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Pattern Matching Chapter 16

 

The last chapter covered character strings and various operations on those strings. A
very typical program reads a sequence of strings from the user and compares the strings
to see if they match. For example, DOS’ COMMAND.COM program reads command lines
from the user and compares the strings the user types to fixed strings like “COPY”,
“DEL”, “RENAME”, and so on. Such commands are easy to 

 

parse

 

  because the set of
allowable commands is finite and fixed. Sometimes, however, the strings you want to test
for are not fixed; instead, they belong to a (possibly infinite) set of different strings. For
example, if you execute the DOS command “DEL *.BAK”,  MS-DOS does not attempt to
delete a file named “*.BAK”. Instead, it deletes all files which match the 

 

generic pattern

 

“*.BAK”. This, of course, is any file which contains four or more characters and ends with
“.BAK”. In the MS-DOS world, a string containing characters like “*” and “?” are called

 

wildcards

 

; wildcard characters simply provide a way to specify different names via pat-
terns. DOS’ wildcard characters are very limited forms of what are known as 

 

regular
expressions

 

; regular expressions are very limited forms of patterns in general. This chapter
describes how to create patterns that match a variety of character strings and write pattern
matching routines to see if a particular string 

 

matches

 

  a given pattern.

 

16.1 An Introduction to Formal Language (Automata) Theory

 

Pattern matching, despite its low-key coverage, is a very important topic in computer
science. Indeed, pattern matching is the main programming paradigm in several pro-
gramming languages like Prolog, SNOBOL4, and Icon. Several programs you use all the
time employ pattern matching as a major part of their work. MASM, for example, uses
pattern matching to determine if symbols are correctly formed, expressions are proper,
and so on. Compilers for high level languages like Pascal and C also make heavy use of
pattern matching to parse source files to determine if they are syntactically correct. Sur-
prisingly enough, an important statement known as 

 

Church’s Hypothesis

 

  suggests that any
computable function can be programmed as a pattern matching problem

 

1

 

. Of course,
there is no guarantee that the solution would be efficient (they usually are not), but you
could arrive at a correct solution. You probably wouldn’t need to know about Turing
machines (the subject of Church’s hypothesis) if you’re interested in writing, say, an
accounts receivable package. However, there many situations where you may want to
introduce the ability to match some generic patterns; so understanding some of the theory
of pattern matching is important. This area of computer science goes by the stuffy names
of 

 

formal language theory

 

  and 

 

automata theory

 

. Courses in these subjects are often less than
popular because they involve a lot of proofs, mathematics, and, well, theory. However, the
concepts behind the proofs are quite simple and very useful. In this chapter we will not
bother trying to prove everything about pattern matching. Instead, we will accept the fact
that this stuff really works and just apply it. Nonetheless, we do have to discuss some of
the results from automata theory, so without further ado…

 

16.1.1 Machines vs. Languages

 

You will find references to the term “machine” throughout automata theory literature.
This term does not refer to some particular computer on which a program executes.
Instead, this is usually some function that reads a string of symbols as input and produces
one of two outputs: match or failure. A typical machine (or 

 

automaton

 

 ) divides all possible
strings into two sets – those strings that it 

 

accepts

 

  (or matches) and those string that it
rejects. The 

 

language

 

  accepted by this machine is the set of all strings that the machine

 

1. Actually, Church’s Hypothesis claims that any computable function can be computed on a Turing machine.
However, the Turing machine is the ultimate pattern machine computer.
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accepts. Note that this language could be infinite, finite, or the empty set (i.e., the machine
rejects all input strings). Note that an infinite language does not suggest that the machine
accepts all strings. It is quite possible for the machine to accept an infinite number of
strings and reject an even greater number of strings. For example, it would be very easy to
design a function which accepts all strings whose length is an even multiple of three. This
function accepts an infinite number of strings (since there are an infinite number of strings
whose length is a multiple of three) yet it rejects twice as many strings as it accepts. This is
a very easy function to write. Consider the following 80x86 program that accepts all
strings of length three (we’ll assume that the carriage return character terminates a string):

 

MatchLen3 proc near
getc ;Get character #1.
cmp al, cr ;Zero chars if EOLN.
je Accept
getc ;Get character #2.
cmp al, cr
je Failure
getc ;Get character #3.
cmp al, cr
jne MatchLen3

Failure: mov ax, 0 ;Return zero to denote failure.
ret

Accept: mov ax, 1 ;Return one to denote success.
ret

MatchLen3 endp

 

By tracing through this code, you should be able to easily convince yourself that it returns
one in 

 

ax

 

 if it succeeds (reads a string whose length is a multiple of three) and zero other-
wise.

Machines are inherently 

 

recognizers

 

. The machine itself is the embodiment of a 

 

pattern

 

.
It recognizes any input string which matches the built-in pattern. Therefore, a codification
of these automatons is the basic job of the programmer who wants tomatch some patterns.

There are many different classes of machines and the languages they recognize. From
simple to complex, the major classifications are 

 

deterministic finite state automata 

 

(which are
equivalent to 

 

nondeterministic finite state automata

 

 ), 

 

deterministic push down automata, nonde-
terministic push down automata, 

 

and 

 

Turing machines

 

. Each successive machine in this list
provides a superset of the capabilities of the machines appearing before it. The only rea-
son we don’t use Turing machines for everything is because they are more complex to pro-
gram than, say, a deterministic finite state automaton. If you can match the pattern you
want using a deterministic finite state automaton, you’ll probably want to code it that way
rather than as a Turing machine.

Each class of machine has a class of languages associated with it. Deterministic and
nondeterministic finite state automata recognize the 

 

regular  

 

languages. Nondeterministic
push down automata recognize the 

 

context free

 

  languages

 

2

 

. Turing machines can recog-
nize all recognizable languages. We will discuss each of these sets of languages, and their
properties, in turn.

 

16.1.2 Regular Languages

 

The regular languages are the least complex of the languages described in the previ-
ous section. That does not mean they are less useful; in fact, patterns based on regular
expression are probably more common than any other. 

 

2. Deterministic push down automata recognize only a subset of the context free languages.
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16.1.2.1 Regular Expressions

 

The most compact way to specify the strings that belong to a regular language is with
a 

 

regular expression

 

. We shall define, recursively, a regular expression with the following
rules:

•

 

∅

 

 (the empty set) is a regular language and denotes the empty set.
•

 

ε

 

 is a regular expression

 

3

 

. It denotes the set of languages containing only
the empty string: {

 

ε

 

}.
• Any single symbol, 

 

a

 

, is a regular expression (we will use lower case char-
acters to denote arbitrary symbols). This single symbol matches exactly
one character in the input string, that character must be equal to the sin-
gle symbol in the regular expression. For example, the pattern “m”
matches a single “m” character in the input string.

Note that 

 

∅

 

 and 

 

ε

 

 are not the same. The empty set is a regular language that does not
accept 

 

any

 

  strings, including strings of length zero. If a regular language is denoted by {

 

ε

 

},
then it accepts exactly one string, the string of length zero. This latter regular language
accepts something, the former does not.

The three rules above provide our 

 

basis

 

  for a recursive definition. Now we will define
regular expressions recursively. In the following definitions, assume that 

 

r

 

, 

 

s

 

, and 

 

t

 

  are
any valid regular expressions.

• Concatenation. If 

 

r

 

  and 

 

s

 

  are regular expressions, so is 

 

rs

 

. The regular
expression 

 

rs

 

  matches any string that begins with a string matched by 

 

r

 

and ends with a string matched by 

 

s

 

.
• Alternation/Union. If 

 

r

 

  and 

 

s

 

  are regular expressions, so is 

 

r

 

 | 

 

s

 

   (read
this as 

 

r

 

  

 

or

 

 

 

s

 

 ) This is equivalent to 

 

r

 

 

 

∪

 

 

 

s, 

 

(read as 

 

r

 

 union 

 

s 

 

). This regular
expression matches any string that 

 

r

 

  or 

 

s

 

  matches. 
• Intersection. If 

 

r

 

  and 

 

s

 

  are regular expressions, so is 

 

r 

 

∩

 

 

 

s

 

. This is the set
of all strings that both 

 

r

 

 

 

 and

 

 

 

s

 

  match.
• Kleene Star. If 

 

r

 

  is a regular expression, so is 

 

r

 

*. This regular expression
matches zero or more occurrences of 

 

r

 

. That is, it matches  

 

ε

 

, 

 

r

 

, 

 

rr

 

, 

 

rrr

 

, 

 

rrrr

 

,
... 

• Difference. If 

 

r 

 

 and 

 

s

 

  are regular expressions, so is 

 

r-s

 

. This denotes the
set of strings matched by 

 

r

 

  that are not also matched by 

 

s.

 

• Precedence. If 

 

r

 

  is a regular expression, so is (

 

r

 

 ). This matches any string
matched by 

 

r

 

  alone. The normal algebraic associative and distributive
laws apply here, so (

 

r

 

 | 

 

s

 

 )

 

 t

 

 is equivalent to 

 

rt

 

 | 

 

st

 

.

These operators following the normal associative and distributive laws and exhibit
the following precedences:

 

Highest: (

 

r

 

)
Kleene Star
Concatentation
Intersection
Difference

Lowest: Alternation/Union

 

Examples:

 

(r | s) t = rt | st
rs* = r(s*)
r 

 

∪

 

 t - s = r 

 

∪

 

 (t - s)
r 

 

∩

 

 t - s = (r 

 

∩

 

 t) - s

 

Generally, we’ll use parenthesis to avoid any ambiguity

Although this definition is sufficient for an automata theory class, there are some
practical aspects to this definition that leave a little to be desired. For example, to define a

 

3. The empty string is the string of length zero, containing no symbols.
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regular expression that matches a single alphabetic character, you would need to create
something like (

 

a

 

 | 

 

b

 

 | 

 

c 

 

| … | 

 

y

 

 | 

 

z 

 

). Quite a lot of typing for such a trivial character set.
Therefore, we shall add some notation to make it easier to specify regular expressions.

• Character Sets. Any set of characters surrounded by brackets, e.g., [abc-
defg] is a regular expression and matches a single character from that set.
You can specify ranges of characters using a dash, i.e., “[a-z]” denotes the
set of lower case characters and this regular expression matches a single
lower case character.

• Kleene Plus. If 

 

r

 

  is a regular expression, so is 

 

r

 

+

 

. This regular expression
matches one or more occurrences of 

 

r.

 

 That is, it matches 

 

r, rr, rrr, rrrr, 

 

…
The precedence of the Kleene Plus is the same as for the Kleene Star. Note
that 

 

r

 

+

 

 = 

 

rr

 

*.
•

 

Σ

 

 represents any single character from the allowable character set. 

 

Σ

 

* rep-
resents the set of all possible strings. The regular expression 

 

Σ

 

*-

 

r

 

  is the

 

complement

 

  of 

 

r

 

 – that is, the set of all strings that 

 

r

 

  does not match.

With the notational baggage out of the way, it’s time to discuss how to actually use
regular expressions as pattern matching specifications. The following examples should
give a suitable introduction.

Identifiers: Most programming languages like Pascal or C/C++ specify legal forms
for identifiers using a regular expression. Expressed in English terms, the
specification is something like “An identifier must begin with an alpha-
betic character and is followed by zero or more alphanumeric or under-
score characters.” Using the regular expression (RE) syntax described in
this section, an identifier is

[a-zA-Z][a-zA-Z0-9_]*

Integer Consts: A regular expression for integer constants is relatively easy to design. An
integer constant consists of an optional plus or minus followed by one or
more digits. The RE is 

(+ | - | 

 

ε

 

 ) [0-9]

 

+

 

Note the use of the empty string (

 

ε

 

) to make the plus or minus optional.

Real Consts: Real constants are a bit more complex, but still easy to specify using REs.
Our definition matches that for a real constant appearing in a Pascal pro-
gram – an optional plus or minus, following by one or more digits;
optionally followed by a decimal point and zero or more digits; option-
ally followed by an “e” or an “E” with an optional sign and one or more
digits:

(+ | - | 

 

ε

 

 ) [0-9]

 

+ 

 

( “.” [0-9]* | 

 

ε

 

 ) (((e | E) (+ | - | 

 

ε

 

 ) [0-9]

 

+

 

) | 

 

ε

 

 )

Since this RE is relatively complex, we should dissect it piece by piece.
The first parenthetical term gives us the optional sign. One or more digits
are mandatory before the decimal point, the second term provides this.
The third term allows an optional decimal point followed by zero or more
digits. The last term provides for an optional exponent consisting of “e”
or “E” followed by an optional sign and one or more digits.

Reserved Words: It is very easy to provide a regular expression that matches a set of
reserved words. For example, if you want to create a regular expression
that matches MASM’s reserved words, you could use an RE similar to the
following:

( mov | add | and | … | mul )

Even: The regular expression ( 

 

ΣΣ

 

 )* matches all strings whose length is a multi-
ple of two.

Sentences: The regular expression:

(

 

Σ

 

* “  “* )* run ( “  “

 

+ 

 

( 

 

Σ

 

* “  “

 

+ 

 

| 

 

ε

 

 )) fast (“  “ 

 

Σ

 

* )*
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matches all strings that contain the separate words “run” followed by
“fast” somewhere on the line. This matches strings like “I want to run
very fast” and “run as fast as you can” as well as “run fast.”

While REs are convenient for specifying the pattern you want to recognize, they are
not particularly useful for creating programs (i.e., “machines”) that actually recognize
such patterns. Instead, you should first convert an RE to a 

 

nondeterministic finite state
automaton

 

, or NFA. It is very easy to convert an NFA into an 80x86 assembly language pro-
gram; however, such programs are rarely efficient as they might be. If efficiency is a big
concern, you can convert the NFA into a 

 

deterministic finite state automaton  

 

(DFA) that is
also easy to convert to 80x86 assembly code, but the conversion is usually far more effi-
cient.

 

16.1.2.2 Nondeterministic Finite State Automata (NFAs)

 

An NFA is a directed graph with 

 

state numbers  

 

associated with each node and 

 

charac-
ters or character strings

 

  associated with each edge of the graph. A distinguished state, the

 

starting state

 

, determines where the machine begins attempting to match an input string.
With the machine in the starting state, it compares input characters against the characters
or strings on each edge of the graph. If a set of input characters matches one of the edges,
the machine can change states from the node at the start of the edge (the tail) to the state at
the end of the edge (the head).

Certain other states, known as 

 

final

 

  or 

 

accepting

 

  states, are usually present as well. If a
machine winds up in a final state after exhausting all the input characters, then that
machine 

 

accepts

 

  or 

 

matches

 

  that string. If the machine exhausts the input and winds up in
a state that is not a final state, then that machine 

 

rejects

 

  the string. Figure 16.1 shows an
example NFA for the floating point RE presented earlier. 

By convention, we’ll always assume that the starting state is state zero. We will denote
final states (there may be more than one) by using a double circle for the state (state eight
is the final state above).

An NFA always begins with an input string in the starting state (state zero). On each
edge coming out of a state there is either 

 

ε

 

, a single character, or a character string. To help
unclutter the NFA diagrams, we will allow expressions of the form “ xxx | yyy | zzz | …”
where xxx, yyy, and zzz are 

 

ε

 

, a single character, or a character string. This corresponds to

 

Figure 16.1 NFA for Regular Expression (+ | - | e ) [0-9]+ ( “.” [0-9]* | e ) (((e | E) (+ | - | e ) [0-9]+) | e )

0-9

0-9

"."

e

e

e | E

+ |   -  | e

0-9

0-9

+ |   -  | e

0-9

e

e

0 1 2

3
4

5 6 7
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multiple edges from one state to the other with a single item on each edge. In the example
above,

is equivalent to

Likewise, we will allow 

 

sets

 

  of characters, specified by a string of the form x-y, to denote
the expression x | x+1 | x+2 | … | y.

Note that an NFA accepts a string if there is 

 

some

 

  path from the starting state to an
accepting state that exhausts the input string. There may be multiple paths from the start-
ing state to various final states. Furthermore, there may be some particular path from the
starting state to a non-accepting state that exhausts the input string. This does not neces-
sarily mean the NFA rejects that string; if there is some other path from the starting state
to an accepting state, then the NFA accepts the string. An NFA rejects a string only if there
are 

 

no

 

 paths from the starting state to an accepting state that exhaust the string.

Passing through an accepting state does not cause the NFA to accept a string. You
must wind up in a final state 

 

and

 

  exhaust the input string.

To process an input string with an NFA, begin at the starting state. The edges leading
out of the starting state will have a character, a string, or 

 

ε

 

 associated with them. If you
choose to move from one state to another along an edge with a single character, then
remove that character from the input string and move to the new state along the edge tra-
versed by that character. Likewise, if you choose to move along an edge with a character
string, remove that character string from the input string and switch to the new state. If
there is an edge with the empty string, 

 

ε

 

, then you may elect to move to the new state
given by that edge without removing any characters from the input string.

Consider the string “1.25e2” and the NFA in Figure 16.1. From the starting state we
can move to state one using the 

 

ε

 

 string (there is no leading plus or minus, so 

 

ε

 

 is our only
option). From state one we can move to state two by matching the “1” in our input string
with the set 0-9; this eats the “1” in our input string leaving “.25e2”. In state two we move
to state three and eat the period from the input string, leaving “25e2”. State three loops on
itself with numeric input characters, so we eat the “2” and “5” characters at the beginning
of our input string and wind up back in state three with a new input string of “e2”. The
next input character is “e”, but there is no edge coming out of state three with an “e” on it;
there is, however, an 

 

ε

 

-edge, so we can use that to move to state four. This move does not
change the input string. In state four we can move to state five on an “e” character. This
eats the “e” and leaves us with an input string of “2”. Since this is not a plus or minus
character, we have to move from state five to state six on the 

 

ε

 

 edge. Movement from state
six to state seven eats the last character in our string. Since the string is empty (and, in par-
ticular, it does not contain any digits), state seven cannot loop back on itself. We are cur-
rently in state seven (which is not a final state) and our input string is exhausted.
However, we can move to state eight (the accepting state) since the transition between
states seven and eight is an 

 

ε

 

 edge. Since we are in a final state and we’ve exhausted the
input string, This NFA accepts the input string.

 

16.1.2.3 Converting Regular Expressions to NFAs

 

If you have a regular expression and you want to build a machine that recognizes
strings in the regular language specified by that expression, you will need to convert the

+ |   -  | ε
0 1

0 1

+

-

ε
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RE to and NFA. It turns out to be very easy to convert a regular expression to an NFA. To
do so, just apply the following rules:

• The NFA representing regular language denoted by the regular expres-
sion 

 

∅

 

 (the empty set) is a single, non-accepting state.
• If a regular expression contains an 

 

ε

 

, a single character, or a string, create
two states and draw an arc between them with 

 

ε

 

, the single character, or
the string as the label. For example, the RE “a” is converted to an NFA as

• Let the symbol denote an NFA which recognizes some reg-

ular language specified by some regular expression 

 

r, s, 

 

or 

 

t.

 

 If a regular
expression takes the form 

 

rs

 

  then the corresponding NFA is

• If a regular expression takes the form 

 

r

 

 | 

 

s

 

, then the corresponding NFA is

• If a regular expression takes the form 

 

r*

 

 then the corresponding NFA is

All of the other forms of regular expressions are easily synthesized from these, therefore,
converting those other forms of regular expressions to NFAs is a simple two-step process,
convert the RE to one of these forms, and then convert this form to the NFA. For example,
to convert 

 

r

 

+

 

 to an NFA, you would first convert 

 

r

 

+

 

 to 

 

rr

 

*. This produces the NFA:

The following example converts the regular expression for an integer constant to an NFA.
The first step is to create an NFA for the regular expression (+ | - | 

 

ε

 

 ). The complete con-
struction becomes

Although we can obviously optimize this to

a

r s
ε

r

s

ε

εε

ε

r

ε
ε

r ε

r

ε
ε

+

-

ε

ε

ε

ε

ε

ε

ε

+ |   -  | ε
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The next step is to handle the [0-9]

 

+

 

 regular expression; after some minor optimization,
this becomes the NFA

Now we simply concatenate the results to produce:

All we need now are starting and final states. The starting state is always the first state of
the NFA created by the conversion of the leftmost item in the regular expression. The final
state is always the last state of the NFA created by the conversion of the rightmost item in
the regular expression. Therefore, the complete regular expression for integer constants
(after optimizing out the middle edge above, which serves no purpose) is

 

16.1.2.4 Converting an NFA to Assembly Language

 

There is only one major problem with converting an NFA to an appropriate matching
function – NFAs are 

 

nondeterministic

 

. If you’re in some state and you’ve got some input
character, say “a”, there is no guarantee that the NFA will tell you what to do next. For
example, there is no requirement that edges coming out of a state have unique labels. You
could have two or more edges coming out of a state, all leading to different states on the
single character “a”. If an NFA accepts a string, it only guarantees that there is some path
that leads to an accepting state, there is no guarantee that this path will be easy to find.

The primary technique you will use to resolve the nondeterministic behavior of an
NFA is 

 

backtracking.

 

 A function that attempts to match a pattern using an NFA begins in
the starting state and tries to match the first character(s) of the input string against the
edges leaving the starting state. If there is only one match, the code must follow that edge.
However, if there are two possible edges to follow, then the code must arbitrarily choose
one of them 

 

and remember the others

 

 

 

as well as the current point in the input string

 

. Later, if it
turns out the algorithm guessed an incorrect edge to follow, it can return back and try one
of the other alternatives (i.e., it 

 

backtracks

 

  and tries a different path). If the algorithm
exhausts all alternatives without winding up in a final state (with an empty input string),
then the NFA does not accept the string.

Probably the easiest way to implement backtracking is via procedure calls. Let us
assume that a matching procedure returns the carry flag set if it succeeds (i.e., accepts a

0-9

0-9

0-9

0-9

+ |   -  | ε ε

0-9

0-9

+ |   -  | ε
0 1 2
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string) and returns the carry flag clear if it fails (i.e., rejects a string). If an NFA offers mul-
tiple choices, you could implement that portion of the NFA as follows:

 

AltRST proc near
push ax ;The purpose of these two instructions
mov ax, di ; is to preserve di in case of failure.
call r
jc Success
mov di, ax ;Restore di (it may be modified by r).
call s
jc Success
mov di, ax ;Restore di (it may be modified by s).
call t

Success: pop ax ;Restore ax.
ret

AltRST endp

 

If the 

 

r

 

 matching procedure succeeds, there is no need to try 

 

s

 

 and 

 

t

 

. On the other hand, if 

 

r

 

fails, then we need to try 

 

s

 

. Likewise, if 

 

r

 

 and 

 

s

 

 both fail, we need to try 

 

t

 

. 

 

AltRST

 

 will fail
only if 

 

r

 

, 

 

s

 

, and 

 

t

 

 all fail. This code assumes that 

 

es:di

 

 points at the input string to match. On
return, 

 

es:di

 

 points at the next available character in the string after a match 

 

or it points at
some arbitrary point if the match fails.

 

 This code assumes that 

 

r

 

, 

 

s

 

, and 

 

t

 

 all preserve the 

 

ax

 

register, so it preserves a pointer to the current point in the input string in 

 

ax

 

 in the event 

 

r

 

or 

 

s

 

 fail.

To handle the individual NFA associated with simple regular expressions (i.e., match-
ing 

 

ε

 

 or a single character) is not hard at all. Suppose the matching function r matches the
regular expression (+ | - | 

 

ε

 

 ). The complete procedure for r is

 

r proc near
cmp byte ptr es:[di], ‘+’
je r_matched
cmp byte ptr es:[di], ‘-’
jne r_nomatch

r_matched: inc di
r_nomatch: stc

ret
r endp

 

Note that there is no explicit test for 

 

ε

 

. If 

 

ε

 

 is one of the alternatives, the function
attempts to match one of the other alternatives first. If none of the other alternatives suc-
ceed, then the matching function will succeed anyway, although it does not consume any
input characters (which is why the above code skips over the 

 

inc di

 

 instruction if it does
not match “+” or “-”). Therefore, any matching function that has 

 

ε

 

 as an alternative will
always succeed.

Of course, not all matching functions succeed in every case. Suppose the 

 

s

 

 matching
function accepts a single decimal digit. the code for 

 

s

 

 might be the following:

 

s proc near
cmp byte ptr es:[di], ‘0’
jb s_fails
cmp byte ptr es:[di], ‘9’
ja s_fails
inc di
stc
ret

s_fails: clc
ret

s endp

ε

ε

ε

ε

ε

ε

r

s

t



 

Chapter 16

Page 892

 

If an NFA takes the form:

Where 

 

x

 

 is any arbitrary character or string or 

 

ε

 

, the corresponding assembly code for this
procedure would be

 

ConcatRxS proc near
call r
jnc CRxS_Fail ;If no r, we won’t succeed

; Note, if x=

 

ε

 

 then simply delete the following three statements.
; If x is a string rather than a single character, put the the additional
; code to match all the characters in the string.

cmp byte ptr es:[di], ‘x’
jne CRxS_Fail
inc di

call s
jnc CRxS_Fail
stc ;Success!
ret

CRxS_Fail: clc
ret

ConcatRxS endp

 

If the regular expression is of the form r* and the corresponding NFA is of the form

Then the corresponding 80x86 assembly code can look something like the following:

 

RStar proc near
call r
jc RStar
stc
ret

RStar endp

 

Regular expressions based on the Kleene star always succeed since they allow zero or
more occurrences. That is why this code always returns with the carry flag set.

The Kleene Plus operation is only slightly more complex, the corresponding (slightly
optimized) assembly code is

 

RPlus proc near
call r
jnc RPlus_Fail

RPlusLp: call r
jc RPlusLp
stc
ret

RPlus_Fail: clc
ret

RPlus endp

 

Note how this routine fails if there isn’t at least one occurrence of 

 

r

 

.

A major problem with backtracking is that it is potentially inefficient. It is very easy to
create a regular expression that, when converted to an NFA and assembly code, generates
considerable backtracking on certain input strings. This is further exacerbated by the fact

r s
x

r

ε
ε
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that matching routines, if written as described above, are generally very short; so short, in
fact, that the procedure calls and returns make up a significant portion of the execution
time. Therefore, pattern matching in this fashion, although easy, can be slower than it has
to be.

This is just a taste of how you would convert REs to NFAs to assembly language. We
will not go into further detail in this chapter; not because this stuff isn’t interesting to
know, but because you will rarely use these techniques in a real program. If you need high
performance pattern matching you would not use nondeterministic techniques like these.
If you want the ease of programming offered by the conversion of an NFA to assembly
language, you still would not use this technique. Instead, the UCR Standard Library pro-
vides very powerful pattern matching facilities (which exceed the capabilities of NFAs), so
you would use those instead; but more on that a little later.

 

16.1.2.5 Deterministic Finite State Automata (DFAs)

 

Nondeterministic finite state automata, when converted to actual program code, may
suffer from performance problems because of the backtracking that occurs when match-
ing a string. Deterministic finite state automata solve this problem by comparing different
strings 

 

in parallel

 

. Whereas, in the worst case, an NFA may require 

 

n

 

  comparisons, where

 

n

 

  is the sum of the lengths of all the strings the NFA recognizes, a DFA requires only 

 

m

 

comparisons (worst case), where 

 

m

 

  is the length of the longest string the DFA recognizes.

