface items
must be created or changed by a program “on the fly”.

Graphic items are built from primitives such as lines , circles, polygons, etc. Typically
these parts are grouped together for convenience in handling. Each group and primitive
can have a name and integer ID. These are used as “handles” to identify the graphic o b-
jects when they are in a graphics library or when they are part of another graphics object.

Any graphics item can be saved in a graphics library.

SIMDRAW's main window is shown below. This window categorically lists all objects
contained in the currently loaded library file. From this window you can create and edit
images, graphs (2-D charts, level meters, etc.), dialog boxes, menu bars, and palettes. A
separate window is created for each object being edited . This allows you to copy parts of
an object into the clipboard and paste them into another object of the same type. To add
an object to the library, select one of the palette buttons on the left side of the window.
Editing an existing object can be accomplished by double clicking on its name in the lis t-
ing.

Chapter 12: SIMGRAPHICS II

81

Double clicking on an image in the listing will invoke a separate window called the Image
Editor which will contain only that image. Images are composed of circles, polygons, se c-
tors, arcs, polylines, text, and bitmaps. Primitives are added to the image by selecting a
primitive type from the Mode palette on the left. Bitmaps are added using the File/Import
option. Exiting primitives can be repositioned, resized, flipped, and rotated. The style
and color of a selected primitive can be changed using the Color palette on the bottom and
the Style palette on the right side of the Editor. Points defining a polygon or polyline can
be added, removed and repositioned.

A Layout Editor allows you to position and resize any number of images and graphs within
the same window.

The Graph Editor allows you to edit variety of 2-D charts, pie charts, clocks and meters.
Clicking on the Bar Chart palette button on the left side of the List window will present
the following dialog:

MODSIM Tutorial

82

The 2-D Chart is a standard x/y plot which can be either static or dynamic. It can have
many data sets and be a bar graph, histogram, surface chart or line graph.

The Level Meter is a "thermometer" type graph used to show the value of a variable. It is
updated dynamically as the model runs.

The Dial is the rotary equivalent to the Level Meter. It is analogous to a pressure gauge
with an analog pointer.

The Pie Chart can be either dynamic or static.

The Digital and Text Displays are simple controls which can contain numeric or text data.
They can be updated dynamically while a program is running.

12.6 Constructing a User Interface

Users of windowed programs perform most interaction through controls such as menus ,
palettes and dialog boxes. In the below illustration a menu bar, menu and menu item are
shown. Immediately below the menu bar is the pallete cont aining palette buttons, each
with an icon. For further information on palettes, refer to paragraph 12.7.

In SIMGRAPHICS II menus, palettes and dialog boxes are usually created using the
SIMDRAW Menu Bar dialog box and Palette Editors. The components in the dialog
boxes, menu bars and palettes are then connected to the program’s code. These user i n-
terface items can also be constructed and modified programatically by making calls to the
SIMGRAPHICS II library.

Chapter 12: SIMGRAPHICS II

83

The most basic interface is the familiar menu bar which usually appears across the top of
the window in most systems. In some systems the menu can appear instead as a small box
containing a list of initial choices. The menu bar is an asynchronous or non-modal control
which is always available for the user to manipulate. While the user is making choices on
the menu bar, the program continues to operate without interruption.

Like most SIMGRAPHICS II constructs, the menu is a hierarchical construct. At the
highest level is the menu bar itself. This serves as a container for menus. These are the
choices that appear across the menu bar. Contained within the menus are either additional
menus or “menu items”. These are the actual choices which the user makes to control
some aspect of the program’s operation.

In most cases the menu bar is employed only for the most commonly used or essential a s-
pects of a user's interface with the program. More detailed interaction is typically handled
through a dialog box. The dialog box is simply a container object in which an assortment
of other controls can be placed. It resizes automatically to fit its contents.

By its nature, the dialog box offers considerable flexibility to the programmer. In its si m-
plest form it can be a short note to the user with an OK button to clear the dialog box from
the screen once the user has read the note. More complex dialog boxes may fill the user’s
screen with a complex arrangement of information and choices. Although the dialog box
and its contents are called "controls", they are often used simply as a way to organize and
present information to the user.

