Recommended C Style and Coding Standards

L.W. Cannon
R.A. Elli ott
L.W. Kirchhdf
J.H. Miller
J.M. Milner
RW. Mitze
E.P. Schan
N.O. Whittington

Bell Labs

Henry Spencer
Zodogy Computer Systems
University of Toronto
David Keppel
EECS, UC Berkeley
CS&E, University of Washington
Mark Brader

SoftQuad Incorporated
Toronto

ABSTRACT
This document is an updited version d the Indian Hill C Syle and Coding Sandads

paper, with modificaions by the last three aithors. It describes a recommended coding
standard for C programs. The scopeis coding style, not functional organizaion.

October 19, 1992

Recommended C Style and Coding Standards

L.W. Cannon
R.A. Elliott
L.W. Kirchhdf
J.H. Miller
J.M. Milner
R.W. Mitze
E.P. Schan
N.O. Whittington

Bell Labs

Henry Spencer

Zoodogy Computer Systems
University of Toronto

David Keppel

EECS, UC Berkeley
CS&E, University of Washington

Mark Brader

SoftQuad Incorporated
Toronto

1. Introduction

This document is a modified version d a document from a committeeformed at AT& T's Indian Hill
labs to establish a @mmon set of coding standards and recommendations for the Indian Hill community. The
scope of thiswork is C coding style. Good style shoud encourage consistent layout, improve portability, and
reduce erors. Thiswork does not cover functional organizaion, or general isaues such as the use of gatos.
Wel have tried to combine previous work [1,6,8] on C style into a uniform set of standards that shoud be
appropriate for any projed using C, athough m@rts are biased towards particular systems. Of necessty, these
standards canna: cover all situations. Experience and informed judgment court for much. Programmers who
encourter unuwsual situations $odd consult either experienced C programmers or code written by
experienced C programmers (preferably foll owing these rules).

The standards in this document are not of themselves required, but individual institutions or groups
may adopt part or al of them as a part of program accetance It is therefore likely that others at your

1 The opinions in this document do nd refled the opinions of al authors. This is gill an evolving daument. Please send
comments and suggestions to pardo@cs.washington.edu a { rutgers,cornell ,ucsd,ubc-cs,tektronix} uw-beaver!junel pardo

Reammmended C Coding Standards Revision: 6.0 25June 1990

-3-
institution will codein asimilar style. Ultimately, the goal of these standards is to increase portability, reduce
maintenance, and above dl i mprove darity.

Many of the style choices here ae somewhat arbitrary. Mixed coding style is harder to maintain
than bad coding style. When changing existing code it is better to conform to the style indentation, spadng,

commenting, naming conventions) of the eisting code than it isto bindly foll ow this document.

"To be dear isprofessond; not to be dear isunprofessond.” ---Sir Ernest Gowers.

2. File Organization

A file @mnsists of various sdions that shoud be separated by several blank lines. Althoughthereis
no maximum length limit for sourcefil es, files with more than abou 1000lines are aumbersome to ded with.
The ditor may not have enoughtemp spaceto edit the file, compil ations will go more slowly, etc. Many
rows of asterisks, for example, present littl e information compared to the time it takes to scroll past, and are
discouraged. Lines longer than 79 columns are not handled well by al terminals and shoud be asoided if
posshle. Excessvely longlines which result from deep indenting are often a symptom of poarly organized
code.
2.1. FileNaming Conventions

File names are made up d a base name, and an ogtional period and suffix. The first charader of the
name shoud be aletter and all charaders (except the period) shoud be lower-case letters and numbers. The
base name shoud be eght or fewer charaders and the suffix shoud be threeor fewer charaders (four, if you
include the period). These rules apply to bah program files and default files used and produced by the
program (e.g., "rogue.sav").

Some compilers and todls require ceatain suffix conventions for names of files [5]. The following
suffixes are required:

. C sourcefile names must endin .c

. Asembler sourcefile names must endin .s
The foll owing conventions are universally foll owed:

. Relocatable objed file namesendin .o

. Include header file names end in .h. An alternate mnvention that may be preferable in multi-
language environments is to suffix bath the language type and .h (e.g. "foo.c.h” or "foo.ch”).

. Yaccsourcefile namesendin .y
. Lex sourcefilenamesendin .|

C++ has compil er-dependent suffix conventions, including .c, ..c, .cc, .c.c, and .C. Since much C
codeis also C++ code, thereis no clea solution here.

In addition, it is conventional to use "Makefile" (nat "makefile") for the control file for make (for
systems that suppat it) and "README" for a summary of the cntents of the diredory or diredory tree

2.2. Program Files

Reammmended C Coding Standards Revision: 6.0 25June 1990

The suggested order of sedionsfor aprogram fileis as follows:

1 First in thefileis aprologue that tellswhat isin that file. A description d the purpase of the objeds
in the fil es (whether they be functions, external data dedarations or definitions, or something else) is
more useful than alist of the objed names. The prologue may optionally contain author(s), revision
cortrol information, references, etc.

2. Any heder file includes $hodd be next. If the include is for a non-obvious reason, the reason
shoud be ommented. In most cases, system include files like stdio.h shoud be included before
user includefiles.

3. Any defines and typedefs that apply to the file & a whole ae next. One normal order is to have
"constant" maaosfirst, then "function" maaos, then typedefs and enums.

4, Next come the global (external) data dedarations, usualy in the order: externs, nonstatic globals,
static globals. If a set of defines applies to a particular pieceof global data (such as a flags word),
the defines $rodd be immediately after the data dedaration a embedded in structure dedarations,
indented to put the defines one level deeper than the first keyword of the dedaration to which they

apply.

5. The functions come last, and shoud be in some sort of meaningful order. Like functions soud
appea together. A "breadth-first" approach (functions on a similar level of abstradion together) is
preferred over depth-first (functions defined as ®on as possble before or after their cdls).
Considerable judgment is cdled for here. If defining large numbers of essentialy-independent
utility functions, consider alphabeticd order.

2.3. Header Files

Healer files are files that are included in aher files prior to compilation by the C preprocessor.
Some, such as stdio.h, are defined at the system level and must included by any program using the standard
I/O library. Header files are dso used to contain data dedarations and cefines that are needed by more than
one program. Healer files shoud be functionally organized, i.e., dedarations for separate subsystems shoud
be in separate header files. Also, if a set of dedarations is likely to change when code is ported from one
madhine to another, thase dedarations shoud be in a separate header file.

Avoid private header filenames that are the same @ library header filenames. The statement
#include "math.h" will i nclude the standard library math header fileif the intended ore is not foundin
the aurrent diredory. If thisis what you want to happen, comment this fad. Don't use ésolute path names
for header files. Use the <name> construction for getting them from a standard pace or define them relative
to the aurrent directory. The "include-path"' option d the C compiler (-I on many systems) is the best way to
handle extensive private libraries of healer files; it permits reorganizing the diredory structure withou
having to ater sourcefiles.

Header files that dedare functions or external variables shoud be included in the fil e that defines the
function a variable. That way, the mmpiler can dotype cheding and the external dedaration will always
agreewith the definition.

Defining variables in a header file is often a poa idea Frequently it is a symptom of poar
partitioning d code between files. Also, some objeds like typedefs and initialized data definitions cannat be
sean twice by the compiler in ore compilation. On some systems, repeaing urinitialized dedarations withou
the extern keyword also causes problems. Repeaed dedarations can happen if include files are nested and
will cause the compilationto fail.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-5-

Header files shoud na be nested. The prologue for a header file shoud, therefore, describe what
other headers neal to be #included for the header to be functional. In extreme cases, where alarge number of
header filesareto be included in several different sourcefiles, it is acceptable to pu al common #ncludesin
oneincludefile.

It iscommonto pu the followinginto ead .h fileto prevent acddental doulde-inclusion.

#ifndef EXAMPLE_H

#define EXAMPLE_H

/* body of example.h file *
#endif /* EXAMPLE_H */

This doule-inclusion mechanism shoud na berelied upon particularly to perform nested includes.

2.4. Other Files

It is conventional to have afile cdled "README" to dacument both "the bigger picture” and issues
for the program as awhole. For example, it is common to include alist of al condtional compilation flags
and what they mean. It isalso commonto list fil es that are machine dependent, etc.