For example, suppose you have an NFA that matches the following regular expres-
sion (the set of 80x86 real-mode mnemonics that begin with an “A”):

 

( AAA | AAD | AAM | AAS | ADC | ADD | AND )

 

A typical implementation as an NFA might look like the following:

 

MatchAMnem proc near
strcmpl
byte “AAA”,0
je matched
strcmpl
byte “AAD”,0
je matched
strcmpl
byte “AAM”,0
je matched
strcmpl
byte “AAS”,0
je matched
strcmpl
byte “ADC”,0
je matched
strcmpl
byte “ADD”,0
je matched
strcmpl
byte “AND”,0
je matched
clc
ret

matched: add di, 3
stc
ret

MatchAMnem endp

 

If you pass this NFA a string that it doesn’t match, e.g., “AAND”, it must perform
seven string comparisons, which works out to about 18 character comparisons (plus all
the overhead of calling 

 

strcmpl

 

). In fact, a DFA can determine that it does not match this
character string by comparing only three characters.
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A DFA is a special form of an NFA with two restrictions. First, there must be 

 

exactly

 

one edge coming out of each node for each of the possible input characters; this implies
that there must be one edge for each possible input symbol 

 

and

 

  you may not have two
edges with the same input symbol. Second, you cannot move from one state to another on
the empty string, 

 

ε

 

. A DFA is deterministic because at each state the next input symbol
determines the next state you will enter. Since each input symbol has an edge associated
with it, there is never a case where a DFA “jams” because you cannot leave the state on
that input symbol. Similarly, the new state you enter is never ambiguous because there is
only one edge leaving any particular state with the current input symbol on it. Figure 16.2
shows the DFA that handles integer constants described by the regular expression

(+ | - | 

 

ε

 

 ) [0-9]

 

+

 

Note than an expression of the form “

 

Σ

 

 - [0-9]“ means 

 

any character except a digit

 

; that is,
the 

 

complement

 

 of the set [0-9]. 

State three is a 

 

failure state.

 

 It is not an accepting state and once the DFA enters a fail-
ure state, it is stuck there (i.e., it will consume all additional characters in the input string
without leaving the failure state). Once you enter a failure state, the DFA has already
rejected the input string. Of course, this is not the only way to reject a string; the DFA
above, for example, rejects the empty string (since that leaves you in state zero) and it
rejects a string containing only a “+” or a “-” character.

DFAs generally contain more states than a comparable NFA. To help keep the size of a
DFA under control, we will allow a few shortcuts that, in no way, affect the operation of a
DFA. First, we will remove the restriction that there be an edge associated with each possi-
ble input symbol leaving every state. Most of the edges leaving a particular state lead to
the failure state. Therefore, our first simplification will be to allow DFAs to drop the edges
that lead to a failure state. If a input symbol is not represented on an outgoing edge from
some state, we will assume that it leads to a failure state. The above DFA with this simpli-
fication appears in Figure 16.2. 

 

Figure 16.2 

 

DFA for Regular Expression (+ | - | 

 

ε

 

 ) [0-9]

 

+

0-9

2

+ |   -
0 1

0-9

0-9

Σ - [0-9+-]

Σ - [0-9]

Σ - [0-9]

Σ

3

 

Figure 16.3 

 

 Simplified DFA for Regular Expression (+ | - | 

 

ε

 

 ) [0-9]

 

+

0-9

2

+ |   -
0 1

0-9

0-9
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A second shortcut, that is actually present in the two examples above, is to allow sets
of characters (or the alternation symbol, “|”) to associate several characters with a single
edge. Finally, we will also allow strings attached to an edge. This is a shorthand notation
for a list of states which recognize each successive character, i.e., the following two DFAs
are equivalent:  

Returning to the regular expression that recognizes 80x86 real-mode mnemonics
beginning with an “A”, we can construct a DFA that recognizes such strings as shown in
Figure 16.4. 

If you trace through this DFA by hand on several accepting and rejecting strings, you will
discover than it requires no more than six character comparisons to determine whether
the DFA should accept or reject an input string.

Although we are not going to discuss the specifics here, it turns out that regular
expressions, NFAs, and DFAs are all equivalent. That is, you can convert anyone of these
to the others. In particular, you can always convert an NFA to a DFA. Although the con-
version isn’t totally trivial, especially if you want an 

 

optimized

 

  DFA, it is always possible
to do so. Converting between all these forms is beginning to leave the scope of this text. If
you are interested in the details, 

 

any

 

  text on formal languages or automata theory will fill
you in.

 

16.1.2.6 Converting a DFA to Assembly Language

 

It is relatively straightforward to convert a DFA to a sequence of assembly instruc-
tions. For example, the assembly code for the DFA that accepts the A-mnemonics in the
previous section is

 

DFA_A_Mnem proc near
cmp byte ptr es:[di], ‘A’
jne Fail
cmp byte ptr es:[di+1], ‘A’
je DoAA
cmp byte ptr es:[di+1], ‘D’
je DoAD
cmp byte ptr es:[di+1], ‘N’
je DoAN

abc

a b c

 

Figure 16.4 

 

DFA that Recognizes AND, AAA, AAD, AAM, AAS, ADD, and ADC

a a

d

n
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a | d | m | s
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Fail: clc
ret

DoAN: cmp byte ptr es:[di+2], ‘D’
jne Fail

Succeed: add di, 3
stc
ret

DoAD: cmp byte ptr es:[di+2], ‘D’
je Succeed
cmp byte ptr es:[di+2], ‘C’
je Succeed
clc ;Return Failure
ret

DoAA: cmp byte ptr es:[di+2], ‘A’
je Succeed
cmp byte ptr es:[di+2], ‘D’
je Succeed
cmp byte ptr es:[di+2], ‘M’
je Succeed
cmp byte ptr es:[di+2], ‘S’
je Succeed
clc
ret

DFA_A_Mnem endp

 

Although this scheme works and is considerably more efficient than the coding
scheme for NFAs, writing this code can be tedious, especially when converting a large
DFA to assembly code. There is a technique that makes converting DFAs to assembly code
almost trivial, although it can consume quite a bit of space – to use state machines. A sim-
ple state machine is a two dimensional array. The columns are indexed by the possible
characters in the input string and the rows are indexed by state number (i.e., the states in
the DFA). Each element of the array is a new state number. The algorithm to match a given
string using a state machine is trivial, it is

 

state := 0;
while (

 

another input character

 

 ) do begin

ch := 

 

next input character

 

 ;
state := StateTable [state][ch];

end;
if (state in FinalStates) then accept
else reject;

 

FinalStates

 

 is a set of accepting states. If the current state number is in this set after the
algorithm exhausts the characters in the string, then the state machine accepts the string,
otherwise it rejects the string.

The following state table corresponds to the DFA for the “A” mnemonics appearing in
the previous section:
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State five is the only accepting state.

There is one major drawback to using this table driven scheme – the table will be quite
large. This is not apparent in the table above because the column labelled “Else” hides
considerable detail. In a true state table, you will need one column for each possible input
character. since there are 256 possible input characters (or at least 128 if you’re willing to
stick to seven bit ASCII), the table above will have 256 columns. With only one byte per
element, this works out to about 2K for this small state machine. Larger state machines
could generate very large tables. 

One way to reduce the size of the table at a (very) slight loss in execution speed is to
classify the characters before using them as an index into a state table. By using a single
256-byte lookup table, it is easy to reduce the state machine to the table above. Consider
the 256 byte lookup table that contains:

• A one at positions 

 

Base+”a”

 

  and 

 

Base+”A”

 

, 
• A two at locations 

 

Base+”c”

 

  and 

 

Base+”C”

 

, 
• A three at locations 

 

Base+”d”

 

  and 

 

Base+”D”

 

, 
• A four at locations 

 

Base+”m”

 

  and 

 

Base+”M”

 

, 
• A five at locations 

 

Base+”n”

 

  and 

 

Base+”N”,

 

• A six at locations 

 

Base+”s”

 

  and 

 

Base+”S”, 

 

and
• A zero everywhere else.

Now we can modify the above table to produce:

The table above contains an extra column, “7”, that we will not use. The reason for adding
the extra column is to make it easy to index into this two dimensional array (since the
extra column lets us multiply the state number by eight rather than seven).

Assuming Classify is the name of the lookup table, the following 80386 code recog-
nizes the strings specified by this DFA:

 

Table 62: State Machine for 80x86 “A” Instructions DFA

 

State A C D M N S Else

0 1 F F F F F F

1 3 F 4 F 2 F F

2 F F 5 F F F F

3 5 F 5 5 F 5 F

4 F 5 5 F F F F

5 F F F F F F F

F F F F F F F F

 

Table 63: Classified State Machine Table for 80x86 “A” Instructions DFA

 

State 0 1 2 3 4 5 6 7

0 6 1 6 6 6 6 6 6

1 6 3 6 4 6 2 6 6

2 6 6 6 5 6 6 6 6

3 6 5 6 5 5 6 5 6

4 6 6 5 5 6 6 6 6

5 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6
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DFA2_A_Mnem proc
push ebx ;Ptr to Classify.
push eax ;Current character.
push ecx ;Current state.
xor eax, eax ;EAX := 0
mov ebx, eax ;EBX := 0
mov ecx, eax ;ECX (state) := 0
lea bx, Classify

WhileNotEOS: mov al, es:[di] ;Get next input char.
cmp al, 0 ;At end of string?
je AtEOS
xlat ;Classify character.
mov cl, State_Tbl[eax+ecx*8] ;Get new state #.
inc di ;Move on to next char.
jmp WhileNotEOS

AtEOS: cmp cl, 5 ;In accepting state?
stc ;Assume acceptance.
je Accept
clc

Accept: pop ecx
pop eax
pop ebx
ret

DFA2_A_Mnem endp

 

The nice thing about this DFA (the DFA is the combination of the classification table,
the state table, and the above code) is that it is very easy to modify. To handle any other
state machine (with eight or fewer character classifications) you need only modify the

 

Classification

 

 array, the 

 

State_Tbl

 

 array, the 

 

lea bx, Classify

 

 statement and the statements at
label 

 

AtEOS

 

 that determine if the machine is in a final state. The assembly code does not
get more complex as the DFA grows in size. The State_Tbl array will get larger as you add
more states, but this does not affect the assembly code.

Of course, the assembly code above 

 

does

 

  assume there are exactly eight columns in the
matrix. It is easy to generalize this code by inserting an appropriate 

 

imul

 

 instruction to
multiply by the size of the array. For example, had we gone with seven columns rather
than eight, the code above would be

 

DFA2_A_Mnem proc
push ebx ;Ptr to Classify.
push eax ;Current character.
push ecx ;Current state.
xor eax, eax ;EAX := 0
mov ebx, eax ;EBX := 0
mov ecx, eax ;ECX (state) := 0
lea bx, Classify

WhileNotEOS: mov al, es:[di] ;Get next input char.
cmp al, 0 ;At end of string?
je AtEOS
xlat ;Classify character.
imul cx, 7
movzx ecx, State_Tbl[eax+ecx] ;Get new state #.
inc di ;Move on to next char.
jmp WhileNotEOS

AtEOS: cmp cl, 5 ;In accepting state?
stc ;Assume acceptance.
je Accept
clc

Accept: pop ecx
pop eax
pop ebx
ret

DFA2_A_Mnem endp

 

Although using a state table in this manner simplifies the assembly coding, it does
suffer from two drawbacks. First, as mentioned earlier, it is slower. This technique has to
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execute all the statements in the while loop for each character it matches; and those
instructions are not particularly fast ones, either. The second drawback is that you’ve got
to create the state table for the state machine; that process is tedious and error prone. 

If you need the absolute highest performance, you can use the state machine tech-
niques described in  (see “State Machines and Indirect Jumps” on page 529). The trick here
is to represent each state with a short segment of code and its own one dimensional state
table. Each entry in the table is the target address of the segment of code representing the
next state. The following is an example of our “A Mnemonic” state machine written in this
fashion. The only difference is that the zero byte is classified to value seven (zero marks
the end of the string, we will use this to determine when we encounter the end of the
string). The corresponding state table would be:

The 80x86 code is

 

DFA3_A_Mnem proc
push ebx
push eax
push ecx
xor eax, eax

lea ebx, Classify
State0: mov al, es:[di]

xlat
inc di
jmp cseg:State0Tbl[eax*2]

State0Tbl word State6, State1, State6, State6
word State6, State6, State6, State6

State1: mov al, es:[di]
xlat
inc di
jmp cseg:State1Tbl[eax*2]

State1Tbl word State6, State3, State6, State4
word State6, State2, State6, State6

State2: mov al, es:[di]
xlat
inc di
jmp cseg:State2Tbl[eax*2]

State2Tbl word State6, State6, State6, State5
word State6, State6, State6, State6

State3: mov al, es:[di]
xlat
inc di
jmp cseg:State3Tbl[eax*2]

 

Table 64: Another State Machine Table for 80x86 “A” Instructions DFA

 

State 0 1 2 3 4 5 6 7

0 6 1 6 6 6 6 6 6

1 6 3 6 4 6 2 6 6

2 6 6 6 5 6 6 6 6

3 6 5 6 5 5 6 5 6

4 6 6 5 5 6 6 6 6

5 6 6 6 6 6 6 6 5

6 6 6 6 6 6 6 6 6



 

Chapter 16

Page 900

 

State3Tbl word State6, State5, State6, State5
word State5, State6, State5, State6

State4: mov al, es:[di]
xlat
inc di
jmp cseg:State4Tbl[eax*2]

State4Tbl word State6, State6, State5, State5
word State6, State6, State6, State6

State5: mov al, es:[di]
cmp al, 0
jne State6
stc
pop ecx
pop eax
pop ebx
ret

State6: clc
pop ecx
pop eax
pop ebx
ret

 

There are two important features you should note about this code. First, it only exe-
cutes four instructions per character comparison (fewer, on the average, than the other
techniques). Second, the instant the DFA detects failure it stops processing the input char-
acters. The other table driven DFA techniques blindly process the entire string, even after
it is obvious that the machine is locked in a failure state.

Also note that this code treats the accepting and failure states a little differently than
the generic state table code. This code recognizes the fact that once we’re in state five it
will either succeed (if EOS is the next character) or fail. Likewise, in state six this code
knows better than to try searching any farther. 

Of course, this technique is not as easy to modify for different DFAs as a simple state
table version, but it is quite a bit faster. If you’re looking for speed, this is a good way to
code a DFA.

 

16.1.3 Context Free Languages

 

Context free languages provide a superset of the regular languages – if you can spec-
ify a class of patterns with a regular expression, you can express the same language using
a 

 

context free grammar

 

. In addition, you can specify many languages that are not regular
using context free grammars (CFGs).

Examples of languages that are context free, but not regular, include the set of all
strings representing common arithmetic expressions, legal Pascal or C source files

 

4

 

, and
MASM macros. Context free languages are characterized by 

 

balance

 

  and 

 

nesting

 

. For
example, arithmetic expression have balanced sets of parenthesis. High level language
statements like 

 

repeat

 

…

 

until

 

 allow nesting and are always balanced (e.g., for every 

 

repeat

 

there is a corresponding 

 

until

 

 statement later in the source file).

There is only a slight extension to the regular languages to handle context free lan-
guages – function calls. In a regular expression, we only allow the objects we want to
match and the specific RE operators like “|”, “*”, concatenation, and so on. To extend reg-
ular languages to context free languages, we need only add recursive function calls to reg-
ular expressions. Although it would be simple to create a syntax allowing function calls

 

4. Actually, C and Pascal are 

 

not

 

  context free languages, but Computer Scientists like to treat them as though they
were.
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within a regular expression, computer scientists use a different notation altogether for
context free languages – a context free grammar.

A context free grammar contains two types of symbols: 

 

terminal symbols

 

  and 

 

nontermi-
nal symbols

 

. Terminal symbols are the individual characters and strings that the context
free grammar matches plus the empty string, 

 

ε

 

. Context free grammars use nonterminal
symbols for function calls and definitions. In our context free grammars we will use italic
characters to denote nonterminal symbols and standard characters to denote terminal
symbols.

A context free grammar consists of a set of function definitions known as 

 

productions

 

.
A production takes the following form:

 

Function_Name 

 

→

 

 «list of terminal and nonterminal symbols»

 

The function name to the left hand side of the arrow is called the 

 

left hand side

 

  of the pro-
duction. The function body, which is the list of terminals and nonterminal symbols, is
called the 

 

right hand side

 

  of the production. The following is a grammar for simple arith-
metic expressions:

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor

expression 

 

→

 

 

 

expression 

 

- 

 

factor

expression 

 

→

 

 

 

factor

factor 

 

→

 

 

 

factor 

 

* 

 

term

factor 

 

→

 

 

 

factor 

 

/ 

 

term

factor 

 

→

 

 

 

term

term 

 

→

 

 

 

IntegerConstant

term 

 

→

 

 ( 

 

expression

 

 )

 

IntegerConstant 

 

→

 

 

 

digit

IntegerConstant 

 

→

 

 

 

digit

 

 

 

IntegerConstant

digit 

 

→

 

 0

 

digit 

 

→

 

 1

 

digit 

 

→

 

 2

 

digit 

 

→

 

 3

 

digit 

 

→

 

 4

 

digit 

 

→

 

 5

 

digit 

 

→

 

 6

 

digit 

 

→

 

 7

 

digit 

 

→

 

 8

 

digit 

 

→

 

 9

 

Note that you may have multiple definitions for the same function. Context-free
grammars behave in a non-deterministic fashion, just like NFAs. When attempting to
match a string using a context free grammar, a string matches if there exists some match-
ing function which matches the current input string. Since it is very common to have mul-
tiple productions with identical left hand sides, we will use the alternation symbol from
the regular expressions to reduce the number of lines in the grammar. The following two
subgrammars are identical:

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor

expression 

 

→

 

 

 

expression 

 

- 

 

factor

expression 

 

→

 

 

 

factor

 

The above is equivalent to:

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor  

 

|

 

  expression 

 

- 

 

factor  

 

|

 

  factor

 

The full arithmetic grammar, using this shorthand notation, is

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor  

 

|  

 

expression 

 

- 

 

factor  

 

|

 

  factor

factor 

 

→

 

 

 

factor 

 

* 

 

term  

 

|  

 

factor 

 

/ 

 

term  

 

|

 

  term

term 

 

→

 

 

 

IntegerConstant  

 

|  ( 

 

expression

 

 )
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IntegerConstant 

 

→

 

 

 

digit  

 

|  

 

digit

 

 

 

IntegerConstant

digit 

 

→

 

 0

 

  

 

|  1

 

  

 

|  2

 

  

 

|  3

 

  

 

|  

 

4  

 

|  5

 

  

 

|  6

 

  

 

|  7

 

  

 

|  8

 

  

 

|  9

 

One of the nonterminal symbols, usually the first production in the grammar, is the

 

starting symbol

 

. This is roughly equivalent to the starting state in a finite state automaton.
The starting symbol is the first matching function you call when you want to test some
input string to see if it is a member of a context free language. In the example above,

 

expression

 

 is the starting symbol.

Much like the NFAs and DFAs recognize strings in a regular language specified by a
regular expression, 

 

nondeterministic pushdown automata

 

  and 

 

deterministic pushdown
automata

 

  recognize strings belonging to a context free language specified by a context free
grammar. We will not go into the details of these pushdown automata (or 

 

PDAs

 

 ) here, just
be aware of their existence. We can match strings directly with a grammar. For example,
consider the string

 

7+5*(2+1) 

 

To match this string, we begin by calling the starting symbol function, 

 

expression

 

, using the
function 

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor

 

. 

 

  The first plus sign suggests that the

 

expression

 

  term must match “7” and the 

 

factor

 

  term must match “5*(2+1)”.  Now we need
to match our input string with the pattern 

 

expression 

 

+ 

 

factor

 

.

 

 To do this, we call the

 

expression

 

  function once again, this time using the 

 

expression 

 

→

 

 

 

factor

 

  production.
This give us the 

 

reduction

 

:

 

expression 

 

⇒

 

 

 

expression 

 

+ 

 

factor

 

 ⇒

 

 

 

factor 

 

+ 

 

factor

 

The 

 

⇒

 

 symbol denotes the application of a nonterminal function call (a reduction). 

Next, we call the factor function, using the production 

 

factor 

 

→

 

 

 

term 

 

to yield the
reduction:

 

expression 

 

⇒

 

 

 

expression 

 

+ 

 

factor

 

 ⇒

 

 

 

factor 

 

+ 

 

factor 

 

⇒

 

 

 

term 

 

+ 

 

factor

 

Continuing, we call the 

 

term

 

 function to produce the reduction:

 

expression 

 

⇒

 

 

 

expression 

 

+ 

 

factor

 

 ⇒

 

 

 

factor 

 

+ 

 

factor 

 

⇒

 

 

 

term 

 

+ 

 

factor 

 

⇒

 

 

 

Inte-
gerConstant 

 

+ 

 

factor

 

Next, we call the 

 

IntegerConstant

 

  function to yield:

 

expression 

 

⇒

 

 

 

expression 

 

+ 

 

factor

 

 ⇒

 

 

 

factor 

 

+ 

 

factor 

 

⇒

 

 

 

term 

 

+ 

 

factor 

 

⇒

 

 

 

Inte-
gerConstant 

 

+ 

 

factor 

 

⇒

 

 

 

7 

 

+ 

 

factor

 

At this point, the first two symbols of our generated string match the first two characters
of the input string, so we can remove them from the input and concentrate on the items
that follow. In succession, we call the 

 

factor

 

  function to produce the reduction 

 

7 

 

+ 

 

factor

 

* 

 

term 

 

and then we call 

 

factor, term

 

, and 

 

IntegerConstant

 

  to yield 

 

7 

 

+ 

 

5 

 

* 

 

term

 

.  In a simi-
lar fashion, we can reduce the term to “( 

 

expression 

 

)” and reduce expression to “2+1”. The
complete 

 

derivation

 

  for this string is
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expression

 

⇒

 

 

 

expression 

 

+ 

 

factor

 

 

 

⇒

 

 

 

factor 

 

+ 

 

factor 

 

⇒

 

 

 

term 

 

+ 

 

factor 

 

⇒

 

 

 

IntegerConstant 

 

+ 

 

factor 

 

⇒

 

 

 

7 

 

+ 

 

factor

 

 

 

⇒

 

 

 

7 

 

+ 

 

factor * term

 

 

 

⇒

 

 

 

7 

 

+ 

 

term * term

 

 

 

⇒

 

 

 

7 

 

+ 

 

IntegerConstant * term

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * term

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

expression

 

 )

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

expression

 

 + 

 

factor

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

factor

 

 + 

 

factor

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

IntegerConstant

 

 + 

 

factor

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

2

 

 + 

 

factor

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

2

 

 + 

 

term

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

2

 

 + 

 

IntegerConstant

 

 

 

)

 

 

 

⇒

 

 

 

7 

 

+ 

 

5 * 

 

( 

 

2

 

 + 

 

1

 

 

 

)

 

The final reduction completes the derivation of our input string, so the string 7+5*(2+1) is
in the language specified by the context free grammar.

 

16.1.4 Eliminating Left Recursion and Left Factoring CFGs

 

In the next section we will discuss how to convert a CFG to an assembly language
program. However, the technique we are going to use to do this conversion will require
that we modify certain grammars before converting them. The arithmetic expression
grammar in the previous section is a good example of such a grammar – one that is 

 

left
recursive

 

.

Left recursive grammars pose a problem for us because the way we will typically con-
vert a production to assembly code is to call a function corresponding to a nonterminal
and compare against the terminal symbols. However, we will run into trouble if we
attempt to convert a production like the following using this technique:

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor

 

Such a conversion would yield some assembly code that looks roughly like the following:

 

expression proc near
call expression
jnc fail
cmp byte ptr es:[di], ‘+’
jne fail
inc di
call factor
jnc fail
stc
ret

Fail: clc
ret

expression endp

 

The obvious problem with this code is that it will generate an infinite loop. Upon entering
the 

 

expression

 

 function this code immediately calls 

 

expression

 

 recursively, which immedi-
ately calls 

 

expression

 

 recursively, which immediately calls 

 

expression

 

 recursively, ... Clearly,
we need to resolve this problem if we are going to write any real code to match this pro-
duction.

The trick to resolving left recursion is to note that if there is a production that suffers
from left recursion, there must be 

 

some

 

  production with the same left hand side that is not
left recursive

 

5

 

.  All we need do is rewrite the left recursive call in terms of the production
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that does not have any left recursion. This sound like a difficult task, but it’s actually quite
easy. 

To see how to eliminate left recursion, let 

 

X

 

i

 

  and 

 

Y

 

j 

 

 represent any set of terminal sym-
bols or nonterminal symbols that do not have a right hand side beginning with the nonter-
minal

 

 A

 

. If you have some productions of the form:

 

A 

 

→

 

 

 

AX

 

1

 

 | 

 

AX

 

2

 

 | … | 

 

AX

 

n

 

 | 

 

Y

 

1

 

 

 

| 

 

Y

 

2

 

 

 

| 

 

…

 

 

 

| 

 

Y

 

m

 

 

 

You will be able to translate this to an equivalent grammar without left recursion by
replacing each term of the form 

 

A

 

 

 

→

 

Y

 

i

 

  by 

 

A

 

 

 

→

 

Y

 

i

 

 

 

A  

 

and each term of the form 

 

A

 

 

 

→

 

AX

 

i

 

  by

 

A

 

’ 

 

→

 

X

 

i

 

 A’

 

 | 

 

ε

 

. For example, consider three of the productions from the arithmetic grammar:

 

expression 

 

→

 

 

 

expression 

 

+ 

 

factor

expression 

 

→

 

 

 

expression 

 

- 

 

factor

expression 

 

→

 

 

 

factor

 

In this example 

 

A

 

 corresponds to 

 

expression

 

, 

 

X

 

1

 

 corresponds to “+ 

 

factor

 

 ”, 

 

X

 

2

 

 corresponds
to “- 

 

factor

 

 ”, and 

 

Y

 

1

 

 corresponds to “

 

factor 

 

”. The equivalent grammar without left recur-
sion is

 

expression 

 

→

 

 

 

factor E’

E’ 

 

→

 

 

 

- 

 

factor E’

E’ 

 

→

 

 + 

 

factor E’

E’ 

 

→

 

 

 

ε

 

The complete arithmetic grammar, with left recursion removed, is

 

expression 

 

→

 

 

 

factor E’

E’ 

 

→

 

 

 

+ 

 

factor E’ 

 

| 

 

 

 

- 

 

factor E’ 

 

|

 

  

 

ε

 

factor 

 

→

 

 

 

term F’

F’ 

 

→

 

 

 

* 

 

term F’ 

 

| 

 

 

 

/ 

 

term F’ 

 

|

 

  

 

ε

 

term 

 

→

 

 

 

IntegerConstant  

 

|  ( 

 

expression

 

 )

 

IntegerConstant 

 

→

 

 

 

digit  

 

|  

 

digit

 

 

 

IntegerConstant

digit 

 

→

 

 0

 

  

 

|  1

 

  

 

|  2

 

  

 

|  3

 

  

 

|  

 

4  

 

|  5

 

  

 

|  6

 

  

 

|  7

 

  

 

|  8

 

  

 

|  9

 

Another useful transformation on a grammar is to left factor the grammar. This can
reduce the need for backtracking, improving the performance of your pattern matching
code. Consider the following CFG fragment:

 

stmt 

 

→

 

 if 

 

expression 

 

then 

 

stmt 

 

endif

 

stmt 

 

→

 

 if 

 

expression 

 

then 

 

stmt 

 

else 

 

stmt 

 

endif

 

These two productions begin with the same set of symbols. Either production will match
all the characters in an 

 

if

 

 statement up to the point the matching algorithm encounters the
first 

 

else

 

 or 

 

endif

 

. If the matching algorithm processes the first statement up to the point of
the 

 

endif

 

 terminal symbol and encounters the 

 

else

 

 terminal symbol instead, it must back-
track all the way to the 

 

if

 

 symbol and start over. This can be terribly inefficient because of
the recursive call to 

 

stmt

 

  (imagine a 10,000 line program that has a single if statement
around the entire 10,000 lines, a compiler using this pattern matching technique would
have to recompile the entire program from scratch if it used backtracking in this fashion).
However, by left factoring the grammar before converting it to program code, you can
eliminate the need for backtracking.