The controls which can be placed in a SIMGRAPHICS II dialog box, the Dialog-
BoxObj, will be familiar to the user who has experience with contemporary windowed
systems. They include:

ButtonObj - Push to indicate a selection. The button has an optional la-
bel.

CheckBoxObj - Presents and receives simple TRUE / FALSE or YES / NO
input which is toggled each time the check box is selected.

TextBoxObj - Receives textual input.

ValueBoxObj - Receives numeric input and optionally does range checking
on that input.

MODSIM Tutorial

84

RadioButtonObj - Used to indicate a selection which is mutually exclusive
among a group of radio buttons in a RadioBoxObj.

RadioBoxObj - The container for a group of radio buttons.

ListBoxObj - Allows the user to scroll through and select from a list of
items. Each item is a ListBoxItemObj.

LabelObj - Used to label controls or present information to the user.

MultiLineBoxObj - Implements a multi-line text edit box.

ComboBoxObj - Recieves text input but has an attached “drop-down” list
containing a list of alternatives.

TreeObj - Used to show a list of items hierarchically. Item labels can
have a small bitmap icon next to them to identify their cat e-
gory.

TableObj - Composed of a 2-D array of selectable fields. Each field
contains a text string. Tables can have selectable row and
column headers and are scrollable if the size of the fields is
greater the the table size.

TabObj - Helps to organize controls into stacked pages. Only con-
trols on the top page can be seen.

Dialog boxes can be either modal or modeless. When a modal dialog box is placed on the
screen, no other user interactions outside of the dialog box are possible and the MODSIM
III program pauses execution.

When a modeless dialog box is placed on the screen, the MODSIM III program continues
to execute and the user can continue to interact with other controls outside of the dialog
box.

12.7 Palettes

A palette (as shown below) contains rows and columns of selectable palette buttons. A
palette button is a square button containing a bitmap “picture” on its face. These buttons
can be used as a short cut for the menu bar, or to show which mode or style the program
is currently using. Palette buttons can “toggle” (stay down or up until the next time they
are selected), or be “momentary” and pop back up after being pressed.

The palettes themselves can be attached to any side of your window or be “floating” and
behave like a dialog box. On MS Windows systems, palettes are “dockable” meaning that
they can be detached from one side of the window and reattached to another side with the
mouse.

Palette separators can be added to a palette in the appropriate spot to create a gap be-
tween palette buttons.

Chapter 12: SIMGRAPHICS II

85

MODSIM Tutorial

86

87

13. An Animated Airport Model
The simple airport model presented its results as a set of dry statistics at the completion of
a model run:

Simulation Run is Finished at SimTime 1466.567241
Mean interarrival rate used for arrivals & departures: 6.000000
of arriving AC: 243 # of departing AC: 230
of go arounds = 4
Max # AC waiting to takeoff & Mean # waiting to takeoff: 25 - 10.467890
Mean time spent departing: 60.910749
Max # AC waiting to land & Mean # waiting to land: 6 - 1.344961
Mean time spent landing: 6.098950

The statistics were averaged over the entire run but lacked information about variance in
the data. They also provided no feel for the interaction of the objects in the model. We
might learn something if we could observe the model in action. This is the motivation for
an animated model.

It would also be advantageous if the user could specify more of the operating parameters
and perhaps be able to adjust them while the model is running.

MODSIM Tutorial

88

Finally, it would be nice to have the statistics presented in a more meaningful manner.
Often, histograms will tell much about the data being observed that would not be apparent
when presented as a simple mean and variance.

The design goals for the animated airport model took into account all of the above factors
and added a few more goals and constraints:

• It had to be based on the simple airport model.

• It should be useful as a demonstration model.

• It should have a fairly accurate appearance.

• Its animation speed should be adjustable so that results can be seen in “real time”
or X times real time.

The resulting model has about 815 lines of code as opposed to 340 in the simple version.
Surprisingly, it is not animation which accounts for most of the code inflation but the a d-
dition of considerable user interaction.

