LCLint User’s Guide

Version 2.4
April 1998

David Evans
Software Devices and Systems Group
MIT Laboratory for Computer Science

i LCLint User’s Guide

Acknowledgments

John Guttag and Jim Horning had the original ideafor LCLint, have provided valuable advice on its
functionality and design, and been instrumental in its development. Thiswork has also benefited
greatly from discussions with Mike Burrows, Stephen Garland, Colin Godfrey, Steve Harrison,
Daniel Jackson, Angelika Leeb, Ulana L egedza, Anya Pogosyants, Navneet Singh, Raymie Stata,
Yang Meng Tan, and Mark Vandevoorde. | especialy thank Angelika Leeb for many constructive
comments on improving this document, Raymie Stata for help designing and setting up the LCL int
web site and Mark VVandevoorde for technical assistance.

Much of LCLint’'s development has been driven by feedback from usersin academia and industry.
Many more people than | can mention here have made contributions by suggesting improvements,
reporting bugs, porting early versions of LCLint to other platforms. Particularly heroic
contributions have been made by Eric Bloodworth, Jutta Degener, Rick Farnbach, Chris Flatters,
Huver Hu, John Gerard Malecki, Thomas G. McWilliams, Michael Meskes, Richard O’ Keefe, Jens
Schweikhardt, and Albert L. Ting. Martin "Herbert" Dietze and Mike Smith performed valiantly in
producing the original Win32 and OS2 ports.

LCLint incorporates the original LCL checker developed by Yang Meng Tan. Thiswas built on the
DECspec Project (Joe Wild, Gary Feldman, Steve Garland, and Bill McKeeman). The LSL checker
used by LCLint was developed by Steve Garland. The original C grammar for LCLint was
provided by Nate Osgood.

This research was supported by grants from ARPA (N0014-92-J-1795), NSF (9115797-CCR) and
DEC ERP. David Evans was supported by an Intel Foundation Fellowship. LCLint was developed
on DEC Alpha and DECmips machines provided by Digital Equipment Corporation and Pentium
I1™ machines donated by Intel. The Win32 version of LCLint was produced using Visua Studio™
software donated by Microsoft. This document was produced using Pentium I1™ Computers
donated by Intel Corporation and Microsoft Office™ software donated by Microsoft.

Contents

Contents

2.3 StYlized COMMENLS ...ttt
PR AN 41016 r= 1 0] 0 -
2.3.2 CoNtrol COMMENTS........uvieiireieieitie e ee st ee s ee e e s s erae e s s ebe e s s sareessebeeeeens

3. Abstract Types

3ed ACCESS . e
3.2 MUIABILIEY. ...
3.3 BOOIEAN TYPES......c.oeeie ettt

3.4 PrIimitive C TYPESoccuveeieeeiieeieeeie ettt iveeae et eae e taeennee et
34 L CharaCterS......c.eiueeeiertieeeertese ettt ettt
342 ENUMEIGLOISvieeiiriieeeerees s
343 NUMENIC TYPES ..ttt sttt sttt sttt s e
3.4.4 Arbitrary INtegral TYPES.....cccoveirireirie ettt

4. Function Interfaces

4.1 MOIfICATIONS ...
4.1.1 Special MOdifiCations..........ccceceieeireeiere e
4.1.2 Missing Modifies ClaUSES........ccccvrereereererese s see s s
g G 3 I 3 (o L

4.2 GLODAL VAFIADIES............cccoveiveeeie ettt
4.2.1 Controlling Globals CheCKing..........ccovvrernineiine e

4.3 Declaration CONSISIENCY...............ccoooiieiiiieiieieeeeee e

5. Memory Management

5.1 Storage Model..................cccoooeiiieiiiiiiee e

5.2 DealloCation ErFOrsS...........cccooccooo oo
5.2.1Unshared REFEIENCES........ccveeeiieiieeeie ettt e
5.2.2 Temporary ParamMetersS.........ccccuveeerieesieeseeiesee e seese e see e sraeseaeneens
5.2.3 Owned and Dependent REFErENCES. ...
5.2.4 KEPt ParamELerS.......covieiiiie et
5.2.5 Shared REFErENCES.ooeiveeiee et
5.2.6 StaCK REFEIENCES.........eeiviitecee ettt sttt et beeebe b
5.2.7 INNES SEOFBGE.... e cveieeeeeeete ettt s

5.3 Implicit Memory ANNOIALIONSc..cceeueieeiieeiaee e
5.4 Reference COUNLINGcccooecueieeeeieieee ettt

6. Sharing

12

12
12
13
13

14
14

15

O] ALIASING ...ttt eree
6.1.1 UNIQUE ParamMEterS........ccooiiieieeeierieeieeeeie et s s

Vi LCLint User’s Guide

SR = e (0140150 =T 11 (= £ 23
0.2 EXPOSUFC ..ottt ettt et et e et e ekt e e et e et e et e et e me e e et e Rt e ne e en et et e en b e etaeeneeaneeeneeneeanean 24
N = o @ S (o = o [Y 24
6.2.2 EXPOSEU SEOMAQE.e ettt sttt sttt sttt st sttt st b e st be e b e e et st e et sbe et sbe e enees 25

7. Value Constraints . 26
7.1 US€ BEfOre DEfiRIiONocooiiiiiiieiieeeee e 26
7.1 1 UNAEfINE ParaMELES.... ..ttt ettt ettt e et e st e e ebe e s beeeteeebeeeneesnbeseneeants 27
A 2 = e 1o [O = o T o 27
7.1.3 Partially DefiNed SIrUCIUIES........ccveieeececeeses ettt st ene e enean 28
A X o) o7 VA= g T o 1= OO 27
T2 INUIL POITECES ... e 28
7.2.1 PrediCate FUNCHIONS.ccviiiectee ettt sttt et ettt e e te st saeesbeesbeenbeenseeneesbeesbaenbens 29
7.2.2 OVEITIAdiNG NUIL TYPES ..ottt ettt sttt 30
7.2.3 RelaXing NUI CRECKING.....c..oiiiieieeee e e 30
T3 EXCCULION ...ttt e ettt e e e e e ettt e e e s e ettt et e e e s e e et aaeeeeeeeeaaees 31
74 SPECTAL CLIAUSES ...ttt 32
8. Macros 35
8.1 CONSIANTE MACTOS...........ocooeeeeeiieeeeeeeeee ettt ettt e e e e ettt e e e s et ta e et e e e s e eeaaaeeees 35
8.2 FUNCHON-TTRE MACFOS ... ettt e et e e eeaee e 35
8.2.1 SIe-EffeCt Free Par@mELErS.......ccveieeee ettt ettt ettt et e et e st s e eae e e beeeneesbeseneeenes 36
ST oo Y/ 10704 o] T 1 oS 37
8.3 Controlling Macro CRECKING..................cc.occiiiiiiiiiee e 37
oA TICHALOTS ...ttt ettt e e et ettt e e e e e ettt e e e e e s eet it e e e e e e s eenaaaeeees 38
9. Naming Conventions 40
9.1 Type-Based Naming CONVENTIONS...............ccuieiueieseae et eeeeeeeeeee ettt aeeeeaaesea st aee et aseeneanaeaeeaeeanes 40
.11 CZECN NAIMIES....c..evee ettt ettt e et e et e et e e te e s besebeesbesenbessabeseasessnbesesessnbessseesnressneennes 40
O.1.2 SIOVAK NAIMES ...ttt ettt e et e et e et e s be e e te e e beeeabeesbeeeaseesbeseseesnbeseseesbesaseesnes 41
9.1.3 CZEChOSIOVAK NAIMES.......c.viitieiteectieiteeite e see st e e eete e te e e e ebeeebeesbeebesasesaeesbeesreenseenseeneesseesbeenbens 41
9.2 NAMESPACE PPEfIXES ..ottt ettt ettt ettt sae e annas 41
9.3 NAMING RESIVICIIONS ..ottt ettt et et e et e et ente e st e eeaeeaeeebeenneeneeanees 43
O.3.1 RESEIVE NAIMIES.......veicetie e ceeesteeeteestee et e st eseteesbessbessabessasessabessasessabesssessnbesssessnbessseesnes 43
R B IE= i o ol [0 0 () { = £SOt 43
10. Other Checks....... 45
10.1 Undefined Evaluation OFderc.ccoocoiioiiioiiiieii oo 45
10.2 Problematic CONFOL STFUCTUFES...............cccoeeeeeeeeeeeeeeeeeeee et 46
10.2.1 LiKElY INFINITE LOOPS .. cvevieeieriieeiisieie sttt bbb e 46
O YT (o 1R 46
10.2.3 DEEP BIrEAKS......cueeuieieciicie ettt ete ettt e e te st et ae e te et e e tesr e te e aeer e e e et e tenrentenaeereennennan 47
10.2.4 LOOP @NA 1 BOGIES.....c.ccueriiieiiriiieiiriiie sttt sttt e b 48
10.2.5 COMPIEL If-EISE LOGIC . ..veeeuerteeeiirieieesi ettt bbb 48
10.3 SUSPICIOUS SIAIEINEILS ..ottt ettt et et e e nee e e e et e eneenne e 48
10.3.1 StatementS With NO EffECES.....cuui ittt ebe s e sre e e sbee e reeereas 48
10.3.2 IgNOred REIUIMN VAIUBSc.ccuiiieeiirieient ettt bbb 49
10.4 Unused DeClarationsccocuueeeiiieiieeiieeee ettt ettt e e e e ettt e e e e e eeaaeeeee e 49

10.5 COMPLELE PrOGFAMScoeeeveeeieeeieeeeeeeeeeeee et ettt ettt a e eae et et e et eeaeste e etveerneereen 50

Contents

10.5.1 Unnecessary EXIErNal NBIMES........cciiririririeiriisieesie sttt st e
10.5.2 Declarations Missing from HEBAEN'S.........o.oiueiiiriiiiiricreses e e

10.6 COMPIIEE LIMILSc.oeueeeieeeee ettt ettt e et a et e e e e e e ae e eeeatese et asee e anseaeeeeeenen

Appendix A Availability

Appendix B Communication

52

Appendix C Flags

53

P OTOCESSO ...ttt et e Rt bRt R e R R R Rt n e r e r e r e Rt r e nen
()T 1SS
L 11 | PR
(0w (= o = 0] £

MESSAGE FOFMIQL ...ttt ettt ettt ettt ettt ettt ettt e b e e nane s
MOAE SClECIOT FIAZSc.ooocvveeeeieeeeeeeee ettt ettt ettt et et e et re e ve e
CRECKING FIAGS ... et ea e

S =T o
Use Before Definition (SECHON 7.1).....cceieiireiecieeeereese st eae e sre e s st e eneenenean
NUI POINEErS (SECHION 7.2) ...ttt bbb sttt
MBCIOS (SECHION) ...ttt ettt s e e bbb et et e bese e ke s bt ebe e e e s e beseesbesaeebennnennan
1= = (0] £ PP TR PRSPPI
[N F= TR0 0] 1= 0]
OFhEr CECKS......ceee et sttt et e st et ettt eneenee e e ntebeseeebesneeseennenean

Flag Name ADBDFEVIALIONSccueeueeieeee ettt ettt ettt eae e et esneate e enbeeaeeenee

Appendix D Annotations

1 (o RSP R
R = (0 6 (= ot 1 TS 3 S
CONSEANES (SECLION 8.1) ...ttt ettt b e et b e et b e et b et st ne et b e e
Alternate TYPES (SECHION 8.2.2) ...ttt ettt sttt st s besbe e sneeneans
D o= g (o g AN 41010 = £ o] RSP S

53
53

55
55

56
56

57
57
57
60
63
65
66
66
67
68
68
72

78

79

79
80
80
80
80

85

Appendix E Control Comments ..

