

Lab 5-119

Variables & Lab Manual, Chapter Five
Data Structures

To write the shortest and fastest possible assembly language programs you need to understand how the CPU refer-
ences data in memory. The Intel 80x86 processor family provides a wide variety of memory addressing modes that allow
efficient access to memory. Unless you master these addressing modes, you will not be able to write the most efficient
programs.

The 80386 and later processors support an extended set of memory addressing modes. For those working on ‘386
(or greater) processors, the task is both simpler and more complex. On the one hand, the greater variety of addressing
modes opens even more opportunity for optimization. On the other hand, the additional modes complicate the task of
selecting the most appropriate mode.

In this laboratory you will experiment with the PC’s memory and study the various 80x86 addressing modes. You
will also explore various high level language data types and their implementation in assembly language. To support
these experiments, you will learn how to use the Microsoft CodeView

 debugger, the 80x86 version of SIM886. Finally,
you will begin writing real assembly language programs, assembling and linking them with the MASM 6.x assembler.

5.1 The LEA, LES, ADD, and MUL Instructions

You’ll need to use the LEA, LES, ADD, and MUL instructions in this chapter’s lab exercises, so it’s worthwhile to
briefly covering these instructions. A few examples may help demystify their use.

The LEA (load effective address) instruction loads a 16-bit register with the address of some specified memory loca-
tion. This instruction takes the form:

LEA reg

16

, memory

Reg

16

 is one of the 8086’s 16-bit general purpose registers and memory represents a memory addressing mode (any

mod-r/m

 value where

mod

 is not 11). This instruction computes the effective address of the memory operand (that is,
the offset into the given segment) and loads that effective address into the specified register.

Suppose BX=100h, BP=200h, SI=10h, and DI=20h. The following examples demonstrate how LEA works:

LEA AX, DS:[105h]

Loads AX with 105h.

LEA AX, 5[BX][si]

Loads AX with BX+SI+5 or 115h.

LEA BX, 5[BX]

Loads BX with BX+5 or 105h.

LEA BX, [BX]

Simply copies BX back into itself.

LEA AX, [BP][DI]

Loads AX with BP+DI or 220h.

LEA AX, 10h[SI]

Loads AX with SI+10h or 20h.

Given these values for BX, BP, SI, and DI, describe what the following LEA instructions will
do:

5.1

LEA BX, [BX][SI]

5.2

LEA SP, [BP]

5.3

LEA DX, DS:[1027H]

This document was created with FrameMaker 4.0.2

Lab Ch05

Lab 5-120

5.4 The opcode for the LEA instruction is 8Dh followed by a

mod-reg-r/m

 byte and any neces-
sary displacement bytes. Given this encoding, what are the instruction bytes for

LEA AX,
5[BX][SI] ?

The LES instruction, although it looks like the LEA mnemonic, is a completely different instruction. It loads a 32-bit
pointer into the ES register and some other 16-bit register. The syntax for this instruction is

LES reg

16

, memory

32

The memory

32

 operand means that the LES instruction loads 32 bits from four consecutive bytes in memory (L.O. byte
first). The L.O. word goes into the 16-bit register, the H.O. word goes into the ES register. The main use of this instruction
is to load memory pointers into ES and some other register (typically BX, SI, or DI) to gain access to the object referenced
by the pointer.

As an example, suppose memory locations ds:0 through DS:7 contain 0, 2, 5, 6, 1, 2, 6, 4, respectively. The
“

LES BX, DS:[0]

” would load BX with 200h (the word starting at location 0) and ES with 605h (the value of the
word starting at location two). Likewise, “

LES SI, DS:[4]”

 would load SI with 201h and ES with 406h.

5.5 Given the above values for DS:0…DS:7, what would “

LES DI, DS:[2]

” do?

The ADD instruction, as its name implies, adds two values together. It’s syntax is almost identical to that of the MOV
instruction’s. The only major difference (other than using ADD rather than MOV) is that you cannot add a value to a seg-
ment register. This instruction adds the source and destination operands together and stores the sum into the destination
operand. For example, the “ADD AX, 2” instruction adds two to the value in the AX register and leaves the result in the
AX register.

5.6 If the opcode for the ADD instruction is 000000dw (where “d” and “w” have the same
meanings as for the MOV instruction), followed by a mod-reg-r/m byte and any necessary
displacement bytes, what is the instruction encoding for “

ADD AX, BX

”?

5.7 If AX contains five and BX contains two, what will the instruction “

ADD AX, BX

” do?

The 80x86 MUL instruction uses a slightly different syntax than the instructions you’ve seen thus far. Rather than
having two operands, a source and a destination, the MUL instruction has only a single operand – the source operand.
The destination for the 80x86 MUL instruction is always the AX register (if the source operand is an eight-bit register or
memory location) or the DX:AX register pair (if the operand is 16 bits). These instructions do the following:

MUL reg

8

/mem

8

Multiplies AL by operand, stores the

result into AX.
MUL reg

16

/mem

16

Multiplies AX by operand, stores the

result into DX:AX

The following questions assume AX = 2, BX=3, CX=4, and DX=5

at the beginning of each question

. Please specify
the exact and complete results for each of the following:

5.8 MUL AX

5.9 MUL BX

Variables and Data Structures

Lab 5-121

5.2 Variables in an Assembly Language Program

MASM provides many

assembler directives

 specifically for declaring scalar variables. These
directives are

• DB, BYTE, and SBYTE for declaring byte variables,
• DW, WORD, and SWORD for declaring word variables,
• DD, DWORD, and SDWORD for declaring double word variables,
• REAL4, REAL8, and REAL10 for declaring floating point variables, and
• DF/FWORD, DQ/QSORD, and DT/TBYTE for other data types.

The syntax for each of these directives is identical. Using the BYTE directive as an example:

variable_name

byte ?

If you want a word variable rather than a byte variable, you would substitute

word

 for

byte

above. Likewise, you would substitute

dword

 for

byte

 if you wanted a double word variable. For
example, to declare a 16-bit signed variable named

CurValue

 you could use the declaration:

CurValue sword ?

The DB, DW, DD, DF, DQ, and DT mnemonics are older, obsolete versions of BYTE,
WORD, DWORD, etc. In general, you should use the new, easier to read versions rather than
these. BYTE, WORD, and DWORD are for declaring

unsigned

variables. SBYTE, SWORD, and
SDWORD let you declare

signed

 variables. MASM ignores the signed/unsigned specification, but
CodeView uses this information to properly display values during debugging.