The requirement to make appearance accurate resulted in the construction of a graphical
queue object which was fairly complex. This could have been omitted from the model
with absolutely no effect on model results or usability.

13.1 The Model Design Process

To add animation to the program we first had to decide on a background against which to
present the model. In this case an aerial photograph was chosen and scanned as a bit-map.
It was imported into SIMDRAW and used as the backdrop for the remainder of the work.
SIMDRAW was used to draw in an airport runway, taxiway and terminal facilities. It was
also used to draw the aircraft, the paths to be followed for takeoff and landing and the
delay histograms. Finally, SIMDRAW was used to design the menus and dialog boxes
which make up the user interface.

After this work was done, code was written to connect this graphical world with the pr o-
gram’s existing code. The most important item was to import DynImageObj so the air-
craft object could inherit from it the ability to be animated.

FROM Animate IMPORT DynImageObj;

When the aircraft executes its ObjInit method, we added code so that it could load it
graphical representation from the graphics library:

ASK METHOD ObjInit; { generic }
BEGIN
 INHERITED ObjInit;
 LoadFromLibrary(lib, "plane");
 ASK Window TO AddGraphic(SELF);
 SetAutoRotation(TRUE);
 startTime := SimTime();
END METHOD;

Chapter 13: An Animated Airport Model

89

We also changed the design of the aircraft object family by making it a descendent of the
DynImageObj. There are few other changes to the aircraft type declarations. Most of
the fields and methods needed to animate them are inherited from DynImageObj.

 AircraftObj = OBJECT(DynImageObj)
 taskSpeed : REAL; { speed for takeoff or approach }
 startTime : REAL; { sim time at which AC starts Land or TO }
 OVERRIDE
 ASK METHOD ObjInit;
 ASK METHOD StopMotion; { logic to reset Motion flag }
 END OBJECT;

 TakeoffObj = OBJECT(AircraftObj);
 TELL METHOD Takeoff;
 OVERRIDE
 ASK METHOD ObjInit; { set takeoff performance attributes }
 END OBJECT;

 LandObj = OBJECT(AircraftObj);
 landPriority : priorityType; { normal or goAround }
 TELL METHOD Land;
 TELL METHOD GoAround;
 OVERRIDE
 ASK METHOD ObjInit; { set landing performance attributes }
 END OBJECT;

The next most obvious change is that the aircraft no longer simply waits for time to pass
while it pretends to takeoff or land. The new code actually makes the aircraft move from
one point to another. Simulation time passes while the aircraft moves.

Here is the aircraft’s landing code from the simple model:

 WAIT DURATION taskTime
 END WAIT;
 TELL Controller ClearOfApproach;
 IF (runway <> clear) { is runway clear? }
 GoAround;
 RETURN;
 END IF;
 runway := inUse;
 WAIT DURATION ovhdTime { roll out time }
 END WAIT;
 TELL Controller ClearOfRunway;
 DISPOSE(SELF);

Now examine the aircraft’s landing code from the animated version of the model. In this
version, every action of the aircraft as it approaches, lands, rolls out and taxis off the ru n-
way is modeled:
 SetSpeed(taskSpeed); { approach / landing speed }
 SetAutoRotation(TRUE); { align in direction of movement }
 WAIT FOR SELF TO MoveTo(3.5, 2.0);
 END WAIT;
 TELL Controller ClearOfApproach;
 IF (runway <> clear) { is runway clear? }

MODSIM Tutorial

90

 GoAround;
 RETURN;
 END IF;
 ASK ArriveGen LogCompletion(startTime);
 runway := inUse;
 SetSpeed(taskSpeed * 0.7); { initial rollout }
 WAIT FOR SELF TO MoveTo(2.5, 2.0);
 END WAIT;
 SetSpeed(taskSpeed * 0.3); { final rollout }
 WAIT FOR SELF TO MoveTo(1.8, 2.0);
 END WAIT; SetRotationSpeed(-2.8);
 WAIT FOR SELF TO RotateTo(1.4); { -090 degrees as radians }
 END WAIT;
 WAIT FOR SELF TO MoveTo(2.0, 2.2);
 END WAIT;
 TELL Controller ClearOfRunway;
 SetSpeed(10.0 / 60.0); { all planes taxi at 10 Kts }
 WAIT FOR SELF TO MoveTo(2.6, 2.8);
 END WAIT;
 DISPOSE(SELF);