L 0 S U o= T o
TYPE ACCESS ...ttt et st sr et et e s e s e R e e e e e s e e sRe e nRe e ane e r e e et ene e e R e e n e r e e ne e e nns
IMBEIO EXPANSION ...ttt bbbt bbb e e et b n e e
Traditional Lint COMIMENTS........oociiiieiireie ettt et st b e e e e e e e e e b saesbe e e eneenes

85
85
85
86

Appendix F Libraries

S ez 00 F= (0 T o = =TSR
(OSSO T o= <R
HEAAE! IR INCIUSION ...t ettt et e e et e e et e e e s et e e e et et e saasteeesaaseeessareeessanreeesannees

Appendix G Specifications .
SPECITICAITION FIEOS. ...ttt ettt ettt b ettt st e e e

87

87
89
89

90

Vi LCLint User’s Guide

Appendix H Emacs ... 94
RUNNING LCLINT ...t iError!Marcador no definido.
Editing ADDreVIations..........ccoiiie e sttt pesae e e nean 94

References 94

Figures and Tables

Figure 1. Effort/benefit curve fOr LCLINt.......ooieeeece e 2

Figure 2. Violations uSiNg aDSLraCt tYPES.eoveeeeririereeeresie ettt sne 7

Figure 3. BOOIEAN CNECKING.eieeieriiieieiee sttt sttt sae s tesne s e e e eeseeene e e e naesnenneenes 9

Figure 4. MOdifieS ChECKING.c.eiiiiieeeeee e ene 13

Figure 5. GIobals CheCKING........ccceiiiireeeese e enean 14

Figure 6. DEallOCALION BITOIS. .. .c.eeueeuieierieeeeeieste ettt sttt st sttt eaesbe e e e aesbesee e eneeaesaesseneeneesens 18

Figure 7. SEaCK FEFEIENCES. ...vviveeeeeee ettt re e e e aesne e e eeesrenneenean 20

Figure 8. ImpliCit BNNOALIONS.coiiiiieeeeere ettt ene 21

Figure 9. RefErenCe COUNLING. ...ceeiuiiiieeieseseeeee s ae st ese e e e s reeseeeesaesreeneeeesrenneenean 22

Figure 10. UNIQUE PAr@IMELENS.ccoeiuirieieieiestesee ettt ste e e saesaesee e sesaesbesee e ssesseseeneenessesaessenesnessens 23

Figure 11. REtUrNE PAraMELENS.ccceeeeerereeeieseesieseseeseeseesseeeessessessessessessesseeseessessesseessessesseeneen 24

Figure 12. EXPOSUrE CHECKING.cuerueiuirieieeeiesie ettt ettt sae st eae e s e e aesaesee e enesnen 26

Figure 13. Use before defiNition...........ccceieiirieiene e enean 27

Figure 14. Annotated gloDAIS TISES.eiieriririieie et ene 28

Figure 15. NUI ChECKING. ...cviieeeeeiceceeeese e e e srenneenean 29

Figure 16. USING NOINUIL......c.oiiiiiee ettt st s ae b eeneene 31

Figure 17. SPECIEl ClALSES. ...ocueeeeieiieeeeeesiesteeeeeeste s e s e ste s e sseeseeseesaesseeeensessesneeneessesseeneeseseesneenen 34

Figure 18. NamMiNG ChECKS.ciuiieieirierieeeee ettt sttt st b e e e e e aesbe s e e eneenens 44

Figure 19. EValUSLTION OFTENcciiiieeeeeese et ene e nesne e e eeeseenneeneen 45

Figure 20. Infinite€ 100 ChECKINGcoiiiieieee e 47

Figure 21. SWItCh ChECKING.ecueeerecece e e enean 47

Figure 22. StatementS With NO EffEC.ocoiiiieee e 49

Figure 23. 1gNOred rEtUMN VBIUES.c.ceoeeieieieieeeseseeee e e sse e e sseeee e ssesneeneessesseeneensessesneeneen 50

Table 1. Prefix CharaCter COUES.cciiiiiiieeriereee et 42

Table 2. Flag name abbhreViations..........coooeririree e 78

LCLint User’s Guide

LCLint isatool for statically checking C programs. With minimal effort, LCLint can be used asa
better lint.! If additional effort isinvested adding annotations to programs, LCLint can perform
stronger checks than can be done by any standard lint.

Some problems detected by LCLint include:

Violations of information hiding. A user-defined type can be declared as abstract, and a
message is reported where code inappropriatel y depends on the representation of the type.
(Section 3)

Inconsistent modification of caller-visible state. Functions can be annotated with information on
what caller-visible state may be modified by the function, and an error is reported if the
modifications produced by the function contradict its declaration. (Section 4.1)

Inconsistent use of global variables. Information on what global and file scope variables a
function may use can be added to function declarations, and a message is reported if the
implementation of the function uses other global variables or does not use every global variable
listed in its declaration. (Section 4.2)

Memory management errors. |Instances where storage that has been deallocated is used, or
where storage is not deallocated (memory leaks). (Section 5)

Dangerous data sharing or unexpected aliasing. Parameters to a function share storage in away
that may lead to undefined or undesired behavior, or areference to storage within the
representation of an abstract type is created. (Section 6)

Using possibly undefined storage or returning storage that is not completely defined (except as
documented). (Section 7.1)

Dereferencing a possibly null pointer. (Section 7.2)

Dangerous macro implementations or invocations. (Section 8)

Violations of customized naming conventions. (Section 9)

Program behavior that is undefined because it depends on order of evaluation, likely infinite
loops, fall-through cases, incomplete logic, statements with no effect, ignored return values,
unused declarations, and exceeding certain standard limits. (Section 10)

LCLint checking can be customized to select what classes of errors are reported using command
line flags and stylized comments in the code.

Thisdocument isaguideto using LCLint. Section 1isabrief overview of the design goals of
LCLint. Section 2 explains how to run LCLint, interpret messages and control checking. Sections
3-10 describe particular checks done by LCLint.

! Lint is a common programming tool for detecting anomaliesin C programs. S. C. Johnson developed
the origina lint in the late seventies, mainly because early versions of C did not support function
prototypes.

2 LCLint User’s Guide

1. Overview
The main goalsfor LCLint are to:

» Detect alarge number of bugsin typical C programs, without producing an unacceptable number
of spurious messages. We are willing to accept the possibility that a few spurious messages are
produced as long as it enables significantly more powerful checking and the spurious messages
can be suppressed easily.

» Support a programming methodology involving abstract types and clean, documented interfaces
in standard C programs.

* Provide agradual transition for programmers. LCLint can be used like a better standard lint
with minimal effort. Adding afew annotations to programs enables significantly better
checking. Asmore effort is put into annotating programs, better checking results. A
representational effort/benefit curve for using LCLint isshown in Figure 1. Asdifferent checks
are turned on and more information is given in code annotations the number of bugs that can be
detected increases dramatically.

» Provide enough flexibility so that LCLint can be used effectively with awide range of coding
styles. Especialy important is making it easy to use LCLint effectively to maintain and modify
legacy code.

» Check programs quickly and with no user interaction. LCLint runs faster than most compilers.
Libraries can be used to enable fast checking of afew modulesin alarge program.

LCLint does many of the traditional lint checks including unused declarations, type inconsistencies,
use-before-definition, unreachable code, ignored return values, execution paths with no return,
likely infinite loops, and fall-through cases. This document focuses on more powerful checks that

Formal Verification
Tools

Naming Conventions

Aliasing
Checked M acros M odifies, Globals
> V\IVI emory Management
Definition
Annotations

Null Annotations

Stricter

Type-Checking Abstract Types
\

Fraction of Errors Detected

~
W eak Checking

Typical C
Compilers

Amount of Effort Required

Figure 1. Effort/benefit curve for LCLint.

Operation

are made possible by additional information given in source code annotations.? Annotations are
stylized comments that document certain assumptions about functions, variables, parameters and
types. They may be used to indicate where the representation of a user-defined type is hidden, to
limit where a global variable may be used or modified, to constrain what a function implementation
may do to its parameters, and to express checked assumptions about variables, types, structure
fields, function parameters, and function results. In addition to the checks specifically enabled by
annotations, many of the traditional lint checks are improved by exploiting this additional
information.

2. Operation

LCLint isinvoked by listing files to be checked. Initialization files, command line flags, and
stylized comments may be used to customize checking globally and locally.

The best way to learn to use LCLint, of course, isto actually useit (if you don't already have
LCLint installed on your system, see page 52). Before you read much further in this document, |
recommend finding asmall C program. Then, try running:

lclint *.c

For the most C programs, thiswill produce a large number of messages. To turn off reporting for
some of the messages, try:

lclint -weak *.c

The - weak flag isamode flag that sets many checking parameters to select weaker checking than
isdonein the default mode. Other LCLint flags will be introduced in the following sections; a
complete list is givenin Appendix C.

2.1 Messages

The user can customize the format and content of messages printed by LCLint. A typical message
is:

sample.c: (in function faucet)

sample.c:11:12: Fresh storage x not released before return
A memory leak has been detected. Newly-allocated or only-qualified storage is not
released before the last reference to it is lost. (-mustfree will suppress message)
sample.c:5:47: Fresh storage x allocated

The first line gives the name of the function in which the error isfound. Thisis printed before the
first message reported for afunction. (The function context is not printed if - showf unc isused.)

The second line is the text of the message. This message reports a memory leak — storage
alocated in afunction is not deallocated before the function returns. The file name, line and
column number where the error is located precedes the text. The column numbers are used by
emacs compile mode to jump to the appropriate line and column location. (Column numbers are
not printed if - showcol isused.)

The next lineis ahint giving more information about the suspected error. Most hints also include
information on how the message may be suppressed. For this message, setting the - nust f r ee
flag would prevent the message from being reported. Hints may be turned off by using - hi nt s.
Normally, ahint is given only the first time a class of error isreported. To have LCLint print a hint
for every message regardless, use +f or cehi nt s.

2 Another way to provide extrainformation about code is to use formal specifications (Appendix G).

4 LCLint User’s Guide

The final line of the message gives additional location information. For this message, it tells where
the leaking storage is allocated.

The generic message format is (parts enclosed in square brackets are optional):

[<file>:<line> (in <context>)]
<file>:<line>[,<column>]: message
[hint]
<file>:<line>,<column>: extra location information, if appropriate

The text of messages and hints may be longer than oneline. They are split into lines of length less
thanthevalueset using - | i nel en <number>. The default line length is 80 characters. LCLint
attempts to split linesin a sensible place as near to the line length limit as possible.

The+par enfi | ef or mat flag can be used to generate file locations in the format recognized by
Microsoft Developer Studio. If +par enfi | ef or mat isset, the line number follows the file
name in parentheses (e.g., sanpl e. c(11))

2.2 Flags

So that many programming styles can be supported, LCLint provides over 300 flags for controlling
checking and message reporting. Some of the flags are introduced in the body of this document.
Appendix C describes every flag. Modes and shortcut flags are provided for setting many flags at
once. Individual flags can override the mode settings.

Flags are preceded by + or - . When aflag is preceded by + we say it is on; when it is preceded by
- itisoff. The precise meaning of on and off depends on the type of flag.

The +/- flag settings are used for consistency and clarity, but contradict standard UNIX usage and
it is easy to accidentally use the wrong one. To reduce the likelihood of using the wrong flag,
LCLint issues warnings when aflag is set in an unusual way. Warnings are issued when aflagis
redundantly set to the value it already had (these errors are not reported if the flag is set using a
stylized comment), if amode flag or special flag is set after a more specific flag that will be set by
the general flag was already set, if value flags are given unreasonable values, of if flagsare set in an
inconsistent way. The - war nf | ags flag suppresses these warnings.

Default flag settingswill beread from~/ . | cl i ntrc if itisreadable. If thereisa.lclintrc
filein the working directory, settingsin thisfile will be read next and its settings will override those
in~/ .1 clintrc. Command-line flags override settingsin either file. The syntax of the

. Iclintrc fileisthe same asthat of command-line flags, except that flags may be on separate
lines and the # character may be used to indicate that the remainder of the line is a comment. The -
nof flag preventsthe~/ .1 clintrc filefrombeingloaded. The-f <filename>flagloads
options from filename.

To make flag names more readable, hyphens (-), underscores (_) and spacesin flags at the
command line areignored. Hence, war nf | ags, war n-f | ags andwar n_f | ags all select the
war nf | ags option.

2.3 Stylized Comments

Stylized comments are used to provide extra information about atype, variable or function interface
to improve checking, or to control flag settings locally.

Operation

All stylized comments begin with / * @and are closed by the end of the comment. Therole of the @
may be played by any printable character. Use- conment char <char>to select adifferent
stylized comment marker.

2.3.1 Annotations

Annotations are stylized comments that follow a definite syntax. Although they are comments, they
may only be used in fixed grammatical contexts (e.g., like atype qualifier).

Syntactic comments for function interfaces are described in Section 4; comments for declaring
constants in Section 8.1 and comments for declaring iteratorsin Section 8.4. Sections 3—7 include
descriptions of annotations for expressing assumptions about variables, parameters, return values,
structure fields and type definitions. A summary of annotationsis found in Appendix D.

2.3.2 Control Comments

Unlike annotations, control comments may appear between any two tokensin a C program.®
Syntactically, they are no different from standard comments. Control comments are used to provide
source-level control of LCLint checking. They may be used to suppress spurious messages, set
flags, and control checking locally in other ways. A complete description of control commentsis
found in Appendix E.

Most flags (all except those characterized as“globa” in Appendix C) can be set locally using
control comments. A control comment can set flags locally to override the command line settings.
The original flag settings are restored before processing the next file. The syntax for setting flagsin
control comments is the same as that of the command line, except that flags may also be preceded
by = to restore their setting to the original command-line value. For instance,

[*@boolint -nodifies =showfunc@/
setsbool i nt on (thismakesbool andi nt indistinguishable types), setsnmodi f i es off (this

prevents reporting of modification errors), and sets showf unc toits original setting (this controls
whether or not the name of afunction is displayed before a message).

3 Unlike regular C comments, control comments should not be used within asingle token. They may
introduce new separators in the code during parsing.

Traditionally,
programming
books wax
mathematical
when they
arrive at the
topic of
abstract data
types... Such
books make it
seem asif
you'd never
actualy use an
abstract data
type except as
adeepad.
Steve
McConnell

6 LCLint User’s Guide

3. Abstract Types

Information hiding is atechnique for handling complexity. By hiding implementation details,
programs can be understood and developed in distinct modules and the effects of a change can be
localized. One technique for information hiding is data abstraction. An abstract typeis used to
represent some natural program abstraction. It provides functions for manipul ating instances of the
type. The module that implements these functions is called the implementation module. We call
the functions that are part of the implementation of an abstract type the operations of the type.
Other modules that use the abstract type are called clients.

Clients may use the type name and operations, but should not manipulate or rely on the actual
representation of the type. Only the implementation module may manipul ate the representation of
an abstract type. This hides information, since implementers and maintainers of client modules
should not need to know anything about how the abstract type isimplemented. It provides
modularity, since the representation of an abstract type can be changed without having to change
any client code.