3. Comments
"When the mde andthe comments disagree both are probaldy wrong" --- Norm Schryer

The omments soud describe what is happening, how it is being dore, what parameters mean,
which gobals are used and which are modified, and any restrictions or bugs. Avoid, however, comments that
are dea from the mde, as such information rapidly gets out of date. Comments that disagreewith the mde
are of negative value. Short comments $houd be what comments, such as "compute mean value', rather than
how comments such as "sum of values divided by n". Cisnat assembler; putting a omment at the top d a 3-
10 line sedion telling what it does overall is often more useful than a comment on ead line describing
micrologic.

Comments $houd justify offensive mde. Thejustification shoud be that something bad will happen
if undfensive mde is used. Just making code faster is not enoughto rationalize ahadk; the performance
must be shown to be unacceptable withou the hadk. The comment shoud explain the unacceptable behavior
and describe why the hadk isa"good' fix.

Comments that describe data structures, algorithms, etc., shoud be in block comment form with the
opening/* in columns 1-2, a* in column 2 kefore eat line of comment text, and the dosing*/ in columns
2-3. Andternativeisto have** incolumns 1-2, and pu the dosing*/ asoin 1-2.

/*
* Here is a block comment.
* The comment text should be tabbed or spaced over uniformly.
* The opening slash-star and closing star-slash are
* alone on a line.
*/

/*

** Alternate format for block comments
*/

Reammmended C Coding Standards Revision: 6.0 25June 1990

-6-

Note that grep ".* ' will cach al block commentsin the file?. Very long Hock comments sich as
drawn-out discussons and copyright notices often start with /* in columns 1-2, no leading * before lines of
text, and the dosing*/ in columns 1-2. Block comments inside afunction are gpropriate, and they shoud
be tabbed ower to the same tab setting as the wde that they describe. One-line mmments alone on a line
shoud beindented to the tab setting o the ade that follows.

if (argc > 1){
/* Get input file from command line. */
if (freopen(argv[1], "r", stdin) == NULL) {
perror(argv[1]);

}

Very short comments may appea on the same line & the mde they describe, and shoud be tabbed
over to separate them from the statements. If more than ore short comment appeas in a block of code they
shoud all be tabbed to the same tab setting.

if (@ == EXCEPTION) {

b = TRUE; /* special case */
}else {

b = isprime(a); /* works only for odd a */
}

4. Declarations

Global dedarations shoud begin in column 1 All external data dedaration shoud be preceded by
the exern keyword. If an external variable is an array that is defined with an explicit size then the aray
bounds must be repeded in the extern dedaration uressthe sizeis always encoded in the aray (e.g., area-
only charader array that is aways null-terminated). Repeaed size dedarations are particularly beneficial to
someone picking upcode written by another.

The"pointer" qualifier, * ', shoud be with the variable name rather than with the type.
char *s, *t, *u;
instead of
char* s, t, u;
whichiswrong since't ' and'u' do nd get dedared as pointers.

Unrelated dedarations, even of the same type, shoud be on separate lines. A comment describing
the role of the objed being dedared shoud be included, with the exception that alist of #defined constants do
not need comments if the cnstant names are sufficient documentation. The names, values, and comments
are usualy tabbed so that they line up undrneah ead ather. Use the tab charader rather than blanks
(spaces). For structure and urion template dedarations, ead element shoud be done on a line with a

comment describingit. The opening krace({) shoud be on the same line & the structure tag, and the dosing
brace(}) shoud bein column 1

struct boat {
int wllength; /* water line length in meters */

Some auitomated program-analysis padkages use different charaders before comment lines as a marker for lines with spedfic
items of information. In particular, aline with a'- ' in a @mment precaling a function is ssmetimes assumed to be aone-line
summary of the function's purpase.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-7-

int type; /* see below */
long sailarea; /* sail area in square mm */
I
/* defines for boat.type */
#define KETCH (1)
#define YAWL (2)
#define SLOOP 3)
#define SQRIG 4)
#define MOTOR (5)

These defines are sometimes put right after the dedaration d type , within the struct dedaration, with
enoughtabs after the '#' to indent define one level more than the structure member dedarations. When the
adual values are unimportant, the enumfadlity is better3.

enum bt { KETCH=1, YAWL, SLOOP, SQRIG, MOTOR };
struct boat {

int wllength; /* water line le ngth in meters */
enum bt type; /* what kind of boat */
long sailarea; /* sail area in square mm */

%

Any variable whose initial value is important shoud be explicitly initialized, or at the very least
shoud be commented to indicate that C's default initialization to zero is being relied upon The empty
initializer, "{} ", shodd never be used. Structure initializations soud be fully parenthesized with braces.
Constants used to initidlize longs soud be explicitly long Use caita letters; for example two long "2l "
looksalot like"21", the number twenty-one.

int x=1;
char *msg = "message";
struct boat winner[] ={
{40, YAWL, 6000000L },
{28, MOTOR, OL },
{0},
%

In any file which is part of alarger whole rather than a self-contained program, maximum use shoud
be made of the static keyword to make functions and variables loca to single files. Variables in particular
shoud be accesble from other files only when there is a dea nee that canna be filled in ancther way.
Such usage shoud be ommented to make it clea that anather file's variables are being used; the comment
shoud name the other file. If your debugger hides gatic objeds you reed to seeduring debuggng, dedare
them as STATIC and #dfine STATIC as nealed.

The most important types shoud be highlighted by typedeffing them, even if they are only integers,
as the unique name makes the program easier to real (as long as there ae only a few things typedeffed to
integers!). Structures may be typedeffed when they are dedared. Give the struct and the typedef the same
name.

typedef struct splodge_t {

int Sp_count;
char *sp_name, *sp_alias;
} splodge t;
3 enums might be better anyway.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-8-

The return type of functions $roud always be dedared. If function prototypes are available, use
them. One common mistake is to omit the dedaration d external math functions that return doude. The
compiler then asaumes that the return value is an integer and the bits are dutifully converted into a
(meaninglesy floating pant value.

"C takes the paint of view that the programner isalways right." - Michad DeCorte

5. Function Declarations

Eadch function shoud be precaled by a block comment prologue that gives a short description o
what the function daes and (if not clea) how to useit. Discusdon d nontrivial design dedsions and side-
effedsisalso appropriate. Avoid dugicainginformation clea from the mde.

The function return type shoud be done on aline, (optionally) indented ore stop®. Do na default
to int; if the function daes not return a value then it shoud be given return type void®. If the value returned
requires a long explanation, it shoud be given in the prologue; otherwise it can be on the same line & the
return type, tabbed over. The function rame (and the formal parameter list) shoud be done on aline, in
column 1 Destination (return value) parameters shoud generally be first (onthe left). All formal parameter
dedarations, locd dedarations and code within the function bod/ shoud be tabbed over one stop. The
opening kraceof the function bog/ shoud be done onaline beginningin column 1

Each parameter shoud be dedared (do nd default to int). In general the role of ead variable in the
function shoud be described. This may either be dore in the function comment or, if ead dedarationis on
its own ling, in a cmment on that line. Loop courters cdled "i ", string panters cdled "s", and integral
types cdled "c" and wsed for charaders are typicdly excluded. If a group d functions all have alike
parameter or locd variable, it helps to cdl the repeaed variable by the same name in al functions.
(Conwersely, avoid using the same name for diff erent purposes in related functions.) Like parameters shoud
also appea in the same placein the various argument lists.

Comments for parameters and locd variables shoud be tabbed so that they line up undrneah eadh
other. Locd variable dedarations shoud be separated from the function's satements by a blank line.

Be caeful when you wse or dedare functions that take avariable number of arguments ("varargs").
There is no truly portable way to dovarargsin C. Better to design an interfacethat uses a fixed number of
arguments. If you must have varargs, use the library maaos for dedaring functions with variant argument
lists.

If the function wses any external variables (or functions) that are not dedared gobally in the file,
these shoud have their own dedarationsin the function bod/ using the extern keyword.

Avoid locd dedarations that override dedarations at higher levels. In particular, locd variables

shoud na berededared in nested blocks. Althoughthisisvalid C, the potential confusionis enoughthat lint
will complain about it when gven the-h option.

6. Whitespace

int i;main(){forGi["]<i;++i){--i;}"];read(’-'-'-",i+++ "hell\
o, world'\n",'/'I'I")); }read(j i, p){ write(j/ p+p,i---j,ifi);}

"Tabstops' can be blanks (spaces) inserted by your editor in clumps of 2, 4, or 8. Use adual tabs where possble.