Notice that the speed of the aircraft is first set, and then the aircraft is told to move (from
its present position) to a new position. The positions in this model are expressed in naut i-
cal miles on an X-Y grid. When the aircraft is ready to taxi off the runway, its rotation
speed is set and we wait while it turns and starts taxiing. Not only does this code result in
an accurate animation of the aircraft, but it also adds to the accuracy of the model since
the time taken to complete each separate action is accounted for automatically by the sy s-
tem.

91

Glossary
activity: A WAIT statement in a TELL method. The place in an object's

TELL method where simulation time elapses.

base type: The immediate ancestor or the immediate underlying object type
of an object type.

behavior: A method of an object implements the object's behavior.

BNF: Backus-Naur Form. The notation used to describe the syntax of
the language. Note that this notation is not capable of describing
semantics or semantic limitations of the syntax.

class: As in “object class”. Meaning is the same as “object type”. The
term is used to describe the type definition for an object in la n-
guages which have a weak notion of types such as C++.

component: Either a field or method for an object.

conflicting methods: This occurs when two or more of the base types in a multiple
inheritance have a method with the same name.

derived type: An object type defined in terms of one or more existing object
types; each of these types is a base type.

dynamic binding: The type of each operand and operation is determined at
run-time; most object-oriented languages, including MODSIM,
are based on dynamic binding. MODSIM uses dynamic binding
only for field references and method calls, not for other oper a-
tions such as +, -, AND, etc.

encapsulation: Packaging the fields which define the state of an object and the
methods which define its behaviors within one object definition.

enumeration: A user-defined ordered set of literal values,
e.g. workday = (Mon, Tue, Wed, Thu, Fri)

field: One of the variables associated with a particular object or record
type.

function method: A method which returns a value. Only ASK methods can return a
value. Therefore, TELL methods cannot be function methods.

group: A structure used to associate objects. Examples are: Stack-
Obj, QueueObj, RankedObj, BTreeObj . Comparable to
SIMSCRIPT II.5's SET or a Smalltalk Collection.

inheritance: The definition of one object type in terms of another, already-
existing object type.

instance: One particular object of an object type.

MODSIM Tutorial

92

invoke: To call a procedure or method. To cause a procedure or method
to execute.

member: An object which is contained within a group.

message: The name of a method; “sending message A to B” is an equiva-
lent way of saying “ask object B to perform method A” or
“perform method A with object B”.

method: A routine which describes an object's behavior. Similar to a pr o-
cedure. However, a method is always associated with an object.

object: A dynamic data structure that includes an associated list of
methods.

ordinal type: A type which has a known ordering. In other words, given one
value which belongs to the type, it is possible to state what the
next or previous value would be. The following are ordinal
types: INTEGER, CHAR, BOOLEAN, enumerations and
subranges.

pass by reference: When a parameter in a parameter list is shared by both the i n-
voking and the invoked routine. Parameters with the INOUT and
OUT qualifier are passed by reference.

pass by value: When a copy of a parameter in a parameter list is made and
passed in to the invoked routine. Parameters with the IN quali-
fier are passed by value.

private property: A property with a scope limited to the methods of an object type
or derived object types. If a field or method of an object is d e-
clared to be private, it cannot be accessed or invoked except
from the object itself.

process: Process-based simulations allow methods of objects to describe a
series of related activities rather than being limited to defining
simply one event per method.

proper method: An untyped method that has no return value. Can be either a
TELL or ASK method.

property: A characteristic or attribute of an object type. Specifically either
a method or field of the object type.

public property: A property of an object that is available for use outside the
methods of that object type.

qualified inherited call: In a multiple inheritance, an invocation of an inherited
method of a specific base type, as in:

INHERITED FROM SomeObject aMethod;

Glossary

93

record: A data structure which consists of a collection of fields which
may be variables of differing types.

reference type: Each object type has a reference type, which is used to define
variables that reference a specific object of that type - analogous
to a pointer type in other languages.

routine: A general term for a sub-routine, procedure, function or method.

scalar type: A type which has only one element or component part and can
be used to scale, measure or quantify things. The following are
scalar types: INTEGER, REAL, CHAR, BOOLEAN, enumerations
and subranges. An example of something which would not be a
scalar type is an array, record or object type.