L CLint supports abstract types by detecting places where client code depends on the concrete
representation of an abstract type.

To declare an abstract type, the abst r act annotationisaddedto a t ypedef. For example (in
nstring. h),

typedef /*@bstract @/ char *nstring;

declares st ri ng as an abstract type. It isimplemented usingachar *, but clients of the type
should not depend on or need to be aware of this. If it later becomes apparent that a better
representation such as a string table should be used, we should be able to change the
implementation of st r i ng without having to change or inspect any client code.

In aclient module, abstract types are checked by name, not structure. LCLint reports an error if an
instance of mst ri ng ispassed asachar * (for instance, asan argument to st r | en), since the
correctness of this call depends on the representation of the abstract type. LCLint also reports
errorsif any C operator except assignment (=) or si zeof isused on an abstract type. The
assignment operator is alowed since its semantics do not depend on the representation of the type.*
Theuse of si zeof isalso permitted, since thisisthe only way for clients to allocate pointers to the
abstract type. Type casting objects to or from abstract typesin a client module is an abstraction
violation and will generate a warning message.

Normally, LCLint will assume atype definition is not abstract unlessthe/ * @bst ract @/
qualifier isused. If instead you want all user-defined types to be abstract types unless they are
marked asconcr et e, the+i np- abst ract flag can beused. Thisaddsan implicit abst ract
annotation to any t ypedef that isnot marked with/ * @oncrete@/ .

Some examples of abstraction violations detected by LCLint are shown in Figure 2.

* For abstract types whose instances can change value, a client does need to know if assignment has copy
or sharing semantics (see Section 3.2).

Function Interfaces

palindrome.c Running LCLint |

include "bool . h"
include "nstring.h"

bool

{

6 char *current

7int i, len = (int)
for (i =0; i <= (I
11 if (current[i]

return FALSE;

}
return TRUE;

i sPal indrone (nstring s)

= (char *) s;

strlen (s);
en+l) / 2; i++)

I=s[len-i-1])

> [clint palindrome.c
LCLint 2.4 --- 10 Apr 98

palindrome.c: (in function isPalindrome)

palindrome.c:6: Cast from underlying abstract type
mstring: (char *)s

palindrome.c:7: Function strlen expects arg 1 to be
char * gets mstring: s

palindrome.c:11: Array fetch from non-array (mstring):
sllen-i-1]

palindrome.c: (in function callPal)

palindrome.c:19: Function isPalindrome expects arg 1 to

}

bool

be mstring gets char *: "bob"
cal | Pal (void)
Finished LCLint checking --- 4 code errors found
19 return (isPalindronme ("bob"));
In client code, the abstract type is a distinct type,

incompatible with its concrete representation.

Figure® 2. Violations using abstract types.

3.1 Access

Where code may manipulate the representation of an abstract type, we say the code has access to
that type. If code has access to an abstract type, the representation of the type and the abstract type
areindistinguishable. Usually, a single program module that is the only code that has access to the
type representation implements an abstract type. Sometimes, more complicated access control is
desired if the implementation of an abstract type is split across program files, or particular client
code needs to access the representation.

There are a several ways of selecting what code has access the representation of an abstract type:

+ Modules. An abstract type defined in M. h isaccessiblein M. c. Controlled by the
accessnodul e flag. Thismeanswhenaccessnodul e ison, asit is by default, the module
accessruleisin effect. If accessnodul e isoff (when - access- nodul e isused), the
module accessrule is not in effect and an abstract type defined in M. h is not necessarily
accessiblein M. ¢

« Filenames. An abstract type named type isaccessiblein filesnamed type. <extension>.
For example, the representation of nst ri ng isaccessibleinnstri ng. handnstring. c.
Controlled by theaccess-fi | e flag.

» Function names. An abstract type named t ype may be accessible in afunction named
type_name Of typeName. For example, nstring_I engt hand nst ri ngLengt h would
have accessto the nst r i ng abstract type. Controlled by accessf unct i on and the naming
convention (see Section 9).

 Access control comments. The syntax / * @iccess type, '@/ 6 alows the followi ng code
to access the representation of type. Similarly,/ * @oaccess type, "@/ restricts access

> Output from LCLint is displayed in sans-serif font. The command line is preceded by >, therest is
output from LCLint. Explanations added to the code or LCLint output are shown in italics. Code shown
in the figuresin this document is available viaanonymousf t p from

ftp://larch.lcs. mt.edu/ pub/Larch/lclint/guide.tar.gz

8 LCLint User’s Guide

to the representation of type. Thetypeinanoaccess comment must have been declared as
an abstract type.

3.2 Mutability

We can view types as being mutable or immutable. A typeismutableif passing it as a parameter to
afunction call can change the value of an instance of the type.” For example, the primitive type

i nt isimmutable. Ifi isalocal variable of typei nt and no variables point to the location where

i isstored, thevalue of i must be the same before and after thecall f (i) . Structure and union
types are also immutable, since they are copied when they are passed as arguments. On the other
hand, pointer types are mutable. If x isaloca variable of typei nt *, the value of * x (and hence,
the value of the object x) can be changed by the function call g(x) .

The mutability of a concrete type is determined by its type definition. For abstract types, mutability
does not depend on the type representation but on what operations the type provides. If an abstract
type has operations that may change the value of instances of the type, the type is mutable. If naot, it
isimmutable. The value of an instance of an immutable type never changes. Since object sharing
is noticeable only for mutable types, they are checked differently from immutabl e types.
The/ * @rut abl e@/ and/ * @ nmut abl e@ / annotations are used to declare an abstract type
as mutable or immutable. (If neither is used, the abstract type is assumed to be mutable.) For
example,

typedef /*@bstract@/ /*@mutable@/ char *nstring;

typedef /*@bstract@/ /*@nmutable@/ int weekDay;

declares st ri ng as a mutable abstract type and weekDay as an immutable abstract type.

Clients of amutable abstract type need to know the semantics of assignment. After the assignment
expressions = t,dos andt refer to the same object (that is, will changesto the value of s aso
changethevalueof t)?

LCLint prescribes that all abstract types have sharing semantics, so s andt would indeed be the
same object. LCLint will report an error if a mutable type isimplemented with a representation
(e.g., ast ruct) that does not provide sharing semantics (controlled by nut r ep flag).

The mutability of an abstract type is not necessarily the same as the mutability of its representation.
We could use the immutable concrete type i nt to represent mutable strings using an index into a
string table, or declare nst ri ng asimmutable as long as no operations are provided that modify
thevalue of annst ri ng.

3.3 Boolean Types

Standard C has no boolean representation — the result of a comparison operator is an integer, and no
type checking is done for test expressions. Many common errors can be detected by introducing a
distinct boolean type and stronger type checking.

® The meta-notation, i t em * is used to denote a comma separated list of items. For example,
/| *@ccess mstring, intSet@/
provides access to the representations of both nst ri ng andi nt Set .)
" Through the parameter. Modifications using some other variable that has a pointer to the location of
this parameter are not considered.

Function Interfaces

Usethe—bool t ype <name> flag to select the type name is used to represent boolean values.®
Relations, comparisons and certain standard library functions are declared to return booleans.

LCLint checks that the test expressioninani f, whi | e, or f or statement or an operand to &&, | |
or! isaboolean. If thetype of atest expression isnot aboolean, LCLint will report an error
depending on the type of the test expression and flag settings. If the test expression has pointer
type, LCLint reports an error if pr edbool pt r ison (this can be used to prevent messages for the
idiom of testing if a pointer is not null without a comparison). If itistypei nt, an error isreported
if pred-bool -i nt ison. For al other types, LCLint reports an error if pr ed- bool - ot hers
ison.

Since using = instead of == is such a common bug, reporting of test expressions that are
assignments is controlled by the separate pr ed- assi gn flag. The message can be suppressed by
adding extra parentheses around the test expression.

Appendix C describes other flags for controlling boolean checking.

bool.c Running LCLint

include "bool.h" > Iclint bool.c +predboolptr —booltype bool
. . . LCLint 2.4 --- 10 Apr 98
int f (int i, char *s,
bool b1, bool b2) | 40 c:7: Return value type bool does not match declared type int: b1

s if (i =3 bool.c:6: Test expression for if is assignment expression: i = 3

e (o= 3)) bool.c:6: Test expression for if not bool, type int: | = 3
7 return bl; o) e

; | bool.c:8: Operand of ! is non-boolean (int): !l
g8 if (11 |] s) . i
9 return i: bool.c:8: Right operandlofll |s.non-boolean (char*): lill's

- bool.c:10: Test expression for if not bool, type char *: s
10 if (s)
11 return 7; Not reported without +pr edbool ptr.
12 if (bl == b2) bool.c:12: Use of == with bool variables (risks inconsistency because
13 return 3; of multiple true values): b1 == b2
14 return 2,
} Finished LCLint checking --- 7 code errors found

Figure 3. Boolean checking.

3.4 Primitive C Types

LCLint supports stricter checking of primitive C types. The char and enumtypes can be checked
as distinct types, and the different numeric types can be type-checked strictly.

3.4.1 Characters

The primitive char type can be type-checked as adistinct type. If char isused as adistinct type,
common errorsinvolving assigning i nt sto char s are detected.

The+chari nt flag can be used for checking legacy programs wherechar andi nt are used
interchangeably. If chari nt ison, char typesindistinguishable fromi nts. To keep char and
i nt asdistinct types, but allow charsto be used to index arrays, use +char i ndex.

8 To change the names of TRUE and FALSE, use - bool t r ue and - bool f al se. TheLCLint
distribution includes an implementation of bool ,inl i b/ bool . h. However, itisn't necessary to use
thisimplementation to get the benefits of boolean checking.

Two types
have
compatible
type if their
typesare the
same.

ANSI C,

3.1.2.6.

Two types
need not be
identical to be
compatible.
ANSI C,
footnote to
3.1.2.6.

10 LCLint User’s Guide

3.4.2 Enumerators

Standard C treats user-declared enumtypes just like integers. An arbitrary integral value may be
assigned to an enumtype, whether or not it was listed as an enumerator member. LCLint checks
each user-defined enumtype as distinct type. An error is reported if avalue that is not an
enumerator member is assigned to the enumtype, or if an enumtypeis used as an operand to an
arithmetic operator.

If theenumi nt flagison, enumandi nt types may be used interchangeably. Likechari ndex, if
the enumi ndex flag is on, enumtypes may be used to index arrays.

3.4.3 Numeric Types

LCLint reports where numeric types are used in dangerous or inconsistent ways. With the strictest
checking, LCLint will report an error anytime numeric types do not match exactly. If ther el ax-

qual s flagison, only those inconsistencies that may corrupt values are reported. For example, if
ani nt isassigned to avariable of typel ong (or passed asal ong formal parameter), LCLint will
not report an error if r el ax- qual s ison sinceal ong must have at least enough bitsto store an
i nt without dataloss. On the other hand, an error would be reported if the | ong were assigned to
ani nt, sincethei nt type may not have enough bitsto store thel ong value.

Similarly, if asi gned valueisassigned to an unsi gned, LCLint will report an error since an
unsi gned type cannot represent al si gned values correctly. If thei gnor e-si gns flagison,
checking isrelaxed to ignore all sign qualifiersin type comparisons (this is not recommended, since
it will suppress reporting of real bugs, but may be necessary for quickly checking certain legacy
code).

3.4.4 Arbitrary Integral Types

Some types are declared to be integral types, but the concrete type may be implementation
dependent. For example, the standard library declaresthetypessi ze_t, ptr_di ff and
wchar _t, but does not constrain their types other than limiting them to integral types. Programs
may rely on them being integral types (e.g., can use + operator ontwo si ze_t operands), but
should not rely on a particular representation (e.g., | ong unsi gned).

L CLint supports three different kinds of arbitrary integral types:

/*@ntegraltype@/
An arbitrary integral type. The actual type may be any one of short,i nt, | ong,
unsi gned short,unsi gned, orunsi gned | ong.
/*@nsi gnedi ntegral type@/
An arbitrary unsigned integral type. The actual type may be any one of unsi gned short,
unsi gned, or unsi gned | ong.
/* @i gnedi ntegral type@/
An arbitrary signed integral type. The actual type may be any one of short,i nt, orl ong.

LCLint reports an error if the code depends on the actual representation of atype declared as an
arbitrary integral. Thermat ch- any-i nt egr al flag relaxes checking and allows an arbitrary
integral typeis allowed to match any integral type.

Other flags set the arbitrary integral typesto a concrete type. These should only be used if
portability to platforms that may use different representationsis not important. Thel ong-
i ntegral andl ong- unsi gned-i nt egr al flags set the type corresponding to
/*@ntegral type@/ tobeunsi gned | ong and| ong respectively. Thel ong-

Function Interfaces

unsi gned- unsi gned- i nt egr al flag setsthe type corresponding to
/*@mnsi gnedi ntegral type@/ tobeunsigned |ong. Thel ong- si gned-
i nt egral flag setsthetype correspondingto/ * @i gnedi nt egral t ype@/ tobel ong.

11

12 LCLint User’s Guide

4. Function Interfaces

Functions communicate with their calling environment through an interface. The caller
communicates the values of actual parameters and global variablesto the function, and the function
communicates to the caller through the return value, global variables and storage reachable from the
actual parameters. By keeping interfaces narrow (i.e., restricting the amount of information visible
across afunction interface), we can understand and implement functions independently.