5.10 How would you declare an eight-byte floating point variable “R”?

5.11 How would you declare an unsigned 32-bit variable “U”?

The question mark in the operand field tells MASM that you don’t want the variable initial-
ized when the program loads into memory. If you want to give the variable an initial value, spec-
ify that value in the operand field. As an example, the following initializes the CHR variable to
the character ‘A’:

CHR byte ‘A’

5.12 How would you declare a signed 16-bit variable (“S”) and initialize it to
the value -129?

5.13 How would you declare a four byte floating point variable “PI” and ini-
tialize it to 3.14159?

Generally, you will place all variables in the data segment of your program. When using the
SHELL.ASM program you will almost always put your variables in the DSEG segment, e.g.,

5.1 BX := BX + SI

5.2 SP := BP

Lab Ch05

Lab 5-122

dseg segment para public ‘data’
bytevar byte ?
wordvar word ?
dwordvar dword ?
byte2 sbyte ?
word2 sword ?
dseg ends

5.3 Declaring Your Own Types with TYPEDEF

The TYPEDEF directive lets you create your own data type directives. The TYPEDEF directive is especially useful for
declaring pointer types (see the next section), you can also use this directive to create your own names for common
types. For example, if you prefer

integer

 to

sword

 when declaring integer variables, you could create your own type as
follows:

integer typedef sword

To declare a variable, I, of type integer, you would use the declaration:

I integer ?

You could even initialize I by specifying a value in the operand field:

I integer -13

Likewise, if you prefer “float” to REAL4 or DOUBLE to “REAL8” (i.e., you’re a “C” programmer) you can create such types
using the declarations:

FLOAT typedef real4
DOUBLE typedef real8

You can declare FLOAT and DOUBLE variables using statements like:

F FLOAT ?
D DOUBLE 3.19

5.14 How would you declare a “char” type which reserves storage for a one-byte character vari-
able?

5.15 Give an example of how to declare a variable “chr” initialized with the character “A” using
the above declaration.

5.4 Pointers

A pointer is a memory location (generally 16 or 32 bits) which contains the address of some other object in memory.
This text will typically use 32-bit (far) pointers since they mesh well with the UCR Standard Library. Keep in mind,
though, that 16-bit (near) pointers are more efficient if you are able to use them..

To declare a far (32-bit) pointer in your program, just use the

dword

 directive (or some typedef’d equivalent) and
declare the pointer as you would any other variable:

pointer typedef far ptr
fptr1 dword ?
fptr2 pointer ?

You can initialize a pointer with the address of an object by placing that object’s name in the operand field of the decla-
ration:

Variables and Data Structures

Lab 5-123

I word 10
Ptr2I pointer I
Ptr2Ptr2I pointer Ptr2I

The 80x86 family does not let you access objects through memory pointers directly

8

. To
access an object referenced by a pointer you must use one of the 80x86’s indirect or indexed
addressing modes. When dealing with far pointers, you would typically use the ES:[BX], ES:[SI],
or ES:[DI] addressing modes to access objects referenced by far pointers.

5.16 Suppose you have an integer variable J and you want to create a
pointer, PJ, to this variable. How could you declare such a pointer so
that it will be properly initialized when loaded into memory

5.17 What 80x86 instruction would you use to load the 32-bit pointer PJ into
ES and BX?

5.5 Arrays in Assembly Language Programs

Assembly language programmers generally implement arrays as a contiguous set of mem-
ory locations. In general, this provides the most efficient mechanism for accessing elements of an
array. Therefore, this is the technique we will use to implement them.

There are a couple of ways to declare an array in your assembly language program.. The
first and easiest way is to use the MASM

dup

 operator:

IntArray word 16 dup (?)

The example above reserves 16 words of storage. The name “IntArray” is a word variable
whose address just happens to be the very first word of the array (this is the

base address

 of the
array). Because each element of the array is two bytes long, you must multiply the index by two
when attempting to access elements of this array. IntArray[0] refers to the first element of the
array, IntArray[2] is the second element, IntArray[4] is the third element, IntArray[6] is the fourth
element, and so on. A very common mistake beginners make when writing assembly language
programs is that they forget to multiply the index by the size of an array element when comput-
ing an index into an array. Because the notation “IntArray[2]” looks just like the notation high
level languages use, it’s very easy to forget the real computation which must take place. The
complete formula for this computation is

Element_Address = Base_Address + Index * Element_Size

Element_Size

 is the size in bytes of one item in the array. Since the element size of a word array
is two bytes, Element_Size is two, hence you must multiply your index by two before adding it to
the base address

9

.

Even more confusing is the fact that this multiplicative factor changes with the size of the
array elements. If you have an array of bytes, the multiplication factor is one and you can ignore
it. For words, the factor is two. The factor is four when accessing double word arrays. If you are
manipulating several different data types, keeping the multiplication factors straight can be a
problem.

Consider the following array declaration:

8. Or should this be

indirectly

?
9. Remember, the notation XYZ[ABC] in assembly language means XYZ+ABC. Hence the notation IntArray[2] means
“add two to the base address of IntArray.”

5.3 DX := 1027h

5.4 8Dh, 40h, 05h

5.5 Load 605h into DI and
201h into ES.

5.6 03h, C3h

5.7 Set AX to seven.

5.8 Set DX = 0 & AX = 4

5.9 Set AX = 6 & DX = 0

5.10 R real8 ?

5.11 U DWORD ?

5.12 S SWORD -129

5.13 PI real4 3.14159

Lab Ch05

Lab 5-124

IntArray word 16 dup (?)

You can access elements of this array using 80x86 instructions like the following:

mov IntArray[4], 0
mov IntArray[8], ax
add ax, IntArray[2]
mul IntArray[0]
lea bx, IntArray[8]

(the last instruction loads BX with the offset of the fifth element from IntArray.)