To left factor a grammar, you collect all productions that have the same left hand side
and begin with the same symbols on the right hand side. In the two productions above,
the common symbols are “if 

 

expression

 

 then 

 

stmt

 

 “. You combine the common strings into a
single production and then append a new nonterminal symbol to the end of this new pro-
duction, e.g.,

 

5. If this is not the case, the grammar does not match any finite length strings.
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stmt 

 

→

 

 if 

 

expression 

 

then 

 

stmt NewNonTerm

 

Finally, you create a new set of productions using this new nonterminal for each of the
suffixes to the common production:

 

NewNonTerm 

 

→

 

 endif | else 

 

stmt

 

 endif

 

This eliminates backtracking because the matching algorithm can process the 

 

if

 

, the 

 

expres-
sion

 

, the 

 

then

 

, and the 

 

stmt

 

 before it has to choose between 

 

endif

 

  and 

 

else

 

. 

 

16.1.5 Converting REs to CFGs

 

Since the context free languages are a superset of the regular languages, it should
come as no surprise that it is possible to convert regular expressions to context free gram-
mars. Indeed, this is a very easy process involving only a few intuitive rules.

1) If a regular expression simply consists of a sequence of characters, xyz, you can easily
create a production for this regular expression of the form 

 

P 

 

 

 

→

 

 

 

xyz. This applies
equally to the empty string, 

 

ε

 

.

2) If 

 

r

 

  and 

 

s

 

  are two regular expression that you’ve converted to CFG productions 

 

R

 

and 

 

S

 

 , and you have a regular expression 

 

rs

 

  that you want to convert to a production,
simply create a new production of the form 

 

T 

 

 

 

→

 

 

 

R   S

 

.

3) If 

 

r

 

  and 

 

s

 

  are two regular expression that you’ve converted to CFG productions 

 

R

 

and 

 

S

 

 , and you have a regular expression 

 

r  |  s

 

  that you want to convert to a produc-
tion, simply create a new production of the form 

 

T 

 

 

 

→

 

 

 

R  |  S

 

.

4) If 

 

r 

 

 is a regular expression that you’ve converted to a production, 

 

R

 

, and you want to
create a production for 

 

r*

 

, simply use the production  

 

R

 

Star 

 

→

 

 

 

R   RStar 

 

 | 

 

ε.

 

5) If 

 

r 

 

 is a regular expression that you’ve converted to a production, 

 

R

 

, and you want to
create a production for 

 

r

 

+

 

, simply use the production  

 

R

 

Plus 

 

→

 

 

 

R   RPlus 

 

 | 

 

R

 

.

 

6) For regular expressions there are operations with various precedences. Regular
expressions also allow parenthesis to override the default precedence. This notion of
precedence does not carry over into CFGs. Instead, you must encode the precedence
directly into the grammar. For example, to encode 

 

R S*

 

  you would probably use pro-
ductions of the form:

 

T

 

  

 

→

 

 

 

R

 

   

 

SStar

 

SStar 

 

→

 

 

 

S SStar

 

 | 

 

ε

 

Likewise, to handle a grammar of the form (

 

RS

 

 )* you could use productions of the
form:

 

T

 

  

 

→

 

 

 

R S

 

   

 

T  

 

| 

 

ε

 

RS

 

 

 

 

 

→

 

 

 

R   S

 

16.1.6 Converting CFGs to Assembly Language

 

If you have removed left recursion and you’ve left factored a grammar, it is very easy
to convert such a grammar to an assembly language program that recognizes strings in
the context free language. 

The first convention we will adopt is that 

 

es:di

 

 always points at the start of the string
we want to match. The second convention we will adopt is to create a function for each
nonterminal. This function returns success (carry set) if it matches an associated subpat-
tern, it returns failure (carry clear) otherwise. If it succeeds, it leaves 

 

di

 

 pointing at the next
character is the staring 

 

after

 

  the matched pattern; if it fails, it preserves the value in 

 

di

 

across the function call. 

To convert a set of productions to their corresponding assembly code, we need to be
able to handle four things: terminal symbols, nonterminal symbols, alternation, and the
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empty string. First, we will consider simple functions (nonterminals) which do not have
multiple productions (i.e., alternation).

If a production takes the form 

 

T

 

  

 

→

 

 

 

ε

 

 and there are no other productions associated
with 

 

T

 

, then this production always succeeds. The corresponding assembly code is simply:

 

T proc near
stc
ret

T endp

 

Of course, there is no real need to ever call 

 

T

 

  and test the returned result since we know it
will always succeed. On the other hand, if 

 

T

 

  is a 

 

stub

 

  that you intend to fill in later, you
should call 

 

T

 

.

If a production takes the form 

 

T

 

  

 

→

 

 

 

xyz, where xyz is a string of one or more terminal
symbols, then the function returns success if the next several input characters match xyz,
it returns failure otherwise. Remember, if the prefix of the input string matches xyz, then
the matching function must advance 

 

di

 

 beyond these characters. If the first characters of
the input string does not match xyz, it must preserve 

 

di

 

. The following routines demon-
strate two cases, where xyz is a single character and where xyz is a string of characters:

 

T1 proc near
cmp byte ptr es:[di], ‘x’ ;Single char.
je Success
clc ;Return Failure.
ret

Success: inc di ;Skip matched char.
stc ;Return success.
ret

T1 endp

T2 proc near
call MatchPrefix
byte ‘xyz’,0
ret

T2 endp

 

MatchPrefix

 

 is a routine that matches the prefix of the string pointed at by es:di against the
string following the call in the code stream. It returns the carry set and adjusts 

 

di

 

 if the
string in the code stream is a prefix of the input string, it returns the carry flag clear and
preserves 

 

di

 

 if the literal string is not a prefix of the input. The 

 

MatchPrefix

 

 code follows:

 

MatchPrefix proc far ;Must be far!
push bp
mov bp, sp
push ax
push ds
push si
push di

lds si, 2[bp] ;Get the return address.
CmpLoop: mov al, ds:[si] ;Get string to match.

cmp al, 0 ;If at end of prefix,
je Success ; we succeed.
cmp al, es:[di] ;See if it matches prefix,
jne Failure ; if not, immediately fail.
inc si
inc di
jmp CmpLoop

Success: add sp, 2 ;Don’t restore di.
inc si ;Skip zero terminating byte.
mov 2[bp], si ;Save as return address.
pop si
pop ds
pop ax
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pop bp
stc ;Return success.
ret

Failure: inc si ;Need to skip to zero byte.
cmp byte ptr ds:[si], 0
jne Failure
inc si
mov 2[bp], si ;Save as return address.

pop di
pop si
pop ds
pop ax
pop bp
clc ;Return failure.
ret

MatchPrefix endp

 

If a production takes the form 

 

T

 

  

 

→

 

 

 

R

 

, where 

 

R 

 

 is a nonterminal, then the 

 

T

 

  function
calls 

 

R

 

  and returns whatever status 

 

R

 

  returns, e.g.,

 

T proc near
call R
ret

T endp

 

If the right hand side of a production contains a string of terminal and nonterminal
symbols, the corresponding assembly code checks each item in turn. If any check fails,
then the function returns failure. If all items succeed, then the function returns success.
For example, if you have a production of the form 

 

T

 

 

 

→

 

 

 

R

 

  abc 

 

S 

 

 you could implement this
in assembly language as

 

T proc near
push di ;If we fail, must preserve 

di.
call R
jnc Failure
call MatchPrefix
byte “abc”,0
jnc Failure
call S
jnc Failure
add sp, 2 ;Don’t preserve di if we 

succeed.
stc
ret

Failure: pop di
clc
ret

T endp

 

Note how this code preserves di if it fails, but does not preserve di if it succeeds.

If you have multiple productions with the same left hand side (i.e., alternation), then
writing an appropriate matching function for the productions is only slightly more com-
plex than the single production case. If you have multiple productions associated with a
single nonterminal on the left hand side, then create a sequence of code to match each of
the individual productions. To combine them into a single matching function, simply
write the function so that it succeeds if any one of these code sequences succeeds. If one of
the productions is of the form T  

 

→

 

 e, then test the other conditions first. If none of them
could be selected, the function succeeds. For example, consider the productions:

 

E’ 

 

→

 

 

 

+ 

 

factor E’ 

 

| 

 

 

 

- 

 

factor E’ 

 

|

 

  

 

ε

 

This translates to the following assembly code:
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EPrime proc near
push di
cmp byte ptr es:[di], ‘+’
jne TryMinus
inc di
call factor
jnc EP_Failed
call EPrime
jnc EP_Failed

Success: add sp, 2
stc
ret

TryMinus: cmp byte ptr es:[di], ‘-’
jne EP_Failed
inc di
call factor
jnc EP_Failed
call EPrime
jnc EP_Failed
add sp, 2
stc
ret

EP_Failed: pop di
stc ;Succeed because of E’ -> 

 

ε

 

ret
EPrime endp

 

This routine always succeeds because it has the production 

 

E’ 

 

→

 

 

 

ε

 

. This is why the 

 

stc

 

instruction appears after the 

 

EP_Failed

 

 label.

To invoke a pattern matching function, simply load es:di with the address of the string
you want to test and call the pattern matching function. On return, the carry flag will con-
tain one if the pattern matches the string up to the point returned in di. If you want to see
if the entire  string matches the pattern, simply check to see if 

 

es:di

 

 is pointing at a zero
byte when you get back from the function call. If you want to see if a string belongs to a
context free language, you should call the function associated with the starting symbol for
the given context free grammar.

The following program implements the arithmetic grammar we’ve been using as
examples throughout the past several sections. The complete implementation is

 

; ARITH.ASM
;
; A simple recursive descent parser for arithmetic strings.

.xlist
include stdlib.a
includelibstdlib.lib
.list

dseg segment para public ‘data’

; Grammar for simple arithmetic grammar (supports +, -, *, /):
;
; E -> FE’
; E’ -> + F E’ | - F E’ | <empty string>
; F -> TF’
; F’ -> * T F’ | / T F’ | <empty string>
; T -> G | (E)
; G -> H | H G
; H -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;

InputLine byte 128 dup (0)

dseg ends
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cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Matching functions for the grammar.
; These functions return the carry flag set if they match their
; respective item. They return the carry flag clear if they fail.
; If they fail, they preserve di. If they succeed, di points to
; the first character after the match.

; E -> FE’

E proc near
push di
call F ;See if F, then E’, succeeds.
jnc E_Failed
call EPrime
jnc E_Failed
add sp, 2 ;Success, don’t restore di.
stc
ret

E_Failed: pop di ;Failure, must restore di.
clc
ret

E endp

; E’ -> + F E’ | - F E’ | 

 

ε

 

EPrime proc near
push di

; Try + F E’ here

cmp byte ptr es:[di], ‘+’
jne TryMinus
inc di
call F
jnc EP_Failed
call EPrime
jnc EP_Failed

Success: add sp, 2
stc
ret

; Try  - F E’ here.

TryMinus: cmp byte ptr es:[di], ‘-’
jne Success
inc di
call F
jnc EP_Failed
call EPrime
jnc EP_Failed
add sp, 2
stc
ret

; If none of the above succeed, return success anyway because we have
; a production of the form E’ -> 

 

ε

 

.

EP_Failed: pop di
stc
ret

EPrime endp
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; F -> TF’

F proc near
push di
call T
jnc F_Failed
call FPrime
jnc F_Failed
add sp, 2 ;Success, don’t restore di.
stc
ret

F_Failed: pop di
clc
ret

F endp

; F -> * T F’ | / T F’ | 

 

ε

 

FPrime proc near
push di
cmp byte ptr es:[di], ‘*’ ;Start with “*”?
jne TryDiv
inc di ;Skip the “*”.
call T
jnc FP_Failed
call FPrime
jnc FP_Failed

Success: add sp, 2
stc
ret

; Try F -> / T F’ here

TryDiv: cmp byte ptr es:[di], ‘/’ ;Start with “/”?
jne Success ;Succeed anyway.
inc di ;Skip the “/”.
call T
jnc FP_Failed
call FPrime
jnc FP_Failed
add sp, 2
stc
ret

; If the above both fail, return success anyway because we’ve got
; a production of the form F -> 

 

ε

 

FP_Failed: pop di
stc
ret

FPrime endp

; T -> G | (E)

T proc near

; Try T -> G here.

call G
jnc TryParens
ret

; Try T -> (E) here.
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TryParens: push di ;Preserve if we fail.
cmp byte ptr es:[di], ‘(‘ ;Start with “(“?
jne T_Failed ;Fail if no.
inc di ;Skip “(“ char.
call E
jnc T_Failed
cmp byte ptr es:[di], ‘)’ ;End with “)”?
jne T_Failed ;Fail if no.
inc di ;Skip “)”
add sp, 2 ;Don’t restore di,
stc ; we’ve succeeded.
ret

T_Failed: pop di
clc
ret

T endp

; The following is a free-form translation of
;
; G -> H | H G
; H -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;
; This routine checks to see if there is at least one digit. It fails if there
; isn’t at least one digit; it succeeds and skips over all digits if there are
; one or more digits.

G proc near
cmp byte ptr es:[di], ‘0’ ;Check for at least
jb G_Failed ; one digit.
cmp byte ptr es:[di], ‘9’
ja G_Failed

DigitLoop: inc di ;Skip any remaining
cmp byte ptr es:[di], ‘0’ ; digits found.
jb G_Succeeds
cmp byte ptr es:[di], ‘9’
jbe DigitLoop

G_Succeeds: stc
ret

G_Failed: clc ;Fail if no digits
ret ; at all.

G endp

; This main program tests the matching functions above and demonstrates
; how to call the matching functions.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax

printf
byte “Enter an arithmetic expression: “,0
lesi InputLine
gets
call E
jnc BadExp

; Good so far, but are we at the end of the string?

cmp byte ptr es:[di], 0
jne BadExp

; Okay, it truly is a good expression at this point.

printf



 

Chapter 16

Page 912

 

byte “‘%s’ is a valid expression”,cr,lf,0
dword InputLine
jmp Quit

BadExp: printf
byte “‘%s’ is an invalid arithmetic expression”,cr,lf,0
dword InputLine

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

16.1.7 Some Final Comments on CFGs

 

The techniques presented in this chapter for converting CFGs to assembly code do not
work for all CFGs. They only work for a (large) subset of the CFGs known as LL(1) gram-
mars. The code that these techniques produce is a 

 

recursive descent predictive parser

 

6

 

.
Although the set of context free languages recognizable by an LL(1) grammar is a subset
of the context free languages, it is a very large subset and you shouldn’t run into too many
difficulties using this technique. 

One important feature of predictive parsers is that they do not require any backtrack-
ing. If you are willing to live with the inefficiencies associated with backtracking, it is easy
to extended a recursive descent parser to handle any CFG. Note that when you use back-
tracking, the 

 

predictive

 

  adjective goes away, you wind up with a nondeterministic system
rather than a deterministic system (predictive and deterministic are very close in meaning
in this case).

There are other CFG systems as well as LL(1). The so-called operator precedence and
LR(k) CFGs are two examples. For more information about parsing and grammars, con-
sult a good text on formal language theory or compiler construction (see the bibliogra-
phy).

 

16.1.8 Beyond Context Free Languages

 

Although most patterns you will probably want to process will be regular or context
free, there may be times when you need to recognize certain types of patterns that are
beyond these two (e.g., 

 

context sensitive

 

  languages). As it turns out, the finite state autom-
ata are the simplest machines; the pushdown automata (that recognize context free lan-
guages) are the next step up. After pushdown automata, the next step up in power is the

 

Turing machine

 

. However, Turing machines are equivalent in power to the 80x86

 

7

 

, so
matching patterns recognized by Turing machines is no different than writing a normal
program.

The key to writing functions that recognize patterns that are not context free is to
maintain information in variables and use the variables to decide which of several pro-
ductions you want to use at any one given time. This technique introduces 

 

context sensitiv-

 

6. A 

 

parser

 

  is a function that determines whether a pattern belongs to a language.
7. Actually, they are more powerful, in theory, because they have an infinite amount of memory available.
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ity

 

. Such techniques are very useful in artificial intelligence programs (like natural
language processing) where ambiguity resolution depends on past knowledge or the cur-
rent context of a pattern matching operation. However, the uses for such types of pattern
matching quickly go beyond the scope of a text on assembly language programming, so
we will let some other text continue this discussion.

 

16.2 The UCR Standard Library Pattern Matching Routines

 

The UCR Standard Library provides a very sophisticated set of pattern matching rou-
tines. They are patterned after the pattern matching facilities of SNOBOL4, support CFGs,
and provide fully automatic backtracking, as necessary. Furthermore, by writing only 

 

five

 

assembly language statements, you can match simple or complex patterns.

There is very little assembly language code to worry about when using the Standard
Library’s pattern matching routines because most of the work occurs in the data segment.
To use the pattern matching routines, you first construct a pattern data structure in the
data segment. You then pass the address of this pattern and the string you wish to test to
the Standard Library 

 

match

 

 routine. The 

 

match

 

 routine returns failure or success depend-
ing on the state of the comparison. This isn’t quite as easy as it sounds, though; learning
how to construct the pattern data structure is almost like learning a new programming
language. Fortunately, if you’ve followed the discussion on context free languages, learn-
ing this new “language” is a breeze.

The Standard Library 

 

pattern  

 

data structure takes the following form:

 

Pattern struct
MatchFunction dword ?
MatchParm dword ?
MatchAlt dword ?
NextPattern dword ?
EndPattern word ?
StartPattern word ?
StrSeg word ?
Pattern ends

 

The 

 

MatchFunction

 

 field contains the address of a routine to call to perform some sort
of comparison. The success or failure of this function determines whether the pattern
matches the input string. For example, the UCR Standard Library provides a 

 

MatchStr

 

function that compares the next 

 

n

 

  characters of the input string against some other char-
acter string.

The 

 

MatchParm

 

 

 

field contains the address or value of a parameter (if appropriate) for
the 

 

MatchFunction

 

 routine. For example, if the 

 

MatchFunction

 

 routine is 

 

MatchStr

 

, then the

 

MatchParm

 

 field contains the address of the string to compare the input characters against.
Likewise, the 

 

MatchChar

 

 routine compares the next input character in the string against the
L.O. byte of the 

 

MatchParm

 

 field. Some matching functions do not require any parameters,
they will ignore any value you assign to 

 

MatchParm

 

 field. By convention, most program-
mers store a zero in unused fields of the 

 

Pattern

 

 structure.

The 

 

MatchAlt

 

 field contains either zero (NULL) or the address of some other pattern
data structure. If the current pattern matches the input characters, the pattern matching
routines ignore this field. However, if the current pattern fails to match the input string,
then the pattern matching routines will attempt to match the pattern whose address
appears in this field. If this alternate pattern returns success, then the pattern matching
routine returns success to the caller, otherwise it returns failure. If the 

 

MatchAlt

 

 field con-
tains NULL, then the pattern matching routine immediately fails if the main pattern does
not match. 

The 

 

Pattern

 

 data structure only matches one item. For example, it might match a single
character, a single string, or a character from a set of characters. A real world pattern will
probably contain several small patterns concatenated together, e.g., the pattern for a Pas-
cal identifier consists of a single character from the set of alphabetic characters followed
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by one or more characters from the set [a-zA-Z0-9_]. The 

 

NextPattern

 

 field lets you create a
composite pattern as the concatenation of two individual patterns. For such a composite
pattern to return success, the current pattern must match and then the pattern specified by
the 

 

NextPattern

 

 field must also match. Note that you can chain as many patterns together
as you please using this field.

The last three fields, 

 

EndPattern

 

, 

 

StartPattern

 

, and 

 

StrSeg

 

 are for the internal use of the
pattern matching routine. You should not modify or examine these fields.

Once you create a pattern, it is very easy to test a string to see if it matches that pat-
tern. The calling sequence for the UCR Standard Library 

 

match

 

 routine is

 

lesi « Input string to match »
ldxi « Pattern to match string against »
mov cx, 0
match
jc Success

 

The Standard Library 

 

match

 

 routine expects a pointer to the input string in the 

 

es:di

 

registers; it expects a pointer to the pattern you want to match in the 

 

dx:si 

 

register pair. The

 

cx

 

 register should contain the length of the string you want to test. If 

 

cx

 

 contains zero, the
match routine will test the entire input string. If 

 

cx

 

 contains a nonzero value, the match
routine will only test the first 

 

cx

 

 characters in the string. Note that the end of the string
(the zero terminating byte) must not appear in the string before the position specified in

 

cx

 

. For most applications, loading 

 

cx

 

 with zero before calling match is the most appropri-
ate operation.

On return from the 

 

match

 

 routine, the carry flag denotes success or failure. If the carry
flag is set, the pattern matches the string; if the carry flag is clear, the pattern does not
match the string. Unlike the examples given in earlier sections, the 

 

match

 

 routine does not
modify the 

 

di

 

 register, even if the match succeeds. Instead, it returns the failure/success
position in the 

 

ax

 

 register. The is the position of the first character after the match if 

 

match

 

succeeds, it is the position of the first unmatched character if 

 

match

 

 fails.

 

16.3 The Standard Library Pattern Matching Functions

 

The UCR Standard Library provides about 20 built-in pattern matching functions.
These functions are based on the pattern matching facilities provided by the SNOBOL4
programming language, so they are very powerful indeed! You will probably discover
that these routines solve all your pattern matching need, although it is easy to write your
own pattern matching routines (see “Designing Your Own Pattern Matching Routines” on
page 922) if an appropriate one is not available. The following subsections describe each
of these pattern matching routines in detail.

There are two things you should note if you’re using the Standard Library’s
SHELL.ASM file when creating programs that use pattern matching and character sets.
First, there is a line at the very beginning of the SHELL.ASM file that contains the state-
ment “matchfuncs”. This line is currently a comment because it contains a semicolon in
column one. If you are going to be using the pattern matching facilities of the UCR Stan-
dard Library, you need to uncomment this line by deleting the semicolon in column one. If
you are going to be using the character set facilities of the UCR Standard Library (very
common when using the pattern matching facilities), you may want to uncomment the
line containing “include stdsets.a” in the data segment. The “stdsets.a” file includes sev-
eral common character sets, including alphabetics, digits, alphanumerics, whitespace, and
so on. 

 

16.3.1 Spancset

 

The 

 

spancset

 

 routine skips over all characters belonging to a character set. This routine
will match zero or more characters in the specified set and, therefore, 

 

always

 

  succeeds.
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The 

 

MatchParm

 

 field of the pattern data structure must point at a UCR Standard Library
character set variable (see  “The Character Set Routines in the UCR Standard Library” on
page 856). 

Example:

 

SkipAlphas pattern {spancset, alpha}

 

 .
 .
 .

 

lesi StringWAlphas
ldxi SkipAlphas
xor cx, cx
match

 

16.3.2 Brkcset

 

Brkcset

 

 is the 

 

dual

 

  to 

 

spancset

 

 – it matches zero or more characters in the input string
which are 

 

not

 

  members of a specified character set. Another way of viewing 

 

brkcset

 

 is that
it will match all characters in the input string 

 

up to

 

  a character in the specified character
set (or to the end of the string). The 

 

matchparm

 

 field contains the address of the character
set to match.

Example:

 

DoDigits pattern {brkcset, digits, 0, DoDigits2}
DoDigits2 pattern {spancset, digits}

 

 .
 .
 .

 

lesi StringWDigits
ldxi DoDigits
xor cx, cx
match
jnc NoDigits

 

The code above matches any string that contains a string of one or more digits somewhere
in the string.

 

16.3.3 Anycset

 

Anycset

 

 matches a single character in the input string from a set of characters. The

 

matchparm

 

 field contains the address of a character set variable. If the next character in the
input string is a member of this set, 

 

anycset

 

 set accepts the string and skips over than char-
acter. If the next input character is not a member of that set, 

 

anycset

 

 returns failure.

Example:

 

DoID pattern {anycset, alpha, 0, DoID2}
DoID2 pattern {spancset, alphanum}

 

 .
 .
 .

 

lesi StringWID
ldxi DoID
xor cx, cx
match
jnc NoID

 

This code segment checks the string 

 

StringWID

 

 to see if it begins with an identifier specified
by the regular expression [a-zA-Z][a-zA-Z0-9]*. The first subpattern with 

 

anycset

 

 makes
sure there is an alphabetic character at the beginning of the string (

 

alpha

 

 is the stdsets.a set
variable that has all the alphabetic characters as members). If the string does not begin
with an alphabetic, the 

 

DoID

 

 pattern fails. The second subpattern, 

 

DoID2

 

, skips over any
following alphanumeric characters using the spancset matching function. Note that

 

spancset

 

 always succeeds.
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The above code does 

 

not

 

  simply match a string that is an identifier; it matches strings
that 

 

begin

 

  with a valid identifier. For example, it would match “ThisIsAnID” as well as
“ThisIsAnID+SoIsThis - 5”. If you only want to match a single identifier and nothing else,
you must explicitly check for the end of string in your pattern. For more details on how to
do this, see “EOS” on page 919.

 

16.3.4 Notanycset

 

Notanycset

 

 provides the complement to 

 

anycset

 

 – it matches a single character in the
input string that is 

 

not

 

  a member of a character set. The 

 

matchparm

 

 field, as usual, contains
the address of the character set whose members must not appear as the next character in
the input string. If 

 

notanycset

 

 successfully matches a character (that is, the next input char-
acter is not in the designated character set), the function skips the character and returns
success; otherwise it returns failure.

Example:

 

DoSpecial pattern {notanycset, digits, 0, DoSpecial2}
DoSpecial2 pattern {spancset, alphanum}

 

 .
 .
 .

 

lesi StringWSpecial
ldxi DoSpecial
xor cx, cx
match
jnc NoSpecial

 

This code is similar to the 

 

DoID

 

 pattern in the previous example. It matches a string
containing any character except a digit and then matches a string of alphanumeric charac-
ters.

 

16.3.5 MatchStr

 

Matchstr

 

 compares the next set of input characters against a character string. The

 

matchparm

 

 field contains the address of a zero terminated string to compare against. If

 

matchstr

 

 succeeds, it returns the carry set and skips over the characters it matched; if it
fails, it tries the alternate matching function or returns failure if there is no alternate.

Example:

 

DoString pattern {matchstr, MyStr}
MyStr byte “Match this!”,0

 

 .
 .
 .

 

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

 

This sample code matches any string that begins with the characters “Match This!”

 

16.3.6 MatchiStr

 

Matchistr

 

 is like 

 

matchstr

 

 insofar as it compares the next several characters against a
zero terminated string value. However, 

 

matchistr

 

 does a 

 

case insensitive

 

  comparison. Dur-
ing the comparison it converts the characters in the input string to upper case before com-
paring them to the characters that the matchparm field points at. Therefore, 

 

the string
pointed at by the 

 

matchparm

 

 field must contain uppercase wherever alphabetics appear.

 

 If the

 

matchparm

 

 string contains any lower case characters, the 

 

matchistr

 

 function will always fail.
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Example:

 

DoString pattern {matchistr, MyStr}
MyStr byte “MATCH THIS!”,0

 

 .
 .
 .

 

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

 

This example is identical to the one in the previous section except it will match the charac-
ters “match this!” using any combination of upper and lower case characters.

 

16.3.7 MatchToStr

 

Matchtostr

 

 matches all characters in an input string up to and including the characters
specified by the 

 

matchparm

 

 parameter. This routine succeeds if the specified string appears
somewhere in the input string, it fails if the string does not appear in the input string. This
pattern function is quite useful for locating a substring and ignoring everything that came
before the substring.

Example:

 

DoString pattern {matchtostr, MyStr}
MyStr byte “Match this!”,0

 

 .
 .
 .

 

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

 

Like the previous two examples, this code segment matches the string “Match this!” How-
ever, it does not require that the input string (

 

String

 

) begin with “Match this!” Instead, it
only requires that “Match this!” appear somewhere in the string.

 

16.3.8 MatchChar

 

The 

 

matchchar

 

 function matches a single character. The 

 

matchparm

 

 field’s L.O. byte
contains the character you want to match. If the next character in the input string is that
character, then this function succeeds, otherwise it fails.

Example:

 

DoSpace pattern {matchchar, ‘ ‘}

 

 .
 .
 .