#define void or #define void int for compil ers withou the void keyword.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-9-

- Dishonaable mention, Obfuscated C Code Contest, 1934.
Author requested anonymity.

Use verticd and haizontal whitespacegenerously. Indentation and spadng shoud refled the block
structure of the @de; e.g., there shoud be & least 2 blank lines between the end o one function and the
comments for the next.

A longstring d condtional operators shoud be split onto separate lines.

if (foo->next==NULL && totalcount<needed && needed<=MAX_ALLOT
&& server_active(current_input)) { ...

Might be better as

if (foo->next == NU LL
&& totalcount < needed && needed <= MAX_ALLOT
&& server_active(current_input))

Similarly, elaborate for loops shoud be split onto dfferent lines.

for (curr = *listp, trail = listp;
curr I= NULL,
trail = &(curr->next), curr = curr->next)

Other complex expressons, particularly thase using the ternary ?: operator, are best split on to several lines,
too.

C:(a::)
2d +f(a)
 f(b) - d;

Keywords that are followed by expressonsin parentheses sioud be separated from the left parenthesis by a
blank. (The sizeof operator is an exception.) Blanks $houd also appea after commas in argument lists to
help separate the aguments visualy. On the other hand, maao definitions with arguments must not have a
blank between the name and the left parenthesis, otherwise the C preprocesor will not remgrize the
argument list.

7. Examples
/*
* Determine if the sky is blue by checking that it isn't night.
* CAVEAT: Only sometimes rig ht. May return TRUE when the answer

*is FALSE. Consider clouds, eclipses, short days.
* NOTE: Uses 'hour’ from 'hightime.c'. Returns 'int' for

* compatibility with the old version.
*
int /* true or false */
skyblue()
{
extern int hour; /* current hour of the day */

return(hour >= MORNING && hour <= EVENING);

Reammmended C Coding Standards Revision: 6.0 25June 1990

-10-

/*
* Find the last element in the linked list
* pointed to by nodep and return a pointer to it.
* Return NULL if there is no last element.

*
node t*
tail(nodep)
node_t *nodep; /* pointer to head of list */
{
register node_t *np; /* advances to NULL */
register node_t *Ip; /* follows one behind np */
if (nodep == NULL)
return(NULL);
for (np = Ip = nodep; np != NULL; Ip = np, np = np->next)
; /*VOID */
return(Ip);
}

8. Simple Statements

There shoud be only one statement per line unlessthe statements are very closely related.

case FOO: oogle(zork); boogle(zork); break;
case BAR: oogle(bork); boogle(zork); break;
case BAZ: oogle(gork); boogle(bork); break;

The null body of afor or while loop shoud be done on aline and commented so that it is clea that the null
body isintentional and nd missng code.

while (*dest++ = *src++)
; /*VOID */

Do na default the test for non-zero, i.e.
if (f() != FAIL)
is better than
if (f0)

even thoughFAIL may have the value O which C considers to be false. An explicit test will help you ou
later when somebody deddes that a failure return shoud be -1 instead of 0. Explicit comparison shoud be
used even if the cmmparison value will never change; e.g., "if (!(bufsize % sizeof(int))) "
shoud be written instead as "if ((bufsize % sizeof(int)) == 0) " to refled the numeric (not
bodean) nature of the test. A frequent troule spat is using strcmp to test for string equality, where the
result shoud neve eve be defaulted. The preferred approadch isto define amaao STREQ

#define STREQ(a, b) (strcmp((a), (b)) == 0)

The nonzero test is often defaulted for predicaies and aher functions or expresgons which med the
following restrictions:

Reammmended C Coding Standards Revision: 6.0 25June 1990

-11-

. Evaluatesto O for false, nothing else.

. Is named so that the meaning d (say) a'true' return is absolutely obvious. Call a predicaeisvalid or
valid, nat checkalid.

It is common pradiceto dedare abodean type "bool " in aglobal include file. The spedal names
improve readability immensely.

typedef int bool;

#define FALSE O
#define TRUE 1

or

typedef enum { NO=0, YES } bool;

Even with these dedarations, do nd ched a bodean value for equality with 1 (TRUE, YES, etc.); instead
test for inequality with O (FALSE, NO, etc.). Most functions are guaranteed to return O if false, but only
nonzeroif true. Thus,

if (func() == TRUE) { ...
must be written

if (func() != FALSE) { ...

It is even better (where possble) to rename the function/variable or rewrite the expresson so that the
meaning is obvious withou a @mmparisonto true or false (e.g., renametoi sval i d()).

There is a time and a placefor embedded assgnment statements. In some cnstructs there is no
better way to accompli sh the results withou making the ade bulkier and lessreadable.

while ((c = getchar()) '= EOF) {
process the character
}

The ++ and -- operators court as assgnment statements. So, for many purposes, do functions with side
effeds. Using embedded assgnment statements to improve run-time performanceis also pessble. However,
one shoud consider the tradeoff between increased spead and deaeased maintainability that results when
embedded assgnments are used in artificia places. For example,

a=b+c;
d=a+r;

shoud na bereplaced by
d=(@a=b+c)+r;

even thoughthe latter may save one gycle. In the long run the time diff erence between the two will deaease
as the optimizer gains maturity, while the difference in ease of maintenance will i ncrease & the human
memory of what's going onin the latter pieceof code beginsto fade.

Goto statements soud be used sparingly, asin any well-structured code. The main placewhere they can be
use fully employed isto bregk out of several levels of switch, for, and whil e nesting, athoughthe neal to do
such a thing may indicae that the inner constructs sioud be broken ou into a separate function, with a
succesgfail ure return code.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-12-

for (...) {
while (...) {

i.f.(disaster)
goto error;

error:
clean up the mess

When a goto is necessary the acompanying label shoud be done onaline and tabbed ore stop to the left of
the ade that follows. The goto shoud be commented (posshbly in the block header) as to its utility and
purpase. Continue shoud be used sparingly and rea the top d the loop. Break islesstroubdesome.

Parameters to nonprototyped functions sometimes need to be promoted explicitly. If, for example,
afunction expeds a 32-bit longand gets handed a 16-bit int instead, the stack can get misaligned. Problems
ocaur with panter, integral, and floating-point values.

9. Compound Statements

A compoundstatement is a list of statements enclosed by braces. There ae many common ways of
formatting the braces. Be nsistent with your locd standard, if you have one, or pick one and wee it
consistently. When editing someone dse's code, always use the style used in that code.

control {
statement;
statement;

}

The style @owe is cdled "K&R style", and is preferred if you haven't aready got a favorite. With K&R
style, the else part of an if-else statement and the while part of a do-whil e statement shoud appea on the
same line asthe dose brace With most other styles, the braces are dways aloneonaline.

When a block of code has svera labels (unlessthere ae alot of them), the labels are placed on
separate lines. The fal-throughfeaure of the C switch statement, (that is, when there is no lre& between a
code segment and the next case statement) must be commented for future maintenance A lint-style
comment/dirediveis best.

switch (expr) {

case ABC:

case DEF:
statement;
break;

case UVW:
statement;
[*FALLTHROUGH?*/

case XYZ:
statement;
break;

}

Reammmended C Coding Standards Revision: 6.0 25June 1990

-13-

Here, the last break is unrecessary, but is required because it prevents a fall-through error if
ancther case is added later after the last one. The default case, if used, shoud be last and daes not
require abreak if itislast.

Whenever an if-else statement has a mmpound statement for either the if or else sedion, the
statements of bath the if and else sedions soud bah be enclosed in braces (cdled fully brackeed syntax).

if (expr) {
statement;
}else {
statement;
statement;

}

Braces are dso esential in if-if-el se sequences with nosecond else such as the foll owing, which will
be parsed incorredly if the brace &ter (ex1) andits mate ae omitted:

if (ex1) {
if (ex2) {
funca();

}else {
funcb();

Anif-else with elseif shoud be written with the else condtions left-justified.

if (STREQ(reply, "yes")) {
statements for yes

} else if (éTREQ(repIy, "no")) {
} else if (STREQ(reply, "maybe™) {

}else {
statements for default

}

The format then looks like ageneralized switch statement and the tabbing refleds the switch between exaadly
one of several aternatives rather than anesting statements.

Do-while loops shoud always have braces aroundthe body.