A function prototype documents the interface to afunction. It serves as a contract between the
function and itscaller. In early versions of C, the function “prototype” was very limited. It
described the type returned by the function but nothing about its parameters. The main
improvement provided by ANSI C was the ability to add information on the number and types of
parameter to afunction. LCLint provides the means to express much more about afunction
interface: what global variable the function may use, what values visible to the caller it may modify,
if apointer parameter may be anull pointer or point to undefined storage, if storage pointed to by a
parameter is deallocated before the function returns, if the function may create new aliasesto a
parameter, can the caller modify or deallocate the return value, etc.

The extrainterface information places constraints on both how the function may be called and how
it may beimplemented. LCLint reports places where these constraints are not satisfied. Typically,
these indicate bugs in the code or errors in the interface documentation.

This section describes syntactic comments that may be added to afunction declaration to document
what global variables the function implementation may use and what values visible to its caller it
may modify. Sections 4-7 describe annotations may be added to parameters to constrain valid
arguments to afunction and how these arguments may be used after the call and to the return value
to constrain results.

4.1 Modifications

The modifies clause lists what values visible to the caller may be modified by afunction. Modifies
clauses limit what values a function may modify, but they do not require that listed values are
always modified. The declaration,

int f (int *p, int *q) /*@wodifies *p@/;

declaresafunction f that may modify the value pointed to by its first argument but may not modify
the value of its second argument or any global state.

LCLint checks that a function does not modify any caller-visible value not encompassed by its
modifies clause and does modify all values listed in its modifies clause on some possible execution
of the function. Figure 4 shows an example of modifies checking done by LCL.int.

4.1.1 Special Modifications
A few specia names are provided for describing function modifications:

internal State
The function modifies some internal state (that is, the value of ast at i ¢ variable). Even
though a client cannot access the internal state directly, it isimportant to know that
something may be modified by the function call both for clear documentation and for
checking undefined order of evaluation (Section 10.1) and side-effect free parameters
(Section 8.2.1).

fileSystem

Function Interfaces 13

The function modifies the file system. Any modification that may change the system stateis
considered afile system modification. All functions that modify an object of type pointer to
FI LE also modify the file system. In addition, functions that do not modify aFI LE pointer
but modify some state that is visible outside this process al'so modify the file system (e.g.,
renane). Theflagnod-fil e- syst emcontrols reporting of undocumented file system
modifications.

not hi ng
The function modifies nothing (i.e., it is side-effect free).

The syntactic comment, / * @/ in afunction declaration or definition (after the parameter list,
before the semi-colon or function body) denotes a function that modifies nothing and does not use
any global variables (see Section 4.2).

void setx (int *x, int *y) > Iclint modify.c +checks
/*@rodifies *x@/ LCLint 2.4 - 10 Apr 98
4y = *x; modify.c:4: Undocumented modification of *y: *y = *x
modify.c:5; Suspect object listed in modifies of setx
not modified; *x

H H * H *
void sety (int *x, int *y) modify.c:1: Declaration of setx

/*@uodifies *y@/
{

setx (y, X): Finished LCLint checking --- 2 code errors found

No errors for sety — the call to setx
modifies the value pointed to by its first
parameter (Y) as documented by the
modifies clause.

The +checks flag is a mode flag for selecting moderately
strict checking. It turns on must nod checking, so the
second error concerning missing documented modifications
is reported.

Figure 4. Modifies checking.

4.1.2 Missing Modifies Clauses

LCLint is designed so programs with many functions that are declared without modifies clauses can
be checked effectively. Unlessnodnonods isin on, no modification errors are reported checking
afunction declared with no modifies clause.

A function with no modifies clause is an unconstrained function since there are no documented
constraints on what it may modify. When an unconstrained function is called, it is checked
differently from afunction declared with amodifies clause. To prevent spurious errors, no
modification error is reported at the call site unless the nod- uncon flag ison. Flags control
whether errors involving unconstrained functions are reported for other checks that depend on
modifications (side-effect free macro parameters (Section 8.2.1), undefined evaluation order
(Section 10.1), and likely infinite loops (Section 10.2.1).)

4.1.3 Limitations

Determining whether a function modifies a particular parameter or global isin general an
undecidable’ problem. To enable useful checking, certain simplifying assumptions are necessary.
LCLint assumes an object is modified when it appears on the left hand side of an assignment or it is
passed to a function as a parameter which may be modified by that function (according to the called

® This means that theoreticians can prove that no algorithm exists that solves the problem correctly for all

possible programs.

14 LCLint User’s Guide

function’s modifies clause). Hence, LCLint will report spurious modification errors for assignments
that do not change the value of an object or modifications that are always reversed before a
procedurereturns. The/ * @ nods@/ and/ * @nods @/ control comments can be used around
these modifications to suppress the message.

4.2 Global Variables

Another aspect of afunction’s interface, isthe global variablesit uses. A globalslist in afunction
declaration lists external variables that may be used in the function body. L CLint checks that global
variables used in a procedure match those listed in its globalslist. A global isused in afunction if it
appearsin the body directly, or it isin the globalslist of afunction called in the body. LCLint
reportsif aglobal that is used in aprocedureisnot listed inits globals list, and if alisted global is
not used in the function implementation. Figure 5 shows an example function definition with a
globals list and associated checking done by LCL.int.

_ globals.c Running LCLint
int globl, glob2; > Iclint globals.c +checks

sint f (void) /*@lobals gl obl; @/ LCLint 2.4 - 10 Apr 98
{

5return gl ob2: globals.c:5: Undocumented use of global glob2
} g globals.c:3: Global glob1 listed but not used

Finished LCLint checking --- 2 code errors found

Figure 5. Globals checking.

4.2.1 Controlling Globals Checking

Whether on not an error is reported for a use of aglobal variablein a given function depends on the
scope of the variable (file st at i ¢ or external), the checking annotation used in the variable
declaration or the implicit annotation if no checking annotation is used, whether or not the function
is declared with aglobalslist, and flag settings.

A global or file static variable declaration may be preceded by an annotation to indicate how the
variable should be checked. In order of decreasing checks, the annotations are:

I* @heckedstrict @/
Strictest checking. Undocumented uses and modifications of the variable are reported in all
functions whether or not they have aglobalslist (unlesscheck- stri ct - gl obs isoff).
I *@hecked@/
Undocumented use of the variable is reported in a function with aglobals list, but notina
function declared with no globals (unless gl ob- nogl obs ison).

Function Interfaces 15

/[*@hecknod@/
Undocumented uses of the variable are not reported, but undocumented modifications are
reported. (If nod- gl obs- nonods ison, errors are reported even in functions declared

with no modifies clause or globals list.)
/ * @inchecked@/

No messages are reported for undocumented use or modification of this global variable.

If avariable has none of these annotations, an implicit annotation is determined by the flag settings.

Different flags control the implicit annotation for variables declared with global scope and variables
declared with file scope (i.e., using the st at i ¢ storage qualifier). To set the implicit annotation for
global variables declared in context (gl obs for external variablesor st at i c¢s for file static
variable) tobe annotation (checked, checknod, checkedstri ct) use

i Np<annotation><context>. Forexample, +i np- checked-strict-statics makes
the implicit checking on unqualified file static variablescheckedstri ct . (See Appendix C for a
complete list of globals checking flags.)

4.3 Declaration Consistency

LCLint checks that function declarations and definitions are consistent. The general rule isthat the
first declaration of afunction implies all later declarations and definitions. If afunction is declared
in a header file, thefirst declaration processed isits first declaration (if it is declared in more than
one header file an error isreported if r edecl isset). Otherwise, thefirst declaration in thefile
defining the function isits first declaration.

Later declarations may not include variables in the globals list that were not included in the first
declaration. The exception to thisiswhen the first declaration isin a header file and the later
declaration or definition includes file static variables. Since these are not visible in the header file,
they can not be included in the header file declaration. Similarly, the modifies clause of alater
declaration may not include objects that are not modifiable in the first declaration. The later
declaration may be more specific. For example, if the header declarationiis:

extern void set Nane (enployee e, char *s) /*@mwodifies e@/;
the later declaration could be,
voi d set Nane (enpl oyee e, char *) /*@mdifies e->nane@/;
If enpl oyee isan abstract type, the declaration in the header should not refer to a particular

implementation (i.e., it shouldn’t rely on there being anarre field), but the implementation
declaration can be more specific.

Thisrule also appliesto file static variables. The header declaration for afunction that modifies a
file static variable should use modi fi es i nt er nal St at e sincefile static variables are not
visibleto clients. The implementation declaration should list the actual file static variables that may
be modified.

Y ea, from the
table of my
memory I'll
wipe away all
trivial fond
records, all
saws of books,
al forms, all
pressures past,
that youth and
observation
copied there.
Hamlet
prefers
garbage
collection
(Shakespeare,
Hamlet.
Act I,
Scene v)

16 LCLint User’s Guide

5. Memory Management

About half the bugsin typical C programs can be attributed to memory management problems.
Memory management bugs are notoriously difficult to detect through traditional techniques. Often,
the symptom of the bug is far removed from its actual source. Memory management bugs often
only appear sporadically and some bugs may only be apparent when compiler optimizations are
turned on or the code is compiled on a different platform. Run-time tools offer some help, but are
cumbersome to use and limited to detecting errors that occur when test cases are run. By detecting
these errors statically, we can be confident that certain types of errorswill never occur and provide
verified documentation on the memory management behavior of a program.

LCLint can detect many memory management errors at compile time including:

» using storage that may have been f r eed (Section 5.2)

« failing to deallocate memory (Section 5.2)

 returning a pointer to stack-allocated storage (Section 5.2.6)
 undocumented or dangerous aliasing or storage sharing (Section 6)

e passing or returning storage that is not completely defined (Section 7.1)
» dereferencing anull pointer (Section 7.2)

Most of these checks rely heavily on annotations added to programs to document assumptions
related to memory management and pointer values. By documenting these assumptions for function
interfaces, variables, type definitions and structure fields, memory management bugs can be
detected at their source — where an assumption isviolated. In addition, precise documentation
about memory management decisions makes it easier to change code.

5.1 Storage Model™

This section describes execution-time concepts for describing the state of storage more precisaly
than can be done using standard C terminology. Certain uses of storage are likely to indicate
program bugs, and are reported as anomalies.

L CL assumes a CL U-like object storage model.™* An object is atyped region of storage. Some
objects use a fixed amount of storage that is allocated and deallocated automatically by the
compiler.

Other objects use dynamic storage that must be managed by the program.

Storage is undefined if it has not been assigned avalue, and defined after it has been assigned a
value. Anobject iscompletely defined if al storage that may be reached from it is defined. What
storage is reachable from an object depends on the type and value of the object. For example, if p
isapointer to astructure, p is completely defined if the value of p isNULL, or if every field of the
structure p pointsto is completely defined.

When an expression is used as the | eft side of an assignment expression we say it isused as an
Ivalue. 1tslocation in memory is used, but not its value. Undefined storage may be used as an
Ivalue since only itslocation is needed. When storage is used in any other way, such as on the right
side of an assignment, as an operand to a primitive operator (including the indirection operator,

19 This section is largely based on [Evans96]. It semi-formally defines some of the terms needed to
describe memory management checking; if you are satisfied with an intuitive understanding of these
terms, this section may be skipped.

Y Thisis similar to the LISP storage model, except that objects are typed.

Memory Management 17

*),22 or as a function parameter, we say it isused as an rvalue. 1t isan anomaly to use undefined
storage as an rvalue.

A pointer is atyped memory address. A pointer is either live or dead. A live pointer is either NULL
or an address within allocated storage. A pointer that points to an object is an object pointer. A
pointer that points inside an object (e.g., to the third element of an allocated block) is an offset
pointer. A pointer that points to allocated storage that is not defined is an allocated pointer. The
result of dereferencing an allocated pointer is undefined storage. Hence, it isan anomaly to use it
asanrvaue. A dead (or “dangling”) pointer does not point to alocated storage. A pointer becomes
dead if the storage it pointsto is deallocated (e.g., the pointer is passed to the f r ee library
function.) Itisan anomaly to use adead pointer as an rvalue.

Thereis a specia object null corresponding to the NULL pointer in aC program. A pointer that
may have the value NULL is apossibly-null pointer. It isan anomaly to use a possibly-null pointer
where anon-null pointer is expected (e.g., certain function arguments or the indirection operator).

5.2 Deallocation Errors

There are two kinds of deallocation errors with which we are concerned: deallocating storage when
there are other live references to the same storage, or failing to deallocate storage before the last
referencetoitislost. To handle these deallocation errors, we introduce a concept of an obligation
to release storage. Every time storage is alocated, it creates an obligation to release the storage.
This obligation is attached to the reference to which the storage is assigned.’® Before the scope of
the reference is exited or it is assigned to a new value, the storage to which it points must be
released. Annotations can be used to indicate that this obligation is transferred through areturn
value, function parameter or assignment to an external reference.

5.2.1 Unshared References

Theonl y annotation is used to indicate a reference is the only pointer to the object it points to.

We can view the reference as having an obligation to release this storage. Thisobligationis

satisfied by

transferring it to some other reference in one of three ways:

e passit asan actual parameter corresponding to aformal parameter declared with anonl y
annotation

e assignit to an external reference declared with an onl y annotation

e returnit asaresult declared with an onl y annotation

After the release obligation is transferred, the original reference is a dead pointer and the storage it
points to may not be used.