 

lesi String
ldxi DoSpace
xor cx, cx
match
jnc NoSpace

 

This code segment matches any string that begins with a space. Keep in mind that the

 

match

 

 routine only checks the prefix of a string. If you wanted to see if the string contained
only a space (rather than a string that begins with a space), you would need to explicitly
check for an end of string after the space. Of course, it would be far more efficient to use

 

strcmp

 

 (see “Strcmp, Strcmpl, Stricmp, Stricmpl” on page 848) rather than 

 

match

 

 for this
purpose!
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Note that unlike 

 

matchstr

 

, you encode the character you want to match directly into
the 

 

matchparm

 

 field. This lets you specify the character you want to test directly in the pat-
tern definition.

 

16.3.9 MatchToChar

 

Like 

 

matchtostr

 

, 

 

matchtochar

 

 matches all characters up to and including a character you
specify. This is similar to 

 

brkcset

 

 except you don’t have to create a character set containing
a single member and 

 

brkcset

 

 skips up to 

 

but not including

 

  the specified character(s). 

 

Match-
tochar

 

 fails if it cannot find the specified character in the input string.

Example:

 

DoToSpace pattern {matchtochar, ‘ ‘}

 

 .
 .
 .

 

lesi String
ldxi DoSpace
xor cx, cx
match
jnc NoSpace

 

This call to 

 

match

 

 will fail if there are no spaces left in the input string. If there are, the call
to 

 

matchtochar

 

 will skip over all characters up to, and including, the first space. This is a
useful pattern for skipping over words in a string.

 

16.3.10 MatchChars

 

Matchchars

 

 skips zero or more occurrences of a singe character in an input string. It is
similar to 

 

spancset

 

 except you can specify a single character rather than an entire character
set with a single member. Like 

 

matchchar

 

, 

 

matchchars

 

 expects a single character in the L.O.
byte of the 

 

matchparm

 

 field. Since this routine matches zero or more occurrences of that
character, it always succeeds.

Example:

 

Skip2NextWord pattern {matchtochar, ‘ ‘, 0, SkipSpcs}
SkipSpcs pattern {matchchars, ‘ ‘}

 

 .
 .
 .

 

lesi String
ldxi Skip2NextWord
xor cx, cx
match
jnc NoWord

 

The code segment skips to the beginning of the next word in a string. It fails if there are no
additional words in the string (i.e., the string contains no spaces).

 

16.3.11 MatchToPat

 

Matchtopat

 

 matches all characters in a string up to and including the substring
matched by some other pattern. This is one of the two facilities the UCR Standard Library
pattern matching routines provide to allow the implementation of nonterminal function
calls (also see “SL_Match2” on page 922). This matching function succeeds if it finds a
string matching the specified pattern somewhere on the line. If it succeeds, it skips the
characters through the last character matched by the pattern parameter. As you would
expect, the 

 

matchparm

 

 field contains the address of the pattern to match.

Example:



 

Control Structures

Page 919

 

; Assume there is a pattern “expression” that matches arithmetic
; expressions. The following pattern determines if there is such an
; expression on the line followed by a semicolon.

FindExp pattern {matchtopat, expression, 0, MatchSemi}
MatchSemi pattern {matchchar, ‘;‘}

 

 .
 .
 .

 

lesi String
ldxi FindExp
xor cx, cx
match
jnc NoExp

 

16.3.12 EOS

 

The 

 

EOS

 

 pattern matches the end of a string. This pattern, which must obviously
appear at the end of a pattern list if it appears at all, checks for the zero terminating byte.
Since the Standard Library routines only match prefixes, you should stick this pattern at
the end of a list if you want to ensure that a pattern exactly matches a string with no left
over characters at the end. 

 

EOS

 

 succeeds if it matches the zero terminating byte, it fails
otherwise.

Example:

 

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EOSPat}
EOSPat pattern {EOS}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc NoNumber

 

The 

 

SkipNumber

 

 pattern matches strings that contain only decimal digits (from the start of
the match to the end of the string). Note that 

 

EOS

 

 requires no parameters, not even a
matchparm parameter.

 

16.3.13 ARB

 

ARB

 

 matches any number of arbitrary characters. This pattern matching function is
equivalent to 

 

Σ

 

*. Note that 

 

ARB

 

 is a very inefficient routine to use. It works by assuming it
can match all remaining characters in the string and then tries to match the pattern speci-
fied by the 

 

nextpattern

 

 field

 

8

 

. If the 

 

nextpattern

 

 item fails, 

 

ARB

 

 backs up one character and
tries matching 

 

nextpattern

 

 again. This continues until the pattern specified by 

 

nextpattern

 

succeeds or 

 

ARB

 

 backs up to its initial starting position. 

 

ARB

 

 succeeds if the pattern speci-
fied by 

 

nextpattern

 

 succeeds, it fails if it backs up to its initial starting position.

Given the enormous amount of backtracking that can occur with 

 

ARB

 

 (especially on
long strings), you should try to avoid using this pattern if at all possible. The 

 

matchtostr

 

,

 

matchtochar

 

, and 

 

matchtopat

 

 functions accomplish much of what 

 

ARB

 

 accomplishes, but
they work forward rather than backward in the source string and may be more efficient.

 

ARB

 

 is useful mainly if you’re sure the following pattern appears late in the string you’re
matching or if the string you want to match occurs several times and you want to match
the 

 

last

 

  occurrence (

 

matchtostr

 

, 

 

matchtochar

 

, and 

 

matchtopat

 

 always match the first occur-
rence they find).

 

8. Since the match routine only matches prefixes, it does not make sense to apply ARB to the end of a pattern list,
the same pattern would match with or without the final ARB. Therefore, ARB usually has a nextpattern field.
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Example:

 

SkipNumber pattern {ARB,0,0,SkipDigit}
SkipDigit pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc NoNumber

 

This code example matches the 

 

last

 

  number that appears on an input line. Note that 

 

ARB

 

does not use the 

 

matchparm

 

 field, so you should set it to zero by default.

 

16.3.14 ARBNUM

 

ARBNUM

 

 matches an arbitrary number (zero or more) of patterns that occur in the
input string. If 

 

R

 

  represents some nonterminal number (pattern matching function), then

 

ARBNUM

 

(

 

R

 

 ) is equivalent to the production 

 

ARBNUM

 

  

 

→

 

 

 

R  ARBNUM 

 

 |  

 

ε. 

 

The 

 

matchparm

 

 field contains the address of the pattern that 

 

ARBNUM

 

 attempts to
match.

Example:

 

SkipNumbers pattern {ARBNUM, SkipNumber}
SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {matchchars, ‘ ‘, EndString}
EndString pattern {EOS}

 

 .
 .
 .

 

lesi String
ldxi SkipNumbers
xor cx, cx
match
jnc IllegalNumbers

 

This code accepts the input string if it consists of a sequence of zero or more numbers sep-
arated by spaces and terminated with the 

 

EOS

 

 pattern. Note the use of the 

 

matchalt

 

 field in
the 

 

EndDigits

 

 pattern to select 

 

EOS

 

 rather than a space for the last number in the string.

 

16.3.15 Skip

 

Skip

 

 matches 

 

n

 

  arbitrary characters in the input string. The 

 

matchparm

 

 field is an inte-
ger value containing the number of characters to skip. Although the 

 

matchparm

 

 field is a
double word, this routine limits the number of characters you can skip to 16 bits (65,535
characters); that is, 

 

n

 

  is the L.O. word of the 

 

matchparm

 

 field. This should prove sufficient
for most needs.

 

Skip

 

 succeeds if there are at least 

 

n

 

  characters left in the input string; it fails if there are
fewer than 

 

n

 

  characters left in the input string.

Example:

 

Skip1st6 pattern {skip, 6, 0, SkipNumber}
SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {EOS}

 

 .
 .
 .

 

lesi String
ldxi Skip1st6
xor cx, cx
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match
jnc IllegalItem

 

This example matches a string containing six arbitrary characters followed by one or more
decimal digits and a zero terminating byte.

 

16.3.16 Pos

 

Pos

 

 succeeds if the matching functions are currently at the n

 

th

 

 character in the string,
where 

 

n

 

  is the value in the L.O. word of the 

 

matchparm

 

 field. 

 

Pos

 

 fails if the matching func-
tions are not currently at position

 

 n

 

  in the string. Unlike the pattern matching functions
you’ve seen so far, 

 

pos

 

 does not consume any input characters. Note that the string starts
out at position zero. So when you use the 

 

pos

 

 function, it succeeds if you’ve matched 

 

n

 

characters at that point.

Example:

 

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {pos, 4}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

 

This code matches a string that begins with exactly 4 decimal digits.

 

16.3.17 RPos

 

Rpos

 

 works quite a bit like the 

 

pos

 

 function except it succeeds if the current position is

 

n

 

  character positions from the 

 

end

 

  of the string. Like 

 

pos

 

, 

 

n

 

  is the L.O. 16 bits of the

 

matchparm

 

 field. Also like 

 

pos

 

, 

 

rpos

 

 does not consume any input characters.

Example:

 

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {rpos, 4}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

 

This code matches any string that is all decimal digits except for the last four characters of
the string. The string must be at least five characters long for the above pattern match to
succeed.

 

16.3.18 GotoPos

 

Gotopos

 

 skips over any characters in the string until it reaches character position 

 

n

 

  in
the string. This function fails if the pattern is already beyond position 

 

n

 

  in the string. The
L.O. word of the 

 

matchparm

 

 field contains the value for 

 

n

 

. 

Example:

 

SkipNumber pattern {gotopos, 10, 0, MatchNmbr}
MatchNmbr pattern {anycset, digits, 0, SkipDigits}
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SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {rpos, 4}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

 

This example code skips to position 10 in the string and attempts to match a string of dig-
its starting with the 11

 

th

 

 character. This pattern succeeds if the there are four characters
remaining in the string after processing all the digits.

 

16.3.19 RGotoPos

 

Rgotopos

 

 works like 

 

gotopos

 

 except it goes to the position specified from the end of the
string. 

 

Rgotopos

 

 fails if the matching routines are already beyond position 

 

n

 

  from the end
of the string. As with 

 

gotopos

 

, the L.O. word of the 

 

matchparm

 

 field contains the value for 

 

n

 

.

Example:

 

SkipNumber pattern {rgotopos, 10, 0, MatchNmbr}
MatchNmbr pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits}

 

 .
 .
 .

 

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

 

This example skips to ten characters from the end of the string and then attempts to match
one or digits starting at that point. It fails if there aren’t at least 11 characters in the string
or the last 10 characters don’t begin with a string of one or more digits.

 

16.3.20 SL_Match2

 

The 

 

sl_match2

 

 routine is nothing more than a recursive call to match. The 

 

matchparm

 

field contains the address of pattern to match. This is quite useful for simulating parenthe-
sis around a pattern in a pattern expression. As far as matching strings are concerned,

 

pattern1

 

 and 

 

pattern2

 

, below, are equivalent:

 

Pattern2 pattern {sl_match2, Pattern1}
Pattern1 pattern {matchchar, ‘a’}

 

The only difference between invoking a pattern directly and invoking it with 

 

sl_match2

 

 is
that 

 

sl_match2

 

 tweaks some internal variables to keep track of matching positions within
the input string. Later, you can extract the character string matched by 

 

sl_match2

 

 using the

 

patgrab

 

 routine (see “Extracting Substrings from Matched Patterns” on page 925). 

 

16.4 Designing Your Own Pattern Matching Routines

 

Although the UCR Standard Library provides a wide variety of matching functions,
there is no way to anticipate the needs of all applications. Therefore, you will probably
discover that the library does not support some particular pattern matching function you
need. Fortunately, it is very easy for you to create your own pattern matching functions to
augment those available in the UCR Standard Library. When you specify a matching func-
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tion name in the pattern data structure, the match routine calls the specified address using
a far call and passing the following parameters:

 

es:di

 

- Points at the next character in the input string. You should not look at any charac-
ters before this address. Furthermore, you should never look beyond the end of
the string (see 

 

cx

 

 below).

 

ds:si

 

- Contains the four byte parameter found in the 

 

matchparm

 

 field.

 

cx

 

- Contains the last position, plus one, in the input string you’re allowed to look at.
Note that your pattern matching routine should not look beyond location 

 

es:cx

 

 or
the zero terminating byte; whichever comes first in the input string.

On return from the function, 

 

ax

 

 must contain the offset into the string (

 

di

 

’s value) of
the last character matched 

 

plus one, 

 

if your matching function is successful. It must also set
the carry flag to denote success. After your pattern matches, the match routine might call
another matching function (the one specified by the next pattern field) and that function
begins matching at location 

 

es:ax

 

.

If the pattern match fails, then you must return the original 

 

di

 

 value in the 

 

ax

 

 register
and return with the carry flag clear. Note that your matching function must preserve all
other registers.

There is one very important detail you must never forget with writing your own pat-
tern matching routines – 

 

ds

 

 does not point at your data segment, it contains the H.O. word
of the 

 

matchparm

 

 parameter. Therefore, if you are going to access global variables in your
data segment you will need to push 

 

ds

 

, load it with the address of 

 

dseg

 

, and pop 

 

ds

 

 before
leaving. Several examples throughout this chapter demonstrate how to do this.

There are some obvious omissions from (the current version of) the UCR Standard
Library’s repertoire. For example, there should probably be 

 

matchtoistr

 

, 

 

matchichar

 

, and

 

matchtoichar

 

 pattern functions. The following example code demonstrates how to add a

 

matchtoistr

 

 (match up to a string, doing a case insensitive comparison) routine.

 

.xlist

include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

TestString byte “This is the string ‘xyz’ in it”,cr,lf,0

TestPat pattern {matchtoistr,xyz}
xyz byte “XYZ”,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; MatchToiStr- Matches all characters in a string up to, and including, the
; specified parameter string. The parameter string must be
; all upper case characters. This guy matches string using
; a case insensitive comparison.
;
; inputs:
; es:di- Source string
; ds:si- String to match
; cx- Maximum match position
;
; outputs:
; ax- Points at first character beyond the end of the
; matched string if success, contains the initial DI
; value if failure occurs.
; carry- 0 if failure, 1 if success.
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MatchToiStr proc far
pushf
push di
push si
cld

; Check to see if we’re already past the point were we’re allowed
; to scan in the input string.

cmp di, cx
jae MTiSFailure

; If the pattern string is the empty string, always match.

cmp byte ptr ds:[si], 0
je MTSsuccess

; The following loop scans through the input string looking for
; the first character in the pattern string.

ScanLoop: push si
lodsb ;Get first char of string

dec di
FindFirst: inc di ;Move on to next (or 1st) char.

cmp di, cx ;If at cx, then we’ve got to
jae CantFind1st; fail.

mov ah, es:[di] ;Get input character.
cmp ah, ‘a’ ;Convert input character to
jb DoCmp ; upper case if it’s a lower
cmp ah, ‘z’ ; case character.
ja DoCmp
and ah, 5fh

DoCmp: cmp al, ah ;Compare input character against
jne FindFirst ; pattern string.

; At this point, we’ve located the first character in the input string
; that matches the first character of the pattern string. See if the
; strings are equal.

push di ;Save restart point.

CmpLoop: cmp di, cx ;See if we’ve gone beyond the
jae StrNotThere; last position allowable.
lodsb ;Get next input character.
cmp al, 0 ;At the end of the parameter
je MTSsuccess2; string? If so, succeed.

inc di
mov ah, es:[di] ;Get the next input character.
cmp ah, ‘a’ ;Convert input character to
jb DoCmp2 ; upper case if it’s a lower
cmp ah, ‘z’ ; case character.
ja DoCmp2
and ah, 5fh

DoCmp2: cmp al, ah ;Compare input character against
je CmpLoop
pop di
pop si
jmp ScanLoop

StrNotThere: add sp, 2 ;Remove di from stack.
CantFind1st: add sp, 2 ;Remove si from stack.
MTiSFailure: pop si

pop di
mov ax, di ;Return failure position in AX.
popf
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clc ;Return failure.
ret

MTSSuccess2: add sp, 2 ;Remove DI value from stack.
MTSSuccess: add sp, 2 ;Remove SI value from stack.

mov ax, di ;Return next position in AX.
pop si
pop di
popf
stc ;Return success.
ret

MatchToiStr endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi TestString
ldxi TestPat
xor cx, cx
match
jnc NoMatch
print
byte “Matched”,cr,lf,0
jmp Quit

NoMatch: print
byte “Did not match”,cr,lf,0

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

16.5 Extracting Substrings from Matched Patterns

 

Often, simply determining that a string matches a given pattern is insufficient. You
may want to perform various operations that depend upon the actual information in that
string. However, the pattern matching facilities described thus far do not provide a mech-
anism for testing individual components of the input string. In this section, you will see
how to extract portions of a pattern for further processing.

Perhaps an example may help clarify the need to extract portions of a string. Suppose
you are writing a stock buy/sell program and you want it to process commands described
by the following regular expression:

 

(buy | sell) [0-9]

 

+

 

 shares of (ibm | apple | hp | dec)

 

While it is easy to devise a Standard Library pattern that recognizes strings of this form,
calling the 

 

match

 

 routine would only tell you that you have a legal buy or sell command. It
does not tell you if you are to buy or sell, 

 

who

 

  to buy or sell, or how many shares to buy or
sell. Of course, you could take the cross product of (buy | sell) with (ibm | apple | hp |
dec) and generate eight different regular expressions that uniquely determine whether
you’re buying or selling and whose stock you’re trading, but you can’t process the integer
values this way (unless you willing to have 

 

millions

 

  of regular expressions). A better solu-
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tion would be to extract substrings from the legal pattern and process these substrings
after you verify that you have a legal buy or sell command. For example, you could
extract buy or sell into one string, the digits into another, and the company name into a
third. After verifying the syntax of the command, you could process the individual strings
you’ve extracted. The UCR Standard Library 

 

patgrab

 

 routine provides this capability for
you.

You normally call 

 

patgrab

 

 

 

after

 

  calling 

 

match

 

 and verifying that it matches the input
string. 

 

Patgrab

 

 expects a single parameter – a pointer to a pattern recently processed by
match. 

 

Patgrab

 

 creates a string on the heap consisting of the characters matched by the
given pattern and returns a pointer to this string in 

 

es:di

 

. Note that 

 

patgrab

 

 only returns a
string associated with a single pattern data structure, not a chain of pattern data struc-
tures. Consider the following pattern:

 

PatToGrab pattern {matchstr, str1, 0, Pat2}
Pat2 pattern {matchstr, str2}
str1 byte “Hello”,0
str2 byte “ there”,0

 

Calling 

 

match

 

 on 

 

PatToGrab

 

 will match the string “Hello there”. However, if after calling

 

match

 

 you call 

 

patgrab

 

 and pass it the address of 

 

PatToGrab

 

, 

 

patgrab

 

 will return a pointer to
the string “Hello”.

Of course, you might want to collect a string that is the concatenation of several
strings matched within your pattern (i.e., a portion of the pattern list). This is where call-
ing the 

 

sl_match2

 

 pattern matching function comes in handy. Consider the following pat-
tern:

 

Numbers pattern {sl_match2, FirstNumber}
FirstNumber pattern {anycset, digits, 0, OtherDigs}
OtherDigs pattern {spancset, digits}

 

This pattern matches the same strings as

 

Numbers pattern {anycset, digits, 0, OtherDigs}
OtherDigs pattern {spancset, digits}

 

So why bother with the extra pattern that calls 

 

sl_match2

 

? Well, as it turns out the

 

sl_match2

 

 matching function lets you create 

 

parenthetical patterns

 

. A parenthetical pattern is
a pattern list that the pattern matching routines (especially 

 

patgrab

 

) treat as a single pat-
tern. Although the 

 

match

 

 routine will match the same strings regardless of which version
of 

 

Numbers

 

 you use, 

 

patgrab

 

 will produce two entirely different strings depending upon
your choice of the above patterns. If you use the latter version, 

 

patgrab

 

 will only return the
first digit of the number. If you use the former version (with the call to 

 

sl_match2

 

), then 

 

pat-
grab

 

 returns the entire string matched by 

 

sl_match2

 

, and that turns out to be the entire
string of digits.

The following sample program demonstrates how to use parenthetical patterns to
extract the pertinent information from the stock command presented earlier. It uses paren-
thetical patterns for the buy/sell command, the number of shares, and the company
name.

 

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Variables used to hold the number of shares bought/sold, a pointer to
; a string containing the buy/sell command, and a pointer to a string
; containing the company name.

Count word 0
CmdPtr dword ?
CompPtr dword ?
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; Some test strings to try out:

Cmd1 byte “Buy 25 shares of apple stock”,0
Cmd2 byte “Sell 50 shares of hp stock”,0
Cmd3 byte “Buy 123 shares of dec stock”,0
Cmd4 byte “Sell 15 shares of ibm stock”,0
BadCmd0 byte “This is not a buy/sell command”,0

; Patterns for the stock buy/sell command:
;
; StkCmd matches buy or sell and creates a parenthetical pattern
; that contains the string “buy” or “sell”.

StkCmd pattern {sl_match2, buyPat, 0, skipspcs1}

buyPat pattern {matchistr,buystr,sellpat}
buystr byte “BUY”,0

sellpat pattern {matchistr,sellstr}
sellstr byte “SELL”,0

; Skip zero or more white space characters after the buy command.

skipspcs1 pattern {spancset, whitespace, 0, CountPat}

; CountPat is a parenthetical pattern that matches one or more
; digits.

CountPat pattern {sl_match2, Numbers, 0, skipspcs2}
Numbers pattern {anycset, digits, 0, RestOfNum}
RestOfNum pattern {spancset, digits}

; The following patterns match “ shares of “ allowing any amount
; of white space between the words.

skipspcs2 pattern {spancset, whitespace, 0, sharesPat}

sharesPat pattern {matchistr, sharesStr, 0, skipspcs3}
sharesStr byte “SHARES”,0

skipspcs3 pattern {spancset, whitespace, 0, ofPat}

ofPat pattern {matchistr, ofStr, 0, skipspcs4}
ofStr byte “OF”,0

skipspcs4 pattern {spancset, whitespace, 0, CompanyPat}

; The following parenthetical pattern matches a company name.
; The patgrab-available string will contain the corporate name.

CompanyPat pattern {sl_match2, ibmpat}

ibmpat pattern {matchistr, ibm, applePat}
ibm byte “IBM”,0

applePat pattern {matchistr, apple, hpPat}
apple byte “APPLE”,0

hpPat pattern {matchistr, hp, decPat}
hp byte “HP”,0

decPat pattern {matchistr, decstr}
decstr byte “DEC”,0

include stdsets.a
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg
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; DoBuySell- This routine processes a stock buy/sell command.
; After matching the command, it grabs the components
; of the command and outputs them as appropriate.
; This routine demonstrates how to use patgrab to
; extract substrings from a pattern string.
;
; On entry, es:di must point at the buy/sell command
; you want to process.

DoBuySell proc near
ldxi StkCmd
xor cx, cx
match
jnc NoMatch

lesi StkCmd
patgrab
mov word ptr CmdPtr, di
mov word ptr CmdPtr+2, es

lesi CountPat
patgrab
atoi ;Convert digits to integer
mov Count, ax
free ;Return storage to heap.

lesi CompanyPat
patgrab
mov word ptr CompPtr, di
mov word ptr CompPtr+2, es

printf
byte “Stock command: %^s\n”
byte “Number of shares: %d\n”
byte “Company to trade: %^s\n\n”,0
dword CmdPtr, Count, CompPtr

les di, CmdPtr
free
les di, CompPtr
free
ret

NoMatch: print
byte “Illegal buy/sell command”,cr,lf,0
ret

DoBuySell endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit

lesi Cmd1
call DoBuySell
lesi Cmd2
call DoBuySell
lesi Cmd3
call DoBuySell
lesi Cmd4
call DoBuySell
lesi BadCmd0
call DoBuySell

Quit: ExitPgm
Main endp
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cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Sample program output:

 

Stock command: Buy
Number of shares: 25
Company to trade: apple

Stock command: Sell
Number of shares: 50
Company to trade: hp

Stock command: Buy
Number of shares: 123
Company to trade: dec

Stock command: Sell
Number of shares: 15
Company to trade: ibm

Illegal buy/sell command

 

16.6 Semantic Rules and Actions

 

Automata theory is mainly concerned with whether or not a string matches a given
pattern. Like many theoretical sciences, practitioners of automata theory are only con-
cerned if something is possible, the practical applications are not as important. For real
programs, however, we would like to perform certain operations if we match a string or
perform one from a set of operations depending on 

 

how

 

  we match the string.

A 

 

semantic rule

 

  or 

 

semantic action

 

  is an operation you perform based upon the type of
pattern you match. This is, it is the piece of code you execute when you are satisfied with
some pattern matching behavior. For example, the call to 

 

patgrab

 

 in the previous section is
an example of a semantic action.

Normally, you execute the code associated with a semantic rule 

 

after

 

  returning from
the call to 

 

match

 

. Certainly when processing regular expressions, there is no need to pro-
cess a semantic action in the 

 

middle

 

  of pattern matching operation. However, this isn’t the
case for a context free grammar. Context free grammars often involve recursion or may
use the same pattern several times when matching a single string (that is, you may refer-
ence the same nonterminal several times while matching the pattern). The pattern match-
ing data structure only maintains pointers (

 

EndPattern

 

, 

 

StartPattern

 

, and 

 

StrSeg

 

) to the last
substring matched by a given pattern. Therefore, if you reuse a subpattern while matching
a string and you need to execute a semantic rule associated with that subpattern, you will
need to execute that semantic rule in the middle of the pattern matching operation, before
you reference that subpattern again.

It turns out to be very easy to insert semantic rules in the middle of a pattern matching
operation. All you need to do is write a pattern matching function that always succeeds
(i.e., it returns with the carry flag clear). Within the body of your pattern matching routine
you can choose to ignore the string the matching code is testing and perform any other
actions you desire. 
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Your semantic action routine, on return, must set the carry flag and it must copy the
original contents of 

 

di

 

 into 

 

ax

 

. It must preserve all other registers. Your semantic action
must 

 

not

 

  call the 

 

match

 

 routine (call 

 

sl_match2

 

 instead). 

 

Match

 

 does not allow recursion (it
is not 

 

reentrant

 

) and calling 

 

match

 

 within a semantic action routine will mess up the pat-
tern match in progress.

The following example provides several examples of semantic action routines within
a program. This program converts arithmetic expressions in infix (algebraic) form to
reverse polish notation (RPN) form.

 

; INFIX.ASM
;
; A simple program which demonstrates the pattern matching routines in the
; UCR library. This program accepts an arithmetic expression on the command
; line (no interleaving spaces in the expression is allowed, that is, there
; must be only one command line parameter) and converts it from infix notation
; to postfix (rpn) notation.

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Grammar for simple infix -> postfix translation operation
; (the semantic actions are enclosed in braces}:
;
; E -> FE’
; E’ -> +F {output ‘+’} E’ | -F {output ‘-’} E’ | <empty string>
; F -> TF’
; F -> *T {output ‘*’} F’ | /T {output ‘/’} F’ | <empty string>
; T -> -T {output ‘neg’} | S
; S -> <constant> {output constant} | (E)
;
; UCR Standard Library Pattern which handles the grammar above:

; An expression consists of an “E” item followed by the end of the string:

infix2rpn pattern {sl_Match2,E,,EndOfString}
EndOfString pattern {EOS}

; An “E” item consists of an “F” item optionally followed by “+” or “-”
; and another “E” item:

E pattern {sl_Match2, F,,Eprime}
Eprime pattern {MatchChar, ‘+’, Eprime2, epf}
epf pattern {sl_Match2, F,,epPlus}
epPlus pattern {OutputPlus,,,Eprime} ;Semantic rule

Eprime2 pattern {MatchChar, ‘-’, Succeed, emf}
emf pattern {sl_Match2, F,,epMinus}
epMinus pattern {OutputMinus,,,Eprime} ;Semantic rule

; An “F” item consists of a “T” item optionally followed by “*” or “/”
; followed by another “T” item:

F pattern {sl_Match2, T,,Fprime}
Fprime pattern {MatchChar, ‘*’, Fprime2, fmf}
fmf pattern {sl_Match2, T, 0, pMul}
pMul pattern {OutputMul,,,Fprime} ;Semantic rule

Fprime2 pattern {MatchChar, ‘/’, Succeed, fdf}
fdf pattern {sl_Match2, T, 0, pDiv}
pDiv pattern {OutputDiv, 0, 0,Fprime} ;Semantic rule
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; T item consists of an “S” item or a “-” followed by another “T” item:

T pattern {MatchChar, ‘-’, S, TT}
TT pattern {sl_Match2, T, 0,tpn}
tpn pattern {OutputNeg} ;Semantic rule

; An “S” item is either a string of one or more digits or “(“ followed by
; and “E” item followed by “)”:

Const pattern {sl_Match2, DoDigits, 0, spd}
spd pattern {OutputDigits} ;Semantic rule

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

S pattern {MatchChar, ‘(‘, Const, IntE}
IntE pattern {sl_Match2, E, 0, CloseParen}
CloseParen pattern {MatchChar, ‘)’}

Succeed pattern {DoSucceed}

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; OutputPlus is a semantic rule which outputs the “+” operator after the
; parser sees a valid addition operator in the infix string.