The following code is very dangerous:

#ifdef CIRCUIT

define CLOSE_CIRCUIT(circno) { close_circ(circno); }
#else

define CLOSE_CIRCUIT(circno)

#endif

if (expr)

statement;
else

CLOSE_CIRCUIT(x)
++i;

Reammmended C Coding Standards Revision: 6.0 25June 1990

-14-

Note that on systems where CIRCUIT is not defined the statement "++i; " will only get exeauted when expr
is false! This example points out both the value of naming maaos with CAPS and d making code fully-
bradeted.

Sometimes an if causes an urcondtional control transfer via break , continue , goto , or
return . Theelseshoud beimplicit and the mde shoud na be indented.

if (level > limit)
return(OVERFLOW)

normal();

return(level);

The "flattened” indentation tells the reader that the bodean test is invariant over the rest of the enclosing
block.

10. Operators

Unary operators sioud na be separated from their single operand. Generally, all binary operators
except . ' and '-> ' shoud be separated from their operands by blanks. Some judgement is cdled for in the
case of complex expressons, which may be deaer if the "inner" operators are nat surrounced by spaces and
the"outer" ones are.

If you think an expresson will be hard to read, consider bre&ing it acdosslines. Splitting at the
lowest-precalence operator nea the bresk is best. Since C has ©me unexpeded precadence rules,
expressons involving mixed operators shoud be parenthesized. Too many parentheses, however, can make a
line harder to read becaise humans aren't goodat parenthesis-matching.

There is atime and dacefor the binary comma operator, but generally it shoud be avoided. The
comma operator is most useful to provide multiple initi ali zations or operations, asin for statements. Complex
expressons, for instance thase with nested ternary ?: operators, can be @mnfusing and shoud be asoided if
possble. There ae some maaos like getchar where both the ternary operator and comma operators are
useful. Thelogicd expresson operand kefore the ?: shoud be parenthesized and bah return values must be
the same type.

11. Naming Conventions

Individual projeds will no doulh have their own naming conventions. There ae some general rules
however.

. Names with leading and trailing undbrscores are reserved for system purposes and shoud na be
used for any user-creaded names. Most systems use them for names that the user shoud na have to
know. If youmust have your own private identifiers, begin them with aletter or two identifying the
padkage to which they belong

. #define anstants sioud beinal CAPS

. Enum constants are Capitalized or in al CAPS

. Function, typedef, and variable names, as well as gruct, union, and enum tag names soud be in
lower case.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-15-

. Many maao "functions' are in al CAPS Some maaos (such as getchar and putchar) arein
lower case since they may also exist as functions. Lower-case maao names are only accetable if
the maaos behave like afunction cdl, that is, they evaluate their parameters exactly once and do nd
assgn values to named parameters. Sometimes it is impossble to write amaao that behaves like a
function even thoughthe aguments are evaluated exadly once

. Avoid names that differ only in case, like foo and Foo. Similarly, avoid fookar and foo_ba. The
potential for confusionis considerable.

. Similarly, avoid names that look like eat ather. On many terminals and mrinters, 'I', '1' and 'l' look
quite similar. A variable named 'I' is particularly bad becaise it looks $ much like the constant '1'.

In general, globa names (including enums) shoud have a ommon prefix identifying the modue
that they belongwith. Globals may alternatively be grouped in a global structure. Typedeffed names often
have" t " appended to their name.

Avoid names that might conflict with various gandard library names. Some systems will i nclude
more library code than youwant. Also, your program may be extended someday.

12. Constants

Numericd constants shoud nd be mded dredly. The #define feaure of the C preprocessor shoud
be used to gve mnstants meaningful names. Symbdlic constants make the aode eaier to read. Defining the
value in ore place &so makes it easier to administer large programs snce the @nstant value can be changed
uniformly by changing orly the define. The enumeration data type is a better way to dedare variables that
take on orly a discrete set of values, since alditional type dheding is often available. At the very least, any
diredly-coded numericd constant must have a @mment explaining the derivation d the value.

Constants $houd be defined consistently with their use; e.g. use 540.0 for afloat instead of 540
with an implicit float cast. There ae some caes where the cnstants 0 and 1 may appea as themselves
instead of asdefines. For exampleif afor loopindexesthroughan array, then

for (i=0; i < ARYBOUND; i++)
is reasonable whil e the mde

door_t *front_door = opens(doorfil, 7);
if (front_door == 0)
error("can't open %s\n", doorf[i]);

isnat. Inthelast example front_doa is apointer. When avalue isapointer it shoud be compared to NULL
instead of 0. NULL isavailable ather as part of the standard I/O library's header file stdio.h or in stdlib.h for
newer systems. Even simple values like 1 or O are often better expressed using defines like TRUE and
FALSE (sometimes YES and NO real better).

Simple charader constants shoud be defined as charader literals rather than numbers. Non-text
charaders are discouraged as nonportable. If nontext charaders are necessary, particularly if they are used

in strings, they shoud be written using a escagpe charader of threeocta digits rather than ore (e.g., \007).
Even so, such usage shoud be ansidered macdine-dependent and treded as sich.

13. Macros

Reammmended C Coding Standards Revision: 6.0 25June 1990

-16-

Complex expressons can be used as maao parameters, and operator-precalence problems can arise
unlessall occurrences of parameters have parentheses aroundthem. There s littl e that can be dore @ou the
problems caused by side dfeds in parameters except to avoid side dfeds in expressons (a good idea
anyway) and, when passble, to write maaos that evaluate their parameters exadly once There ae times
when it isimpaossble to write maaos that ad exadly like functions.

Some maaos also exist as functions (eg., getc and fgetc). The maco shoud be used in
implementing the function so that changes to the maao will be aitomaticdly refleded in the function. Care
is neaded when interchanging maaos and functions snce function parameters are passd by value, while
maao parameters are passed by name substitution. Carefree use of maaos requires that they be dedared
carefully.

Maaos shoud avoid using dobals, since the globa name may be hidden by a locd dedaration.
Maaos that change named parameters (rather than the storage they paint at) or may be used as the left-hand
side of an assgnment shoud mention this in their comments. Maaos that take no parameters but reference
variables, arelong, or are diasesfor function cdls shoud be given an empty parameter list, e.g.,

#define OFF_A() (a_global+OFFSET)
#define BORK() (zork())
#define SP3() if (b) {int x; av = f(&x); bv +=x; }

Maaos save function cdl/return overhead, but when a maao gets long, the dfed of the cdl/return
beomes negligible, so afunction shoud be used instead.

In some caes it is appropriate to make the wmpiler insure that a maao is terminated with a
semicolon.

if (x==3)

SP3();
else

BORK();

If the semicolon is omitted after the cdl to SP3, then the dse will (silently!) beaome asciated with theif in
the SP3maao. With the semicolon, the dse doesn't match any ifl The maao SP3 can be written safely as

#define SP3()\
do {if (b) { int x; av = f(&x); bv += x; }} while (0)

Writing ou the enclosing do-while by hand is awkward and some compilers and tools may complain that
there is a cnstant in the "while " condtional. A maao for dedaring statements may make programming
eaier.

#ifdef lint
static int ZERO;
#else
define ZERO 0O
#endif
#define STMT(stuff) do { stuff } while (ZERO)

Dedare SP3 with

#define SP3() \
STMT(if (b) {int x; av = f(&x); bv +=x; })

Using STMTwill help prevent small typas from silently changing programs.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-17-

Except for type cats, sizeof , and hadks such as the dbove, maaos shoud contain keywords only
if the entire macaois surrounced by braces.

14. Conditional Compilation.

Condtional compilation is useful for things like madine-dependencies, debuggng, and for setting
certain options at compile-time. Beware of condtional compilation. Various controls can easily combine in
unforeseen ways. If you #fdef macdhine dependencies, make sure that when no madhine is pedfied, the
result is an error, not a default machine. (Use "#error " and indent it so it works with dder compilers.) If
you #fdef optimizations, the default shoud be the unogimized code rather than an urcompil able program.
Be sure to test the unogimized code.

Note that the text inside of an #ifdeffed sedion may be scanned (processed) by the compiler, even if
the #ifdef is false. Thus, even if the #ifdeffed pert of the file never gets compiled (eg., #ifdef
COMMENTIt canna be abitrary text.