All obligations to release storage stem from primitive allocation routines (e.g., mal | oc), and are
ultimately satisfied by callsto f r ee. The standard library declared the primitive allocation and
deallocation routines.

The basic memory allocator, mal | oc, is declared:**

/*@nly@/ void *malloc (size_t size);

12 Except si zeof , which does not need the value of its argument.

13f the storage is not assigned to areference, an internal reference is created to track the storage.
1 The full declaration of mal | oc alsoincludesanul | annotation (Section 7.2) to indicate that the
result may be NULL (asit is when the requested storage cannot be allocated) and an out annotation
(Section 7.1) to indicate that the result points to undefined storage.

‘Tisinmy
memory
lock’d, and
you yourself
shall keep the
key of it.
Ophelia
prefers
explicit
deallocation
(Hamlet.
Act 1,
Scene iii)

18 LCLint User’s Guide

It returns an object that is referenced only by the function return value.

The deallocator, f r ee, is declared:*®
void free (/*@nly@/ void *ptr);

The parameter to f r ee must reference an unshared object. Since the parameter is declared using
onl y, the caller may not use the referenced object after the call, and may not passin areference to
ashared object. Thereis nothing special about mal | oc and f r ee — their behavior can be
described entirely in terms of the provided annotations.

only.c Running LCLint |

Textern /*@nly@/ int *glob; > [clint only.c
int 2.4 -
[*@nly@/ int * LCLint 2.4 --- 10 Apr 98

* 1 * 1 *
b (*@nly@/ int *x, int "y, only.c:11: Only storage glob not released before

int *z))
I * @l obal s gl ob; @/ assignment: glob =y
{ only.c:1: Storage glob becomes only
gint *m= (int *) only.c:11: Implicitly temp storage y assigned to only:
9 mal | oc (sizeof (int)); glob=y
only.c:13: Dereference of possibly null pointer m: *m
11 glob = y; Memory leak only.c:8: Storage m may become null
12 I ree gx) ’ only.c:13: Variable x used after being released
13 7m= X, Use after free only.c:12: Storage x released
14 return z; Memory leak detected

only.c:14: Implicitly temp storage z returned as only: z
} only.c:14: Fresh storage m not released before return
only.c:9: Fresh storage m allocated

Finished LCLint checking --- 6 code errors found
Figure 6. Deallocation errors.

5.2.2 Temporary Parameters

Thet enp annotation is used to declare a function parameter that is used temporarily by the
function. An error isreported if the function releases the storage associated with at enp formal
parameter or creates new aliasesit that are visible after the function returns. Any storage may be
passed asat enp parameter, and it satisfies its original memory constraints after the function
returns.

5.2.3 Owned and Dependent References

In real programsit is sometimes necessary to have storage that is shared between several possibly
references. The owned and dependent annotations provide a more flexible way of managing
storage, at the cost of less checking. The owned annotation denotes a reference with an obligation
to release storage. Unlike onl y, however, other external references marked with dependent

> Thefull declaration of f r ee also hasout and nul | annotations on the parameter to indicate that the
argument may be NULL and need not point to defined storage. According to [ANSI, 4.10.3.2], NULL
may be passed to f r ee without an error. On some UNIX platforms, passing NULL to free causes a
program crash so the UNIX version of the standard library (Appendix F) specifiesf r ee without the
nul | annotation on its parameter. To check that allocated objects are completely destroyed (e.g., al
unshared objects inside a structure are deallocated before the structure is deallocated), LCLint checks
that any parameter passed asanout only voi d * doesnot contain referencesto live, unshared
objects. This makes sense, since such a parameter could not be used sensibly in any way other than
deallocating its storage.

Memory Management

annotations may share this object. It isup to the programmer to ensure that the lifetime of a
dependent reference is contained within the lifetime of the corresponding owned reference.

5.2.4 Kept Parameters

The keep annotation issimilar to onl y, except the caller may use the reference after the call. The
called function must assign the keep parameter to an onl y reference, or passit asakeep
parameter to another function. It isup to the programmer to make sure that the calling function
does not use this reference after it isreleased. The keep annotation is useful for adding an object
to acollection (e.g., asymbol table), whereit is known that it will not be deallocated until the
collectionis.

5.2.5 Shared References

If LCLint isused to check a program designed to be used in a garbage-collected environment, there
may be storage that is shared by one or more references and never explicitly released. Theshar ed
annotation declares storage that may be shared arbitrarily, but never released.

5.2.6 Stack References

Local variables that are not allocated dynamically are stored on a call stack. When afunction
returns, its stack frame is deallocated, destroying the storage associated with the function’s local
variables. A memory error occurs if apointer into this storageis live after the function returns.
LCLint detects errors involving stack references exported from a function through return values or
assignments to references reachable from global variables or actual parameters. No annotations are
needed to detect stack reference errors, sinceit is clear from adeclaration if storageis allocated on
the function stack.

Figure 7 gives and example of errors reported involving stack-allocated storage.

5.2.7 Inner Storage
An annotation always applies to the outermost level of storage. For example,
/*@nly@/ int **x;
declares x as an unshared pointer to a pointer to ani nt. Theonl y annotation appliesto x, but not
to*x. To apply annotations to inner storage a type definition may be used:

typedef /*@nly@/ int *oip;
/*@nly@/ oip *Xx;

Now, X isan onl y pointer to an oi p, whichisan onl y pointer toani nt .

20 LCLint User’s Guide

stack.c Running LCLint |

int *glob; > [clint stack.c
. LCLint 2.4 --- 10 Apr 98

[* @ependent @/ int *

f(int **x) stack.c: (in function)

. _) stack.c:12: Stack-allocated storage &loc reachable

: m ISgE: 2]: 5 {0 1} from return value: &loc

' stack.c:12: Stack-allocated storage *x reachable from
9 glob = & oc; parameter X
10 *x = &sa[0]; stack.c:10: Storage *x becomes stack
stack.c:12: Stack-allocated storage glob reachable

12 return &l oc; from global glob
} stack.c:9: Storage glob becomes stack
A dependent annotation is used on the Finished LCLint checking --- 3 code errors found
return value. Without this, several other
errors would be reported, since the result
would have an implicit onl y annotation.

Figure 7. Stack references.

When annotations are used in type definitions, they may be overridden in instance declarations. For
example,

[* @ependent @/ oip Xx;

makes x adependent pointertoani nt.

Another way to apply annotationsto inner storage is to use a special clause (see Section 7.4).

5.3 Implicit Memory Annotations

Sinceit isimportant that LCLint can check unannotated programs effectively, the meaning of
declarations with no memory annotations is chosen to minimize the number of annotations needed
to get useful checking on an unannotated program.

An implicit memory management annotation may be assumed for declarations with no explicit
memory management annotation. Implicit annotations are checked identically to the corresponding
explicit annotation, except error messages indicate that they result from an implicit annotation.

Unannotated function parameters are assumed to bet enp. This meansif memory checking is
turned on for an unannotated program, all functions that rel ease storage referenced by a parameter
or assign aglobal variable to alias the storage will produce error messages. (Controlled by

param npt enp.)

Unannotated return values, structure fields and global variables are assumed to be onl y. With
implicit annotations (on by default), turning on memory checking for an unannotated program will
produce errors for any function that does not return unshared storage or assignment of shared
storage to aglobal variable or structure field.'® (Controlled by r et i mponl y, st ruct i nponl y
and gl obi nponly. Theal I i nponl y flag setsall of theimplicit only flags.)

18 1f an exposure qualifier is used (see Section 6.2), theimplied dependent annotation is used instead
of the more generally implied onl y annotation.

Memory Management

21

- mplieite |

typedef struct {
only char *name; Implicit on1y annotation on mutable structure

) *'rgi_ val; field if st ruct i nponl y is on.
extern only rec rec_|last : Implicit onl y annotation on mutable global

variables if gl obi mponl y is on.
extern only rec
rec_create (temp char *nane, Implicit onl y annotation on mutable function
int val) ; result if r et i nponl y is set. Implicit t enp
Annotations in italics are not present in annotation on mutable parameter if
the code, but may be implied. par ami npt enp is set.

Figure 8. Implicit annotations.

5.4 Reference Counting

Another approach to memory management isto add afield to a type to explicitly keep track of the
number of referencesto that storage. Every time areference is added or lost the reference count is
adjusted accordingly; if it would become zero, the storage isreleased. Reference counting it
difficult to do without automatic checking since it is easy to forget to increment or decrement the
reference count, and exceedingly difficult to track down these errors.

L CLint supports reference counting by using annotations to constrain the use of reference counted
storage in amanner similar to other memory management annotations.

A reference counted typeis declared using ther ef count ed annotation. Only pointer to st r uct
types may be declared asr ef er ence count ed, since reference counted storage must have a
field to count the references. Onefield in the structure (or integral type) is preceded by ther ef s
annotation to indicate that the value of thisfield is the number of live references to the structure.

For example (inr stri ng. h),

typedef /*@bstract@/ /*@efcounted@/ struct {
[*@efs@/ int refs;
char *contents;

} *rstring;

declaresr st ri ng as an abstract, reference-counted type. Ther ef s field counts the number of
references and the cont ent s field holds the contents of a string.

All functions that return r ef count ed storage must increase the reference count before returning.
LCLint cannot determine if the reference count was increased, so any function that directly returns
areferencetor ef count ed storage will produce an error. Thisisavoided, by using a function to
return anew reference (e.g., rstring_ref inFigure9).

A reference counted type may be passed asat enp or dependent parameter. It may not be
passed asan onl y parameter. Instead, theki | | r ef annotation is used to denote a parameter
whose reference is eliminated by the function call. Like onl y parameters, an actual parameter
corresponding to aki I | r ef formal parameter may not be used in the calling function after the
call. LCLint checksthat the implementation of afunction releasesall ki | | r ef parameters, either
by passing them aski | | r ef parameters, or assigning or returning them without increasing the
reference count.

22 LCLint User’s Guide

rstring.c Running LCLint

include "rstring.h" > Iclint rstring.c

static rstring rstring_ref (rstring r) LCLint 2.4 --- 10 Apr 98

r->refs++; rstring.c: (in function rstring_first)
6 return r; rstring.c:13: Reference counted storage
} returned without modifying reference

rstring rstring_first (rstring rl, rstring r2) count: r1

if (strcnp (rl->contents, r2->contents) < 0) Finished LCLint checking --- 1 code
{

error found
13 return ril;
el }s e No error is reported for line 6
{ since the reference count was
17 return rstring_ref (r2); incremented. No error is reported
} for line 17, sincerstring_ref
} —

returns a new reference.

Figure 9. Reference counting.

Macros 23

6. Sharing

Errorsinvolving unexpected sharing of storage can cause serious problems. Undocumented sharing
may lead to unpredictable modifications, and some library calls (e.g., st r cpy) have undefined
behavior if parameters share storage. Ancther class of sharing errors occurs when clients of an
abstract type may obtain areference to mutable storage that is part of the abstract representation.
This exposes the representation of the abstract type, since clients may modify an instance of the
abstract type indirectly through this shared storage.

6.1 Aliasing

LCLint detects errors involving dangerous aiasing of parameters. Some of these errors are already
detected through the standard memory annotations (e.g., onl y parameters may not be aliases.)
Two additional annotations are provided for constraining aliasing of parameters and return values.

6.1.1 Unique Parameters

The uni gque annotation denotes a parameter that may not be aliased by any other storage reachable
from the function implementation — that is, any storage reachable through the other parameters or
global variables used by the function. The uni que annotation places similar constraints on
function parameters as the onl y annotation, but it does not transfer the obligation to release
storage.

LCLint will report an error if auni que parameter may be aliased by another parameter or global
variable.

unique.c Running LCLint

include <string. h> > Iclint unique.c
LCLint 2.4 --- 10 Apr 98

voi d
capitalize (/ ;@”i@/ char *s, unique.c: (in function capitalize)
{ char *t) unique.c:7: Parameter 1 (s) to function strcpy is

declared unique but may be aliased externally by

7 strcpy (s, t); parameter 2 (t)

*s = toupper (*s);
J Finished LCLint checking --- 1 code error found
An error is reported since the first parameter to
the library function strcpy is declared with
unique. If a uni que qualifier were added to the
parameter declaration for s or t, no error would
be reported.

The out qualifier is explained in Section 7.1.1.

Figure 10. Unique parameters.

6.1.2 Returned Parameters

LCLint reports an error if afunction returns a reference to storage reachable from one of its
parameters (if r et al i as ison) since this may introduce unexpected aliases in the body of the
calling function when the result is assigned.

Ther et ur ned annotation denotes a parameter that may be aiased by the return value. LCLint
checks the call assuming the result may be an aliasto ther et ur ned parameter. Figure 11 shows
an example use of ar et ur ned annotation.

24 LCLint User’s Guide

returned.c

include "intSet.h"
extern intSet intSet_insert (/*@eturned@/ intSet s, int x);
nt Set intSet_singleton (int x)

i

{ _ _ _

7 return (intSet_insert (intSet_new (), Xx));
}

Without the returned qualifier, a memory leak error would be reported for line 7, since the
onl y storage returned by i nt Set _new s not released. Because of the r et ur ned qualifier on
the first parameter to i nt Set _i nsert, LCLint assumes the result of i nt Set _i nsert is the
same storage as its first parameter, in this case the storage returned by i nt Set _new. No error
is reported, since the onl 'y storage is then transferred through the return value (which has an
implicit on1y annotation, see Section 5.3).