OutputPlus proc far
print
byte “ +”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputPlus endp

; OutputMinus is a semantic rule which outputs the “-” operator after the
; parser sees a valid subtraction operator in the infix string.

OutputMinus proc far
print
byte “ -”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputMinus endp

; OutputMul is a semantic rule which outputs the “*” operator after the
; parser sees a valid multiplication operator in the infix string.
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OutputMul proc far
print
byte “ *”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputMul endp

; OutputDiv is a semantic rule which outputs the “/” operator after the
; parser sees a valid division operator in the infix string.

OutputDiv proc far
print
byte “ /”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputDiv endp

; OutputNeg is a semantic rule which outputs the unary “-” operator after the
; parser sees a valid negation operator in the infix string.

OutputNeg proc far
print
byte “ neg”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputNeg endp

; OutputDigits outputs the numeric value when it encounters a legal integer
; value in the input string.

OutputDigits proc far
push es
push di
mov al, ‘ ‘
putc
lesi const
patgrab
puts
free
stc
pop di
mov ax, di
pop es
ret

OutputDigits endp

; Okay, here’s the main program which fetches the command line parameter
; and parses it.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ; memory to the heap.

print
byte “Enter an arithmetic expression: “,0
getsm
print
byte “Expression in postfix form: “,0
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ldxi infix2rpn
xor cx, cx
match
jc Succeeded

print
byte “Syntax error”,0

Succeeded: putcr

Quit: ExitPgm
Main endp

cseg ends

; Allocate a reasonable amount of space for the stack (8k).

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

16.7 Constructing Patterns for the MATCH Routine

 

A major issue we have yet to discuss is how to convert regular expressions and con-
text free grammars into patterns suitable for the UCR Standard Library pattern matching
routines. Most of the examples appearing up to this point have used an ad hoc translation
scheme; now it is time to provide an algorithm to accomplish this.

The following algorithm converts a context free grammar to a UCR Standard Library
pattern data structure. If you want to convert a regular expression to a pattern, first con-
vert the regular expression to a context free grammar (see “Converting REs to CFGs” on
page 905). Of course, it is easy to convert many regular expression forms directly to a pat-
tern, when such conversions are obvious you can bypass the following algorithm; for
example, it should be obvious that you can use 

 

spancset

 

 to match a regular expression like
[0-9]*.

The first step you must always take is to eliminate left recursion from the grammar.
You will generate an infinite loop (and crash the machine) if you attempt to code a gram-
mar containing left recursion into a pattern data structure. For information on eliminating
left recursion, see “Eliminating Left Recursion and Left Factoring CFGs” on page 903. You
might also want to left factor the grammar while you are eliminating left recursion. The
Standard Library routines fully support backtracking, so left factoring is not strictly neces-
sary, however, the matching routine will execute faster if it does not need to backtrack.

If a grammar production takes the form 

 

A

 

 

 

→

 

 

 

B

 

 

 

C

 

  where 

 

A

 

, 

 

B

 

, and 

 

C 

 

 are nonterminal
symbols, you would create the following pattern:

 

A pattern {sl_match2,B,0,C}

 

This pattern description for 

 

A 

 

 checks for an occurrence of a 

 

B 

 

 pattern followed by a 

 

C

 

pattern.
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If 

 

B 

 

 is a relatively simple production (that is, you can convert it to a single pattern
data structure), you can optimize this to:

 

A pattern {B’s Matching Function, B’s parameter, 0, C}

 

The remaining examples will always call 

 

sl_match2

 

, just to be consistent. However, as long
as the nonterminals you invoke are simple, you can fold them into 

 

A

 

’’s pattern.

If a grammar production takes the form 

 

A

 

 

 

→

 

 

 

B

 

  |  

 

C

 

  where 

 

A

 

, 

 

B

 

, and 

 

C 

 

 are nontermi-
nal symbols, you would create the following pattern:

 

A pattern {sl_match2, B, C}

 

This pattern tries to match 

 

B

 

. If it succeeds, 

 

A

 

 succeeds; if it fails, it tries to match 

 

C

 

. At this
point, 

 

A

 

’’s success or failure is the success or failure of 

 

C

 

.

Handling terminal symbols is the next thing to consider. These are quite easy – all you
need to do is use the appropriate matching function provided by the Standard Library,
e.g., 

 

matchstr

 

 or 

 

matchchar

 

. For example, if you have a production of the form 

 

A

 

 

 

→

 

 abc  | y
you would convert this to the following pattern:

 

A pattern {matchstr,abc,ypat}
abc byte “abc”,0
ypat pattern {matchchar,’y’}

 

The only remaining detail to consider is the empty string. If you have a production of
the form 

 

A

 

 

 

→

 

 

 

ε 

 

then you need to write a pattern matching function that always succeed.
The elegant way to do this is to write a custom pattern matching function. This function is

 

succeed proc far
mov ax, di ;Required by sl_match
stc ;Always succeed.
ret

succeed endp

 

Another, sneaky, way to force success is to use 

 

matchstr

 

 and pass it the empty string to
match, e.g.,

 

success pattern {matchstr, emptystr}
emptystr byte 0

 

The empty string always matches the input string, no matter what the input string con-
tains.

If you have a production with several alternatives and 

 

ε

 

 is one of them, you must pro-
cess 

 

ε

 

 last. For example, if you have the productions 

 

A

 

 

 

→

 

  abc  |  y  |  

 

BC

 

   

 

|  ε

 

 you would
use the following pattern:

 

A pattern {matchstr,abc, tryY}
abc byte “abc”,0
tryY pattern {matchchar, ‘y’, tryBC}
tryBC pattern {sl_match2, B, DoSuccess, C}
DoSuccess pattern {succeed}

 

While the technique described above will let you convert 

 

any

 

  CFG to a pattern that
the Standard Library can process, it certainly does not take advantage of the Standard
Library facilities, nor will it produce particularly efficient patterns. For example, consider
the production:

 

Digits

 

 

 

→

 

  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 

Converting this to a pattern using the techniques described above will yield the pattern:

 

Digits pattern {matchchar, ‘0’, try1}
try1 pattern {matchchar, ‘1’, try2}
try2 pattern {matchchar, ‘2’, try3}
try3 pattern {matchchar, ‘3’, try4}
try4 pattern {matchchar, ‘4’, try5}
try5 pattern {matchchar, ‘5’, try6}
try6 pattern {matchchar, ‘6’, try7}
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try7 pattern {matchchar, ‘7’, try8}
try8 pattern {matchchar, ‘8’, try9}
try9 pattern {matchchar, ‘9’}

 

Obviously this isn’t a very good solution because we can match this same pattern with the
single statement:

 

Digits pattern {anycset, digits}

 

If your pattern is easy to specify using a regular expression, you should try to encode
it using the built-in pattern matching functions and fall back on the above algorithm once
you’ve handled the low level patterns as best you can. With experience, you will be able to
choose an appropriate balance between the algorithm in this section and ad hoc methods
you develop on your own.

 

16.8 Some Sample Pattern Matching Applications

 

The best way to learn how to convert a pattern matching problem to the respective
pattern matching algorithms is by example. The following sections provide several exam-
ples of some small pattern matching problems and their solutions. 

 

16.8.1 Converting Written Numbers to Integers

 

One interesting pattern matching problem is to convert written (English) numbers to
their integer equivalents. For example, take the string “one hundred ninety-two” and con-
vert it to the integer 192. Although written numbers represent a pattern quite a bit more
complex than the ones we’ve seen thus far, a little study will show that it is easy to decom-
pose such strings.

The first thing we will need to do is enumerate the English words we will need to pro-
cess written numbers. This includes the following words:

zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven twelve,
thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty,
thirty, forty, fifty sixty, seventy, eighty, ninety, hundred, 

 

and

 

  thousand.

With this set of words we can build all the values between zero and 65,535 (the values we
can represent in a 16 bit integer.

Next, we’ve got to decide how to put these words together to form all the values
between zero and 65,535. The first thing to note is that zero only occurs by itself, it is never
part of another number. So our first production takes the form:

 

Number

 

 

 

→

 

  zero | 

 

NonZero

 

The next thing to note is that certain values 

 

may

 

  occur in pairs, denoting addition. For
example, eighty-five denotes the sum of eighty plus five. Also note that certain other pairs
denote multiplication. If you have a statement like “two hundred” or “fifteen hundred”
the “hundred” word says 

 

multiply the preceding value by 100

 

. The multiplicative words,
“hundred” and “thousand” , are also additive. Any value following these terms is added
in to the total

 

9

 

; e.g., “one hundred five” means 1*100+5. By combining the appropriate
rules, we obtain the following grammar

 

NonZero

 

 

 

→

 

Thousands

 

 

 

Maybe100s 

 

| 

 

Hundreds
Thousands

 

 

 

→

 

Under100 

 

thousand

 

Maybe100s

 

 

 

→

 

Hundreds

 

 | 

 

ε

 

Hundreds

 

 

 

→

 

Under100

 

 hundred 

 

After100 

 

| 

 

Under100

After100

 

 →

 

Under100

 

 | 

 

ε

 

9. We will ignore special multiplicative forms like “one thousand thousand” (one million) because these forms are
all too large to fit into 16 bits. .
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Under100

 

 →

 

Tens

 

 

 

Maybe1s

 

| 

 

Teens 

 

| 

 

ones

Maybe1s

 

 

 

 →

 

Ones 

 

| 

 

ε

 

ones

 

 →

 

one | two | three | four | five | six | seven | eight | nine

 

teens

 

 →

 

ten | eleven | twelve | thirteen | fourteen | fifteen | sixteen |
seventeen | eighteen | nineteen

 

tens

 

 →

 

twenty | thirty | forty | fifty | sixty | seventy | eighty | ninety

 

The final step is to add semantic actions to actually convert the strings matched by
this grammar to integer values. The basic idea is to initialize an accumulator value to zero.
Whenever you encounter one of the strings that 

 

ones, teens,

 

 or 

 

tens

 

  matches, you add the
corresponding value to the accumulator. If you encounter the hundred or thousand
strings, you multiply the accumulator by the appropriate factor. The complete program to
do the conversion follows:

 

; Numbers.asm
;
; This program converts written English numbers in the range “zero”
; to “sixty five thousand five hundred thirty five” to the corresponding
; integer value.

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

Value word 0 ;Store results here.
HundredsVal word 0
ThousandsVal word 0

Str0 byte “twenty one”,0
Str1 byte “nineteen hundred thirty-five”,0
Str2 byte “thirty three thousand two hundred nineteen”,0
Str3 byte “three”,0
Str4 byte “fourteen”,0
Str5 byte “fifty two”,0
Str6 byte “seven hundred”,0
Str7 byte “two thousand seven”,0
Str8 byte “four thousand ninety six”,0
Str9 byte “five hundred twelve”,0
Str10 byte “twenty three thousand two hundred ninety-five”,0
Str11 byte “seventy-five hundred”,0
Str12 byte “sixty-five thousand”,0
Str13 byte “one thousand”,0

; The following grammar is what we use to process the numbers.
; Semantic actions appear in the braces.
;
; Note: begin by initializing Value, HundredsVal, and ThousandsVal to zero.
;
; N -> separators zero
; | N4
;
; N4 -> do1000s maybe100s
; | do100s
;
; Maybe100s -> do100s
; | <empty string>
;
; do1000s -> Under100 “THOUSAND” separators
; {ThousandsVal := Value*1000}
;
; do100s -> Under100 “HUNDRED”
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; {HundredsVal := Value*100} After100
; | Under100
;
; After100 -> {Value := 0} Under100
; | {Value := 0} <empty string>
;
; Under100 -> {Value := 0} try20 try1s
; | {Value := 0} doTeens
; | {Value := 0} do1s
;
; try1s -> do1s | <empty string>
;
; try20 -> “TWENTY” {Value := Value + 20}
; | “THIRTY” {Value := Value + 30}
; | ...
; | “NINETY” {Value := Value + 90}
;
; doTeens -> “TEN” {Value := Value + 10}
; | “ELEVEN” {Value := Value + 11}
; | ...
; | “NINETEEN” {Value := Value + 19}
;
; do1s -> “ONE” {Value := Value + 1}
; | “TWO” {Value := Value + 2}
; | ...
; | “NINE” {Value := Value + 9}

separators pattern {anycset, delimiters, 0, delim2}
delim2 pattern {spancset, delimiters}
doSuccess pattern {succeed}
AtLast pattern {sl_match2, separators, AtEOS, AtEOS}
AtEOS pattern {EOS}

N pattern {sl_match2, separators, N2, N2}
N2 pattern {matchistr, zero, N3, AtLast}
zero byte “ZERO”,0

N3 pattern {sl_match2, N4, 0, AtLast}
N4 pattern {sl_match2, do1000s, do100s, Maybe100s}
Maybe100s pattern {sl_match2, do100s, AtLast, AtLast}

do1000s pattern {sl_match2, Under100, 0, do1000s2}
do1000s2 pattern {matchistr, str1000, 0, do1000s3}
do1000s3 pattern {sl_match2, separators, do1000s4, do1000s5}
do1000s4 pattern {EOS, 0, 0, do1000s5}
do1000s5 pattern {Get1000s}
str1000 byte “THOUSAND”,0

do100s pattern {sl_match2, do100s1, Under100, After100}
do100s1 pattern {sl_match2, Under100, 0, do100s2}
do100s2 pattern {matchistr, str100, 0, do100s3}
do100s3 pattern {sl_match2, separators, do100s4, do100s5}
do100s4 pattern {EOS, 0, 0, do100s5}
do100s5 pattern {Get100s}
str100 byte “HUNDRED”,0

After100 pattern {SetVal, 0, 0, After100a}
After100a pattern {sl_match2, Under100, doSuccess}

Under100 pattern {SetVal, 0, 0, Under100a}
Under100a pattern {sl_match2, try20, Under100b, Do1orE}
Under100b pattern {sl_match2, doTeens, do1s}

Do1orE pattern {sl_match2, do1s, doSuccess, 0}

NumPat macro lbl, next, Constant, string
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local try, SkipSpcs, val, str, tryEOS
lbl pattern {sl_match2, try, next}
try pattern {matchistr, str, 0, SkipSpcs}
SkipSpcs pattern {sl_match2, separators, tryEOS, val}
tryEOS pattern {EOS, 0, 0, val}
val pattern {AddVal, Constant}
str byte string

byte 0
endm

NumPat doTeens, try11, 10, “TEN”
NumPat try11, try12, 11, “ELEVEN”
NumPat try12, try13, 12, “TWELVE”
NumPat try13, try14, 13, “THIRTEEN”
NumPat try14, try15, 14, “FOURTEEN”
NumPat try15, try16, 15, “FIFTEEN”
NumPat try16, try17, 16, “SIXTEEN”
NumPat try17, try18, 17, “SEVENTEEN”
NumPat try18, try19, 18, “EIGHTEEN”
NumPat try19, 0, 19, “NINETEEN”

NumPat do1s, try2, 1, “ONE”
NumPat try2, try3, 2, “TWO”
NumPat try3, try4, 3, “THREE”
NumPat try4, try5, 4, “FOUR”
NumPat try5, try6, 5, “FIVE”
NumPat try6, try7, 6, “SIX”
NumPat try7, try8, 7, “SEVEN”
NumPat try8, try9, 8, “EIGHT”
NumPat try9, 0, 9, “NINE”

NumPat try20, try30, 20, “TWENTY”
NumPat try30, try40, 30, “THIRTY”
NumPat try40, try50, 40, “FORTY”
NumPat try50, try60, 50, “FIFTY”
NumPat try60, try70, 60, “SIXTY”
NumPat try70, try80, 70, “SEVENTY”
NumPat try80, try90, 80, “EIGHTY”
NumPat try90, 0, 90, “NINETY”

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Semantic actions for our grammar:
;
;
;
; Get1000s- We’ve just processed the value one..nine, grab it from
; the value variable, multiply it by 1000, and store it
; into thousandsval.

Get1000s proc far
push ds
push dx
mov ax, dseg
mov ds, ax

mov ax, 1000
mul Value
mov ThousandsVal, ax
mov Value, 0

pop dx
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mov ax, di ;Required by sl_match.
pop ds
stc ;Always return success.
ret

Get1000s endp

; Get100s- We’ve just processed the value one..nine, grab it from
; the value variable, multiply it by 100, and store it
; into hundredsval.

Get100s proc far
push ds
push dx
mov ax, dseg
mov ds, ax

mov ax, 100
mul Value
mov HundredsVal, ax
mov Value, 0

pop dx
mov ax, di ;Required by sl_match.
pop ds
stc ;Always return success.
ret

Get100s endp

; SetVal- This routine sets Value to whatever is in si

SetVal proc far
push ds
mov ax, dseg
mov ds, ax
mov Value, si
mov ax, di
pop ds
stc
ret

SetVal endp

; AddVal- This routine sets adds whatever is in si to Value

AddVal proc far
push ds
mov ax, dseg
mov ds, ax
add Value, si
mov ax, di
pop ds
stc
ret

AddVal endp

; Succeed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

Succeed proc far
mov ax, di
stc
ret

Succeed endp

; This subroutine expects a pointer to a string containing the English
; version of an integer number. It converts this to an integer and
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; prints the result.

ConvertNumber proc near
mov value, 0
mov HundredsVal, 0
mov ThousandsVal, 0

ldxi N
xor cx, cx
match
jnc NoMatch
mov al, “‘”
putc
puts
print
byte “‘ = “, 0
mov ax, ThousandsVal
add ax, HundredsVal
add ax, Value
putu
putcr
jmp Done

NoMatch: print
byte “Illegal number”,cr,lf,0

Done: ret
ConvertNumber endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ;Init memory manager.

; Union in a “-” to the delimiters set because numbers can have
; dashes in them.

lesi delimiters
mov al, ‘-’
addchar

; Some calls to test the ConvertNumber routine and the conversion process.

lesi Str0
call ConvertNumber
lesi Str1
call ConvertNumber
lesi Str2
call ConvertNumber
lesi Str3
call ConvertNumber
lesi Str4
call ConvertNumber
lesi Str5
call ConvertNumber
lesi Str6
call ConvertNumber
lesi Str7
call ConvertNumber
lesi Str8
call ConvertNumber
lesi Str9
call ConvertNumber
lesi Str10
call ConvertNumber
lesi Str11



 

Control Structures

Page 941

 

call ConvertNumber
lesi Str12
call ConvertNumber
lesi Str13
call ConvertNumber

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Sample output:

 

‘twenty one’ = 21
‘nineteen hundred thirty-five’ = 1935
‘thirty three thousand two hundred nineteen’ = 33219
‘three’ = 3
‘fourteen’ = 14
‘fifty two’ = 52
‘seven hundred’ = 700
‘two thousand seven’ = 2007
‘four thousand ninety six’ = 4096
‘five hundred twelve’ = 512
‘twenty three thousand two hundred ninety-five’ = 23295
‘seventy-five hundred’ = 7500
‘sixty-five thousand’ = 65000
‘one thousand’ = 1000

 

16.8.2 Processing Dates

 

Another useful program that converts English text to numeric form is a date proces-
sor. A date processor takes strings like “Jan 23, 1997” and converts it to three integer val-
ues representing the month, day, and year. Of course, while we’re at it, it’s easy enough to
modify the grammar for date strings to allow the input string to take any of the following
common date formats:

 

Jan 23, 1997
January 23, 1997
23 Jan, 1997
23 January, 1997
1/23/97
1-23-97
1/23/1997
1-23-1997

 

In each of these cases the date processing routines should store one into the variable
month, 23 into the variable day, and 1997 into the year variable (we will assume all years
are in the range 1900-1999 if the string supplies only two digits for the year). Of course, we
could also allow dates like “January twenty-third, nineteen hundred and ninety seven” by
using an number processing parser similar to the one presented in the previous section.
However, that is an exercise left to the reader.

The grammar to process dates is

 

Date

 

 →

 

EngMon Integer Integer

 

 |

 

Integer EngMon Integer 

 

|
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Integer

 

 / 

 

Integer

 

 / 

 

Integer

 

 |

 

Integer

 

 - 

 

Integer

 

 - 

 

Integer

EngMon

 

 →

 

JAN | JANUARY | FEB | FEBRUARY | … | DEC | DECEMBER

 

Integer

 

 →

 

digit Integer

 

 | 

 

digit

 

digit 

 

 →

 

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 

We will use some semantic rules to place some restrictions on these strings. For exam-
ple, the grammar above allows integers of any size; however, months must fall in the
range 1-12 and days must fall in the range 1-28, 1-29, 1-30, or 1-31 depending on the year
and month. Years must fall in the range 0-99 or 1900-1999.

Here is the 80x86 code for this grammar:

 

; datepat.asm
;
; This program converts dates of various formats to a three integer
; component value- month, day, and year.

.xlist

.286
include stdlib.a
includelib stdlib.lib
matchfuncs
.list
.lall

dseg segment para public ‘data’

; The following three variables hold the result of the conversion.

month word 0
day word 0
year word 0

; StrPtr is a double word value that points at the string under test.
; The output routines use this variable. It is declared as two word
; values so it is easier to store es:di into it.

strptr word 0,0

; Value is a generic variable the ConvertInt routine uses

value word 0

; Number of valid days in each month (Feb is handled specially)

DaysInMonth byte 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

; Some sample strings to test the date conversion routines.

Str0 byte “Feb 4, 1956”,0
Str1 byte “July 20, 1960”,0
Str2 byte “Jul 8, 1964”,0
Str3 byte “1/1/97”,0
Str4 byte “1-1-1997”,0
Str5 byte “12-25-74”,0
Str6 byte “3/28/1981”,0
Str7 byte “January 1, 1999”,0
Str8 byte “Feb 29, 1996”,0
Str9 byte “30 June, 1990”,0
Str10 byte “August 7, 1945”,0
Str11 byte “30 September, 1992”,0
Str12 byte “Feb 29, 1990”,0
Str13 byte “29 Feb, 1992”,0
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; The following grammar is what we use to process the dates
;
; Date -> EngMon Integer Integer
; | Integer EngMon Integer
; | Integer “/” Integer “/” Integer
; | Integer “-” Integer “-” Integer
;
; EngMon-> Jan | January | Feb | February | ... | Dec | December
; Integer-> digit integer | digit
; digit-> 0 | 1 | ... | 9
;
; Some semantic rules this code has to check:
;
; If the year is in the range 0-99, this code has to add 1900 to it.
; If the year is not in the range 0-99 or 1900-1999 then return an error.
; The month must be in the range 1-12, else return an error.
; The day must be between one and 28, 29, 30, or 31. The exact maximum
; day depends on the month.

separators pattern {spancset, delimiters}

; DatePat processes dates of the form “MonInEnglish Day Year”

DatePat pattern {sl_match2, EngMon, DatePat2, DayYear}
DayYear pattern {sl_match2, DayInteger, 0, YearPat}
YearPat pattern {sl_match2, YearInteger}

; DatePat2 processes dates of the form “Day MonInEng Year”

DatePat2 pattern {sl_match2, DayInteger, DatePat3, MonthYear}
MonthYear pattern {sl_match2, EngMon, 0, YearPat}

; DatePat3 processes dates of the form “mm-dd-yy”

DatePat3 pattern {sl_match2, MonInteger, DatePat4, DatePat3a}
DatePat3a pattern {sl_match2, separators, DatePat3b, DatePat3b}
DatePat3b pattern {matchchar, ‘-’, 0, DatePat3c}
DatePat3c pattern {sl_match2, DayInteger, 0, DatePat3d}
DatePat3d pattern {sl_match2, separators, DatePat3e, DatePat3e}
DatePat3e pattern {matchchar, ‘-’, 0, DatePat3f}
DatePat3f pattern {sl_match2, YearInteger}

; DatePat4 processes dates of the form “mm/dd/yy”

DatePat4 pattern {sl_match2, MonInteger, 0, DatePat4a}
DatePat4a pattern {sl_match2, separators, DatePat4b, DatePat4b}
DatePat4b pattern {matchchar, ‘/’, 0, DatePat4c}
DatePat4c pattern {sl_match2, DayInteger, 0, DatePat4d}
DatePat4d pattern {sl_match2, separators, DatePat4e, DatePat4e}
DatePat4e pattern {matchchar, ‘/’, 0, DatePat4f}
DatePat4f pattern {sl_match2, YearInteger}

; DayInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Day variable.

DayInteger pattern {sl_match2, Integer, 0, SetDayPat}
SetDayPat pattern {SetDay}

; MonInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Month variable.

MonInteger pattern {sl_match2, Integer, 0, SetMonPat}
SetMonPat pattern {SetMon}
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; YearInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Year variable.

YearInteger pattern {sl_match2, Integer, 0, SetYearPat}
SetYearPat pattern {SetYear}

; Integer skips any leading delimiter characters and then matches a
; decimal string. The Integer0 pattern matches exactly the decimal
; characters; the code does a patgrab on Integer0 when converting
; this string to an integer.

Integer pattern {sl_match2, separators, 0, Integer0}
Integer0 pattern {sl_match2, number, 0, Convert2Int}
number pattern {anycset, digits, 0, number2}
number2 pattern {spancset, digits}
Convert2Int pattern {ConvertInt}

; A macro to make it easy to declare each of the 24 English month
; patterns (24 because we allow the full month name and an
; abbreviation).

MoPat macro name, next, str, str2, value
local SetMo, string, full, short, string2, doMon

name pattern {sl_match2, short, next}
short pattern {matchistr, string2, full, SetMo}
full pattern {matchistr, string, 0, SetMo}

string byte str
byte 0

string2 byte str2
byte 0

SetMo pattern {MonthVal, value}
endm

; EngMon is a chain of patterns that match one of the strings
; JAN, JANUARY, FEB, FEBRUARY, etc. The last parameter to the
; MoPat macro is the month number.

EngMon pattern {sl_match2, separators, jan, jan}
MoPat jan, feb, “JAN”, “JANUARY”, 1
MoPat feb, mar, “FEB”, “FEBRUARY”, 2
MoPat mar, apr, “MAR”, “MARCH”, 3
MoPat apr, may, “APR”, “APRIL”, 4
MoPat may, jun, “MAY”, “MAY”, 5
MoPat jun, jul, “JUN”, “JUNE”, 6
MoPat jul, aug, “JUL”, “JULY”, 7
MoPat aug, sep, “AUG”, “AUGUST”, 8
MoPat sep, oct, “SEP”, “SEPTEMBER”, 9
MoPat oct, nov, “OCT”, “OCTOBER”, 10
MoPat nov, decem, “NOV”, “NOVEMBER”, 11
MoPat decem, 0, “DEC”, “DECEMBER”, 12

; We use the “digits” and “delimiters” sets from the standard library.

include stdsets.a

dseg ends
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cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; ConvertInt- Matches a sequence of digits and converts them to an integer.