Put #ifdefs in header files instead of source files when pcsshle. Use the #ifdefs to define maaos
that can be used uriformly in the ade. For instance, aheader file for cheding memory alocation might look
like (omitting dfinitions for REALLOCand FREB:

#ifdef DEBUG
extern void *mm_malloc();

define MALLOC(size) (mm_malloc(size))
#else

extern void *malloc();
define MALLOC(size) (malloc(size))
#endif

Condtional compilation shoud generaly be on a feaure-by-feaure basis. Machine or operating
system dependencies shoud be avoided in most cases.

#ifdef BSD4

long t = time((long *)NULL);
#endif

The preceding code is poa for two reasons. there may be 4BSD systems for which there is a better choice,

and there may be non-4BSD systems for which the éowe is the best code. Instead, use define symbadls sich
as TIME_LONGand TIME_STRUCTand dfine the gpropriate onein a configuration fil e such as corfig.h.

15. Debugging
"C Code. Ccoderun. Run, code, run... PLEASE!!" --- Barbara TongLe

If you wse enums, the first enum constant shoud have anon-zero value, or the first constant shoud
indicae a error.

enum { STATE_ERR, STATE_START, STATE_NORMAL, STATE_END } state_t;
enum { VAL_NEW=1, VAL_NORMAL, VAL_DYING, VAL_DEAD } value_t;

Uniniti alized values will then often "catch themselves'.
Chedk for error return values, even from functions that "can't" fail. Consider that close() and

fclose() can and dofail, even when al prior file operations have succealed. Write your own functions
that they test for errors and return error values or abort the program in a well-defined way. Include alot of

Reammmended C Coding Standards Revision: 6.0 25June 1990

-18-

debuggng and error-cheding code and leave most of it in the finished product. Chedk even for "impaossble"
errors. [8]

Use the asrt fadlity to insist that ead function is being passed well-defined values, and that
intermediate results are well-formed.

Build in the debug code using as few #ifdefs as possble. For instance, if "mm_malloc " is a
debuggng memory allocaor, then MALLOCwWIll seled the gpropriate dlocaor, avoids littering the mde
with #ifdefs, and makes clea the diff erence between all ocation cdls being debugged and extra memory that
isalocaed ory during debuggng.

#ifdef DEBUG

define MALLOC(size) (mm_malloc(size))
#else

define MALLOC(size) (malloc(size))
#endif

Chedk bound even on things that "can't" overflow. A function that writes on to variable-sized
storage shoud take an argument maxsize that isthe size of the destination. If there ae times when the size
of the destination is unknavn, some 'magic' value of maxsize shoud mean "no bound cheds'. When
boundchedks fail, make sure that the function daes something useful such as abort or return an error status.

/*
* INPUT: A null-terminated source string 'src' to copy from and
* a 'dest’ string to copy to. 'maxsize' is the size of 'dest’
* or UINT_MAX if the size is not known. 'src' and 'dest' mu st
* both be shorter than UINT_MAX, and 'src' must be no longer
* than 'dest'.
* OUTPUT: The address of 'dest' or NULL if the copy fails.
*'dest' is modified even when the copy fails.
*
char *
copy(dest, maxsize, src)
char *dest, *src;
unsigned maxsize;

{
char *dp = dest;
while (maxsize-- > 0)
if (*dp++ = *src++) =="'\0")
return(dest);
return(NULL);
}

In al, remember that a program that produces wrong answers twice & fast isinfinitely slower. The
sameistrue of programsthat crash occasionally or clobber valid data.
16. Portability

"C combines the power of assembler with the portahility of assembler.”
- Anorymous, alludingto Bill Thadker.

The alvantages of portable mde ae well known. This dion gves sme guidelines for writing

portable code. Here, "portable’ means that a sourcefile can be compiled and exeauted on dff erent machines
with the only change being the inclusion d passbly different healer files and the use of different compil er

Reammmended C Coding Standards Revision: 6.0 25June 1990

-19-

flags. The header files will contain #dfines and typedefs that may vary from machine to machine. In
general, a new "machine" is different hardware, a different operating system, a different compiler, or any
combination d these. Reference[1] contains useful information on bah style and patability. The following
isalist of pitfallsto be avoided and recommendations to be mnsidered when designing patable code:

. Write portable ade first, worry abou detail optimizaions only on madines where they prove
necessary. Optimized code is often obscure. Optimizations for one machine may produce worse
code on ancther. Document performance hadks and locdize them as much as posshle.
Documentation shoud explain how it works and why it was needed (e.g., "loop exeautes 6 Zilli on
times").

. Remgnize that some things are inherently non-portable. Examples are code to ded with particular
hardware registers such as the program status word, and code that is designed to suppat a particular
pieceof hardware, such as an assembler or 1/O driver. Even in these caes there ae many routines
and data organizationsthat can be made machine independent.

. Organize sourcefiles o that the macdhine-independent code and the machine-dependent code ae in
separate files. Then if the program is to be moved to a new madhine, it is a much easier task to
determine what needs to be changed. Comment the machine dependence in the headers of the
appropriate files.

. Any behavior that is described as "implementation defined” shoud be treaed as a macdine
(compil er) dependency. Asaume that the compil er or hardware does it some cmpletely screwy way.

. Pay attention to word sizes. Objeds may be nortintuitive sizes, pointers are not aways the same
size @& ints, the same size & ead aher, or fredy interconvertible. The following table shows bit
sizesfor basic typesin C for various macdhines and compil ers.

type pdpll VAX/11 68000 Cray-2 Unisys Harris 80386
series family 1100 H800

char 8 8 8 8 9 8 8

short 16 16 8/16 64(32) 18 24 8/16
int 16 32 16/32 64(32) 36 24 16/32

long 32 32 32 64 36 48 32
char* 16 32 32 64 72 24 16/32/48

int* 16 32 32 64(24) 72 24 16/32/48
int(*)() 16 32 32 64 576 24 16/32/48

Some machines have more than ore possble sizefor agiven type. The sizeyou get can depend bah
on the ompiler and on \arious compil e-time flags. The foll owing table shows "safe" type sizes on
the mgjority of systems. Unsigned numbers are the same bit size & sgned numbers.

Type Minimum No Smaller

Bits Than
char 8
short 16 char
int 16 short
long 32 int
float 24
doulde 38 float
any * 14
char * 15 any *
void * 15 any *

Reammmended C Coding Standards Revision: 6.0 25June 1990

-20-

. The void* type is guaranteed to have enough lits of predsion to hdd a pointer to any data objed.
The void(*)() type is guaranteed to be &le to hdd a pointer to any function. Use these types when
you redd a generic pointer. (Use char* and char(*)(), respedively, in dder compilers). Be sure to
cast pointers bad to the crred type before using them.

. Even when, say, an int* and a char* are the same size, they may have different formats. For
example, the following will fal on some madiines that have sizeof(int*) equal to
sizeof(char*) . The mdefalsbecaisefree expedsachar* and gets passed an int*.

int *p = (int *)malloc(sizeof(int));
free(p);

. Note that the size of an oljed does not guaranteethe predsion of that objed. The Cray-2 may use
64 hitsto store an int, but alongcast into an int and badk to alongmay be truncated to 32 hits.

. The integer constant zero may be cat to any pointer type. The resulting panter is cdled a null
pointer for that type, and is different from any other pointer of that type. A null pointer always
compares equal to the mnstant zero. A null pointer might not compare equal with avariable that has
thevalue zeo. Null pointers are not aways gored with all bits zero. Null pointers for two diff erent
types are sometimes different. A null pointer of one type cat in to a pointer of ancther type will be
cast in to the null pointer for that secondtype.

. On AN SI compil ers, when two pdnters of the same type accesthe same storage, they will compare
as equal. When nonzero integer constants are cat to pdnter types, they may beme identicd to
other painters. On nonrANSI compilers, pointers that access the same storage may compare &
different. The followingtwo panters, for instance may or may not compare equal, and they may or
may not accessthe same storage®.

((int*)2)

((int*)3)
If you reed 'magic’ pointers other than NULL, either all ocaie some storage or tred the pointer as a
madhine dependence

extern int x_int_dummy; /*inx.c*/

#define X_FAIL (NULL)
#define X_BUSY (&x_int_dummy)

#define X_FAIL (NULL)
#define X_BUSY MD_PTR1 /* MD_PTR1 from "machdep.h" */

. Floating-point numbers have both apredsionand arange. These ae independent of the size of the
objed. Thus, overflow (underflow) for a 32-bit floating-point number will happen at different
values on dfferent machines. Also, 4.9 times 5.1 will yield two dfferent numbers on two dff erent
madines. Differencesin roundngand truncaion can gve surprisingly diff erent answers.