Figure 11. Returned parameters.

6.2 Exposure

L CLint detects places where the representation of an abstract type is exposed. This occursif a
client has a pointer to storage that is part of the representation of an instance of the abstract type.
The client can then modify or examine the storage this points to, and manipul ate the value of the
abstract type instance without using its operations.

There are three ways a representation may be exposed:

1. Returning (or assigning to aglobal variable) an object that includes a pointer to a mutable
component of an abstract type representation. (Controlled by r et - expose).

2. Assigning a mutable component of an abstract object to storage reachable from an actual
parameter or aglobal variable that may be used after the call. This means the client may
mani pul ate the abstract object using the actual parameter after the call. Note that if the
corresponding formal parameter is declared onl y, the caller may not use the actual parameter
after the call so the representation is not exposed. (Controlled by assi gn- expose).

3. Casting mutable storage to or from an abstract type. (Controlled by cast - expose).

Annotations may be used to allow exposed storage to be returned safely by restricting how the
caller may use the returned storage.

6.2.1 Read-Only Storage

It is often useful for afunction to return a pointer to internal storage (or an instance of a mutable
abstract type) that isintended only as an observer. The caller may use the result, but should not
modify the storage it pointsto. For example, consider a naive implementation of the

enpl oyee_get Nanme operation for the abstract enpl oyee type:

Macros 25

typedef /*@bstract @/ struct {
char *nane;
int id;

} *enpl oyee;

(.:.Har *enpl oyee_get Nane (enployee e) { return e->nane; }

LCLint produces a message to indicate that the return value exposes the representation. One
solution would be to return afresh copy of e- >nare. Thisis expensive, though, especialy if we
expect enpl oyee_get Nane isused mainly just to get a string for searching or printing. Instead,
we could change the declaration of enpl oyee_get Nare to:

extern /*@bserver @/ char *enpl oyee_get Nane (enpl oyee e€);

Now, the original implementation is correct. The declaration indicates that the caller may not
modify the result, so it is acceptable to return shared storage.” LCLint checks that the caller does
not modify the return value. An error isreported if observer storage is modified directly, passed as
afunction parameter that may be modified, assigned to a global variable or reference derivable from
aglobal variable that is not declared with an obser ver annotation, or returned as a function result
or areference derivable from the function result that is not annotation with an obser ver
annotation.

String Literals

A program that attempts to modify a string literal has undefined behavior [ANSI, Section 3.1.4].
Thisisnot enforced by most C compilers, and can lead to particularly pernicious bugs that only
appear when optimizations are turned on and the compiler attempts to minimize storage for string
literals. LCLint can be used to check that string literals are not modified, by treating them as -
observer storage. If read- onl y-stri ngs ison (default in standard mode), LCLint will
report an error if astring literal is modified.

6.2.2 Exposed Storage

Sometimesiit is necessary to expose the representation of an abstract type. This may be evidence of
adesign flaw, but in some casesisjustified for efficiency reasons. The exposed annotation
denotes storage that is exposed. It may be used on areturn value for results that reference storage
internal to an abstract representation, on a parameter value to indicate a parameter that may be
assigned directly to part of an abstract representation,® or on afield of an abstract representation to
indicate that external referencesto the storage may exist. An error isreported if exposed storage
isreleased, but unlike an obser ver , no error isreported if it is modified.

Figure 12 shows examples of exposure problems detected by LCLint.

Y Strictly, we should also check that the returned observer storageis not used again after any other calls
to the abstract type module using the same parameter. LCLint does not attempt to check this, and in
practice it is not usually a problem.

18 Note that if the parameter is annotated with onl y, it isnot an error to assign it to part of an abstract
representation, since the caller may not use the storage after the call returns.

26 LCLint User’s Guide

include "enpl oyee. h" > Iclint exposure.c +checks
LCLint2.4 --- 10 Apr 98

char *

enpl oyee_get Name (enpl oyee e) exposure.c: (in function employee_getName)

. exposure.c:6: Function returns reference to parameter

6 return e->nane; ,

} €: e->name
exposure.c:6: Return value exposes rep of employee:

/| * @bserver @/ char * é->name

enpl oyee_obsNane (enpl oyee e) exposure.c:6: Released storage e->name reachable from

{ return e->nane; } parameter

exposure.c:6: Storage e->name is released

[* @xposed@/ char * exposure.c: (in function employee_capName)

enpl oyee_exposeNane (enpl oyee e) exposure.c:23: Suspect modification of observer name:

{ return e->nane; } “name = toupper(*name)

voi d Finished LCLint checking --- 4 code errors found

enpl oyee_capNarme (enpl oyee e) Three messages are reported for line 6 where a

char *nane: mutable field of an abstract type is returned with
' no sharing qualifier (without +checks only the
nanme = enpl oyee_obsNane (e); third one would be reported.)

23*nanme = toupper (*nane);

} The error for line 23 reports a modification of an
observer. If the call in line 22 were changed to
call enpl oyee_exposeNane, no error would
be reported.

Figure 12. Exposure checking.

7. Value Constraints

LCLint can be used to constrain values of parameters, function results, global variables, and derived
storage such as structure fields. These constraints are checked at interface points — where a
function iscalled or returns. Section 7.1 describes how to constrain parameters, return values and
structures to detect use before definition errors. A similar approach is used for restricting the use of
possibly null pointersin Section 7.2. To do both well, and avoid spurious errors, information about
when and if afunction returnsif useful. Annotations for documenting execution control are
described in Section 7.3.

7.1 Use Before Definition

Like many static checkers, LCLint detects instances where the value of alocation is used before it
isdefined. Thisanalysisisdone at the procedural level. If thereisapath through the procedure
that usesalocal variable beforeit is defined, a use before definition error isreported. The
usedef flag controls use before definition checking.

LCLint can do more checking than standard checkers though, because the annotations can be used
to describe what storage must be defined and what storage may be undefined at interface points.
Unannotated references are expected to be completely defined at interface points. This means all
storage reachable from a global variable, parameter to afunction, or function return value is defined
before and after a function call.

Macros 27

7.1.1 Undefined Parameters

Sometimes, function parameters or return values are expected to reference undefined or partially
defined storage. For example, a pointer parameter may be intended only as an address to store a
result, or amemory allocator may return allocated but undefined storage. The out annotation
denotes a pointer to storage that may be undefined.

LCLint does not report an error when a pointer to allocated but undefined storage is passed as an
out parameter. Within the body of afunction, LCLint will assume an out parameter is allocated
but not necessarily bound to avalue, so an error isreported if its value is used before it is defined.

LCLint reports an error if storage reachable by the caller after the call is not defined when the
function returns. This can be suppressed by - nust - def i ne. After acall returns, an actual
parameter corresponding to an out parameter is assumed to be completely defined.

When checking unannotated programs, many spurious use before definition errors may be reported
If i npout s ison, no error is reported when an incompl etely-defined parameter is passed to a
formal parameter with no definition annotation, and the actual parameter is assumed to be defined
after thecall. The/ * @ n@ / annotation can be used to denote a parameter that must be
completely defined, evenif i np- out s ison. Ifi np- out s isoff, thereisan impliciti n
annotation on every parameter with no definition annotation.

usedef.c Running LCLint

extern void . > Iclint usedef.c

setVal (/*@ut@/ int *x); LCLint 2.4 - 10 Apr 98
extern Int .

getVal (/*@n@/ int *x); usedef.c: (in function dumbfunc)

extern int nysteryval (int *x); usedef.c:11: Value *x used before definition

usedef.c:13: Passed storage x not completely defined

| nt (allocated only): getVal (x)
dunbf /* t@/ int *x, int i ' ,
! unc (/*@ut@/ in X, int i) usedef.c:15: Passed storage x not completely defined
if (i > 3) (allocated only): mysteryVal (x)
11 return *x; Not reported if i npout s is on since
else if (i > 1) there is no | N annotation on the
13 return getVal (x); parameter to myst er yVal .
else if (i == 0)
15 ol Sreet urn nysteryval (x); Finished LCLint checking --- 3 code errors found
18 { setVal (x): No error is reported for line 18, since the
19 return *x: ’ incompletely defined storage X is passed as an
} out parameter. After the call, X may be
} dereferenced, since set Val is assumed to

completely define its out parameter.

Figure 13. Use before definition.

7.1.2 Relaxing Checking

Ther el def annotation relaxes definition checking for a particular declaration. Storage declared
with ar el def annotation is assumed to be defined when it is used, but no error isreported if itis
not defined before it is returned or passed as a parameter.

28 LCLint User’s Guide

It is up to the programmer to check r el def fieldsare used correctly. They should be avoided in
most cases, but may be useful for fields of structures that may or may not be defined depending on
other constraints.

7.1.3 Partially Defined Structures

Theparti al annotated can be used to relax checking of structurefields. A structure with
undefined fields may be passed asapart i al parameter or returned asaparti al result. Inside
afunction body, no error is reported when the field of aparti al structureisused. After acall,
all fields of astructurethat is passed asaparti al parameter are assumed to be completely
defined.

7.1.4 Global Variables

Special annotations can be used in the globals list of afunction declaration (Section 4.2) to describe
the states of global variables before and after the call.

If agloba is preceded by undef , it is assumed to be undefined before the call. Thus, no error is
reported if the global isnot defined when the function is called, but an error is reported if the global
isused in the function body before it is defined.

annotglobs.c Running LCLint

int gl obnum > Iclint annotglobs.c
LCLint 2.4 --- 10 Apr 98

struct {
Cﬂaf :lf I 1 st nare; annotglobs.c: (in function initialize)
iCn?r i d: ast nane; annotglobs.c:14: Undef global globnum used before
’ definition

} gl obnare; annotglobs.c:16: Global storage globname contains

1 undefined field when call returns: firstname

voi d . e
initialize (/*@nly@/ char *nane) annotglobs.c: (in function finalize)
/ * @l obal s undef gl obnum annotglobs.c:22: Only storage globname.firstname
undef gl obname @/ (type char *) derived from killed global is

not released (memory leak)
14gl obnane.id = gl obnum

gl obnane. | ast nane = nane; Finished LCLint checking --- 3 code errors found
16}

void finalize (void)
/*@l obal s killed gl obnane@/

free (gl obnane. firstnane);
22}

Figure 14. Annotated globals lists.

Theki | | ed annotation denotes a global variable that may be undefined when the call returns. For
globals that contain dynamically allocated storage, aki | | ed global variableissimilar to anonl y
parameter (Section 5.2). An error is reported if it contains the only reference to storage that is not
released before the call returns.

7.2 Null Pointers

A common cause of program failuresiswhen anull pointer is dereferenced. LCLint detects these
errors by distinguishing possibly NULL pointers at interface boundaries.

Macros 29

Thenul | annotation is used to indicate that a pointer value may be NULL. A pointer declared with
no nul | annotation, may not be NULL. If null checking isturned on (controlled by nul |), LCLint
will report an error when apossibly null pointer is passed as a parameter, returned as a result, or
assigned to an externa reference with no nul | qualifier.

If apointer is declared with the nul | annotation, the code must check that it is not NULL on all
paths leading to a dereference of the pointer (or the pointer being returned or passed as a value with
no nul | annotation). Dereferences of possibly null pointers may be protected by conditional
statements or assertions (to see how asser t isdeclared see Section 7.3) that check the pointer is
not NULL.

Consider two implementations of f i r st Char in Figure 15. For f i r st Char 1, LCLint reports an
error since the pointer that is dereferenced is declared with anul | annotation. For fi r st Char 2,
no error is reported since the true branch of thes == NULL if statement returns, so the dereference
of s isonly reached if s isnot NULL.

null.c Running LCLint
char firstCharl (/*@ull @/ char *s) > [clint null.c
{ _ LCLint 2.4 - 10 Apr 98
3 return *s;
J null.c:3: Dereference of possibly null pointer s; *s
char firstChar2 (/*@wull @/ char *s) null.c:1; Storage s may become null

if (s == NULL) return ‘\0’;
9 return *s;

}

Finished LCLint checking --- 1 code error found

No error is reported for line 9, since the
dereference is reached only if' s is non-null.

Figure 15. Null checking.

7.2.1 Predicate Functions

Another way to protect null dereference, isto declare afunctionusing f al senul | ortruenul |
and call the function in a conditional statement before the nul | -annotated pointer is dereferenced.
Thef al senul | andtruenul | annotations may only be used on return values for functions that
return a boolean® result and whose first argument is a possibly null pointer.

A function is annotated with t r uenul | isassumed to return TRUE if itsfirst parameter is NULL
and FAL SE otherwise. For example, if i sNul | isdeclared as,

[*@ruenull @/ bool isNull (/*@ull @/ char *x);

we could writef i r st Char 2;

¥ That is, the return typeisbool , or i nt if +bool i nt isused.

30 LCLint User’s Guide

char firstChar2 (/*@wull @/ char *s)

if (isNull (s)) return "\0’;
return *s;

}

No error isreported since the dereference of s isonly reached if i sNul | (s) isfalse, and since
i sNul | isdeclared withthet r uenul | annotation this meanss must not be null.

Thef al senul | annotation is not quite the opposite of t r uenul | . If afunction declared with
fal senul | returns TRUE, it meansits parameter isnot NULL. If it returns FALSE, the parameter
may or may not be NULL.