ConvertInt proc far
push ds
push es
push di
mov ax, dseg
mov ds, ax

lesi Integer0 ;Integer0 contains the decimal
patgrab ; string we matched, grab that
atou ; string and convert it to an
mov Value, ax ; integer and save the result.
free ;Free mem allocated by patgrab.

pop di
mov ax, di ;Required by sl_match.
pop es
pop ds
stc ;Always succeed.
ret

ConvertInt endp

; SetDay, SetMon, and SetYear simply copy value to the appropriate
; variable.

SetDay proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov day, ax
mov ax, di
pop ds
stc
ret

SetDay endp

SetMon proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov Month, ax
mov ax, di
pop ds
stc
ret

SetMon endp

SetYear proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov Year, ax
mov ax, di
pop ds
stc
ret
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SetYear endp

; MonthVal is a pattern used by the English month patterns.
; This pattern function simply copies the matchparm field to
; the month variable (the matchparm field is passed in si).

MonthVal proc far
push ds
mov ax, dseg
mov ds, ax
mov Month, si
mov ax, di
pop ds
stc
ret

MonthVal endp

; ChkDate- Checks a date to see if it is valid. Returns with the
; carry flag set if it is, clear if not.

ChkDate proc far
push ds
push ax
push bx

mov ax, dseg
mov ds, ax

; If the year is in the range 0-99, add 1900 to it.
; Then check to see if it’s in the range 1900-1999.

cmp Year, 100
ja Notb100
add Year, 1900

Notb100: cmp Year, 2000
jae BadDate
cmp Year, 1900
jb BadDate

; Okay, make sure the month is in the range 1-12

cmp Month, 12
ja BadDate
cmp Month, 1
jb BadDate

; See if the number of days is correct for all months except Feb:

mov bx, Month
mov ax, Day ;Make sure Day <> 0.
test ax, ax
je BadDate
cmp ah, 0 ;Make sure Day < 256.
jne BadDate

cmp bx, 2 ;Handle Feb elsewhere.
je DoFeb
cmp al, DaysInMonth[bx-1] ;Check against max val.
ja BadDate
jmp GoodDate

; Kludge to handle leap years. Note that 1900 is *not* a leap year.

DoFeb: cmp ax, 29 ;Only applies if day is
jb GoodDate ; equal to 29.
ja BadDate ;Error if Day > 29.
mov bx, Year ;1900 is not a leap year
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cmp bx, 1900 ; so handle that here.
je BadDate
and bx, 11b ;Else, Year mod 4 is a
jne BadDate ; leap year.

GoodDate: pop bx
pop ax
pop ds
stc
ret

BadDate: pop bx
pop ax
pop ds
clc
ret

ChkDate endp

; ConvertDate- ES:DI contains a pointer to a string containing a valid
; date. This routine converts that date to the three
; integer values found in the Month, Day, and Year
; variables. Then it prints them to verify the pattern
; matching routine.

ConvertDate proc near

ldxi DatePat
xor cx, cx
match
jnc NoMatch

mov strptr, di ;Save string pointer for
mov strptr+2, es ; use by printf

call ChkDate ;Validate the date.
jnc NoMatch

printf
byte “%-20^s = Month: %2d Day: %2d Year: %4d\n”,0
dword strptr, Month, Day, Year
jmp Done

NoMatch: printf
byte “Illegal date (‘%^s’)”,cr,lf,0
dword strptr

Done: ret
ConvertDate endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ;Init memory manager.

; Call ConvertDate to test several different date strings.

lesi Str0
call ConvertDate
lesi Str1
call ConvertDate
lesi Str2
call ConvertDate
lesi Str3
call ConvertDate
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lesi Str4
call ConvertDate
lesi Str5
call ConvertDate
lesi Str6
call ConvertDate
lesi Str7
call ConvertDate
lesi Str8
call ConvertDate
lesi Str9
call ConvertDate
lesi Str10
call ConvertDate
lesi Str11
call ConvertDate
lesi Str12
call ConvertDate
lesi Str13
call ConvertDate

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Sample Output:

 

Feb 4, 1956 = Month:  2 Day:  4 Year: 1956
July 20, 1960 = Month:  7 Day: 20 Year: 1960
Jul 8, 1964 = Month:  7 Day:  8 Year: 1964
1/1/97 = Month:  1 Day:  1 Year: 1997
1-1-1997 = Month:  1 Day:  1 Year: 1997
12-25-74 = Month: 12 Day: 25 Year: 1974
3/28/1981 = Month:  3 Day: 28 Year: 1981
January 1, 1999 = Month:  1 Day:  1 Year: 1999
Feb 29, 1996 = Month:  2 Day: 29 Year: 1996
30 June, 1990 = Month:  6 Day: 30 Year: 1990
August 7, 1945 = Month:  8 Day:  7 Year: 1945
30 September, 1992 = Month:  9 Day: 30 Year: 1992
Illegal date (‘Feb 29, 1990’)
29 Feb, 1992 = Month:  2 Day: 29 Year: 1992

 

16.8.3 Evaluating Arithmetic Expressions

 

Many programs (e.g., spreadsheets, interpreters, compilers, and assemblers) need to
process arithmetic expressions. The following example provides a simple calculator that
operates on floating point numbers. This particular program uses the 80x87 FPU chip,
although it would not be too difficult to modify it so that it uses the floating point routines
in the UCR Standard Library.

 

; ARITH2.ASM
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines. Note that this
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; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; Some sample strings containing expressions to try out:

Str1 byte “5+2*(3-1)”,0
Str2 byte “(5+2)*(7-10)”,0
Str3 byte “5”,0
Str4 byte “(6+2)/(5+1)-7e5*2/1.3e2+1.5”,0
Str5 byte “2.5*(2-(3+1)/4+1)”,0
Str6 byte “6+(-5*2)”,0
Str7 byte “6*-1”,0
Str8 byte “1.2e5/2.1e5”,0
Str9 byte “0.9999999999999999+1e-15”,0
str10 byte “2.1-1.1”,0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; E -> FE’ {print result}
; E’ -> +F {fadd} E’ | -F {fsub} E’ | <empty string>
; F -> TF’
; F -> *T {fmul} F’ | /T {fdiv} F’ | <empty string>
; T -> -T {fchs} | S
; S -> <constant> {fld constant} | (E)
;
;
;
; UCR Standard Library Pattern which handles the grammar above:

; An expression consists of an “E” item followed by the end of the string:

Expression pattern {sl_Match2,E,,EndOfString}
EndOfString pattern {EOS}

; An “E” item consists of an “F” item optionally followed by “+” or “-”
; and another “E” item:

E pattern {sl_Match2, F,,Eprime}
Eprime pattern {MatchChar, ‘+’, Eprime2, epf}
epf pattern {sl_Match2, F,,epPlus}
epPlus pattern {DoFadd,,,Eprime}

Eprime2 pattern {MatchChar, ‘-’, Succeed, emf}
emf pattern {sl_Match2, F,,epMinus}
epMinus pattern {DoFsub,,,Eprime}

; An “F” item consists of a “T” item optionally followed by “*” or “/”
; followed by another “T” item:

F pattern {sl_Match2, T,,Fprime}
Fprime pattern {MatchChar, ‘*’, Fprime2, fmf}
fmf pattern {sl_Match2, T, 0, pMul}
pMul pattern {DoFmul,,,Fprime}
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Fprime2 pattern {MatchChar, ‘/’, Succeed, fdf}
fdf pattern {sl_Match2, T, 0, pDiv}
pDiv pattern {DoFdiv, 0, 0,Fprime}

; T item consists of an “S” item or a “-” followed by another “T” item:

T pattern {MatchChar, ‘-’, S, TT}
TT pattern {sl_Match2, T, 0,tpn}
tpn pattern {DoFchs}

; An “S” item is either a floating point constant or “(“ followed by
; and “E” item followed by “)”.
;
; The regular expression for a floating point constant is
;
; [0-9]+ ( “.” [0-9]* | ) ( ((e|E) (+|-| ) [0-9]+) | )
;
; Note: the pattern “Const” matches exactly the characters specified
; by the above regular expression. It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {sl_match2, ConstStr, 0, FLDConst}
ConstStr pattern {sl_match2, DoDigits, 0, Const2}
Const2 pattern {matchchar, ‘.’, Const4, Const3}
Const3 pattern {sl_match2, DoDigits, Const4, Const4}
Const4 pattern {matchchar, ‘e’, const5, const6}
Const5 pattern {matchchar, ‘E’, Succeed, const6}
Const6 pattern {matchchar, ‘+’, const7, const8}
Const7 pattern {matchchar, ‘-’, const8, const8}
Const8 pattern {sl_match2, DoDigits}

FldConst pattern {PushValue}

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

S pattern {MatchChar, ‘(‘, Const, IntE}
IntE pattern {sl_Match2, E, 0, CloseParen}
CloseParen pattern {MatchChar, ‘)’}

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp
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; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; DoFsub - Subtracts the two values on the top of the FPU stack.

DoFsub proc far
fsubp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFsub endp

; DoFmul- Multiplies the two values on the FPU stack.

DoFmul proc far
fmulp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFmul endp

; DoFdiv- Divides the two values on the FPU stack.

DoFDiv proc far
fdivp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFDiv endp

; DoFchs- Negates the value on the top of the FPU stack.

DoFchs proc far
fchs
mov ax, di ;Required by sl_Match
stc
ret

DoFchs endp

; PushValue- We’ve just matched a string that corresponds to a
; floating point constant. Convert it to a floating
; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds
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stc
ret

PushValue endp

; DoExp- This routine expects a pointer to a string containing
; an arithmetic expression in ES:DI. It evaluates the
; given expression and prints the result.

DoExp proc near
finit ;Be sure to do this!
fwait

puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte “ is an illegal expression”,cr,lf,0
ret

GoodVal: fstp CurValue
printff
byte “ = %12.6ge\n”,0
dword CurValue
ret

DoExp endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi Str1
call DoExp
lesi Str2
call DoExp
lesi Str3
call DoExp
lesi Str4
call DoExp
lesi Str5
call DoExp
lesi Str6
call DoExp
lesi Str7
call DoExp
lesi Str8
call DoExp
lesi Str9
call DoExp
lesi Str10
call DoExp

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
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zzzzzzseg ends
end Main

 

Sample Output:

 

5+2*(3-1) = 9.000E+0000
(5+2)*(7-10) = -2.100E+0001
5 = 5.000E+0000
(6+2)/(5+1)-7e5*2/1.3e2+1.5 = -1.077E+0004
2.5*(2-(3+1)/4+1) = 5.000E+0000
6+(-5*2) = -4.000E+0000
6*-1 = -6.000E+0000
1.2e5/2.1e5 = 5.714E-0001
0.9999999999999999+1e-15 = 1.000E+0000
2.1-1.1 = 1.000E+0000

 

16.8.4 A Tiny Assembler 

 

Although the UCR Standard Library pattern matching routines would probably not
be appropriate for writing a full lexical analyzer or compiler, they are useful for writing
small compilers/assemblers or programs where speed of compilation/assembly is of little
concern. One good example is the simple nonsymbolic assembler appearing in the
SIM886

 

10

 

 simulator for an earlier version of the x86 processors

 

11

 

. This “mini-assembler”
accepts an x86 assembly language statement and immediately assembles it into memory.
This allows SIM886 users to create simple assembly language programs within the
SIM886 monitor/debugger

 

12

 

. Using the Standard Library pattern matching routines
makes it very easy to implement such an assembler.

The grammar for this miniassembler is

 

Stmt

 

 →

 

Grp1

 

 

 

reg 

 

“,” 

 

operand 

 

|

 

Grp2 reg 

 

“,” 

 

reg

 

 “,” 

 

constant 

 

|

 

Grp3

 

 

 

operand 

 

|
goto 

 

operand 

 

|
halt

 

Grp1

 

 →

 

load | store | add | sub

 

Grp2

 

 →

 

ifeq | iflt | ifgt

 

Grp3

 

 →

 

get | put

 

reg

 

 →

 

ax | bx | cx | dx

 

operand

 

 →

 

reg 

 

| 

 

constant

 

 | [bx] | 

 

constant

 

 [bx]

 

constant

 

 →

 

hexdigit constant

 

 | 

 

hexdigit

hexdigit

 

 →

 

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | 
c | d | e | f

 

There are some minor semantic details that the program handles (such as disallowing
stores into immediate operands). The assembly code for the miniassembler follows:

 

; ASM.ASM
;

.xlist
include stdlib.a
matchfuncs
includelib stdlib.lib
.list

 

10. SIM886 is an earlier version of SIMx86. It is also available on the Companion CD-ROM.
11. The current x86 system is written with Borland’s Delphi, using a pattern matching library written for Pascal
that is very similar to the Standard Library’s pattern matching code.
12.  See the lab manual for more details on SIM886.
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dseg segment para public ‘data’

; Some sample statements to assemble:

Str1 byte “load ax, 0”,0
Str2 byte “load ax, bx”,0
Str3 byte “load ax, ax”,0
Str4 byte “add ax, 15”,0
Str5 byte “sub ax, [bx]”,0
Str6 byte “store bx, [1000]”,0
Str7 byte “load bx, 2000[bx]”,0
Str8 byte “goto 3000”,0
Str9 byte “iflt ax, bx, 100”,0
Str10 byte “halt”,0
Str11 byte “This is illegal”,0
Str12 byte “load ax, store”,0
Str13 byte “store ax, 1000”,0
Str14 byte “ifeq ax, 0, 0”,0

; Variables used by the assembler.

AsmConst word 0
AsmOpcode byte 0
AsmOprnd1 byte 0
AsmOprnd2 byte 0

include stdsets.a ;Bring in the standard char sets.

; Patterns for the assembler:

; Pattern is (
;  (load|store|add|sub) reg “,” operand |
;  (ifeq|iflt|ifgt) reg1 “,” reg2 “,” const |
;  (get|put) operand |
;  goto operand |
;  halt
;  )
;
; With a few semantic additions (e.g., cannot store to a const).

InstrPat pattern {spancset, WhiteSpace,Grp1,Grp1}

Grp1 pattern {sl_Match2,Grp1Strs, Grp2 ,Grp1Oprnds}
Grp1Strs pattern {TryLoad,,Grp1Store}
Grp1Store pattern {TryStore,,Grp1Add}
Grp1Add pattern {TryAdd,,Grp1Sub}
Grp1Sub pattern {TrySub}

; Patterns for the LOAD, STORE, ADD, and SUB instructions.

LoadPat pattern {MatchStr,LoadInstr2}
LoadInstr2 byte “LOAD”,0

StorePat pattern {MatchStr,StoreInstr2}
StoreInstr2 byte “STORE”,0

AddPat pattern {MatchStr,AddInstr2}
AddInstr2 byte “ADD”,0

SubPat pattern {MatchStr,SubInstr2}
SubInstr2 byte “SUB”,0

; Patterns for the group one (LOAD/STORE/ADD/SUB) instruction operands:

Grp1Oprnds pattern {spancset,WhiteSpace,Grp1reg,Grp1reg}
Grp1Reg pattern {MatchReg,AsmOprnd1,,Grp1ws2}
Grp1ws2 pattern {spancset,WhiteSpace,Grp1Comma,Grp1Comma}
Grp1Comma pattern {MatchChar,’,’,0,Grp1ws3}
Grp1ws3 pattern {spancset,WhiteSpace,Grp1Op2,Grp1Op2}
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Grp1Op2 pattern {MatchGen,,,EndOfLine}
EndOfLine pattern {spancset,WhiteSpace,NullChar,NullChar}
NullChar pattern {EOS}

Grp1Op2Reg pattern {MatchReg,AsmOprnd2}

; Patterns for the group two instructions (IFEQ, IFLT, IFGT):

Grp2 pattern {sl_Match2,Grp2Strs, Grp3 ,Grp2Oprnds}
Grp2Strs pattern {TryIFEQ,,Grp2IFLT}
Grp2IFLT pattern {TryIFLT,,Grp2IFGT}
Grp2IFGT pattern {TryIFGT}

Grp2Oprnds pattern {spancset,WhiteSpace,Grp2reg,Grp2reg}
Grp2Reg pattern {MatchReg,AsmOprnd1,,Grp2ws2}
Grp2ws2 pattern {spancset,WhiteSpace,Grp2Comma,Grp2Comma}
Grp2Comma pattern {MatchChar,’,’,0,Grp2ws3}
Grp2ws3 pattern {spancset,WhiteSpace,Grp2Reg2,Grp2Reg2}
Grp2Reg2 pattern {MatchReg,AsmOprnd2,,Grp2ws4}
Grp2ws4 pattern {spancset,WhiteSpace,Grp2Comma2,Grp2Comma2}
Grp2Comma2 pattern {MatchChar,’,’,0,Grp2ws5}
Grp2ws5 pattern {spancset,WhiteSpace,Grp2Op3,Grp2Op3}
Grp2Op3 pattern {ConstPat,,,EndOfLine}

; Patterns for the IFEQ, IFLT, and IFGT instructions.

IFEQPat pattern {MatchStr,IFEQInstr2}
IFEQInstr2 byte “IFEQ”,0

IFLTPat pattern {MatchStr,IFLTInstr2}
IFLTInstr2 byte “IFLT”,0

IFGTPat pattern {MatchStr,IFGTInstr2}
IFGTInstr2 byte “IFGT”,0

; Grp3 Patterns:

Grp3 pattern {sl_Match2,Grp3Strs, Grp4 ,Grp3Oprnds}
Grp3Strs pattern {TryGet,,Grp3Put}
Grp3Put pattern {TryPut,,Grp3GOTO}
Grp3Goto pattern {TryGOTO}

; Patterns for the GET and PUT instructions.

GetPat pattern {MatchStr,GetInstr2}
GetInstr2 byte “GET”,0

PutPat pattern {MatchStr,PutInstr2}
PutInstr2 byte “PUT”,0

GOTOPat pattern {MatchStr,GOTOInstr2}
GOTOInstr2 byte “GOTO”,0

; Patterns for the group three (PUT/GET/GOTO) instruction operands:

Grp3Oprnds pattern {spancset,WhiteSpace,Grp3Op,Grp3Op}
Grp3Op pattern {MatchGen,,,EndOfLine}

; Patterns for the group four instruction (HALT).

Grp4 pattern {TryHalt,,,EndOfLine}

HaltPat pattern {MatchStr,HaltInstr2}
HaltInstr2 byte “HALT”,0

; Patterns to match the four non-register addressing modes:

BXIndrctPat pattern {MatchStr,BXIndrctStr}
BXIndrctStr byte “[BX]”,0
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BXIndexedPat pattern {ConstPat,,,BXIndrctPat}

DirectPat pattern {MatchChar,’[‘,,DP2}
DP2 pattern {ConstPat,,,DP3}
DP3 pattern {MatchChar,’]’}

ImmediatePat pattern {ConstPat}

; Pattern to match a hex constant:

HexConstPat pattern {Spancset, xdigits}

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; The store macro tweaks the DS register and stores into the
; specified variable in DSEG.

store macro Where, What
push ds
push ax
mov ax, seg Where
mov ds, ax
mov Where, What
pop ax
pop ds
endm

; Pattern matching routines for the assembler.
; Each mnemonic has its own corresponding matching function that
; attempts to match the mnemonic. If it does, it initializes the
; AsmOpcode variable with the base opcode of the instruction.

; Compare against the “LOAD” string.

TryLoad proc far
push dx
push si
ldxi LoadPat
match2
jnc NoTLMatch

store AsmOpcode, 0 ;Initialize base opcode.

NoTLMatch: pop si
pop dx
ret

TryLoad endp

; Compare against the “STORE” string.

TryStore proc far
push dx
push si
ldxi StorePat
match2
jnc NoTSMatch
store AsmOpcode, 1 ;Initialize base opcode.

NoTSMatch: pop si
pop dx
ret

TryStore endp

; Compare against the “ADD” string.

TryAdd proc far
push dx
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push si
ldxi AddPat
match2
jnc NoTAMatch
store AsmOpcode, 2 ;Initialize ADD opcode.

NoTAMatch: pop si
pop dx
ret

TryAdd endp

; Compare against the “SUB” string.

TrySub proc far
push dx
push si
ldxi SubPat
match2
jnc NoTMMatch
store AsmOpcode, 3 ;Initialize SUB opcode.

NoTMMatch: pop si
pop dx
ret

TrySub endp

; Compare against the “IFEQ” string.

TryIFEQ proc far
push dx
push si
ldxi IFEQPat
match2
jnc NoIEMatch
store AsmOpcode, 4 ;Initialize IFEQ opcode.

NoIEMatch: pop si
pop dx
ret

TryIFEQ endp

; Compare against the “IFLT” string.

TryIFLT proc far
push dx
push si
ldxi IFLTPat
match2
jnc NoILMatch
store AsmOpcode, 5 ;Initialize IFLT opcode.

NoILMatch: pop si
pop dx
ret

TryIFLT endp

; Compare against the “IFGT” string.

TryIFGT proc far
push dx
push si
ldxi IFGTPat
match2
jnc NoIGMatch
store AsmOpcode, 6 ;Initialize IFGT opcode.

NoIGMatch: pop si
pop dx
ret

TryIFGT endp
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; Compare against the “GET” string.

TryGET proc far
push dx
push si
ldxi GetPat
match2
jnc NoGMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 2 ;GET’s Special opcode.

NoGMatch: pop si
pop dx
ret

TryGET endp

; Compare against the “PUT” string.

TryPut proc far
push dx
push si
ldxi PutPat
match2
jnc NoPMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 3 ;PUT’s Special opcode.

NoPMatch: pop si
pop dx
ret

TryPUT endp

; Compare against the “GOTO” string.

TryGOTO proc far
push dx
push si
ldxi GOTOPat
match2
jnc NoGMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 1 ;PUT’s Special opcode.

NoGMatch: pop si
pop dx
ret

TryGOTO endp

; Compare against the “HALT” string.

TryHalt proc far
push dx
push si
ldxi HaltPat
match2
jnc NoHMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 0 ;Halt’s special opcode.
store AsmOprnd2, 0

NoHMatch: pop si
pop dx
ret

TryHALT endp

; MatchReg checks to see if we’ve got a valid register value. On entry,
; DS:SI points at the location to store the byte opcode (0, 1, 2, or 3) for
; a reasonable register (AX, BX, CX, or DX); ES:DI points at the string
; containing (hopefully) the register operand, and CX points at the last
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; location plus one we can check in the string.
;
; On return, Carry=1 for success, 0 for failure. ES:AX must point beyond
; the characters which make up the register if we have a match.

MatchReg proc far

; ES:DI Points at two characters which should be AX/BX/CX/DX. Anything
; else is an error.

cmp byte ptr es:1[di], ‘X’ ;Everyone needs this
jne BadReg
xor ax, ax ;886 “AX” reg code.
cmp byte ptr es:[di], ‘A’ ;AX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘B’ ;BX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘C’ ;CX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘D’ ;DX?
je GoodReg

BadReg: clc
mov ax, di
ret

GoodReg:
mov ds:[si], al ;Save register opcode.
lea ax, 2[di] ;Skip past register.
cmp ax, cx ;Be sure we didn’t go
ja BadReg ; too far.
stc
ret

MatchReg endp

; MatchGen- Matches a general addressing mode. Stuffs the appropriate
; addressing mode code into AsmOprnd2. If a 16-bit constant
; is required by this addressing mode, this code shoves that
; into the AsmConst variable.

MatchGen proc far
push dx
push si

; Try a register operand.

ldxi Grp1Op2Reg
match2
jc MGDone

; Try “[bx]”.

ldxi BXIndrctPat
match2
jnc TryBXIndexed
store AsmOprnd2, 4
jmp MGDone

; Look for an operand of the form “xxxx[bx]”.

TryBXIndexed:
ldxi BXIndexedPat
match2
jnc TryDirect
store AsmOprnd2, 5
jmp MGDone

; Try a direct address operand “[xxxx]”.



 

Chapter 16

Page 960

 

TryDirect:
ldxi DirectPat
match2
jnc TryImmediate
store AsmOprnd2, 6
jmp MGDone

; Look for an immediate operand “xxxx”.

TryImmediate:
ldxi ImmediatePat
match2
jnc MGDone
store AsmOprnd2, 7

MGDone:
pop si
pop dx
ret

MatchGen endp

; ConstPat- Matches a 16-bit hex constant. If it matches, it converts
; the string to an integer and stores it into AsmConst.

ConstPat proc far
push dx
push si
ldxi HexConstPat
match2
jnc CPDone

push ds
push ax
mov ax, seg AsmConst
mov ds, ax
atoh
mov AsmConst, ax
pop ax
pop ds
stc

CPDone: pop si
pop dx
ret

ConstPat endp

; Assemble- This code assembles the instruction that ES:DI points
; at and displays the hex opcode(s) for that instruction.

Assemble proc near

; Print out the instruction we’re about to assemble.

print
byte “Assembling: “,0
strupr
puts
putcr

; Assemble the instruction:

ldxi InstrPat
xor cx, cx
match
jnc SyntaxError

; Quick check for illegal instructions:

cmp AsmOpcode, 7 ;Special/Get instr.
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jne TryStoreInstr
cmp AsmOprnd1, 2 ;GET opcode
je SeeIfImm
cmp AsmOprnd1, 1 ;Goto opcode
je IsGOTO

TryStoreInstr: cmp AsmOpcode, 1 ;Store Instruction
jne InstrOkay

SeeIfImm: cmp AsmOprnd2, 7 ;Immediate Adrs Mode
jne InstrOkay
print
db “Syntax error: store/get immediate not allowed.”
db “ Try Again”,cr,lf,0
jmp ASMDone

IsGOTO: cmp AsmOprnd2, 7 ;Immediate mode for GOTO
je InstrOkay
print
db “Syntax error: GOTO only allows immediate “
byte “mode.”,cr,lf
db 0
jmp ASMDone

; Merge the opcode and operand fields together in the instruction byte,
; then output the opcode byte.

InstrOkay: mov al, AsmOpcode
shl al, 1
shl al, 1
or al, AsmOprnd1
shl al, 1
shl al, 1
shl al, 1
or al, AsmOprnd2
puth
cmp AsmOpcode, 4 ;IFEQ instruction
jb SimpleInstr
cmp AsmOpcode, 6 ;IFGT instruction
jbe PutConstant

SimpleInstr: cmp AsmOprnd2, 5
jb ASMDone

; If this instruction has a 16 bit operand, output it here.

PutConstant: mov al, ‘ ‘
putc
mov ax, ASMConst
puth
mov al, ‘ ‘
putc
xchg al, ah
puth
jmp ASMDone

SyntaxError: print
db “Syntax error in instruction.”
db cr,lf,0

ASMDone: putcr
ret

Assemble endp

; Main program that tests the assembler.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax
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meminit

lesi Str1
call Assemble
lesi Str2
call Assemble
lesi Str3
call Assemble
lesi Str4
call Assemble
lesi Str5
call Assemble
lesi Str6
call Assemble
lesi Str7
call Assemble
lesi Str8
call Assemble
lesi Str9
call Assemble
lesi Str10
call Assemble
lesi Str11
call Assemble
lesi Str12
call Assemble
lesi Str13
call Assemble
lesi Str14
call Assemble

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Sample Output:

 

Assembling: LOAD AX, 0
07 00 00
Assembling: LOAD AX, BX
01
Assembling: LOAD AX, AX
00
Assembling: ADD AX, 15
47 15 00
Assembling: SUB AX, [BX]
64
Assembling: STORE BX, [1000]
2E 00 10
Assembling: LOAD BX, 2000[BX]
0D 00 20
Assembling: GOTO 3000
EF 00 30
Assembling: IFLT AX, BX, 100
A1 00 01
Assembling: HALT
E0
Assembling: THIS IS ILLEGAL
Syntax error in instruction.
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Assembling: LOAD AX, STORE
Syntax error in instruction.

Assembling: STORE AX, 1000
Syntax error: store/get immediate not allowed. Try Again

Assembling: IFEQ AX, 0, 0
Syntax error in instruction.