SELF: Built-in reference variable which is defined within every method.
It allows reference to the object instance from within its own
methods.

shared variable: A variable which is shared by all the methods of a particular o b-
ject type. In other words a variable defined outside the scope of
an object so that it will be visible to all instances of that object
type. Usually a shared variable is defined globally, within a
module.

strong typing: The type of each operand, parameter and operation is fixed at
compile-time. MODSIM III, Ada, Pascal and Modula-2 are
characterized by strong typing.

TELL method: A proper method which is executed asynchronously. It can
elapse simulation time. If it has a parameter list, only IN pa-
rameters are allowed. WAIT statements are allowed in TELL
methods.

time-elapsing method: A TELL METHOD which contains at least one WAIT statement.

underlying type: If type A is derived from type B, or from some type which is in
turn derived from B, then B is said to be an underlying type of A.

Virtual object type: An object type which is not used directly. It exists only to serve
as a base type from which other objects are derived. It often
serves as an “anchor” to relate two other object types.

MODSIM Tutorial

94

95

 Index

.

.SG2................................ 77

2

2-D Chart................................ 80

3

3-D Graphics................................ 75

A

activity................................ 49-50, 56
ActivityList................................ 56
Add................................ 59
AddAfter................................ 60
AddBefore................................ 60
airport 63
Allocating objects................................ 25
Animation................................ 75, 86
ARRAY type................................ 12
ASK................................ 9, 29
Assignment compatibility............................... 38
attributes................................ 19
Autocad................................ 75

B

base type................................ 22, 35
behavior................................ 9, 19, 21
Binary files................................ 7
bit-mapped graphics................................75
Block structure................................3
bug................................72
button................................ 81
button click detection................................77
ButtonObj................................ 81

C

CASE................................ 6
case sensitive................................ 3
charts 78
check box................................ 81
CheckBoxObj................................ 81
circles 78
Close................................ 7
ComboBoxObj................................ 82
compilation manager................................14
Compile................................ 14
computer simulation................................14

concurrent15
concurrent activities................................ ..49, 53
conflicting field names

in inheritance................................44
Continuous simulation................................14
controls81
ControlVObj................................76

D

data hiding45
data structure................................11, 21
data types 4
deallocating objects................................25
declaring objects................................22
Defining methods................................31
definition module................................12, 45
delayed method call................................29
Delete................................ 7
DeleteFile................................ 8
derived type................................22, 35
design process................................86
Dial80
dialog box................................ 76, 78, 81
Digital display................................80
Discrete-event simulation...............................14
display window................................76
DISPOSE26
DURATION................................51
dynamic binding................................20
Dynamic Structured type................................ . 4

E

edit graphic images................................78
ELSE................................ 5
ELSIF................................ 5
encapsulation................................ 9
END CASE................................ 6
END FOR................................ 6
END LOOP................................ 6
END WHILE................................ 6
Enumerated type................................4, 11
enumeration11
event................................49
event-oriented................................15
ExistsFile 8
EXIT................................ 6

F

fields 9, 11, 19
FIFO................................59

MODSIM Tutorial

96

FileSize................................ 8
First................................ 59
Fixed Structured type................................ 4
FOR................................ 6
FOREACH................................ 6, 61
formatted output................................ 8
free formatted I/O................................ 8
function method................................ 31

G

generic operations................................ 20
Graph Editor................................ 79
GraphicLibObj................................ 77
graphics editor................................ 78
Graphics library................................ 77
GraphicVObj................................ 76
graphs................................ 78
group................................ 59, 78