For example, we could definei sNonEnpt y to return TRUE if its parameter is not NULL and has
least one character before the NUL terminator:

[*@al senul | @/ bool isNonEnpty (/*@wull @/ char *x)

return (x !'= NULL && *x !'= ‘\0");
}

L CLint does not check that the implementation of a function declared with f al senul | or
t ruenul | isconsistent with its annotation, but assumes the annotation is correct when code that
cdlsthe function is checked.

7.2.2 Overriding Null Types

Thenul | annotation may be used in atype definition to indicate that al instances of the type may
be NULL. For declarations of atype declared using nul | , thenul | annotation in the type
definition may be overridden with not nul | . Thisis particularly useful for parameters to hidden

st at i c operations of abstract types where the null test has already been done before the function
iscalled, or function results of the type which are never NULL. For an abstract type, not nul | may
not be used for parameters to external functions, since clients should not be aware of when the
concrete representation may by NULL. Parameters to static functions in the implementation module,
however, may be declared using not nul | , since they may only be called from places where the
representation is accessible. Return valuesfor st at i ¢ or external functions may be declared using
not nul | .

Figure 16 gives an example showing the use of not nul | .

7.2.3 Relaxing Null Checking

An additional annotation, r el nul | may be used to relax null checking (r el nul | isanalogousto
r el def for definition checking). No error isreported when ar el nul | valueis dereferenced, or
when apossibly null value is assigned to an identifier declared usingr el nul | .

Thisisgenerally used for structure fields that may or may not be null depending on some other
constraint. LCLint does not report and error when NULL isassignedto ar el nul | reference, or
whenar el nul | referenceis dereferenced. It isup to the programmer to ensure that this
congtraint is satisfied before the pointer is dereferenced.

Macros

mstring.c
typedef /*@bstract@/ /*@ull @/ char *nstring;
static /*@otnull @/ metring nsetring createNew (int x) ;

mstring netring_space (void)

{

nstring m= nstring createNew (1);

Because of not nul | qualifier on mst ri ng_cr eat eNew, can assume mis not null.
*m=""; *(m+ 1) ="'\0;

return m

}

31

Figure 16. Using notnull.

7.3 Execution

To detect certain errors and avoid spurious errors, it isimportant to know something about the
control flow behavior of called functions. Without additional information, L CLint assumes that all
functions eventually return and execution continues normally at the call site.

Theexi t s annotation is used to denote a function that never returns. For example,
extern /*@xits@/ void fatalerror (/*@bserver@/ char *s);

declaresf at al err or to never return. Thisallows LCLint to correctly analyze code like,
if (x == NULL) fatalerror ("Yikes!");
*X = 3
Other functions may exit, but sometimes (or usually) return normaly. The mayexi t annotation

denotes a function that may or may not return. This doesn't help checking much, since LCLint
must assume that a function declared with nayexi t returns normally when checking the code.

To bemore precise, thet r ueexi t andf al seexi t annotations may be used. Similar to
truenul | andfal senul | (seeSection7.2.1),trueexit andf al seexi t meanthat a

function always exitsif the value of itsfirst argument is TRUE or FALSE respectively. They may be

used only on functions whose first argument has a boolean type.

A function declared with t r ueexi t must exit if the value of its argument is TRUE, and a function
declared with f al seexi t must exit if the value of its argument is FALSE. For example, the
standard library declaresassert as™:

/*@al seexit @/ void assert (/*@ef@/ bool /*@lt int@/ pred);
Thisway, code like,

assert (x != NULL);

*x =G

is checked correctly, sincethef al seexi t annotation on assert means the deference of x is not
reachedisx ! = NULL isfalse.

“Thesef annotation denotes a parameter as side-effect free (see Section 8.2.1). By declaring the
argument to assert to be side-effect free, LCLint will report errorsif the parameter to asser t
produces a side-effect. Thisisespecialy pertinent if assertions are turned off when the production
versioniscompiled. Thebool /*@lt int @/ typespecifier for the parameter means the
parameter type must match either bool ori nt. Alternate types are described in Section 8.2.2.

32 LCLint User’s Guide

7.4 Special Clauses

Sometimes it is necessary to specify function interfaces at alower level than is possible with the
standard annotations. For example, if afunction defines some fields of a returned structure but does
not define all thefields. The/ * @peci al @/ annotation is used to mark a parameter, global
variable, or return value that is described using special clauses. The usual implicit definition rules
do not apply to a specia declaration.

Special clauses may be used to constrain the state of a parameter or return value before or after a
call. One or more specia clauses may appear in afunction declaration, before the modifies or
globals clauses. Special clauses may be listed in any order, but the same special clause should not
be used more than once. Parameters used in special clauses must be annotated with

/*@peci al @/ inthefunction header. Inaspecia clauselist, r esul t isused to refer to the
return value of the function. If r esul t appearsin aspecial clause, the function return value must
be annotated with / * @ peci al @/ .

The following special clauses are used to describe the definition state or parameters before and after
the function is called and the return value after the function returns:

| *@Qises <references>@/
Referencesin the uses clause must be completely defined before the function is called.
They are assumed to be defined at function entrance when the function is checked.

| *@ets <references>@/
Referencesin the set s clause must be allocated before the function is called. They are
completely defined after the function returns. When the function is checked, they are
assumed to be alocated at function entrance and an error isreported if thereis a path on
which they are not defined before the function returns.

| *@efines <references>@/
Referencesin the def i nes clause must not refer to unshared, allocated storage before the
functioniscalled. They are completely defined after the function returns. When the function
is checked, they are assumed to be undefined at function entrance and an error is reported if
thereis a path on which they are not defined before the function returns.

/| *@l | ocates <references>@/
Referencesin theal | ocat es clause must not refer to unshared, allocated storage before the
functioniscalled. They are allocated but not necessarily defined after the function returns.
When the function is checked, they are assumed to be undefined at function entrance and an
error isreported if thereis a path on which they are not allocated before the function returns.

| *@ el eases <references>@/
Referencesin ther el eases clause are deallocated by the function. They must correspond
to storage that could be passed as an onl y parameter before the function is called, and are
dead pointers after the function returns. When the function is checked, they are assumed to
be allocated at function entrance and an error is reported if they refer to live, alocated
storage at any return point.

Additional generic specia clauses can be used to describe other aspects of the state of inner storage
before or after acall. Generic special clauses havetheform state: constraint. The stateis
either pr e (before the function is called), or post (after the function is called). The constraint is
similar to an annotation. The following constraints are supported:

Aliasing Annotations
pre:only,post:only

Macros 33

pre: shared, post: shared

pr e: owned, post : owned

pr e: dependent , post : dependent
References refer to onl y, shar ed, owned or dependent storage before (pr e) or after
(post) thecall.

Exposure Annotations

pre: observer, post: observer
pre: exposed, post : exposed
References refer to obser ver or exposed storage before (pr e) or after (post) the call.

Null State Annotations

pre:isnull,post:isnull
References have the value NULL before (pr e) or after (post) the call. Note, thisis not the
same name or meaning as the null annotation (which means the value may be NULL.)

pre: notnul |, post: notnul |
References do not have the value NULL before (pr e) or after (post) the call.

Some examples of special clauses are shown in Figure 17. The defines clause for r ecor d_new
indicatesthat thei d field of the structure pointed to by the result is defined, but the nare field is
not. So, record_creat e needsto cal r ecor d_set Nane to define the namefield. Similarly,
the releases clause for r ecor d_cl ear Nane indicates that no storage is associated with the nane
field of its parameter after the return, so no failure to deall ocate storage message is produced for the
cadltofreeinrecord_free.

34 LCLint User’s Guide

special.c

typedef struct

int id;

[*@nly@/ char *nane;
} *record;

static /*@pecial @/ record record_new (void)
[*@efines result->id@/

{
record r = (record) malloc (sizeof (*r));
assert (r != NULL);
r->d = 3;
return r;
}

static void
record _setNanme (/*@pecial @/ record r, /*@nly@/ char *nane)
[*@efines r->nane@/

{
r->nanme = nane;
}
record record_create (/*@nly@/ char *nane)
{
record r = record_new ();
record_setNane (r, name);
return r;
}

void record_cl ear Nane (/*@pecial @/ record r)
/*@el eases r->name@/
[*@ost:isnull r->name@/

free (r->nane);
r->name = NULL;

}
void record free (/*@nly@/ record r)
{

record_clearName (r);

free (r);

Figure 17. Special Clauses.

Macros 35

8. Macros

Macros are commonly used in C programs to implement constants or to mimic functions without
the overhead of afunction call. Macrosthat are used to implement functions are a persistent source
of bugsin C programs, since they may not behave like the intended function when they are invoked
with certain parameters or used in certain syntactic contexts.

LCLint eliminates most of the potentia problems by detecting macros with dangerous
implementations and dangerous macro invocations. Whether or not a macro definition is checked
or expanded normally depends on flag settings and control comments (see Section 8.3). Stylized
macros can also be used to define control structures for iterating through many values (see Section
8.4).

8.1 Constant Macros

Macros may be used to implement constants. To get type-checking for constant macros, use the
const ant syntactic comment:

/*@onstant null char *nmstring_undefined@/

Declared constants are not expanded and are checked according to the declaration. A constant with
anul | annotation may be used asonl y storage.

8.2 Function-like Macros

Using macros to imitate functions is notoriously dangerous. Consider this broken macro for
squaring a number:

define square(x) x * x

Thisworksfine for asimpleinvocation like squar e(i) . It behaves unexpectedly, though, if itis
invoked with a parameter that has a side effect.

For example, squar e(i ++) expandstoi ++ * i ++. Not only does this give the incorrect result,
it has undefined behavior since the order in which the operands are evaluated is not defined. (See
Section 10.1 for more information on how expressions exhibiting undefined evaluation order
behavior are detected by LCLint.) To correct the problem we either need to rewrite the macro so
that its parameter is evaluated exactly once, or prevent clients from invoking the macro with a
parameter that has a side-effect.

Another possible problem with macrosis that they may produce unexpected results because of
operator precedencerules. Theinvocation, squar e(i +1) expandstoi +1*i +1, which evaluates
toi +i +1 instead of the square of i +1. To ensure the expected behavior, the macro parameter
should be enclosed in parentheses where it is used in the macro body.

Macros may also behave unexpectedly if they are not syntactically equivalent to an expression.
Consider the macro definition,

define incCounts() ntotal ++; ncurrent ++;

Thisworksfine, unlessit is used as a statement. For example,
if (x < 3) incCounts();

incrementsnt ot al if x < 3 but alwaysincrementsncurrent.

36 LCLint User’s Guide

One solution is to use the comma operator to define the macro:
define incCounts() (ntotal ++, ncurrent++)

More complicated macros can be written using ado ... whi | e construction:

define incCounts() \
do { ntotal ++; ncurrent++; } while (FALSE)

L CLint detects these pitfallsin macro definitions, and checks that a macro behaves as much like a
function as possible. A client should only be able to tell that a function was implemented by a
macro if it attempts to use the macro as a pointer to afunction.

LCLint does these checks on a macro definition corresponding to a function:

» Each parameter to a macro (except those declared to be side-effect free, see Section 8.2.1) must
be used exactly once in all possible executions of the macro, so side-effecting arguments behave
as expected.?! (Controlled by macr opar ans.)

» A parameter to amacro may not be used as the left-hand side of an assignment expression or as
the operand of an increment or decrement operator in the macro text, since this produces non-
functional behavior. (Controlled by macr oassi gn.)

» Macro parameters must be enclosed in parentheses when they are used in potentially dangerous
contexts. (Controlled by macr opar ens.)

» A macro definition must be syntactically equivalent to a statement when it is invoked followed
by a semicolon. (Controlled by macr ost nt .)

* Thetype of the macro body must match the return type of the corresponding function. If the
macro is declared with type voi d, its body may have any type but the macro value may not be
used.

* All variables declared in the body of a macro definition must be in the macro variable
namespace, so they do not conflict with variables in the scope where the macro isinvoked
(which may be used in the macro parameters). By default, the macro namespace is all names
prefixed by m . (See Section 9.2 for information on controlling namespaces.)

At the call site, amacro is checked like any other function call.

8.2.1 Side-Effect Free Parameters

Suppose we really do want to implement squar e as amacro, but want do so in asafe way. One
way to do thisisto requirethat it is never invoked with a parameter that has a side-effect. LCLint
will check that this constraint holds, if the parameter is annotated to be side-effect free. That is, the
expression corresponding to this parameter must not modify any state, so it does not matter how
many timesit isevaluated. The sef annotation is used to denote a parameter that may not have
any side-effects:

extern int square (/*@ef@/ int x);
define square(x) ((x) *(x))

Now, LCLint will not report an error checking the definition of squar e even though x is used more
than once.

A message will be reported, however, if squar e isinvoked with a parameter that has a side-effect.
For the code fragment,

square (i++)

%1 To be completely correct, al the macro parameters should be evaluated before the macro has any side-
effects. Since checking this would require extensive analysis for occasional modest gain, it was not
considered worth implementing.

Macros 37

L CLint produces the message:
Parameter 1 to square is declared sef, but the argument may modify i: i++

Itisalso an error to pass anon-sef macro parameter asasef macro parameter in the body of a
macro definition. For example,

extern int sunsquares (int x, int y);
define sunmsquares(x,y) (square(x) + square(y))

Although x only appears once in the definition of sumsquar es it will be evaluated twice since
squar e isexpanded. LCLint reports an error when anon-sef macro parameter is passed asasef
parameter.