5.18 What instruction would you use to load the last element of IntArray into BX?

5.19 How would you declare an array, RArray, containing 64 single precision (32-bit) floating
point variables?

5.20 What instruction would you use to load the offset of RArray[10] into BX?

More often than not, you won’t need to access a fixed element of an array as in the above examples. Instead, you’ll
probably have a value in a variable or in a register which you’ll use to specify which element to operate on. You cannot
use an operand of the form “IntArray[i]” to select the i

th

 element of the array. Instead, you will have to compute the index
into the array using the formula given above. For example, to access the i

th

 element of IntArray, you will need to multiply
the index by two (the element size is two). This product plus the base address of the array provides the address of the i

th

element. Some 80x86 code to accomplish this is

mov bx, i ;Get the index into the array
add bx, bx ;Multiplies the index by two.
mov ax, IntArray[bx] ;Fetch the specified element.

There are two important things to note above. First, this example used the ADD instruction to multiply i’s value by
two before using it. While it could have used the multiply instruction, the ADD instruction is simpler, faster, and easier to
use. You can use sequences of the ADD instruction to easily multiply a value in a register by two, four, eight, or any other
power of two. The other thing to notice above is that to access an array element, this code uses the indexed addressing
mode. The 80x86 does not provide a memory addressing mode which lets you use an integer variable directly as an
index into an array. Instead, you must first load the index value into an appropriate register and use one of the indexed
addressing modes.

Note that if you’re using an 80386 or later processor and your array element size is two, four, or eight you can use
the 80386

scaled indexed addressing modes

 to automatically perform this multiplication for you. Since these are the most
common array element sizes, the scaled indexed addressing mode can be very useful. The previous example, using the
scaled indexed addressing mode takes only two instructions:

mov ebx, i ;”i” must be a dword variable!
mov ax, IntArray[ebx*2]

5.21 What statement would you use to declare an array, DArray, of 128 double precision (64-bit)
floating point values?

5.22 What sequence of instructions would you use to access DArray[j] (8086 instructions only)?

5.23 What (shorter) sequence of instructions could you use on the 80386 to access DArray[j]?

Variables and Data Structures

Lab 5-125

The MASM

dup

 operator simply tells the assembler to duplicate the operand inside the
parentheses. You may also specify multiple operands in the operand field and define an array in
this fashion. This allows you to

initialize

 the elements of the array before the program runs:

IntArray word 0,1,2,3,4,5,6,7
word 8,9,10,11,12,13,14,15

The declaration above sets aside 16 words in memory and initializes them with the values
zero through fifteen. You would use the same 80x86 code to access these array elements as
before.

Note that there is nothing magic about an array declaration. All you’re doing is reserving
some storage. When you access an element of an array, the 80x86 simply accesses a memory
location at a given offset from the base address you supply. Consider the following variable dec-
larations in the data segment:

I word 0
J word 1
K word 2
L word 3
M word 4
N word 5
O word 6
P word 7

Now consider the following sequence of instructions:

mov bx, Index
add bx, bx
mov I[bx], ax

The sequence above is a very typical set of instructions you’d normally use to index into a word
array whose base address is “I”. However, as you can probably tell, “I” isn’t really an array. It’s
just a word variable. The 80x86 doesn’t care though, it will happily index off “I” and return the
word at offset “Index*2” beyond “I”. It

is

 quite possible that “I” really is an array and the program-
mer wanted to access elements of “I” using names like “J”, “K”, etc. More likely than not, how-
ever, if you see code like the above in a program, it’s an indication that there are problems with
that program.

5.24 Suppose INDEX = 4, what variable would the above code access?

5.6 Multidimensional Arrays

The 80x86 hardware is set up to handle one-dimensional arrays with ease. Handling two or
more dimensions is a bit more work. While there are a wide variety of ways to map multidimen-
sional structures to the one-dimensional structure of memory, there are two techniques in com-
mon use: row-major ordering and column major ordering. We’ll use row major ordering most of
the time, though column major ordering is useful on occasion. Here we will concentrate on two-
dimensional arrays, for a more general discussion, please consult the text.

The row major function that maps two values (indices) to a linear offset is

ElementAdrs = BaseAdrs + (ColIndex * RowSize + RowIndex) * ElementSize

For column major ordering the formula is

Element_Adrs = BaseAdrs + (RowIndex * ColSize + ColIndex) * ElementSize

To declare a multidimensional array use multiple

dup

 operators as follows:

TwoDArray word 4 dup (4 dup (?))

5.14 typedef byte

5.15 chr char ‘A’

5.16 PJ dword J

5.17 LES bx, PJ

Lab Ch05

Lab 5-126

The dup operator duplicates everything inside the parentheses. “4 dup (0,1,2,3)” duplicates the four values 0, 1, 2, and 3
four times for a total of 16 values (0, 1, 2, 3, 0, 1, 2, 3, ..., 2, 3). Likewise “4 dup (4 dup (0))” says to duplicate “4 dup (0)”
four times, to produce a total of 16 zeros. The array declaration above reserves storage for 16 words. Of course, you
could also declare a 4x4 array using the declaration

TwoDArray word 16 dup (0)

However, the former declaration is a little clearer as to its intent.

To access element TwoDArray[i][j] (row major order) you would use 80x86 code like the following

mov bx, i
add bx, bx ;Multiply by row size
add bx, bx ;*4
add bx, j ;+ row index
add bx, bx ;* Element Size (2)
mov ax, TwoDArray[bx]

5.25 How would you declare the array equivalent to “a:array [0..15][0..15] of integer;” in assem-
bly language?

5.26 What is the code to load “a[i][j]” into ax (assume column major ordering)?

___________________________ ______________________________________

___________________________ ______________________________________

___________________________ ______________________________________

5.7 Structures

An array is a contiguous homogeneous collection of objects

10

. A structure is a contiguous heterogeneous collection
of objects in memory. Structures let you easily associate values which are logically related, yet of differing types, by plac-
ing these values in contiguous memory locations.

Structures are mainly an assembly language convention. When viewing structures in memory there is really no dif-
ference between a structure and a sequence of independent variables, other than that the elements of a structure always
occupy contiguous locations. However, structures provide considerable value in an assembly language program where
you may refer to the fields of the structure using a high level syntax.