. On some madines, adoulde may have lessrange or predsion than afloat.
. On some madines the first half of a doude may be afloat with similar value. Do na depend on
this.

The de may also fail to compil e, fault on panter credion, fault on panter comparison, or fault on panter dereferences.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-21-

. Watch ou for signed charaders. On some VAX es, for instance, charaders are sign extended when
used in expressons, which is not the cae on many other madiines. Code that assmes
signed/unsigned is nonpatable. For example, array[c] wont work if ¢ is sppced to be
positive and is instead signed and regative. If you must assume signed or unsigned charaders,
comment them as SIGNEDor UNSIGNED Unsigned behavior can be guaranteed with unsigned
char .

. Avoid assuming ASCII. If you must asume, document and locdize Remember that charaders
may hold (much) more than 8 hts.

. Code that takes advantage of the two's complement representation d numbers on most madines
shoud na be used. Optimizations that replace aithmetic operations with equivalent shifting
operations are particularly susped. If absolutely necessary, madcine-dependent code shoud be
#ifdeffed or operations shoud be performed by #ifdeffed maaos. You shodd weigh the time
savings with the potential for obscure and dfficult bugs when your code is moved.

. In genera, if the word size or value range is important, typedef "sized" types. Large programs
shoud have acentral healer file which suppies typedefs for commonly-used width-sensiti ve types,
to make it easier to change them and to aid in finding width-sensitive mde. Unsigned types other
than unsigned int are highly compil er-dependent. If asimple loop counter is being used where dther
16 a 32 htswill do, then use int, sinceit will get the most efficient (natural) unit for the airrent
madhine.

. Data alignment is also important. For instance, on various madines a 4-byte integer may start at
any address start only at an even address or start only at a multiple-of-four address Thus, a
particular structure may have its elements at different offsets on dfferent machines, even when
given elements are the same sizeon all machines. Indedl, a structure of a 32-bit pointer and an 8-bit
charader may be 3 sizes on 3 dfferent machines. As a arollary, pointers to oljeds may not be
interchanged fredy; saving an integer througha pointer to 4 bytes darting at an odd address will
sometimes work, sometimes cause a ©re dump, and sometimes fail silently (clobbering aher datain
the procesg. Pointer-to-charader is a particular troube spat on machines which do na addressto
the byte. Alignment considerations and loader peauliarities make it very rash to assume that two
conseautively-dedared variables are together in memory, or that a variable of one type is aligned
appropriately to be used as ancther type.

. The bytes of aword are of increasing significance with increasing addresson machines gich as the
VAX (little-endian) and d deaeasing significance with increasing addresson aher machines sich
asthe 68000(big-endian). The order of bytesin aword and o wordsin larger objeds (say, adoule
word) might not be the same. Hence aly code that depends on the left-right orientation d bitsin an
objed deserves pedal scrutiny. Bit fields within structure members will only be portable so longas
two separate fields are never concaenated and treaed as a unit. [1,3] Actudly, it is nonpatable to
concaenate any two variables.

. There may be unused hdes in structures. Susped unions used for type cheding. Spedficdly, a
value shoud na be stored as one type and retrieved as another. An explicit tag field for unions may

be useful.

. Different compil ers use different conventions for returning structures. This causes a problem when
libraries return structure values to code wmpiled with a different compiler. Structure pointers are
not a problem.

. Do na make ssaumptions abou the parameter passng mechanism. espedaly pointer sizes and

parameter evaluation ader, size, etc. The following code, for instance, is very nonpatable.

¢ = foo(getchar(), getchar());

Reammmended C Coding Standards Revision: 6.0 25June 1990

-22-

char
foo(cl, c2, c3)
char ci, c2, c3;

char bar = *(&cl + 1);
return(bar); /* often won't return c2 */

}

This example has lots of problems. The stack may grow up a down (indeed, there need nd even be
astack!). Parameters may be widened when they are passed, so a char might be passed as an int, for
instance. Arguments may be pushed left-to-right, right-to-left, in arbitrary order, or passd in
registers (not pushed at all). The order of evaluation may differ from the order in which they are
pushed. One compil er may use several (incompatible) cdli ng conventions.

. On some madhines, the null charader pointer ((char *)0) istreaed the same way as a pointer to
anull string. Do nat depend onthis.

. Do na modify string constants’. One particularly notorious (bad) exampleis

s = "/dev/tty??";
strcpy(&s[8], ttychars);

. The aldress pacemay have holes. Simply computing the aldressof an urellocated element in an
array (before or after the atual storage of the aray) may crash the program. If the addressisused in
a omparison, sometimes the program will run bu clobber data, give wrong answers, or loop
forever. In ANSI C, apainter into an array of objeds may legally point to the first element after the
end d the aray; thisis usualy safe in dder implementations. This "outside” pointer may not be
dereferenced.

. Only the == and != comparisons are defined for al pointers of a given type. It is only portable to
use <, <=, >, or >= to compare pointers when they both pant in to (or to the first element after) the
same aray. It islikewise only portable to use aithmetic operators on panters that both pant into
the same aray or the first element afterwards.

. Word size dso affeds sifts and masks. The following code will clea only the threerightmost bits
of anint on some 6800G. On ather madhinesit will also clea the upper two bytes.

X &= 0177770
Useinstead
X &= ~07

which works properly onall madines. Bitfieldsdo nd have these problems.

. Side dfedswithin expressons can result in code whaose semantics are mmpil er-dependent, sinceC's
order of evaluation is explicitly undefined in most places. Notorious examples include the
following.

a[i] = b[i++];

Some libraries attempt to modify and then restore read-only string variables. Programs sometimes won't port because of these
broken libraries. Thelibraries are getting hetter.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-23-
In the bove example, we know only that the subscript into b has nat been incremented. The index

into a ould be the value of i either before or after the increment.

struct bar_t { struct bar_t *next; } bar;
bar->next = bar = tmp;

In the second example, the aldressof "bar->next " may be computed before the value is assgned
to "bar ".

bar = bar->next = tmp;

In the third example, bar can be assgned before bar->next . Althoughthis appears to violate the
rule that "assgnment proceals right-to-left”, it is a legal interpretation. Consider the following

example:
long i;
short a[N];
i=old
i = ali] = new;

The valuethat "i " is assgned must be avalue that is typed as if assgnment procealed right-to-left.
However, "i " may be adgned the value "(long)(short)new " before "afi] " is asdgned to.
Compilersdo dffer.

. Be suspicious of numeric values appeaingin the code ("magic numbers").

. Avoid preprocesor tricks. Tricks guch as using /**/ for token pasting and maaos that rely on
argument string expansion will bredk reliably.

#define FOO(string) (printf("string = %s",(string)))

FOO(filename);
Will only sometimes be expanded to

(printf("filename = %s",(filename)))

Be avare, however, that tricky preprocesors may cause maaos to bre&k acddentally on some
madines. Consider the following two versions of amaao.

#define LOOKUP(chr) (a['c'+(chr)]) /* Works as intended. */
#define LOOKUP(c) (a['c'+(c)]) /* Sometimes breaks. */

The second wersion d LOOKURan be expanded in two dff erent ways and will cause mde to bresk
mysteriously.

. Bewme famili ar with existing library functions and defines. (But not too familiar. The internal
details of library fadliti es, as oppcsed to their external interfaces, are subjed to change withou
warning. They are dso dften quite unpatable)) Youshoud na be writing your own string compare
routine, terminal control routines, or making your own defines for system structures. "Rolli ng your
own" wastes your time and makes your code lessreadable, becaise ancother reader has to figure out
whether you're doing something spedal in that reimplemented stuff to justify its existence It also
prevents your program from taking advantage of any microcode adsts or other means of improving
performance of system routines. Furthermore, it's a fruitful source of bugs. If possble, be avare of
the differences between the ommon libraries (such as ANSI, POSIX, and so or).

Reammmended C Coding Standards Revision: 6.0 25June 1990

-24-

. Use lint when it is available. It is avauable tod for finding machine-dependent constructs as well
as other inconsistencies or program bugs that passthe compiler. If your compiler has switches to
turn onwarnings, use them.

. Susped labelsinside blocks with the associated switch or goto outside the block.