 

16.8.5 The “MADVENTURE” Game

 

Computer games are a perfect example of programs that often use pattern matching.
One class of computer games in general, the 

 

adventure

 

  game

 

13

 

, is a perfect example of
games that use pattern matching. An adventure style game excepts English-like com-
mands from the user, parses these commands, and acts upon them. In this section we will
develop an adventure game 

 

shell

 

. That is, it will be a reasonably functional adventure style
game, capable of accepting and processing user commands. All you need do is supply a
story line and a few additional details to develop a fully functioning adventure class
game.

An adventure game usually consists of some sort of 

 

maze

 

  through which the player
moves. The program processes commands like 

 

go north

 

  or 

 

go right

 

  to move the player
through the maze. Each move can deposit the player in a new room of the game. Gener-
ally, each room or area contains objects the player can interact with. This could be reward
objects such as items of value or it could be an antagonistic object like a monster or enemy
player.

Usually, an adventure game is a 

 

puzzle

 

  of some sort. The player finds clues and picks
up useful object in one part of the maze to solve problems in other parts of the maze. For
example, a player could pick up a key in one room that opens a chest in another; then the
player could find an object in the chest that is useful elsewhere in the maze. The purpose
of the game is to solve all the interlocking puzzles and maximize one’s score (however
that is done). This text will not dwell upon the subtleties of game design; that is a subject
for a different text. Instead, we’ll look at the tools and data structures required to imple-
ment the game design.

The Madventure game’s use of pattern matching is quite different from the previous
examples appearing in this chapter. In the examples up to this point, the matching rou-
tines specifically checked the validity of an input string; Madventure does not do this.
Instead, it uses the pattern matching routines to simply determine if certain key words
appear on a line input by the user. The program handles the actual parsing (determining if
the command is syntactically correct). To understand how the Madventure game does
this, it would help if we took a look at how to play the Madventure game

 

14

 

.

The Madventure prompts the user to enter a command. Unlike the original adventure
game that required commands like “GO NORTH” (with no other characters other than
spaces as part of the command), Madventure allows you to write whole sentences and
then it attempts to pick out the key words from those sentences. For example, Madventure
accepts the “GO NORTH” command; however, it also accepts commands like “North is
the direction I want to go” and “I want to go in the north direction.” Madventure doesn’t
really care as long as it can find “GO” and “NORTH” 

 

somewhere

 

  on the command line.
This is a little more flexible that the original Adventure game structure. Of course, this
scheme isn’t infallible, it will treat commands like “I absolutely, positively, do 

 

NOT

 

  want
to go anywhere near the north direction” as a “GO NORTH” command. Oh well, the user
almost always types just “GO NORTH” anyway.

 

13. These are called adventure games because the original program of the genre was called “Adventure.”
14. One word of caution, no one is going to claim that Madventure is a great game. If it were, it would be sold, it
wouldn’t appear in this text! So don’t expect too much from the design of the game itself.
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A Madventure command usually consists of a 

 

noun

 

  keyword and a 

 

verb

 

  keyword.
The Madventure recognizes six verbs and fourteen nouns

 

15

 

. The verbs are 

 

verbs

 

 →

 

go | get | drop | inventory | quit | help

 

The nouns are

 

nouns

 

 →

 

north | south | east | west | lime | beer | card |
sign | program | homework | money | form | coupon

 

Obviously, Madventure does not allow all combinations of verbs and nouns. Indeed, the
following patterns are the only legal ones:

 

LegalCmds

 

 →

 

go 

 

direction

 

 | get 

 

item

 

 | drop 

 

item 

 

| inventory |
quit | help

 

direction

 

 →

 

north | south | east | west

 

item

 

 →

 

lime | beer | card | sign | program | homework |
money | form | coupon

 

However, the pattern does not enforce this grammar. It just locates a noun and a verb
on the line and, if found, sets the 

 

noun

 

 and 

 

verb

 

 variables to appropriate values to denote
the keywords it finds. By letting the main program handle the parsing, the program is
somewhat more flexible.

There are two main patterns in the Madventure program: 

 

NounPat

 

 and 

 

VerbPat

 

. These
patterns match words (nouns or verbs) using a regular expression like the following:

 

(ARB

 

*

 

 ‘ ‘ | 

 

ε

 

) word (‘ ‘ | EOS)

 

This regular expression matches a word that appears at the beginning of a sentence, at the
end of a sentence, anywhere in the middle of a sentence, or a sentence consisting of a sin-
gle word. Madventure uses a macro (

 

MatchNoun

 

 or 

 

MatchVerb

 

) to create an expression for
each noun and verb in the above expression.

To get an idea of how Madvent processes words, consider the following 

 

VerbPat

 

 pat-
tern:

 

VerbPat pattern {sl_match2, MatchGo}
MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, 0, “HELP”, 6

 

The 

 

MatchVerb

 

 macro expects four parameters. The first is an arbitrary pattern name; the
second is a link to the next pattern in the list; the third is the string to match, and the
fourth is a number that the matching routines will store into the 

 

verb

 

 variable if that string
matches (by default, the 

 

verb

 

 variable contains zero). It is very easy to add new verbs to
this list. For example, if you wanted to allow “run” and “walk” as synonyms for the “go”
verb, you would just add two patterns to this list:

 

VerbPat pattern {sl_match2, MatchGo}
MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, MatchRun, “HELP”, 6
MatchVerb MatchRun, MatchWalk, “RUN”, 1
MatchVerb MatchWalk, 0, “WALK”, 1

 

There are only two things to consider when adding new verbs: first, don’t forget that the
next field of the last verb should contain zero; second, the current version of Madventure

 

15. However, one beautiful thing about Madventure is that it is 

 

very

 

  easy to extend and add more nouns and
verbs.
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only allows up to seven verbs. If you want to add more you will need to make a slight
modification to the main program (more on that, later). Of course, if you only want to cre-
ate synonyms, as we’ve done here, you simply reuse existing verb values so there is no
need to modify the main program.

When you call the 

 

match

 

 routine and pass it the address of the 

 

VerbPat

 

 pattern, it scans
through the input string looking for the first verb. If it finds that verb (“GO”) it sets the

 

verb

 

 variable to the corresponding verb value at the end of the pattern. If 

 

match

 

 cannot find
the first verb, it tries the second. If that fails, it tries the third, and so on. If 

 

match

 

 cannot
find 

 

any

 

  of the verbs in the input string, it does not modify the 

 

verb

 

 variable (which con-
tains zero). If there are 

 

two

 

  or more of the above verbs on the input line, match will locate
the first verb in the verb list above. 

 

This may not be the first verb appearing on the line.

 

 For
example, if you say “Let’s get the money and go north” the match routine will match the
“go” verb, not the “get” verb. By the same token, the 

 

NounPat

 

 pattern would match the
north noun, not the money noun. So this command would be identical to “GO NORTH.”

The MatchNoun is almost identical to the MatchVerb macro; there is, however, one
difference – the MatchNoun macro has an extra parameter which is the name of the data
structure representing the given object (if there is one). Basically, all the nouns (in this ver-
sion of Madventure) except NORTH, SOUTH, EAST, and WEST have some sort of data
structure associated with them.

The maze in Madventure consists of nine rooms defined by the data structure:

 

Room struct
north word ?
south word ?
west word ?
east word ?
ItemList word MaxWeight dup (?)
Description word ?
Room ends

 

The 

 

north

 

, 

 

south

 

, 

 

west

 

, and 

 

east

 

 fields contain near pointers to other rooms. The program
uses the 

 

CurRoom

 

 variable to keep track of the player’s current position in the maze. When
the player issues a “GO” command of some sort, Madventure copies the appropriate
value from the 

 

north

 

, 

 

south

 

, 

 

west

 

, or 

 

east

 

 field to the 

 

CurRoom

 

 variable, effectively changing
the room the user is in. If one of these pointers is NULL, then the user cannot move in that
direction. 

The direction pointers are independent of one another. If you issue the command “GO
NORTH” and then issue the command “GO SOUTH” upon arriving in the new room,
there is no guarantee that you will wind up in the original room. The 

 

south

 

 field of the sec-
ond room may not point at the room that led you there. Indeed, there are several cases in
the Madventure game where this occurs.

The 

 

ItemList

 

 array contains a list of near pointers to objects that could be in the room.
In the current version of this game, the objects are all the nouns except 

 

north, south, east

 

,
and 

 

west

 

. The player can carry these objects from room to room (indeed, that is the major
purpose of this game). Up to 

 

MaxWeight

 

  objects can appear in the room (MaxWeight is an
assembly time constant that is currently four; so there are a maximum of four items in any
one given room). If an entry in the 

 

ItemList

 

 is non-NULL, then it is a pointer to an 

 

Item

 

object. There may be zero to 

 

MaxWeight

 

 objects in a room. 

The 

 

Description

 

 field contains a pointer to a zero terminated string that describes the
room. The program prints this string each time through the command loop to keep the
player oriented.

The second major data type in Madventure is the 

 

Item

 

 structure. This structure takes
the form:
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Item struct
Value word ?
Weight word ?
Key word ?
ShortDesc word ?
LongDesc word ?
WinDesc word ?
Item ends

 

The 

 

Value

 

 field contains an integer value awarded to the player when the player drops
this object in the appropriate room. This is how the user scores points. 

The 

 

Weight

 

 field usually contains one or two and determines how much this object
“weighs.” The user can only carry around 

 

MaxWeight

 

 units of weight at any one given
time. Each time the user picks up an object, the weight of that object is added to the user’s
total weight. When the user drops an object, Madventure subtracts the object’s weight
from the total.

The 

 

Key

 

 field contains a pointer to a room associated with the object. When the user
drops the object in the 

 

Key

 

 room, the user is awarded the points in the 

 

Value

 

 field and the
object disappears from the game. If the user drops the object in some other room, the
object stays in that room until the user picks it up again.

The 

 

ShortDesc

 

, 

 

LongDesc

 

, and 

 

WinDesc

 

 fields contain pointers to zero terminated
strings. Madventure prints the 

 

ShortDesc

 

 string in response to an INVENTORY command.
It prints the 

 

LongDesc

 

 string when describing a room’s contents. It prints the 

 

WinDesc

 

string when the user drops the object in its 

 

Key

 

 room and the object disappears from the
game.

The Madventure main program is deceptively simple. Most of the logic is hidden in
the pattern matching routines and in the parsing routine. We’ve already discussed the pat-
tern matching code; the only important thing to remember is that it initializes the noun
and verb variables with a value uniquely identifying each noun and verb. The main pro-
gram’s logic uses these two values as an index into a two dimensional table that takes the
following form:

 

Table 65: Madventure Noun/Verb Table

 

No Verb GO GET DROP Inven-
tory

Quit Help

No Noun Inven-
tory

Quit Help

North Do 
North

South Do South

East Do East

West Do West

Lime Get Item Drop 
Item

Beer Get Item Drop 
Item

Card Get Item Drop 
Item

Sign Get Item Drop 
Item

Program Get Item Drop 
Item
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The empty entries in this table correspond to illegal commands. The other entries are
addresses of code within the main program that handles the given command.

To add more nouns (objects) to the game, you need only extend the NounPat pattern
and add additional rows to the table (of course, you may need to add code to handle the
new objects if they are not easily handled by the routines above). To add new verbs you
need only extended the VerbPat pattern and add new columns to this table

 

16

 

.

Other than the goodies mentioned above, the rest of the program utilizes techniques
appearing throughout this and previous chapters. The only real surprising thing about
this program is that you can implement a fairly complex program with so few lines of
code. But such is the advantage of using pattern matching techniques in your assembly
language programs.

 

; MADVENT.ASM
;
; This is a “shell” of an adventure game that you can use to create
; your own adventure style games.

.xlist

.286
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Equates:

NULL equ 0
MaxWeight equ 4 ;Max weight user can carry at one time.

; The “ROOM” data structure defines a room, or area, where a player can
; go. The NORTH, SOUTH, EAST, and WEST fields contain the address of
; the rooms to the north, south, east, and west of the room. The game
; transfers control to the room whose address appears in these fields
; when the player supplies a GO NORTH, GO SOUTH, etc., command.
;
; The ITEMLIST field contains a list of pointers to objects appearing
; in this room. In this game, the user can pick up and drop these
; objects (if there are any present).
;
; The DESCRIPTION field contains a (near) address of a short description
; of the current room/area.

 

16. Currently, the Madventure program computes the index into this table (a 14x8) table by shifting to the left
three bits rather than multiplying by eight. You will need to modify this code if you add more columns to the
table.

 

Home-
work

Get Item Drop 
Item

Money Get Item Drop 
Item

Form Get Item Drop 
Item

Coupon Get Item Drop 
Item

 

Table 65: Madventure Noun/Verb Table

 

No Verb GO GET DROP Inven-
tory

Quit Help
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Room struct
north word ? ;Near pointers to other structures where
south word ? ; we will wind up on the GO NORTH, GO SOUTH,
west word ? ; etc., commands.
east word ?

ItemList word MaxWeight dup (?)

Description word ? ;Description of room.
Room ends

; The ITEM data structure describes the objects that may appear
; within a room (in the ITEMLIST above). The VALUE field contains
; the number of points this object is worth if the user drops it
; off in the proper room (i.e, solves the puzzle). The WEIGHT
; field provides the weight of this object. The user can only
; carry four units of weight at a time. This field is usually
; one, but may be more for larger objects. The KEY field is the
; address of the room where this object must be dropped to solve
; the problem. The SHORTDESC field is a pointer to a string that
; the program prints when the user executes an INVENTORY command.
; LONGDESC is a pointer to a string the program prints when des-
; cribing the contents of a room. The WINDESC field is a pointer
; to a string that the program prints when the user solves the
; appropriate puzzle.

Item struct
Value word ?
Weight word ?
Key word ?
ShortDesc word ?
LongDesc word ?
WinDesc word ?
Item ends

; State variables for the player:

CurRoom word Room1  ;Room the player is in.
ItemsOnHand word MaxWeight dup (?)  ;Items the player carries.
CurWeight word 0  ;Weight of items carried.
CurScore word 15  ;Player’s current score.
TotalCounter word 9  ;Items left to place.
Noun word 0  ;Current noun value.
Verb word 0  ;Current verb value.
NounPtr word 0  ;Ptr to current noun item.

; Input buffer for commands

InputLine byte 128 dup (?)
; The following macros generate a pattern which will match a single word
; which appears anywhere on a line. In particular, they match a word
; at the beginning of a line, somewhere in the middle of the line, or
; at the end of a line. This program defines a word as any sequence
; of character surrounded by spaces or the beginning or end of a line.
;
; MatchNoun/Verb matches lines defined by the regular expression:
;
; (ARB* ‘ ‘ | 

 

ε

 

) string (‘ ‘ | EOS)

MatchNoun macro Name, next, WordString, ItemVal, ItemPtr
local WS1, WS2, WS3, WS4
local WS5, WS6, WordStr

Name Pattern {sl_match2, WS1, next}
WS1 Pattern {MatchStr, WordStr, WS2, WS5}
WS2 Pattern {arb,0,0,WS3}
WS3 Pattern {Matchchar, ‘ ‘,0, WS4}
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WS4 Pattern {MatchStr, WordStr, 0, WS5}
WS5 Pattern {SetNoun,ItemVal,0,WS6}
WS6 Pattern {SetPtr, ItemPtr,0,MatchEOS}
WordStr byte WordString

byte 0
endm

MatchVerb macro Name, next, WordString, ItemVal
local WS1, WS2, WS3, WS4
local WS5, WordStr

Name Pattern {sl_match2, WS1, next}
WS1 Pattern {MatchStr, WordStr, WS2, WS5}
WS2 Pattern {arb,0,0,WS3}
WS3 Pattern {Matchchar, ‘ ‘,0, WS4}
WS4 Pattern {MatchStr, WordStr, 0, WS5}
WS5 Pattern {SetVerb,ItemVal,0,MatchEOS}
WordStr byte WordString

byte 0
endm

; Generic patterns which most of the patterns use:

MatchEOS Pattern {EOS,0,MatchSpc}
MatchSpc Pattern {MatchChar,’ ‘}

; Here are the list of nouns allowed in this program.

NounPat pattern {sl_match2, MatchNorth}

MatchNoun MatchNorth, MatchSouth, “NORTH”, 1, 0
MatchNoun MatchSouth, MatchEast, “SOUTH”, 2, 0
MatchNoun MatchEast, MatchWest, “EAST”, 3, 0
MatchNoun MatchWest, MatchLime, “WEST”, 4, 0
MatchNoun MatchLime, MatchBeer, “LIME”, 5, Item3
MatchNoun MatchBeer, MatchCard, “BEER”, 6, Item9
MatchNoun MatchCard, MatchSign, “CARD”, 7, Item2
MatchNoun MatchSign, MatchPgm, “SIGN”, 8, Item1
MatchNoun MatchPgm, MatchHW, “PROGRAM”, 9, Item7
MatchNoun MatchHW, MatchMoney, “HOMEWORK”, 10, Item4
MatchNoun MatchMoney, MatchForm, “MONEY”, 11, Item5
MatchNoun MatchForm, MatchCoupon, “FORM”, 12, Item6
MatchNoun MatchCoupon, 0, “COUPON”, 13, Item8

; Here is the list of allowable verbs.

VerbPat pattern {sl_match2, MatchGo}

MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, 0, “HELP”, 6

; Data structures for the “maze”.

Room1 room {Room1, Room5, Room4, Room2,
 {Item1,0,0,0},
 Room1Desc}

Room1Desc byte “at the Commons”,0

Item1 item {10,2,Room3,GS1,GS2,GS3}
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GS1 byte “a big sign”,0
GS2 byte “a big sign made of styrofoam with funny “

byte “letters on it.”,0
GS3 byte “The ETA PI Fraternity thanks you for return”

byte “ing their sign, they”,cr,lf
byte “make you an honorary life member, as long as “
byte “you continue to pay”,cr,lf
byte “your $30 monthly dues, that is.”,0

Room2 room {NULL, Room5, Room1, Room3,
 {Item2,0,0,0},
 Room2Desc}

Room2Desc byte ‘at the “C” on the hill above campus’,0

Item2 item {10,1,Room1,LC1,LC2,LC3}
LC1 byte “a lunch card”,0
LC2 byte “a lunch card which someone must have “

byte “accidentally dropped here.”, 0
LC3 byte “You get a big meal at the Commons cafeteria”

byte cr,lf
byte “It would be a good idea to go visit the “
byte “student health center”,cr,lf
byte “at this time.”,0

Room3 room {NULL, Room6, Room2, Room2,
 {Item3,0,0,0},
 Room3Desc}

Room3Desc byte “at ETA PI Frat House”,0

Item3 item {10,2,Room2,BL1,BL2,BL3}
BL1 byte “a bag of lime”,0
BL2 byte “a bag of baseball field lime which someone “

byte “is obviously saving for”,cr,lf
byte “a special occasion.”,0

BL3 byte “You spread the lime out forming a big ‘++’ “
byte “after the ‘C’”,cr,lf
byte “Your friends in Computer Science hold you “
byte “in total awe.”,0

Room4 room {Room1, Room7, Room7, Room5,
 {Item4,0,0,0},
 Room4Desc}

Room4Desc byte “in Dr. John Smith’s Office”,0

Item4 item {10,1,Room7,HW1,HW2,HW3}
HW1 byte “a homework assignment”,0
HW2 byte “a homework assignment which appears to “

byte “to contain assembly language”,0
HW3 byte “The grader notes that your homework “

byte “assignment looks quite”,cr,lf
byte “similar to someone else’s assignment “
byte “in the class and reports you”,cr,lf
byte “to the instructor.”,0

Room5 room {Room1, Room9, Room7, Room2,
 {Item5,0,0,0},
 Room5Desc}

Room5Desc byte  “in the computer lab”,0

Item5 item {10,1,Room9,M1,M2,M3}
M1 byte “some money”,0
M2 byte “several dollars in an envelope in the “

byte “trashcan”,0
M3 byte “The waitress thanks you for your “

byte “generous tip and gets you”,cr,lf
byte “another pitcher of beer. “
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byte “Then she asks for your ID.”,cr,lf
byte “You are at least 21 aren’t you?”,0

Room6 room {Room3, Room9, Room5, NULL,
 {Item6,0,0,0},
 Room6Desc}

Room6Desc byte “at the campus book store”,0

Item6 item {10,1,Room8,AD1,AD2,AD3}
AD1 byte “an add/drop/change form”,0
AD2 byte “an add/drop/change form filled out for “

byte “assembly to get a letter grade”,0
AD3 byte “You got the form in just in time. “

byte “It would have been a shame to”,cr,lf
byte “have had to retake assembly because “
byte “you didn’t realize you needed to “,cr,lf
byte “get a letter grade in the course.”,0

Room7 room {Room1, Room7, Room4, Room8,
 {Item7,0,0,0},
 Room7Desc}

Room7Desc byte  “in the assembly lecture”,0

Item7 item {10,1,Room5,AP1,AP2,AP3}
AP1 byte “an assembly language program”,0
AP2 byte “an assembly language program due in “

byte “the assemblylanguage class.”,0
AP3 byte “The sample program the instructor gave “

byte “you provided all the information”,cr,lf
byte “you needed to complete your assignment. “
byte “You finish your work and”,cr,lf
byte “head to the local pub to celebrate.”
byte cr,lf,0

Room8 room {Room5, Room6, Room7, Room9,
 {Item8,0,0,0},
 Room8Desc}

Room8Desc byte  “at the Registrar’s office”,0

Item8 item {10,1,Room6,C1,C2,C3}
C1 byte “a coupon”,0
C2 byte “a coupon good for a free text book”,0
C3 byte ‘You get a free copy of “Cliff Notes for ‘

byte ‘The Art of Assembly’,cr,lf
byte ‘Language Programming” Alas, it does not ‘
byte “provide all the”,cr,lf
byte “information you need for the class, so you “
byte “sell it back during”,cr,lf
byte “the book buy-back period.”,0

Room9 room {Room6, Room9, Room8, Room3,
 {Item9,0,0,0},
 Room9Desc}

Room9Desc byte “at The Pub”,0
Item9 item {10,2,Room4,B1,B2,B3}
B1 byte “a pitcher of beer”,0
B2 byte “an ice cold pitcher of imported beer”,0
B3 byte “Dr. Smith thanks you profusely for your “

byte “good taste in brews.”,cr,lf
byte “He then invites you to the pub for a “
byte “round of pool and”,cr,lf
byte “some heavy duty hob-nobbing, “
byte “CS Department style.”,0



 

Chapter 16

Page 972

 

dseg ends

cseg segment para public ‘code’
assume ds:dseg

; SetNoun- Copies the value in SI (the matchparm parameter) to the
; NOUN variable.

SetNoun proc far
push ds
mov ax, dseg
mov ds, ax
mov Noun, si
mov ax, di
stc
pop ds
ret

SetNoun endp

; SetVerb- Copies the value in SI (the matchparm parameter) to the
; VERB variable.

SetVerb proc far
push ds
mov ax, dseg
mov ds, ax
mov Verb, si
mov ax, di
stc
pop ds
ret

SetVerb endp

; SetPtr- Copies the value in SI (the matchparm parameter) to the
; NOUNPTR variable.

SetPtr proc far
push ds
mov ax, dseg
mov ds, ax
mov NounPtr, si
mov ax, di
stc
pop ds
ret

SetPtr endp

; CheckPresence-
; BX points at an item. DI points at an item list. This
; routine checks to see if that item is present in the
; item list. Returns Carry set if item was found,
; clear if not found.

CheckPresence proc

; MaxWeight is an assembly-time adjustable constant that determines
; how many objects the user can carry, or can be in a room, at one
; time. The following repeat macro emits “MaxWeight” compare and
; branch sequences to test each item pointed at by DS:DI.

ItemCnt = 0
repeat MaxWeight
cmp bx, [di+ItemCnt]
je GotIt

ItemCnt = ItemCnt+2
endm
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clc
ret

GotIt: stc
ret

CheckPresence endp

; RemoveItem- BX contains a pointer to an item. DI contains a pointer
; to an item list which contains that item. This routine
; searches the item list and removes that item from the
; list. To remove an item from the list, we need only
; store a zero (NULL) over the top of its pointer entry
; in the list.

RemoveItem proc

; Once again, we use the repeat macro to automatically generate a chain
; of compare, branch, and remove code sequences for each possible item
; in the list.

ItemCnt = 0
repeat MaxWeight
local NotThisOne
cmp bx, [di+ItemCnt]
jne NotThisOne
mov word ptr [di+ItemCnt], NULL
ret

NotThisOne:
ItemCnt = ItemCnt+2

endm

ret
RemoveItem endp

; InsertItem- BX contains a pointer to an item, DI contains a pointer to
; and item list. This routine searches through the list for
; the first empty spot and copies the value in BX to that point.
; It returns the carry set if it succeeds. It returns the
; carry clear if there are no empty spots available.

InsertItem proc

ItemCnt = 0
repeat MaxWeight
local NotThisOne
cmp word ptr [di+ItemCnt], 0
jne NotThisOne
mov [di+ItemCnt], bx
stc
ret

NotThisOne:
ItemCnt = ItemCnt+2

endm

clc
ret

InsertItem endp

; LongDesc- Long description of an item.
; DI points at an item - print the long description of it.

LongDesc proc
push di
test di, di
jz NoDescription
mov di, [di].item.LongDesc
puts
putcr
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NoDescription: pop di
ret

LongDesc endp

; ShortDesc- Print the short description of an object.
; DI points at an item (possibly NULL). Print the short description for it.

ShortDesc proc
push di
test di, di
jz NoDescription
mov di, [di].item.ShortDesc
puts
putcr

NoDescription: pop di
ret

ShortDesc endp

; Describe: “CurRoom” points at the current room. Describe it and its
; contents.

Describe proc
push es
push bx
push di
mov di, ds
mov es, di

mov bx, CurRoom
mov di, [bx].room.Description
print
byte “You are currently “,0
puts
putcr
print
byte “Here you find the following:”,cr,lf,0

; For each possible item in the room, print out the long description
; of that item. The repeat macro generates a code sequence for each
; possible item that could be in this room.

ItemCnt = 0
repeat MaxWeight
mov di, [bx].room.ItemList[ItemCnt]
call LongDesc

ItemCnt = ItemCnt+2
endm

pop di
pop bx
pop es
ret

Describe endp

; Here is the main program, that actually plays the game.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte cr,lf,lf,lf,lf,lf
byte “Welcome to “,’”MADVENTURE”’,cr,lf
byte ‘If you need help, type the command “HELP”’
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byte cr,lf,0

RoomLoop: dec CurScore ;One point for each move.
jnz NotOverYet

; If they made too many moves without dropping anything properly, boot them
; out of the game.

print
byte “WHOA! You lost! You get to join the legions of “
byte “the totally lame”,cr,lf
byte ‘who have failed at “MADVENTURE”’,cr,lf,0
jmp Quit

; Okay, tell ‘em where they are and get a new command from them.

NotOverYet: putcr
call Describe
print
byte cr,lf
byte “Command: “,0
lesi InputLine
gets
strupr ;Ignore case by converting to U.C.