I

I/O................................ 7
icons................................ 77
IF................................ 5
ImageObj................................ 77
implementation module......................12, 32, 45
Implementing methods................................ .. 31
IMPORT................................ 5
IN................................ 34
Includes................................ 59
inheritance................................ .9, 19-21, 35, 37

conflicting field names.............................. 44
inheritance tree 36
INHERITED................................ 35, 38
INOUT................................ 34
input................................ 7, 8
Input and Output................................ 7
instance 15
INTEGER................................ 4
Interrupt 56, 57
InterruptAll 56
IOMod................................ 7
iterate through a group................................ ... 61

L

LabelObj................................ 82
Last 59
Layout Editor................................ 79
Level Meter................................ 80
Library Module................................ 5, 12
LIFO................................ 59
lines................................ 78
link................................ 14
list box................................ 82
ListBoxObj................................ 82

LOOP................................ 6

M

Main Modules................................ 5
make file - Not!................................ 14
menu bar................................ 81
menus 76, 78
message................................ 19, 20
methods 9, 19-22, 29
Microsoft Windows................................ 77
modal dialog box................................ 82
modeless dialog box................................82
Modula-2................................ 3
module................................ 4, 12
Monitored Type................................4
mouse tracking................................ 77
MSCOMP................................ 14
MultiLineBoxObj................................ 82
multiple inheritance41

N

NEW................................ 23, 25
Next................................ 59
NILARRAY................................ 23, 25
NILOBJ 23, 25
NILREC................................ 23, 25
numberIn 60

O

ObjClone................................ 26
object fields................................ 9
object implementation block................ 22-23, 31
object type................................ 9, 19
object type declaration................................22
object-oriented programming......................... 10
Objects................................ 19
ObjInit 26
ON INTERRUPT................................ 50
Open................................ 7
OSF/Motif................................ 77
OTHERWISE................................ 6
OUT................................ 34
output................................ 7, 8
override................................ 22, 35, 37, 46

P

palette 82
Palette Editor 80
parameters 34
Pie Chart................................ 80
polygons................................ 78, 80
Postscript 75
Prev 60
PRINT ... WITH................................8

Index

97

PRIVATE45-46
process................................ 15
proper method................................ 31
property................................ 21

Q

QueueObj................................ 59

R

radio buttons................................ 82
RadioBoxObj................................ 82
RadioButtonObj................................ 82
RandMod................................ 49
random access I/O................................7
RankedObj................................59-60
ReadChar................................ 7
ReadInt 7
ReadLine................................ 7
ReadReal................................ 7
ReadString................................ 7
REAL................................ 4
records................................ 11
reference type................................ 23
reference variables................................ 23, 25
Referencing fields................................ 30
Remove................................ 59
RemoveThis................................ 60
REPEAT................................ 6
replications 71
reserved words................................3
ResMod................................ 49

S

sample program 3, 13
Scalar type 4
scope of reference................................ 32
scope of variables................................ 32
SELF................................ 21, 29
separate compilation................................14
SG2................................ 77
Simdraw................................ 7- 78, 86
SIMDRAW................................ 78
SIMGRAPHICS II................................ 75
SimMod................................ 49
simulation constructs................................63
Simulation time................................ 50, 80
StackObj................................ 59-60
startup transient 72
states................................ 24
StatMod................................ 49
String type 4
Subrange type................................ 4, 11
Synchronized process activities...................... 53
syntax 3

T

TableObj................................82
TabObj................................82
TELL 29, 50, 52
TELL method................................49
TERMINATE................................54, 57
Text Display................................80
TextBoxObj................................81
Three dimensional animation.........................75
traffic generator................................68
TreeObj................................82
Trigger Object................................55
TriggerObj................................55

U

underlying types................................22
units of time................................50
UNTIL 6

V

validate a model................................71
ValueBoxObj................................81
variable32
vector graphics................................75
virtual object types................................76
VObj76

W

WAIT................................6, 49-50
WAIT DURATION................................50
WAIT FOR................................53
WHEN 6
WHILE................................ 6
window................................76
WindowObj................................76
WriteChar 7
WriteExp................................ 8
WriteHex................................ 8
WriteInt................................ 8
WriteLn................................ 8
WriteReal................................ 8
WriteString 8

X

X Windows................................75