. Wherever the type is in douli, parameters sroud be cat to the gpropriate type. Always cast
NULL when it appeasin nonprototyped function cdls. Do na use function cdls as a placeto do
type dheding. C has confusing promotion rules, so be caeful. For example, if afunction expeds a
32-bit long and it is passed a 16-bit int the stadk can get misaligned, the value can get promoted
wrong, €etc.

. Use explicit casts when dang arithmetic that mixes sgned and ursigned values.

. The inter-procedural goto, longmp, shoud be used with caution. Many implementations "forget” to
restore values in registers. Dedare aiticd values as volatile if you can or comment them as
VOLATILE.

. Some linkers convert names to lower-case and some only reagnize the first six letters as unique.
Programs may break quietly on these systems.

. Beware of compil er extensions. If used, document and consider them as machine dependencies.

. A program cannat generally exeaute amde in the data segment or write into the mde segment. Even
when it can, there isno guaranteethat it can doso reliably.

17. ANSI C

Modern C compilers suppat some or al of the ANSI proposed standard C. Whenever possble,
write @de to run undx standard C, and wse fedures such as function prototypes, constant storage, and
volatile storage. Standard C improves program performance by giving better information to optimizers.
Standard C improves portability by insuring that al compilers accet the same input languege and by
providing mechanisms that try to hide machine dependencies or emit warnings abou code that may be
madhine-dependent.

17.1. Compatibility

Write de that is easy to pat to dder compilers. For instance, condtionally #define new (standard)
keywords gich as const and volatile in a global .h file. Standard compilers pre-define the preprocessor
symbo __ STDC_ 8. The void* type is hard to get right simply, since some older compilers understand
void but not void* . It iseasiest to crege anew (machine- and compil er-dependent) VOIDP type, usually
char* on dder compilers.

#if STDC__

typedef void *voidp;
define COMPILER_SELECTED
#endif

#ifdef A_TARGET

8 Some mmpilers predefine _ STDC__ to be 0, in an attempt to indicae partial compliance with the ANSI C standard.
Unfortunately, it is not posshble to determine which ANSI fadliti es are provided. Thus, such compilers are broken. Seethe
rule dou "dorit write aounda broken compil er unlessyou are forced to."

Reammmended C Coding Standards Revision: 6.0 25June 1990

-25.

define const
define volatile
define void int
typedef char *voidp;
define COMPILER_SELECTED
#endif
#ifdef ...
#endif
#ifdef COMPILER_SELECTED
undef COMPILER_SELECTED
#else
{NO TARGET SELECTED! }
#endif

Note that under ANSI C, the '# for a preprocesoor diredive must be the first nonwhitespace
charader onaline. Under older compil ersit must be the first charader ontheline.

When a static function hes a forward dedaration, the forward dedaration must include the storage
class For older compilers, the dassmust be "exern". For ANSI compilers, the dassmust be "static". but
global functions must still be dedared as "exern". Thus, forward dedarations of static functions soud use a
#define such as FWD_STATIChat is #ifdeffed as appropriate.

An "#ifdef NAME " shoud end with either "#endif " or "#endif /* NAME */ ", not with
"#endif NAME ". The oomment shoud na be used onshort #ifdefs, asit is clea from the ade.

ANSI trigraphs may cause programs with strings containing "??" may bresk mysteriously.

17.2. Formatting

The style for ANSI C is the same & for regular C, with two ndable exceptions: storage qualifiers
and parameter lists.

Becaise onst and vdatile have strange binding rules, eat const or volatile objed shoud have a
separate dedaration.

int const *s; /* YES */
int const *s, *t; FNO* [

Prototyped functions merge parameter dedaration and definitioninto orelist. Parameters shoud be
commented in the function comment.

/*
*'bp': boat trying to get in.
*'stall'; a list of stalls, never NULL.
* returns stall number, 0 => no room.
*
int
enter_pier(boat_t const *bp, stall_t *stall)

17.3. Prototypes

Reammmended C Coding Standards Revision: 6.0 25June 1990

- 26-

Function pototypes shoud be used to make @de more robuwst and to make it run faster.
Unfortunately, the prototyped dedaration

extern void bork(char c);

isincompatible with the definition

void
bork(c)
char c;

The prototype says that ¢ is to be passed as the most natural type for the madhine, possbly a byte. The non
prototyped (badkwards-compatible) definition implies that ¢ is always passd as an int%. If a function hes
promotable parameters then the cadler and cdleemust be compiled identicdly. Either both must use function
prototypes or neither can use prototypes. The problem can be avoided if parameters are promoted when the
program is designed. For example, bork can be defined to take an int parameter. The &ove dedaration
worksif the definitionis prototyped.

void
bork(char c)

Unfortunately, the prototyped syntax will cause nonANSI compil ersto rejed the program.

It is easy to write external dedarations that work with bah prototyping and with dder compil erstO,

#if __ STDC__

define PROTO(X) x
#else

define PROTO(X) ()
#endif

extern char **ncopies PROT O((char *s, short times));
Note that PROTQnust be used with doule parentheses.
In the end, it may be best to write in only one style (e.g., with prototypes). When a non-prototyped
versionis nealed, it is generated using an automatic conversiontoal.
17.4. Pragmas
Pragmas are used to introduce macdhine-dependent code in a controlled way. Obviously, pragmas

shoud be treaed as machine dependencies. Unfortunately, the syntax of ANSI pragmas makes it impasshble
to isolate them in machine-dependent headers.

Such automatic type promotionis cdled widening. For older compil ers, the widening rules require that all char and short
parameters are passd as ints and that float parameters are passed as douldes.

10 Note that using PROTriolates the rule "dorit change the syntax via maao substitution." It is regrettable that thereisn't a

better solution.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-27-

Pragmas are of two classes. Optimizations may safely be ignared. Pragmas that change the system
behavior ("required pragmas’) may not. Required pragmas $oud be #ifdeffed so that compil ation will abort
if no pagmais sleded.

Two compil ers may use agiven pragmain two very different ways. For instance, one compiler may
use "haggis " to signal an ogimizaion. Ancther might use it to indicate that a given statement, if readed,
shoud terminate the program. Thus, when pragmas are used, they must aways be enclosed in machine-
dependent #ifdefs. Pragmas must always be #ifdeffed ou for nonANSI compilers. Be sure to indent the '#
charader onthe #pragma, as older preprocessors will halt onit otherwise.

#if defined(__STDC__) && defined(USE_HAGGIS_PRAGMA)
#pragma (HAGGIS)
#endif

"The '#pragma’ comnmand is Pedfied in the ANS standad to have an abitrary
implementation-defined effed. In the GNU C preprocessor, ‘#pragma’ first attempts to run
the game 'rogue’; if that fails, it triesto run the game 'hack;; if that fails, it triesto run GNU
Emacs displaying the Tower of Hand; if that fails, it reports a fatal error. In ary case,
preprocessng daes not continue.”

- Manual for the GNU C preprocessor for GNU CC 1.34.

18. Special Considerations
This ®dion contains mMe miscdl aneous do's and doris.

. Don't change syntax via maao substitution. It makes the program unintelligible to all but the
perpetrator.

. Don' use floating-point variables where discrete values are needed. Using afloat for aloop courter
isagred way to shoa yourself in the foot. Always test floating-point numbers as <= or >=, never
use an exad comparison (== or !=).

. Compilers have bugs. Common troulle spats include structure assgnment and htfields. You
canna generaly predict which bugs a compiler has. You could write aprogram that avoids all
constructs that are known broken onall compilers. Youwon't be ale to write anything useful, you
might still encourter bugs, and the compiler might get fixed in the meaawhile. Thus, you shoud
write "around' compiler bugs only when you are forced to use aparticular buggy compil er.

. Do na rely on automatic beautifiers. The main person who benefits from good pogram style is the
programmer him/herself, and espedally in the ealy design o handwritten algorithms or pseudo
code. Automatic beautifiers can oy be gplied to complete, syntadicdly corred programs and
hence ae not available when the neel for attention to white space ad indentation is gredest.
Programmers can do a better job d making clea the mmplete visual layout of a function o file,
with the normal attention to detail of a caeful programmer. (In ather words, some of the visual
layout is dictated by intent rather than syntax and Leautifiers cannad read minds) Sloppy
programmers shoud lean to be caeful programmersinstead of relying ona beautifier to make their
code readable.

. Acddental omisson d the second "=" of the logicd compare is a problem. Use eplicit tests.
Avoid assgnment with implicit test.

abool = bbool;
if (abool) { ...