; Okay, process the command. Note that we don’t actually check to see
; if there is a properly formed sentence. Instead, we just look to see
; if any important keywords are on the line. If they are, the pattern
; matching routines load the appropriate values into the noun and verb
; variables (nouns: north=1, south=2, east=3, west=4, lime=5, beer=6,
; card=7, sign=8, program=9, homework=10, money=11, form=12, coupon=13;
; verbs: go=1, get=2, drop=3, inventory=4, quit=5, help=6).
;
; This code uses the noun and verb variables as indexes into a two
; dimensional array whose elements contain the address of the code
; to process the given command. If a given command does not make
; any sense (e.g., “go coupon”) the entry in the table points at the
; bad command code.

mov Noun, 0
mov Verb, 0
mov NounPtr, 0

ldxi VerbPat
xor cx, cx
match

lesi InputLine
ldxi NounPat
xor cx, cx
match

; Okay, index into the command table and jump to the appropriate
; handler. Note that we will cheat and use a 14x8 array. There
; are really only seven verbs, not eight. But using eight makes
; things easier since it is easier to multiply by eight than seven.

mov si, CurRoom;The commands expect this here.

mov bx, Noun
shl bx, 3 ;Multiply by eight.
add bx, Verb
shl bx, 1 ;Multiply by two - word table.
jmp cseg:jmptbl[bx]

; The following table contains the noun x verb cross product.
; The verb values (in each row) are the following:
;
; NONE GO GET DROP INVNTRY QUIT HELP unused
;  0  1  2  3  4  5  6  7
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;
; There is one row for each noun (plus row zero, corresponding to no
; noun found on line).

jmptbl word Bad ;No noun, no verb
word Bad ;No noun, GO
word Bad ;No noun, GET
word Bad ;No noun, DROP
word DoInventory ;No noun, INVENTORY
word QuitGame ;No noun, QUIT
word DoHelp ;No noun, HELP
word Bad ;N/A

NorthCmds word Bad, GoNorth, Bad, Bad, Bad, Bad, Bad, Bad
SouthCmds word Bad, GoSouth, Bad, Bad, Bad, Bad, Bad, Bad
EastCmds word Bad, GoEast, Bad, Bad, Bad, Bad, Bad, Bad
WestCmds word Bad, GoWest, Bad, Bad, Bad, Bad, Bad, Bad
LimeCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
BeerCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
CardCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
SignCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
ProgramCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
HomeworkCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
MoneyCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
FormCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
CouponCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad

; If the user enters a command we don’t know how to process, print an
; appropriate error message down here.

Bad: printf
byte “I’m sorry, I don’t understand how to ‘%s’\n”,0
dword InputLine
jmp NotOverYet

; Handle the movement commands here.
; Movements are easy, all we’ve got to do is fetch the NORTH, SOUTH,
; EAST, or WEST pointer from the current room’s data structure and
; set the current room to that address. The only catch is that some
; moves are not legal. Such moves have a NULL (zero) in the direction
; field. A quick check for this case handles illegal moves.

GoNorth: mov si, [si].room.North
jmp MoveMe

GoSouth: mov si, [si].room.South
jmp MoveMe

GoEast: mov si, [si].room.East
jmp MoveMe

GoWest: mov si, [si].room.West
MoveMe: test si, si ;See if move allowed.

jnz SetCurRoom
printf
byte “Sorry, you cannot go in this direction.”
byte cr, lf, 0
jmp RoomLoop

SetCurRoom: mov CurRoom, si ;Move to new room.
jmp RoomLoop

; Handle the GetItem command down here. At this time the user
; has entered GET and some noun that the player can pick up.
; First, we will make sure that item is in this room.
; Then we will check to make sure that picking up this object
; won’t overload the player. If these two conditions are met,
; we’ll transfer the object from the room to the player.
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GetItem: mov bx, NounPtr ;Ptr to item user wants.
mov si, CurRoom
lea di, [si].room.ItemList;Ptr to item list in di.
call CheckPresence;See if in room.
jc GotTheItem
printf
byte “Sorry, that item is not available here.”
byte cr, lf, 0
jmp RoomLoop

; Okay, see if picking up this object will overload the player.

GotTheItem: mov ax, [bx].Item.Weight
add ax, CurWeight
cmp ax, MaxWeight
jbe WeightOkay
printf
byte “Sorry, you are already carrying too many items “
byte “to safely carry\nthat object\n”,0
jmp RoomLoop

; Okay, everything’s cool, transfer the object from the room to the user.

WeightOkay: mov CurWeight, ax;Save new weight.
call RemoveItem ;Remove item from room.
lea di, ItemsOnHand;Ptr to player’s list.
call InsertItem
jmp RoomLoop

; Handle dropped objects down here.

DropItem: lea di, ItemsOnHand;See if the user has
mov bx, NounPtr ; this item on hand.
call CheckPresence
jc CanDropIt1
printf
byte “You are not currently holding that item\n”,0
jmp RoomLoop

; Okay, let’s see if this is the magic room where this item is
; supposed to be dropped. If so, award the user some points for
; properly figuring this out.

CanDropIt1: mov ax, [bx].item.key
cmp ax, CurRoom
jne JustDropIt

; Okay, success! Print the winning message for this object.

mov di, [bx].item.WinDesc
puts
putcr

; Award the user some points.

mov ax, [bx].item.value
add CurScore, ax

; Since the user dropped it, they can carry more things now.

mov ax, [bx].item.Weight
sub CurWeight, ax

; Okay, take this from the user’s list.

lea di, ItemsOnHand
call RemoveItem

; Keep track of how may objects the user has successfully dropped.
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; When this counter hits zero, the game is over.

dec TotalCounter
jnz RoomLoop

printf
byte “Well, you’ve found where everything goes “
byte “and your score is %d.\n”
byte “You might want to play again and see if “
byte “you can get a better score.\n”,0
dword CurScore
jmp Quit

; If this isn’t the room where this object belongs, just drop the thing
; off. If this object won’t fit in this room, ignore the drop command.

JustDropIt: mov di, CurRoom
lea di, [di].room.ItemList
call InsertItem
jc DroppedItem
printf
byte “There is insufficient room to leave “
byte “that item here.\n”,0
jmp RoomLoop

; If they can drop it, do so. Don’t forget we’ve just unburdened the
; user so we need to deduct the weight of this object from what the
; user is currently carrying.

DroppedItem: lea di, ItemsOnHand
call RemoveItem
mov ax, [bx].item.Weight
sub CurWeight, ax
jmp RoomLoop

; If the user enters the INVENTORY command, print out the objects on hand

DoInventory: printf
byte “You currently have the following items in your “
byte “possession:”,cr,lf,0
mov di, ItemsOnHand[0]
call ShortDesc
mov di, ItemsOnHand[2]
call ShortDesc
mov di, ItemsOnHand[4]
call ShortDesc
mov di, ItemsOnHand[6]
call ShortDesc
printf
byte “\nCurrent score: %d\n”
byte “Carrying ability: %d/4\n\n”,0
dword CurScore,CurWeight
inc CurScore ;This command is free.
jmp RoomLoop

; If the user requests help, provide it here.

DoHelp: printf
byte “List of commands:”,cr,lf,lf
byte “GO {NORTH, EAST, WEST, SOUTH}”,cr,lf
byte “{GET, DROP} {LIME, BEER, CARD, SIGN, PROGRAM, “
byte “HOMEWORK, MONEY, FORM, COUPON}”,cr,lf
byte “SHOW INVENTORY”,cr,lf
byte “QUIT GAME”,cr,lf
byte “HELP ME”,cr,lf,lf
byte “Each command costs you one point.”,cr,lf
byte “You accumulate points by picking up objects and “
byte “dropping them in their”,cr,lf
byte “ appropriate locations.”,cr,lf
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byte “If you drop an item in its proper location, it “
byte “disappears from the game.”,cr,lf
byte “The game is over if your score drops to zero or “
byte “you properly place”,cr,lf
byte “ all items.”,cr,lf
byte 0
jmp RoomLoop

; If they quit prematurely, let ‘em know what a wimp they are!

QuitGame: printf
byte “So long, your score is %d and there are “
byte “still %d objects unplaced\n”,0
dword CurScore, TotalCounter

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

16.9 Laboratory Exercises

 

Programming with the Standard Library Pattern Matching routines doubles the com-
plexity. Not only must you deal with the complexities of 80x86 assembly language, you
must also deal with the complexities of the pattern matching paradigm, a programming
language in its own right. While you can use a program like CodeView to track down
problems in an assembly language program, no such debugger exists for “programs” you
write with the Standard Library’s pattern matching “language.” Although the pattern
matching routines are written in assembly language, attempting to trace through a pattern
using CodeView will not be very enlightening. In this laboratory exercise, you will learn
how to develop some rudimentary tools to help debug pattern matching programs.

 

16.9.1 Checking for Stack Overflow (Infinite Loops)

 

One common problem in pattern matching programs is the possibility of an infinite
loop occurring in the pattern. This might occur, for example, if you have a left recursive
production. Unfortunately, tracking down such loops in a pattern is very tedious, even
with the help of a debugger like CodeView. Fortunately, there is a very simple change you
can make to a program that uses patterns that will abort the program an warn you if infi-
nite recursion exists.

Infinite recursion in a pattern occurs when sl_Match2 continuously calls itself without
ever returning. This overflows the stack and causes the program to crash. There is a very
easy change you can make to your programs to check for stack overflow:

• In patterns where you would normally call 

 

sl_Match2

 

, call 

 

MatchPat

 

 instead.

• Include the following statements near the beginning of your program (before any
patterns):

 

DEBUG = 0 ;Define for debugging.

ifdef DEBUG
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MatchPat textequ <MatchSP>
else

MatchPat textequ <sl_Match2>
endif

 

If you define the 

 

DEBUG

 

 symbol, your patterns will call the 

 

MatchSP

 

 pro-
cedure, otherwise they will call the 

 

sl_Match2

 

 procedure. During testing,
define the 

 

DEBUG

 

 symbol.

• Insert the following procedure somewhere in your program:

 

MatchSP proc    far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte    cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP endp

 

This code sandwiches itself between your pattern and the 

 

sl_Match2

 

 rou-
tine. It checks the stack pointer (

 

sp

 

) to see if it has dropped below a mini-
mally acceptable point in the stack segment. If not, it continues execution
by jumping to the 

 

sl_Match2

 

 routine; otherwise it aborts program execu-
tion with an error message.

• The final change to your program is to modify the stack segment so that it looks
like the following:

 

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack   ") ; below StkOvrfl.
sseg ends

 

After making these changes, your program will automatically stop with an error mes-
sage if infinite recursion occurs since infinite recursion will most certainly cause a stack
overflow

 

17

 

.

The following code (Ex16_1a.asm on the companion CD-ROM) presents a simple cal-
culator, similar to the calculator in the section “Evaluating Arithmetic Expressions” on
page 948, although this calculator only supports addition. As noted in the comments
appearing in this program, the pattern for the expression parser has a serious flaw – it
uses a left recursive production. This will most certainly cause an infinite loop and a stack
overflow. 

 

For your lab report: 

 

Run this program with and without the 

 

DEBUG

 

 symbol
defined (i.e., comment out the definition for one run). Describe what happens.

 

; EX16_1a.asm
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines.  Note that this
; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

 

17. This code will also abort your program if you use too much stack space without infinite recursion. A problem
in its own right.
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; If the symbol "DEBUG" is defined, then call the MatchSP routine
; to do stack overflow checking.  If "DEBUG" is not defined, just
; call the sl_Match2 routine directly.

DEBUG = 0 ;Define for debugging.

ifdef DEBUG
MatchPat textequ <MatchSP>

else
MatchPat textequ <sl_Match2>

endif

dseg segment para public 'data'

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; A Test String:

TestStr byte "5+2-(3-1)",0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; NOTE: This code has a serious problem.  The first production
; is left recursive and will generate an infinite loop.
;
; E -> E+T {print result} | T {print result}
; T -> <constant> {fld constant} | (E)
;
;
; UCR Standard Library Pattern that handles the grammar above:

; An expression consists of an "E" item followed by the end of the string:

Expression pattern {MatchPat,E,,EndOfString}
EndOfString pattern {EOS}

; An "E" item consists of an "E" item optionally followed by "+" or "-"
; and a "T" item (E -> E+T | T):

E pattern {MatchPat, E,T,Eplus}
Eplus pattern {MatchChar, '+', T, epPlus}
epPlus pattern {DoFadd}

; A "T" item is either a floating point constant or "(" followed by
; an "E" item followed by ")".
;
; The regular expression for a floating point constant is
;
; [0-9]+ ( "." [0-9]* | ) ( ((e|E) (+|-| ) [0-9]+) | )
;
; Note: the pattern "Const" matches exactly the characters specified
; by the above regular expression.  It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
ConstStr pattern {MatchPat, DoDigits, 0, Const2}
Const2 pattern {matchchar, '.', Const4, Const3}
Const3 pattern {MatchPat, DoDigits, Const4, Const4}
Const4 pattern {matchchar, 'e', const5, const6}
Const5 pattern {matchchar, 'E', Succeed, const6}
Const6 pattern {matchchar, '+', const7, const8}
Const7 pattern {matchchar, '-', const8, const8}
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Const8 pattern {MatchPat, DoDigits}

FldConst pattern {PushValue}

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

T pattern {MatchChar, '(', Const, IntE}
IntE pattern {MatchPat, E, 0, CloseParen}
CloseParen pattern {MatchChar, ')'}

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Debugging feature #1:
; This is a special version of sl_Match2 that checks for
; stack overflow.  Stack overflow occurs whenever there
; is an infinite loop (i.e., left recursion) in a pattern.

MatchSP proc    far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte    cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP          endp

; DoSucceed matches the empty string.  In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; PushValue- We've just matched a string that corresponds to a
; floating point constant.  Convert it to a floating
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; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds
stc
ret

PushValue endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit ;Be sure to do this!
fwait

lesi TestStr
puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte " is an illegal expression",cr,lf,0
ret

GoodVal: fstp CurValue
printff
byte " = %12.6ge\n",0
dword CurValue

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack   "); below StkOvrfl.
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main
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16.9.2 Printing Diagnostic Messages from a Pattern

 

When there is no other debugging method available, you can always use print state-
ments to help track down problems in your patterns. If your program calls pattern match-
ing functions in your own code (like the 

 

DoFAdd

 

, 

 

DoSucceed

 

, and 

 

PushValue

 

 procedures in
the code above), you can easily insert 

 

print

 

 or 

 

printf

 

 statements in these functions that will
print an appropriate message when they execute. Unfortunately, a problem may develop
in a portion of a pattern that does not call any local pattern matching functions, so insert-
ing print statements within an existing (local) pattern matching function might not help.
To solve this problem, all you need to do is insert a call to a local pattern matching func-
tion in the patterns you suspect have a problem.

Rather than make up a specific local pattern to print an individual message, a better
solution is to write a generic pattern matching function whose whole purpose is to display
a message. The following 

 

PatPrint

 

 function does exactly this:

 

; PatPrint- A debugging aid.  This "Pattern matching function" prints
; the string that DS:SI points at.

PatPrint proc far
push es
push di
mov di, ds
mov es, di
mov di, si
puts
mov ax, di
pop di
pop es
stc
ret

PatPrint endp

 

From “Constructing Patterns for the MATCH Routine” on page 933, you will note that
the pattern matching system passes the value of the 

 

MatchParm

 

 parameter to a pattern
matching function in the 

 

ds:si

 

 register pair. The 

 

PatPrint

 

 function prints the string that 

 

ds:si

 

points at (by moving 

 

ds:si

 

 to 

 

es:di

 

 and calling 

 

puts

 

).

The following code (Ex16_1b.asm on the companion CD-ROM) demonstrates how to
insert calls to PatPrint within your patterns to print out data to help you track down prob-
lems in your patterns. 

 

For your lab report:

 

 run this program and describe its output in
your report. Describe how this output can help you track down the problem with this pro-
gram. Modify the grammar to match the grammar in the corresponding sample program
(see “Evaluating Arithmetic Expressions” on page 948) while still printing out each pro-
duction that this program processes. Run the result and include the output in your lab
report.

 

; EX16_1a.asm
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines.  Note that this
; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

; If the symbol "DEBUG" is defined, then call the MatchSP routine
; to do stack overflow checking.  If "DEBUG" is not defined, just
; call the sl_Match2 routine directly.
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DEBUG = 0 ;Define for debugging.

ifdef DEBUG
MatchPat textequ <MatchSP>

else
MatchPat textequ <sl_Match2>

endif

dseg segment para public 'data'

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; A Test String:

TestStr byte "5+2-(3-1)",0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; NOTE: This code has a serious problem.  The first production
; is left recursive and will generate an infinite loop.
;
; E -> E+T {print result} | T {print result}
; T -> <constant> {fld constant} | (E)
;
; UCR Standard Library Pattern that handles the grammar above:

; An expression consists of an "E" item followed by the end of the string:

Expression pattern {MatchPat,E,,EndOfString}
EndOfString pattern {EOS}

; An "E" item consists of an "E" item optionally followed by "+" or "-"
; and a "T" item (E -> E+T | T):

E pattern {PatPrint,EMsg,,E2}
EMsg byte "E->E+T | T",cr,lf,0

E2 pattern {MatchPat, E,T,Eplus}
Eplus pattern {MatchChar, '+', T, epPlus}
epPlus pattern {DoFadd,,,E3}
E3 pattern {PatPrint,EMsg3}
EMsg3 byte "E->E+T",cr,lf,0

; A "T" item is either a floating point constant or "(" followed by
; an "E" item followed by ")".
;
; The regular expression for a floating point constant is
;
; [0-9]+ ( "." [0-9]* | ) ( ((e|E) (+|-| ) [0-9]+) | )
;
; Note: the pattern "Const" matches exactly the characters specified
; by the above regular expression.  It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
ConstStr pattern {MatchPat, DoDigits, 0, Const2}
Const2 pattern {matchchar, '.', Const4, Const3}
Const3 pattern {MatchPat, DoDigits, Const4, Const4}
Const4 pattern {matchchar, 'e', const5, const6}
Const5 pattern {matchchar, 'E', Succeed, const6}
Const6 pattern {matchchar, '+', const7, const8}
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Const7 pattern {matchchar, '-', const8, const8}
Const8 pattern {MatchPat, DoDigits}

FldConst pattern {PushValue,,,ConstMsg}
ConstMsg pattern {PatPrint,CMsg}
CMsg byte "T->const",cr,lf,0

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

T pattern {PatPrint,TMsg,,T2}
TMsg byte "T->(E) | const",cr,lf,0

T2 pattern {MatchChar, '(', Const, IntE}
IntE pattern {MatchPat, E, 0, CloseParen}
CloseParen pattern {MatchChar, ')',,T3}

T3 pattern {PatPrint,TMsg3}
TMsg3 byte "T->(E)",cr,lf,0

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Debugging feature #1:
; This is a special version of sl_Match2 that checks for
; stack overflow.  Stack overflow occurs whenever there
; is an infinite loop (i.e., left recursion) in a pattern.

MatchSP proc    far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP          endp

; PatPrint- A debugging aid.  This "Pattern matching function" prints
; the string that DS:SI points at.

PatPrint proc far
push es
push di
mov di, ds
mov es, di
mov di, si
puts
mov ax, di
pop di
pop es
stc
ret

PatPrint endp
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; DoSucceed matches the empty string.  In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; PushValue- We've just matched a string that corresponds to a
; floating point constant.  Convert it to a floating
; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds
stc
ret

PushValue endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit ;Be sure to do this!
fwait

lesi TestStr
puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte " is an illegal expression",cr,lf,0
ret
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GoodVal:fstp CurValue
printff
byte " = %12.6ge\n",0
dword CurValue

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack   ") ; below StkOvrfl.
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

16.10 Programming Projects

 

1) Modify the program in Section 16.8.3 (Arith2.asm on the companion CD-ROM) so that it
includes some common trigonometric operations (sin, cos, tan, etc.). See the chapter on
floating point arithmetic to see how to compute these functions. The syntax for the func-
tions should be similar to “sin(E)” where “E” represents an arbitrary expression.

2) Modify the (English numeric input problem in Section 16.8.1 to handle negative numbers.
The pattern should allow the use of the prefixes “negative” or “minus” to denote a nega-
tive number.

3) Modify the (English) numeric input problem in Section 16.8.1 to handle four byte
unsigned integers.

4) Write your own “Adventure” game based on the programming techniques found in the
“Madventure” game in Section 16.8.5.

5) Write a “tiny assembler” for the modern version of the x86 processor using the techniques
found in Section 16.8.4.

6) Write a simple “DOS Shell” program that reads a line of text from the user and processes
valid DOS commands found on that line. Handle at least the DEL, RENAME, TYPE, and
COPY commands. See “MS-DOS, PC-BIOS, and File I/O” on page 699 for information
concerning the implementation of these DOS commands.

 

16.11 Summary

 

This has certainly been a long chapter. The general topic of pattern matching receives
insufficient attention in most textbooks. In fact, you rarely see more than a dozen or so
pages dedicated to it outside of automata theory texts, compiler texts, or texts covering
pattern matching languages like Icon or SNOBOL4. That is one of the main reasons this
chapter is extensive, to help cover the paucity of information available elsewhere. How-
ever, there is another reason for the length of this chapter and, especially, the number of
lines of code appearing in this chapter – to demonstrate how easy it is to develop certain
classes of programs using pattern matching techniques. Could you imagine having to
write a program like Madventure using standard C or Pascal programming techniques?
The resulting program would probably be longer than the assembly version appearing in
this chapter! If you are not impressed with the power of pattern matching, you should
probably reread this chapter. It is very surprising how few programmers truly understand
the theory of pattern matching; especially considering how many program use, or could
benefit from, pattern matching techniques.
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This chapter begins by discussing the theory behind pattern matching. It discusses
simple patterns, known as 

 

regular languages

 

, and describes how to design 

 

nondeterministic

 

and 

 

deterministic finite state automata

 

 – the functions that match patterns described by 

 

regu-
lar expressions

 

. This chapter also describes how to convert NFAs and DFAs into assembly
language programs. For the details, see

• “An Introduction to Formal Language (Automata) Theory” on page 883
• “Machines vs. Languages” on page 883
• “Regular Languages” on page 884
• “Regular Expressions” on page 885
• “Nondeterministic Finite State Automata (NFAs)” on page 887
• “Converting Regular Expressions to NFAs” on page 888
• “Converting an NFA to Assembly Language” on page 890
• “Deterministic Finite State Automata (DFAs)” on page 893
• “Converting a DFA to Assembly Language” on page 895

Although the regular languages are probably the most commonly processed patterns
in modern pattern matching programs, they are also only a small subset of the possible
types of patterns you can process in a program. The 

 

context free languages

 

  include all the
regular languages as a subset and introduce many types of patterns that are not regular.
To represent a context free language, we often use a 

 

context free grammar

 

. A CFG contains a
set of expressions known as 

 

productions

 

. This set of productions, a set of 

 

nonterminal sym-
bols

 

, a set of 

 

terminal symbols

 

, and a special nonterminal, the 

 

starting symbol

 

, provide the
basis for converting powerful patterns into a programming language.

In this chapter, we’ve covered a special set of the context free grammars known as
LL(1) grammars. To properly encode a CFG as an assembly language program, you must
first convert the grammar to an LL(1) grammar. This encoding yields a 

 

recursive descent
predictive parser.

 

 Two primary steps required before converting a grammar to a program
that recognizes strings in the context free language is to 

 

eliminate left recursion

 

  from the
grammar and 

 

left factor

 

  the grammar. After these two steps, it is relatively easy to convert
a CFG to an assembly language program.

For more information on CFGs, see

• “Context Free Languages” on page 900
• “Eliminating Left Recursion and Left Factoring CFGs” on page 903
• “Converting CFGs to Assembly Language” on page 905
• “Some Final Comments on CFGs” on page 912

Sometimes it is easier to deal with regular expressions rather than context free gram-
mars. Since CFGs are more powerful than regular expressions, this text generally adopts
grammars whereever possible However, regular expressions are generally easier to work
with (for simple patterns), especially in the early stages of development. Sooner or later,
though, you may need to convert a regular expression to a CFG so you can combine it
with other components of the grammar. This is very easy to do and there is a simple algo-
rithm to convert REs to CFGs. For more details, see

• “Converting REs to CFGs” on page 905

Although converting CFGs to assembly language is a straightforward process, it is
very tedious. The UCR Standard Library includes a set of pattern matching routines that
completely eliminate this tedium and provide many additional capabilities as well (such
as automatic backtracking, allowing you to encode grammars that are not LL(1)). The pat-
tern matching package in the Standard Library is probably the most novel and powerful
set of routines available therein. You should definitely investigate the use of these rou-
tines, they can save you considerable time. For more information, see

• “The UCR Standard Library Pattern Matching Routines” on page 913
• “The Standard Library Pattern Matching Functions” on page 914

One neat feature the Standard Library provides is your ability to write customized
pattern matching functions. In addition to letting you provide pattern matching facilities
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missing from the library, these pattern matching functions let you add 

 

semantic rules

 

  to
your grammars. For all the details, see

• “Designing Your Own Pattern Matching Routines” on page 922
• “Extracting Substrings from Matched Patterns” on page 925
• “Semantic Rules and Actions” on page 929

Although the UCR Standard Library provides a powerful set of pattern matching rou-
tines, its richness may be its primary drawback. Those who encounter the Standard
Library’s pattern matching routines for the first time may be overwhelmed, especially
when attempting to reconcile the material in the section on context free grammars with
the Standard Library patterns. Fortunately, there is a straightforward, if inefficient, way to
translate CFGs into Standard Library patterns. This technique is outlined in

• “Constructing Patterns for the MATCH Routine” on page 933

Although pattern matching is a very powerful paradigm that most programmers
should familiarize themselves with, most people have a hard time seeing the applications
when they first encounter pattern matching. Therefore, this chapter concludes with some
very complete programs that demonstrate pattern matching in action. These examples
appear in the section:

• “Some Sample Pattern Matching Applications” on page 935
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16.12 Questions

 

1) Assume that you have two inputs that are either zero or one. Create a DFA to implement the following
logic functions (assume that arriving in a final state is equivalent to being true, if you wind up in a
non-accepting state you return false)

a) OR b) XOR c) NAND d) NOR

e) Equals (XNOR) f) AND

2) If 

 

r, s, 

 

and 

 

t

 

  are regular expressions, what strings with the following regular expressions match?

a) 

 

r*

 

b) 

 

r s

 

c) 

 

r

 

+

 

d) 

 

r 

 

| 

 

s

 

3) Provide a regular expression for integers that allow commas every three digits as per U.S. syntax (e.g., for
every three digits from the right of the number there must be exactly one comma). Do not allow misplaced
commas.

4) Pascal real constants must have at least one digit before the decimal point. Provide a regular expression for
FORTRAN real constants that does not have this restriction.

5) In many language systems (e.g., FORTRAN and C) there are two types of floating point numbers, single
precision and double precision. Provide a regular expression for real numbers that allows the input of
floating point numbers using any of the characters [dDeE] as the exponent symbol (d/D stands for double
precision).

6) Provide an NFA that recognizes the mnemonics for the 886 instruction set.

7) Convert the NFA above into assembly language. Do not use the Standard Library pattern matching rou-
tines.

8) Repeat question (7) using the Standard Library pattern matching routines.

9) Create a DFA for Pascal identifiers.

10) Convert the above DFA to assembly code using straight assembly statements.

11) Convert the above DFA to assembly code using a state table with input classification. Describe the data in
your classification table.

12) Eliminate left recursion from the following grammar:

 

Stmt

 

→

 

if 

 

expression 

 

then 

 

Stmt 

 

endif
| if 

 

expression 

 

then 

 

Stmt

 

 else 

 

Stmt

 

 endif
|

 

Stmt 

 

; 

 

Stmt

 

|

 

ε

 

13) Left factor the grammar you produce in problem 12.

14) Convert the result from question (13) into assembly language without using the Standard Library pattern
matching routines.

15) Convert the result from question (13) in assembly language using the Standard Library pattern matching
routines.

0
1 3

1
5

Example, A<B

A Input B Input
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16) Convert the regular expression obtained in question (3) to a set of productions for a context free grammar.

17) Why is the ARB matching function inefficient? Describe how the pattern (ARB “hello” ARB) would match
the string “hello there”.

18)

 

Spancset

 

 matches zero or more occurrences of some characters in a character set. Write a pattern match-
ing function, callable as the first field of the pattern data type, that matches one or more occurrences of
some character (feel free to look at the sources for 

 

spancset

 

).

19) Write the 

 

matchichar

 

 pattern matching function that matches an individual character regardless of case
(feel free to look at the sources for 

 

matchchar

 

).

20) Explain how to use a pattern matching function to implement a semantic rule.

21) How would you extract a substring from a matched pattern?

22) What are 

 

parenthetical patterns

 

? How to you create them?