To declare a structure

type

 with MASM you use the STRUCT and ENDS directives. The following template provides
the basic format:

StructureName

STRUCT

<Field Definitions>

StructureName

ENDS

The <Field Definitions> section contains standard MASM variable declarations (using BYTE, WORD, DWORD, etc.). The
following example demonstrates a structure for a complex number:

complex struct
Real real8 ?
Imaginary real8 ?
complex ends

To declare a variable of type complex, you could use a declaration like the following:

10. That is, all elements of the array are the same type.

Variables and Data Structures

Lab 5-127

Vector complex {}

Any initial values you want to supply for the variable “Vector” must appear inside the braces. For
example, if you want the assembler to preinitialize “Vector” to (1.0, -1.0) you would use the dec-
laration:

Vector complex {1.0, -1.0}

If, by default, you want to initialize

all

 variables of type complex to the same value, you could
define “complex” as follows:

complex struct
Real real8 1.0
Imaginary real8 -1.0
complex ends

You can still override this default initialization by specifying the initial values in the braces as
above.

5.27 Create a structure for a type

string

 which contains two fields:

length

which is a single byte and

chars

 which is an array of 80 bytes.

___________________________ ______________________________________

___________________________ ______________________________________

___________________________ ______________________________________

___________________________ ______________________________________

___________________________ ______________________________________

It is important to note that a structure definition (using the STRUCT and ENDS directives)
does

not

 create a structure variable for you. All it does is create a type for declaring variables. To
actually create a structure variable, you must use the structure’s data as a data definition directive
as with the “Vector” example above.

To access a field of a structure variable you use a syntax similar to that of high-level lan-
guages like “C” or Pascal. A name of the form

variable.field

 selects the specified field in the struc-
ture. “Vector.Imaginary” selects the “Imaginary” field from the “Vector” variable.

Since MASM stores successive fields in contiguous memory locations, you can think of the
field names as

offsets

 from the base address of a structure. The

base address

 of a structure is the
address of the first element of that structure, which corresponds to the name of the structure vari-
able. In many respects, the

variable.field

 syntax is comparable to

variable[field]

 since both
mechanisms compute the address of the specified object by adding the address of variable with
field. However, MASM will not allow the brackets operator on structure names.

5.28 How would you declare a variable of type “string” (see the previous
question) named “Identifier” in your data segment?

5.29 How would you declare the “Identifier” variable above, initializing the
“Length” field to zero?

5.18 mov bx, IntArray[30]

5.19
RArray real4 64 dup (?)

5.20 lea bx, RArray[40]

5.21
DArray real8 128 dup (?)

5.22
mov bx, J
add bx, bx
add bx, bx
add bx, bx
mov ax, DArray [bx]

or

mov bx, J
mov ax, 8
mul bx
mov bx, ax
mov ax, DArray [bx]

5.23 Assume J is 32 bits.
 mov ebx, J
mov eax, DArray[ebx*8]

5.24 M

Lab Ch05

Lab 5-128

5.30 What instruction could you use to load the value of the “length” field above into the AL reg-
ister?

5.8 Memory Organization Laboratory Exercises

In this laboratory you will examine how the 80x86 family organizes values in memory. You will also create several
data structures in memory and examine them with the CodeView debugger. Finally, you will also assemble and link
some very simple assembly language programs and load them into memory with the CodeView debugger.

5.8.1 Before Coming to the Laboratory

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A write-up on the CodeView debugger explaining, in your own words, how the following commands

work in CodeView: A, D, E (Enter), F, G, I (input), M (Move), O (Output), Q, R, T, and U.
• A write-up explaining how the MOV, ADD, LEA, LES, and MUL instructions work.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab begins on the material cov-
ered in the laboratory. You will do quite well on that quiz if you’ve properly prepared for the lab and studied up on the
stuff prior to attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and
you will probably not finish the lab. Do not take this pre-lab exercise lightly.

5.8.2 Laboratory Exercises

In this laboratory you will perform the following activities:

• Demonstrate the use of the CodeView debugger and many of the commands in the debugger
• Demonstrate the operation of the 8086 MOV, LEA, LES, ADD, and MUL instructions and addressing modes.
• Enter several 8086 machine language programs into the CodeView and single step through the programs

to execute them.
• Use the debugger to modify the operation of the programs.
• Examine memory locations using CodeView and explore the memory organization of the 8086
• Create various data structures (i.e., arrays and structs) and explore their memory organization.
• Create simple 8086 programs to access the above data structures.
• Explore the various encodings of 8086 instructions.

o

Exercise 1: Create an array of the form “A:array [0..3, 0..4] of word;” starting at location 8000:0. Initialize the
array elements as you did for exercise 5 with the values 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22 , 23, 24, 30, 31,
32, 33, and 34.. Use row major ordering when creating the array. Dump the memory using the CodeView
Dump command to the printer or a file. Include this printout in your lab report and mark each row of the array.
Enter the following short machine language program using CodeView’s Assemble command. It uses the word
at location 8000:80 as the first index (the row number) and location 8000:82 as the second index (the column
number) and loads the word at that address into AX. Don’t forget that DS must contain 8000h before running
this code.

mov ax, ds:[80h] ;Get row number (column index)
mov bx, 5 ;Multiply by the size of a row
mul bx
add ax, ds:[82h] ;Add in the column number (row index)
mov bx, ax

Variables and Data Structures

Lab 5-129

add bx, bx ;Element size is two
mov ax, ds:0[bx] ;Fetch desired array

element.

For your lab report:

Dump the array and annotate each element of the array. Run the
code above with a reasonable pair of values in locations 8000:80 and 8000:82. Capture
the results and include them in your lab report. Explain the results.

For additional credit

: Run the code above with several different values in locations
8000:80 and 8000:82. Capture the output and describe the results in your lab report.

o

Exercise 2: Repeat exercise 7 using

column major ordering

. Use the following code for
this example:

mov bx, ds:[80] ;Fetch first index
add bx, bx ;Multiply by column size (4)
add bx, bx
add bx, ds:[82] ;Add in second index
add bx, bx ;Multiply by element size (2)
mov ax, ds:0[bx] ;Fetch array element
int 3 ;Stop inside CodeView.

o

Exercise 3: Make a copy of the LAB4.ASM file on the disk accompanying this lab man-
ual. Name the file “LAB4_1.ASM”. In the data segment (DSEG) create an array named
“A1” which is a single dimensional array of 128 bytes. Create a second array, named
“A2” which is a 4x4 array of words. Create a third array, named “A3” which is a 3x3
array of words initialized to the value 00, 01, 02, 10, 11, 12, 20, 21, 22. Use row major
ordering for these arrays. Finally, declare two word variables, “I” and “J”, and initialize
them to zero in the data segment. Now, enter the code into the main program (after the
comment which states “Enter your main program here.”) which copies A1[i] to A2[i][j]
and then copies A2[i][j] to A3[j][i]. Terminate your program with the INT 3 instruction.
Use row major ordering for A2 and A3. Next, assemble your code using the following
DOS command to run MASM:

ml /Zi lab4_1.asm

Note that the ‘/Zi” must be an uppercase “Z” and a lowercase “i”. the “/Zi” command line
parameter tells MASM to include

source information

 in the .EXE file. This will produce a file
named “LAB4_1.EXE” which you can load into CodeView using the DOS command:

CV LAB4_1

Single step through the code and verify that it works correctly.