Reammmended C Coding Standards Revision: 6.0 25June 1990

-28-

When embedded assgnment is used, make the test explicit so that it doesn't get "fixed" later.
while ((abool = bbool) = FALSE) { ...
while (abool = bbool) { ... /* VALUSED */

while (abool = bbool, abool) { ...

. Explicitly comment variables that are changed ou of the normal control flow, or other code that is
likely to bregk during maintenance

. Modern compilerswill put variablesin registers automaticdly. Usetheregister sparingly to indicae
the variables that you think are most criticd. In extreme cases, mark the 2-4 most criticd values as
register and mark the rest as REGISTER The latter can be #defined to register on those
madhines with many registers.

19. Lint

Lint is a C program chedker [2][11] that examines C source files to deted and report type
incompatibiliti es, inconsistencies between function definitions and cdl s, potential program bugs, etc. The use
of lint onall programsis grondy recommended, and it is expeded that most projeds will require programsto
use lint as part of the official acceptance procedure.

It shodd be noted that the best way to use lint is nat as a barrier that must be overcome before
official acceptance of a program, but rather as atod to use during and after changes or additions to the mde.
Lint can find olscure bugs and insure portability before problems occur. Many messages from lint redly do
indicae something wrong One fun story is abou is abou a program that was missng an argument to
fprintf

fprintf("Usage: foo -bar <file>\n");

The author never had a problem. But the program dumped core every time an ordinary user made amistake
onthe ommand line. Many versions of lint will cach this.

Most options are worth leaning. Some options may complain abou legitimate things, but they will
also pick up many botches. Note that -pl1 chedks function-cal type-consistency for only a subset of library
routines, so programs houd be linted bah with and withou -p for the best "coverage".

Lint also remgrizes evera spedal comments in the mde. These omments both shut up lint when
the mde otherwise makes it complain, and also dacument spedal code.
20. Make

One other very useful tod is make[7]. During development, make recompil es only thase modues
that have been changed since the last time make was used. It can be used to automate other tasks, as well.

Some mmmon conventions include:

al always makes al binaries
clean remove dl i ntermediate fil es

1 Flag names may vary.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-29.

debug make atest binary 'a.out' or 'debug
depend make transitive dependencies
install install binaries, libraries, etc.
deinstall badk out of "install"
mkca install the manual page(s)
lint runlint
print/li st make ahard copy of al sourcefiles
shar make ashar of all sourcefiles
spatless make dean, use revision control to pu away sources.
Note: doesn't remove Makefile, althoughit isa sourcefile
source undowhat spotlessdid
tags run ctags, (usingthe -t flag is suggested)
rdist distribute sources to ather hosts
filec chedk out the named fil e from revision control

In addition, command-line defines can be given to define ather Makefile values (such as "CFLAGS") or
valuesin the program (such as"DEBUG").

21. Project-Dependent Standards

Individual projeds may wish to establish additional standards beyond those given here. The
foll owing isaues are some of thase that shoud be addressed by ead projed program administration goup.

. What additional naming conventions $odd be followed? In particular, systematic prefix
conventions for functional groupng d globa data and also for structure or union member names
can be useful.

. What kind d include fil e organizationis appropriate for the projed's particular data hierarchy?

. What procedures shoud be established for reviewing lint complaints? A tolerancelevel needsto be
established in concet with the lint options to prevent unimportant complaints from hiding
complaints about red bugs or inconsistencies.

. If aprojed establishes its own archive libraries, it shoud pan onsupdying alint library file [2] to
the system administrators. The lint library file dlows lint to chedk for compatible use of library
functions.

. What kind o revision control needs to be used?

22. Conclusion

A set of standards has been presented for C programming style. Among the most important points
are

. The proper use of white space ad comments © that the structure of the program is evident from the
layout of the code. The use of simple expressons, statements, and functions o that they may be
uncerstoodeasily.

. To keep in mind that you a someone dse will li kely be asked to modify code or make it run ona
different machine sometime in the future. Craft code so that it is portable to okscure madhines.
Locdize optimizations snce they are often confusing and may be "pessmizaions' on aher
madhines.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-30-

Many style choices are abitrary. Having a style that is consistent (particularly with group
standards) is more important than following absolute style rules. Mixing styles is worse than using

any single bad style.

As with any standard, it must be followed if it isto be useful. If you have troube following any of
these standards donit just ignare them. Tak with your locd guru, or an experienced programmer at your
institution.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-31-

References

[1] B.A. Tague, C Languagp Portability, Sept 22, 1977 This document issied by department 8234
contains three memos by R.C. Haight, A.L. Glassr, and T.L. Lyon deding with style and
portability.

[2] S.C. Johrson, Lint, a C Program Checke, USENIX UNIX12 Suppgementary Documents, November
1986

[3] R.W. Mitze The 3B/PDP-11 Swvabking Problem, Memorandum for File, 127377090701MF,
September 14, 1977,

[4] R.A. Elliott and D.C. Pfeffer, 3B Processor Commnon Diagnagtic Sandads- Version 1,
Memorandum for File, 551478033001IMF, March 30 1978

[5] R.W. Mitze, An Overview of C Compilation d UNIX User Processes on the 3B, Memorandum for
File, 5521-78032902MF, March 29 1978

(6] B.W. Kernighan and D.M. Ritchie, The C Programning Languagg, Prentice Hall 1978 Second Ed.
1988 ISBN 0-13-1103628.

[7] SI|. Feldman, Make - A Program for Maintaining Computer Programs, USENIX UNIX
Suppementary Documents, November 1986

[8] lan Darwin and Geoff Collyer, Can't Happen o /* NOTREACHED */ or Real Programs Dump
Core, USENIX Assciation Winter Conference, Dall as 1985Proceedings.

9 Brian W. Kernighan and P. J. Plauger, The Elements of Programning Syle, McGraw-Hill, 1974
SemndEd. 1978 ISBN 0-07-034-207-5.

[10] J. E. Lapin, Portable C and UNIX System Programming, PrenticeHall 1987, ISBN 0-13-6864945.
[14 lan F. Darwin, Checkng C Programs with lint, O'Reilly & Asciates, 1989 1SBN 0-93717530-7.

[12) Andrew R. Koenig, C Traps andPitfall s, Addison-Wesley, 1989 ISBN 0-201-179288.

12 UNIX isatrademark of Bell Laboratoies.

Reammmended C Coding Standards Revision: 6.0 25June 1990

-32-

The Ten Commandmentsfor C Programmers

Henry Spencer
1 Thou shalt run lint frequently and study its pronourcements with care, for verily its perception and
judgement oft excead thine.
2 Thoushalt nat follow the NULL pointer, for chaos and madnessawait thee its end.
3 Thoushalt cast all function arguments to the expeded type if they are not of that type dready, even

when thou art convinced that this is unrecessary, lest they take auel vengeance uponthee when
thouleast exped it.

4 If thy header files fail to dedare the return types of thy library functions, thou shalt dedare them
thyself with the most meticulous care, lest grievous harm be fall thy program.

5 Thou shalt ched the aray bound of all strings (indeed, al arrays), for surely where thou typest
"fod" someone someday shall type "supercdifragili sticexpialidocious'.

6 If afunction be alvertised to return an error code in the event of difficulties, thou shalt ched for
that code, yeg even thoughthe dhedks triple the size of thy code and produce ades in thy typing
fingers, for if thou thinkest "it canna happen to me", the gods sal surely purish thee for thy
arrogance

7 Thou shalt study thy libraries and strive not to reinvent them without cause, that thy code may be
short and readable and thy days pleasant and productive.

8 Thou shalt make thy program's purpase and structure dea to thy fellow man by using the One True
Brace Style, even if thou likest it nat, for thy credivity is better used in solving groblems than in
creaing beautiful new impedimentsto understanding.

9 Thy externa identifiers sall be unique in the first six charaders, thoughthis harsh discipline be
irksome and the yeas of its necessty stretch before thee seemingly without end, lest thou tea thy
hair out and gomad on that fateful day when thou desireth to make thy program run onan dd
system.

10 Thou shalt foreswea, renource and abjure the vile heresy which claimeth that "All the world's a

VAX", and have no commerce with the benighted heahens who cling to this barbarous belief, that
the days of thy program may be long even thoughthe days of thy current machine be short.

Reammmended C Coding Standards Revision: 6.0 25June 1990