For your lab report:

 Include a printout of the Lab4_1.asm file. Heavily comment each
instruction you add to this program to describe its purpose.

For additional credit:

 MASM lets you create an

assembly listing

 of your source code. Use
the DOS command “ml /?” to get a list of legal MASM command line options. Determine
which one lets you produce and assembly listing. Include the assembly listing with your lab
report.

o

Exercise 4: Add a structure to the Lab4_1.ASM program and create a structure variable
in the data segment (DSEG). Modify your main program to load various fields of this
structure into the 80x86 registers. Use the CodeView Unassemble command to look at
the raw machine code produced by the assembler.

For your lab report:

Comment on what you see. Include appropriate screen dumps/
captures in your lab report.

o

Exercise 5: Connect the circuit you built for labs two and three to the parallel printer
port on your computer. Use the following output command to write a value to the
LEDs on your circuit:

5.25 A word 16 dup (16 dup
(?))

5.26
mov bx, j
add bx, bx
add bx, bx
add bx, i
add bx, bx
mov ax, a[bx]

5.27
string struct
length byte ?
chars byte 80 dup (?)
string ends

5.28
Identifier string {}

5.29
Identifier string {0}

Lab Ch05

Lab 5-130

O

port

value
Port

 is the base address of the parallel port to which you’ve connected your circuit. To determine the appropri-
ate port address, dump memory locations 40:8 through 40:d. The first two locations (40:8 and 40:9) contain the
base I/O address for LPT1:. The second two locations (40:a and 40:b) contain the base I/O address for LPT2:.
The last pair of locations contain the base address for LPT3:. Typical addresses are 378h, 278h, and 3BCh. If a
zero appears in one of these words, then the system did not recognize the associated device. Be sure to select
the appropriate port value for your connection.
The

value

 operand is the value to write to the printer port. For example, if you’ve connected your circuit to
LPT1: and it is at I/O address 378h (i.e., the word at location 40:8 contains 378h), you can turn off all the LEDs
with the command

O 378 0.

Likewise, you can turn on all the LEDs using the command

O 378 ff

. Try turning
on each of the LEDS individually with a set of eight “O” commands.

For your lab report:

 Describe the use of this command to turn on and off various LEDs on your circuit.

5.9 Sample Programs

This section contains several sample programs that demonstrate the concepts in Chapter Four of the textbook. Each
of these short programs can be found on the diskette accompanying this lab manual. These programs all assemble and
run, although you should run them from the CodeView debugger since they do not produce any output.

5.9.1 Sample Program #1: Simple Variable Declarations

This short program demonstrates how to declare byte, word, and double word global variables. It also demonstrates
how to use the typedef directive to create your own variable types. The program also declares some simple pointer vari-
ables and the main program accesses data indirectly using those pointers. Finally, this short sample program also demon-
strates how to initialize variables you declare in the data segment.

; Sample variable declarations
; This sample file demonstrates how to declare and access some simple
; variables in an assembly language program.
;
; Randall Hyde
;
;
; Note: global variable declarations should go in the “dseg” segment:

dseg segment para public ‘data’

; Some simple variable declarations:

character byte ? ;”?” means uninitialized.
UnsignedIntVarword ?
DblUnsignedVardword ?

;You can use the typedef statement to declare more meaningful type names:

integer typedef sword
char typedef byte
FarPtr typedef dword

; Sample variable declarations using the above types:

J integer ?
c1 char ?
PtrVar FarPtr ?

Variables and Data Structures

Lab 5-131

; You can tell MASM & DOS to initialize a variable when DOS loads the
; program into memory by specifying the initial value in the operand
; field of the variable’s declaration:

K integer 4
c2 char ‘A’
PtrVar2 FarPtr L ;Initializes PtrVar2
with the

; address of K.

; You can also set aside more than one byte, word, or double word of
; storage using these directives. If you place several values in the
; operand field, separated by commas, the assembler will emit one
byte,
; word, or dword for each operand:

L integer 0, 1, 2, 3
c3 char ‘A’, 0dh, 0ah, 0
PtrTbl FarPtr J, K, L

; The BYTE directive lets you specify a string of characters byte
enclosing
; the string in quotes or apostrophes. The directive emits one byte
of data
; for every character in the string (not including the quotes or
apostrophes
; that delimit the string):

string byte “Hello world”,0dh,0ah,0

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; Some simple instructions that demonstrate how to access memory:

lea bx, L ;Point bx at first word
in L.

mov ax, [bx] ;Fetch word at L.
add ax, 2[bx] ;Add in word at L+2 (the

“1”).
add ax, 4[bx] ;Add in word at L+4 (the

“2”).
add ax, 6[bx] ;Add in word at L+6 (the

“3”).

5.30
mov al, Identifier.Length

Lab Ch05

Lab 5-132

mul K ;Compute (0+1+2+3)*123.
mov J, ax ;Save away result in J.

les bx, PtrVar2 ;Loads es:di with address of L.
mov di, K ;Loads 4 into di
mov ax, es:[bx][di] ;Fetch value of L+4.

; Examples of some byte accesses:

mov c1, ‘ ‘ ;Put a space into the c1 var.
mov al, c2 ;c3 := c2
mov c3, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.2 Sample Program #2: Using Pointers

This brief program demonstrates how to declare and use near and far pointers in an assembly language program.

; Using Pointer Variables in an Assembly Language Program
;
; This short sample program demonstrates the use of pointers in
; an assembly language program.
;
; Randall Hyde

dseg segment para public ‘data’

; Some variables we will access indirectly (using pointers):

J word 0, 0, 0, 0
K word 1, 2, 3, 4
L word 5, 6, 7, 8

; Near pointers are 16-bits wide and hold an offset into the current data
; segment (dseg in this program). Far pointers are 32-bits wide and hold
; a complete segment:offset address. The following type definitions let
; us easily create near and far pointers

nWrdPtr typedef near ptr word
fWrdPtr typedef far ptr word

; Now for the actual pointer variables:

Variables and Data Structures

Lab 5-133

Ptr1 nWrdPtr ?
Ptr2 nWrdPtr K ;Initialize with K’s
address.
Ptr3 fWrdPtr L ;Initialize with L’s
segmented adrs.

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; Initialize Ptr1 (a near pointer) with the address of the J
variable.

lea ax, J
mov Ptr1, ax

; Add the four words in variables J, K, and L together using pointers
to
; these variables:

mov bx, Ptr1 ;Get near ptr to J’s 1st
word.

mov si, Ptr2 ;Get near ptr to K’s 1st
word.

les di, Ptr3 ;Get far ptr to L’s 1st
word.

mov ax, ds:[si] ;Get data at K+0.
add ax, es:[di] ;Add in data at L+0.
mov ds:[bx], ax ;Store result to J+0.

add bx, 2 ;Move to J+2.
add si, 2 ;Move to K+2.
add di, 2 ;Move to L+2.

mov ax, ds:[si] ;Get data at K+2.
add ax, es:[di] ;Add in data at L+2.
mov ds:[bx], ax ;Store result to J+2.

add bx, 2 ;Move to J+4.
add si, 2 ;Move to K+4.
add di, 2 ;Move to L+4.

mov ax, ds:[si] ;Get data at K+4.
add ax, es:[di] ;Add in data at L+4.
mov ds:[bx], ax ;Store result to J+4.

add bx, 2 ;Move to J+6.
add si, 2 ;Move to K+6.
add di, 2 ;Move to L+6.

mov ax, ds:[si] ;Get data at K+6.
add ax, es:[di] ;Add in data at L+6.

Lab Ch05

Lab 5-134

mov ds:[bx], ax ;Store result to J+6.

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.3 Sample Program #3:Single Dimension Arrays

This short program demonstrates how to declare, initialize, and access elements of single dimensional arrays.

; Sample array declarations
; This sample file demonstrates how to declare and access some single
; dimension array variables in an assembly language program.
;
; Randall Hyde

.386 ;Need to use some 80386 addressing
option segment:use16 ; modes.

dseg segment para public ‘data’

J word ? ;We will use these variables as the
K word ? ; indexes into the arrays.
L word ?
M word ?

JD dword 0
KD dword 1
LD dword 2
MD dword 3

; Some simple uninitialized array declarations:

ByteAry byte 4 dup (?)
WordAry word 4 dup (?)
DwordAry dword 4 dup (?)
RealAry real8 4 dup (?)

; Some arrays with initialized values:

BArray byte 0, 1, 2, 3
WArray word 0, 1, 2, 3
DWArray dword 0, 1, 2, 3
RArray real8 0.0, 1.0, 2.0, 3.0

Variables and Data Structures

Lab 5-135

; An array of pointers:

PtrArray dword ByteAry, WordAry, DwordAry, RealAry

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; Initialize the index variables. Note that these variables provide
; logical indices into the arrays. Don’t forget that we’ve got to
; multiply these values by the element size when accessing elements
of
; an array.

mov J, 0
mov K, 1
mov L, 2
mov M, 3

; The following code shows how to access elements of the arrays using
; simple 80x86 addressing modes:

mov bx, J ;AL := ByteAry[J]
mov al, ByteAry[bx]

mov bx, K ;AX := WordAry[K]
add bx, bx ;Index*2 since this is a

word array.
mov ax, WordAry[bx]

mov bx, L ;EAX := DwordAry[L]
add bx, bx ;Index*4 since this is a

double
add bx, bx ; word array.
mov eax, DwordAry[bx]

mov bx, M ;BX :=
address(RealAry[M])

add bx, bx ;Index*8 since this is a
quad

add bx, bx ; word array.
add bx, bx
lea bx, RealAry[bx] ;Base address + index*8.

; If you have an 80386 or later CPU, you can use the 386’s scaled
indexed
; addressing modes to simplify array access.

Lab Ch05

Lab 5-136

mov ebx, JD
mov al, ByteAry[ebx]

mov ebx, KD
mov ax, WordAry[ebx*2]

mov ebx, LD
mov eax, DwordAry[ebx*4]

mov ebx, MD
lea bx, RealAry[ebx*8]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.4 Sample Program #4: Multidimensional Array Declaration and Access

The following sample program demonstrates how to declare, initialize, and access elements of multidimensional
arrays.

; Multidimensional Array declaration and access
;
; Randall Hyde

.386 ;Need these two statements to use
option segment:use16 ; 80386 register set.

dseg segment para public ‘data’

; Indices we will use for the arrays.

J word 1
K word 2
L word 3

; Some two-dimensional arrays.
; Note how this code uses the “dup” operator to suggest the size
; of each dimension.

B2Ary byte 3 dup (4 dup (?))

Variables and Data Structures

Lab 5-137

W2Ary word 4 dup (3 dup (?))
D2Ary dword 2 dup (6 dup (?))

; 2D arrays with initialization.
; Note the use of data layout to suggest the sizes of each array.

B2Ary2 byte 0, 1, 2, 3
byte 4, 5, 6, 7
byte 8, 9, 10, 11

W2Ary2 word 0, 1, 2
word 3, 4, 5
word 6, 7, 8
word 9, 10, 11

D2Ary2 dword 0, 1, 2, 3, 4, 5
dword 6, 7, 8, 9, 10, 11

; A sample three dimensional array.

W3Ary word 2 dup (3 dup (4 dup (?)))

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; AL := B2Ary2[j,k]

mov bx, J ;index := (j*4+k)
add bx, bx ;j*2
add bx, bx ;j*4
add bx, K ;j*4+k
mov al, B2Ary2[bx]

; AX := W2Ary2[j,k]

mov ax, J ;index := (j*3 + k)*2
mov bx, 3
mul bx ;(j*3)-- This destroys

DX!
add ax, k ;(j*3+k)
add ax, ax ;(j*3+k)*2
mov bx, ax
mov ax, W2Ary2[bx]

; EAX := D2Ary[i,j]

mov ax, J ;index := (j*6 + k)*4

Lab Ch05

Lab 5-138

mov bx, 6
mul bx ;DX:AX := j*6, ignore overflow in DX.
add ax, k ;j*6 + k
add ax, ax ;(j*6 + k)*2
add ax, ax ;(j*6 + k)*4
mov bx, ax
mov eax, D2Ary[bx]

; Sample access of a three dimensional array.
;
; AX := W3Ary[J,K,L]

mov ax, J ;index := ((j*3 + k)*4 + l)*2
mov bx, 3
mul bx ;j*3
add ax, K ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
mov bx, ax
mov ax, W3Ary[bx]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.5 Sample Program #5: Structures

This sample program demonstrates how to declare structure types and variables. It also shows how to initialize the
fields of a structure at assembly time. Finally, it demonstrates how to access fields of a structure from within an assembly
language program and how to deal with pointers to structures.

; Sample Structure Definitions and Accesses.
;
; Randall Hyde

dseg segment para public ‘data’

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?

Variables and Data Structures

Lab 5-139

rm byte ?
mode ends

Instr1Adrs mode {} ;All fields
uninitialized.
Instr2Adrs mode {}

; Some structures with initialized fields.

axbx mode {11b, 000b, 000b} ;”ax, ax” adrs
mode.
axdisp mode {00b, 000b, 110b} ;”ax, disp” adrs
mode.
cxdispbxsi mode {01b, 001b, 000b} ;”cx,
disp8[bx][si]” mode.

; Near pointers to some structures:

sPtr1 word axdisp
sPtr2 word Instr2Adrs

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; To access fields of a structure variable directly, just use the “.”
; operator like you would in Pascal or C:

mov al, axbx.modbits
mov Instr1Adrs.modbits, al

mov al, axbx.reg
mov Instr1Adrs.reg, al

mov al, axbx.rm
mov Instr1Adrs.rm, al

; When accessing elements of a structure indirectly (that is, using a
; pointer) you must specify the structure type name as the first
; “field” so MASM doesn’t get confused:

mov si, sPtr1
mov di, sPtr2

mov al, ds:[si].mode.modbits
mov ds:[di].mode.modbits, al

mov al, ds:[si].mode.reg
mov ds:[di].mode.reg, al

Lab Ch05

Lab 5-140

mov al, ds:[si].mode.rm
mov ds:[di].mode.rm, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.6 Sample Program #6: Arrays of Structures

This short program shows you how to declare an array of structures and access elements of that array. It provides
examples for one, two, and three dimensional arrays of structures.

; Arrays of Structures
;
; Randall Hyde

dseg segment para public ‘data’

; A structure that defines an (x,y) coordinate.
; Note that the Point data type requires four bytes.

Point struct
X word ?
Y word ?
Point ends

; An uninitialized point:

Pt1 Point {}

; An initialized point:

Pt2 Point {12,45}

; A one-dimensional array of uninitialized points:

PtAry1 Point 16 dup ({}) ;Note the “{}” inside the parens.

; A one-dimensional array of points, all initialized to the origin.

PtAry1i Point 16 dup ({0,0})

Variables and Data Structures

Lab 5-141

; A two-dimensional array of points:

PtAry2 Point 4 dup (4 dup ({}))

; A three-dimensional array of points, all initialized to the origin.

PtAry3 Point 2 dup (3 dup (4 dup ({0,0})))

; A one-dimensional array of points, all initialized to different
values:

iPtAry Point {0,0}, {1,2}, {3,4}, {5,6}

; Some indices for the arrays:

J word 1
K word 2
L word 3

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; PtAry1[J] := iPtAry[J]

mov bx, J ;Index := J*4 since there
are four

add bx, bx ; bytes per array element
(each

add bx, bx ; element contains two
words).

mov ax, iPtAry[bx].X
mov PtAry1[bx].X, ax

mov ax, iPtAry[bx].Y
mov PtAry1[bx].Y, ax

; CX := PtAry2[K,L].X; DX := PtAry2[K,L].Y

mov bx, K ;Index := (K*4 + J)*4
add bx, bx ;K*2
add bx, bx ;K*4

Lab Ch05

Lab 5-142

add bx, J ;K*4 + J
add bx, bx ;(K*4 + J)*2
add bx, bx ;(K*4 + J)*4

mov cx, PtAry2[bx].X
mov dx, PtAry2[bx].Y

; PtAry3[j,k,l].X := 0

mov ax, j ;Index := ((j*3 +k)*4 + l)*4
mov bx, 3
mul bx ;j*3
add ax, k ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
add ax, ax ;((j*3 + k)*4 + l)*4
mov bx, ax
mov PtAry3[bx].X, 0

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.7 Sample Program #7: Structures and Arrays

This sample program demonstrates how to declare arrays of structures and how to include arrays and structures as
fields within a structure. The 80x86 program code also demonstrates how to access the fields and elements of these data
types.

; Structures Containing Structures as fields
; Structures Containing Arrays as fields
;
; Randall Hyde

dseg segment para public ‘data’

Point struct
X word ?
Y word ?
Point ends

; We can define a rectangle with only two points.
; The color field contains an eight-bit color value.
; Note: the size of a Rect is 9 bytes.

Rect struct

Variables and Data Structures

Lab 5-143

UpperLeft Point {}
LowerRight Point {}
Color byte ?
Rect ends

; Pentagons have five points, so use an array of points to
; define the pentagon. Of course, we also need the color
; field.
; Note: the size of a pentagon is 11 bytes.

Pent struct
Color byte ?
Pts Point 5 dup ({})
Pent ends

; Okay, here are some variable declarations:

Rect1 Rect {}
Rect2 Rect {{0,0}, {1,1}, 1}

Pentagon1 Pent {}
Pentagons ent {}, {}, {}, {}

Index word 2

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; Rect1.UpperLeft.X := Rect2.UpperLeft.X

mov ax, Rect2.Upperleft.X
mov Rect1.Upperleft.X, ax

; Pentagon1 := Pentagons[Index]

mov ax, Index ;Need Index*11
mov bx, 11
mul bx
mov bx, ax

; Copy the first point:

mov ax, Pentagons[bx].Pts[0].X
mov Pentagon1.Pts[0].X, ax

mov ax, Pentagons[bx].Pts[0].Y
mov Pentagon1.Pts[0].Y, ax

; Copy the second point:

mov ax, Pentagons[bx].Pts[2].X
mov Pentagon1.Pts[2].X, ax

Lab Ch05

Lab 5-144

mov ax, Pentagons[bx].Pts[2].Y
mov Pentagon1.Pts[2].Y, ax

; Copy the third point:

mov ax, Pentagons[bx].Pts[4].X
mov Pentagon1.Pts[4].X, ax

mov ax, Pentagons[bx].Pts[4].Y
mov Pentagon1.Pts[4].Y, ax

; Copy the fourth point:

mov ax, Pentagons[bx].Pts[6].X
mov Pentagon1.Pts[6].X, ax

mov ax, Pentagons[bx].Pts[6].Y
mov Pentagon1.Pts[6].Y, ax

; Copy the fifth point:

mov ax, Pentagons[bx].Pts[8].X
mov Pentagon1.Pts[8].X, ax

mov ax, Pentagons[bx].Pts[8].Y
mov Pentagon1.Pts[8].Y, ax

; Copy the Color:

mov al, Pentagons[bx].Color
mov Pentagon1.Color, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.9.8 Sample Program #8:Pointer to Structures

This sample program demonstrates how to work with pointers to structures and pointers to arrays of structures.

; Pointers to structures
; Pointers to arrays of structures
;
; Randall Hyde

.386 ;Need these two statements so we can
option segment:use16 ; use 80386 register set.

Variables and Data Structures

Lab 5-145

dseg segment para public ‘data’

; Sample structure.
; Note: size is seven bytes.

Sample struct
b byte ?
w word ?
d dword ?
Sample ends

; Some variable declarations:

OneSampleSample{}
SampleArySample16 dup ({})

; Pointers to the above

OnePtr word OneSample ;A near pointer.
AryPtr dword SampleAry

; Index into the array:

Index word 8

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are

provided by
mov ds, ax ; shell.asm to initialize

the
mov es, ax ; segment register.

; AryPtr^[Index] := OnePtr^

mov si, OnePtr ;Get pointer to OneSample
les bx, AryPtr ;Get pointer to array of

samples
mov ax, Index ;Need index*7
mov di, 7
mul di
mov di, ax

mov al, ds:[si].Sample.b
mov es:[bx][di].Sample.b, al

mov ax, ds:[si].Sample.w
mov es:[bx][di].Sample.w, ax

Lab Ch05

Lab 5-146

mov eax, ds:[si].Sample.d
mov es:[bx][di].Sample.d, eax

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Variables and Data Structures

Lab 5-147

5.10 Programming Projects

o

Program #1: Create a program with a single dimension array of structures. Place at least
four fields (your choice) in the structure. Write a code segment to access element “i”
(“i” being a word variable) in the array.

o

Program #2: Write a program which copies the data from a 3x3 array and stores the
data into a second 3x3 array. For the first 3x3 array, store the data in row major order.
For the second 3x3 array, store the data in column major order. Use nine sequences of
instructions which fetch the word at location (i,j) (i=0..2, j=0..2).

o

Program #3: Rewrite the code sequence above just using MOV instructions. Read and
write the array locations directly, do not perform the array address computations.

o

Program #4: The PC’s video display is a

memory mapped I/O device

. That is, the display
adapter maps each character on the text display to a word in memory. The display is an
80x25 array of words declared as follows:

display:array[0..24,0..79] of word;

Display[0,0] corresponds to the upper left hand corner of the screen, display[0,79] is the
upper right hand corner, display[24,0] is the lower left hand corner, and display[24,79]
is the lower right hand corner of the display.
The L.O. byte of each word holds the ASCII code of the character to appear on the
screen. The H.O. byte of each word contains the

attribute

 byte (see “The PC Video Dis-
play” on page 1069 for more details on the attribute byte). The base address of this
array is B000:0 for monochrome displays and B800:0 for color displays.
The diskette accompanying this lab manual contains a sample program named
“PROJ4_4.ASM” that is supposed to clear the screen. It contains a main program that
uses several instructions you probably haven’t seen yet. These instructions essentially
execute a for loop as follows:

for i:= 0 to 79 do
for j := 0 to 24 do

putscreen(i,j,value);

Inside this program you will find some comments that instruct you to supply the code
that stores the value in AX to location display[i,j]. Modify this program as described in
its comments and test the result.

o

Program #5: Proj5_4.asm on the diskette accompanying this lab manual is a maze gen-
eration program. It is complete except for two routines that access the MAZE array
(maze:array[0..26, 0..81] of word;) and the screen array (screen:array[0..24, 0..79] of
word;). You need to supply the code in the two procedures MazeAdrs and ScrnAdrs to
compute the indices into these arrays. On entry to these two routines, dl contains the y
coordinate (first index) and dh contains the second coordinate (second index). You
code must perform the necessary array index computation and leave the final index
value in the AX register. See the comments in the code for further details. Note: this
program will only run properly on a color display.

Lab Ch05

Lab 5-148

5.11 Answers to Selected Exercises

3) Use the BYTE directive.
Examples:

ByteVar1 BYTE ?
CharVar BYTE ?
Boolean BYTE ?

Byte variables are useful for declaring small integer variables, boolean variables, character variables, and string vari-
ables.

8) A near pointer is 16 bits long and can only point at data within a specific segment. A far pointer is 32 bits long and
can point at any location in memory.

11) The following code examples present one possible solution to these problems
a)

mov ax, i ;i*4
mov bx, 4
mul bx
add ax, j ;i*4 + j
mov bx, ax
mov al, TD[bx] ;Fetch TD[i,j]

12) The following answers provide only one possible solution for each question, of many, to the questions.
a)

mov ebx, 0 ;Initialize H.O. word to zero
mov ax, i ;i*4
mov bx, 4
mul bx
add ax, j ;i*4 + j
mov bx, ax
mov al, TD[ebx*1] ;Fetch TD[i,j]

15)

Array word 0, 1, 2
word 3, 4, 5
word 6, 7, 8

Variables and Data Structures

Lab 5-149

Lab Ch05

Lab 5-150