A parameter may be passed asasef parameter without an error being reported, if LCLint can
determine that evaluating the parameter has no side-effects. For function calls, the modifies clause
is used to determine if a side-effect is possible.?? To prevent many spurious errors, if the called
function has no modifies clause, LCLint will report an error only if sef - uncon ison. Justifiably
paranoid programmers will insist on setting sef - uncon on, and will add modifies clauses to
unconstrained functions that are used in sef macro arguments.

8.2.2 Polymorphism

One problem with our new definition of squar e isthat while the original macro would work for
parameters of any numeric type, LCLint will now report an error isthe new version is used with a
non-integer parameter.

Wecanusethe/ *@l t <type>, "@ syntax to indicate that an alternate type may be used. For
example,

extern int /*@lt float @/ square (/*@ef@/ int /*@lt float@/ x);
define square(x) ((x) *(x))

declaressquar e for bothi nt sandf | oat s.

Alternate types are also useful for declaring functions for which the return value may be safely
ignored (see Section 10.3.2).

8.3 Controlling Macro Checking

By default, LCLint expands macros normally and checks the resulting code after macros have been
expanded. Flags and control comments may be used to control which macros are expanded and
which are checked as functions or constants.

If thef cn- macr os flagison, LCLint assumes all macros defined with parameter lists implement
functions and checks them accordingly. Parameterized macros are not expanded and are checked as
functions with unknown result and parameter types (or using the typesin the prototype, if oneis
given). The analogous flag for macros that define constantsisconst - macr os. If itison, macros
with no parameter lists are assumed to be constants, and checked accordingly. Theal | - macr os
flag setsboth f cn- macr os and const - macr os. If themacr o-f cn- decl flagisset, a
message reports parameterized macros with no corresponding function prototype. If the macr o-
const - decl flagisset, asimilar message reports macros with no parameters that have no
corresponding constant declaration.

%2 Note that functions which do not produce to the same result each time they are called with the same
arguments should be declared to modify i nt er nal St at e sothey will lead to errors if they are passed
assef parameters.

38 LCLint User’s Guide

The macro checks described in the previous sections make sense only for macros that are intended
to replace functions or constants. When f cnrmacr os or const macr os is on, more general
macros need to be marked so they will not be checked as functions or constants, and will be
expanded normally. Macros which are not meant to behave like functions should be preceded by
the/* @ot functi on@/ comment. For example,

[*@otfunction@/
define forever for(;;)

Macros preceded by not f unct i on are expanded normally before regular checking isdone. If a
macro that is not syntactically equivalent to a statement without a semi-colon (e.g., a macro which
enters anew scope) is not preceded by not f unct i on, parse errors may result when f cn-

nacr os or const - macr os ison.

8.4 lterators

It is often useful to be able to execute the same code for many different values. For example, we
may want to sum all elementsinani nt Set that represents aset of integers. If i nt Set isan
abstract type, there is no easy way of doing thisin a client module without depending on the
concrete representation of the type. Instead, we could provide such a mechanism as part of the
type’ simplementation. We call a mechanism for looping through many values an iterator.

The C language provides no mechanism for creating user-defined iterators. LCLint supportsa
stylized form of iterators declared using syntactic comments and defined using macros.

Iterator declarations are similar to function declarations except instead of returning avalue, they
assign valuesto their yi el d parametersin each iteration. For example, we could add this iterator
declarationtoi nt Set . h:

/*@ter intSet_elements (intSet s, yield int el); @/

Theyi el d annotation means that the variable passed as the second actual argument is declared as
alocal variable of typei nt and assigned avalue in each loop iteration.

Defining Iterators

An iterator is defined using a macro. Here's one (not particularly efficient) way of defining
i nt Set _el enment s:

typedef /*@bstract @/ struct {
i nt nel enments;
int *elements;

} intSet;

define intSet_elenments(s,mel) \
{int mi; \
for (mi = (0); mi <= ((s)->nelements); mi++) { \
int mel = (s)->elenments[(m.i)];

define end_intSet_elenments }}

Each time through the loop, the yield parameter m el isassigned to the next value. After each
value has been assigned to m_el for oneiteration, the loop terminates. Variables declared by the
iterator macro (including theyi el d parameter) are preceded by the macro variable namespace
prefix m_ (see Section 8.2) to avoid conflicts with variables defined in the scope where the iterator
isused.

Macros

Using lterators
The genera structure for using an iterator is,
iter (<params>) stnt; end_iter
For example, aclient could usei nt Set _el enent s to sum the elements of ani nt Set :

i nt Set s;
int sum = O;

intSet_elenents (s, el) {
sum += el ;
} end_intSet el enents;

The actual parameter corresponding to ayield parameter, el , is not declared in the function scope.
Instead, it is declared by the iterator and assigned to an appropriate value for each iteration.

LCLint will do the following checks for uses of stylized iterators:

* Aninvocation of theiterator i ter must be balanced by a corresponding end, named
end_iter.

« All actual parameters must be defined, except those corresponding to yield parameters.

» Yield parameters must be new identifiers, not declared in the current scope or any enclosing
scope.

Iterators are a bit awkward to implement, but they enable compact, easily understood client code.
For abstract collection types, an iterator can be used to enable clients to operate on elements of the
collection without breaking data abstraction.

40 LCLint User’s Guide

9. Naming Conventions

Naming conventions tend to be areligiousissue. Generdly, it doesn't matter too much what naming
convention is followed as long as one is chosen and followed religiously. There are two kinds of
naming conventions supported by LCLint. Type-based naming conventions (Section 9.1) constrain
identifier names according to the abstract types that are accessible where the identifier is defined.
Prefix naming conventions (Section 9.2) constrain theinitial characters of identifier names
according to what is being declared and its scope. Naming conventions may be combined or
different conventions may be selected for different kinds of identifiers. In addition, LCLint
supports checking that names do not conflict with names reserved for the standard library or
implementation (Section 9.3) and that names are sufficiently distinguishable from other names.

9.1 Type-Based Naming Conventions

Generic naming conventions constrain valid names of identifiers. By limiting valid names,
namespaces may be preserved and programs may be more easily understood since the name gives
clues asto how and where the name is defined and how it should be used.

Names may be constrained by the scope of the name (external, file static, internal), the file in which
the identifier is defined, the type of the identifier, and global constraints.

9.1.1 Czech Names

Czech® names denote operations and variables of abstract types by preceding the names by
<type>_. Theremainder of the name should begin with alowercase character, but may use any
other character besides the underscore. Types may be named using any non-underscore characters.

The Czech naming convention is selected by theczech flag. If access-czechison, a
function, variable, constant or iterator named <type>_<name> has access to the abstract type
<type>.

Reporting of violations of the Czech naming convention is controlled by different flags depending
on what is being declared:

czech-fcns
Functions and iterators. An error is reported for a function name of the form
<prefix> <name>Where <prefix>isnotthe name of an accessibletype. Note that if
accessczech ison, atype named <prefix>would be accessible in afunction beginning
with <prefix> . If access- czech isoff, an error isreported instead. An error is
reported for a function name that does not have an underscore if any abstract types are
accessible where the function is defined.

% The most renowned C naming convention is the Hungarian naming convention, introduced by Charles
Simonyi [Simonyi, Charles, and Martin Heller. “The Hungarian Revolution.” BYTE, August 1991, p.
131-38]. The namesfor LCLint naming conventions follow the tradition of using Central European
nationalities as mnemonics for naming conventions. The LCLint conventions are similar to the
Hungarian naming convention in that they encode type information in names, except that the LCLint
conventions encode the names of accessible abstract types instead of the type of the declaration of return
value. Prefixes used in the Hungarian naming convention are not supported by LCLint.

Naming Conventions 41

czech-vars

czech-constants

czech- macr os
Variables, constants and expanded macros. An error is reported if the identifier name starts
with <prefix>_and prefixisnot the name of an accessible abstract type, or if an
abstract type is accessible and the identifier name does not begin with <type> wheret ype
isthe name of an accessible abstract type. If access- czech ison, the representation of

the typeisvisiblein the constant or variable definition. Of course, this
czech-types isacomplete
User-defined types. An error is reported if atype name includes an underscore character. jumble to the
uninitiated,
9.1.2 Slovak Names fgfethai sthe
Slovak names are similar to Czech names, except they are spelled differently. A Slovak nameis of Charles
theform <type><Name>. Thetype prefix may not use uppercase characters. The remainder of Simonyi, on
the name starts with the first uppercase character. the Hungarian
naming

The sl ovak flag selects the Slovak naming convention. Like Czech names, it may be used with convention

access- sl ovak to control accessto abstract representations. The sl ovak- f cns, sl ovak-
var s, sl ovak- const ant s, and sl ovak- macr os flags are analogous to the similar Czech
flags. If sl ovak-t ype ison, anerror isreported if atype name includes an uppercase letter.

9.1.3 Czechoslovak Names

Czechoslovak names are a combination of Czech names and Slovak names. Operations may be
named either <type>_followed by any sequence of non-underscore characters, or <type>
followed by an uppercase letter and any sequence of characters. Czechoslovak names have been
out of favor since 1993, but may be necessary for checking legacy code. Theczechos! ovak-
fcns, czechosl ovak-var s, czechosl ovak- macr os, and czechosl ovak-

const ant s flags are analogous to the similar Czech flags. If czechosl ovak-t ype ison, an
error isreported if atype name contains either an uppercase |etter or an underscore character.

9.2 Namespace Prefixes

Another way to restrict namesisto constrain the leading character sequences of various kinds of
identifiers. For example, the names of all user-defined types might begin with “T” followed by an
uppercase letter and al file static names begin with an uppercase letter. This may be useful for
enforcing a namespace (e.g., al names exported by the X-windows library should begin with “X")
or just making programs easier to understand by establishing an enforced convention. LCLint can
be used to constrain identifiersin this way to detect identifiers inconsistent with prefixes.

All namespace flags are of theform, - <context>prefi x <string>. For example, the macro
variable namespace restricting identifiers declared in macro bodies to be preceded by “m " would
be selected by - macr ovar prefi x "m_ ". Thestring may contain regular characters that may
appear in aC identifier. These must match the initial characters of the identifier name. In addition,
special characters (shown in Table 1) can be used to denote a class of characters.?* The* character
may be used at the end of a prefix string to specify the rest of the identifier is zero or more
characters matching the character immediately before the *. For example, the prefix string “ T&”
matches“T” or “TW NDOW but not “Twi n”.

4 Namespace prefixes should probably be described by regular expressions. LCLint usesasimpler,
more limited means for describing names, which is believed to be adequate for describing most useful
naming conventions. If thereis sufficient interest, regular expressions may be supported in afuture
version of LCLint.

42 LCLint User’s Guide

N Any uppercase letter, A-Z

& Any lowercase letter, a- z

% Any character that is not an uppercase letter (allows lowercase letters, digits and
underscore)

Any character that is not alowercase letter (allows uppercase |etters, digits and underscore)
Any letter (a-z, A-Z)

Any letter or digit (A- Z, a- z, 0-9)

Any character valid in a C identifier

Any digit, 0- 9

H O T

Table 1. Prefix character codes.

Different prefixes can be selected for the following identifier contexts:

macr o- var - prefix Any variable declared inside a macro body

unchecked- macro-prefix Any macro that is not checked as afunction or constant
(see Section 8.4)

tag-prefix Tagsfor st ruct, uni on and enumdeclarations

enum prefix Members of enumtypes

type-prefix Name of a user-defined type

file-static-prefix Any identifier with file static scope

gl ob-var - prefix Any variable (not of function type) with global scope

const - prefix Any constant (see Section 8.1)

iter-prefix An iterator (see Section 8.4)

pr ot o- par am pr ef i x A parameter in afunction declaration prototype

external - prefix Any exported identifier

If an identifier isin more than one of the namespace contexts, the most specific defined namespace
prefix is used (e.g., aglobal variableis also an exported identifier, soif gl obal - var- prefixis
set, it is checked against the variable name; if not, the identifier is checked against the ext er nal -
prefix.)

For each prefix flag, a corresponding flag named <prefixname>excl ude controls whether
errors are reported if identifiersin a different namespace match the namespace prefix. For example,
if macr o- var - prefi x- excl ude ison, LCLint checksthat no identifier that is not avariable
declared inside a macro body uses the macro variable prefix.

Here is a (somewhat draconian) sample naming convention:

-unchecked-macro-prefix "~*" unchecked macros have no lowercase letters

-type-prefix "Th&" all type names begin with T followed by an
uppercase letter. The rest of the nameisall
lowercase | etters.

+t ype- prefi x-excl ude no identifier that does no name a user-defined type
_ _ _ name begin with the type name prefix (set above)
-file-static-prefix ""&8&" file static scope variables begin with an uppercase

letter and three lowercase letters

- pr ot o- par am pr efix "p_ all parametersin prototypes must begin with p_
-glob-var-prefix "G’ al global variables start with G
+gl ob-var - prefi x- excl ude no identifier that is not aglobal variable starts with G

The prefix for parameters in function prototypes is useful for making sure parameter names are not
in conflict with macros defined before the function prototype. In most cases, it may be preferable to

Naming Conventions 43

not name prototype parameters. If the pr ot o- par am nane flag is set, an error is reported for
any named parameter in a prototype declaration. If apr ot o- par am prefi x isset, no error is
reported for unnamed parameters.

It may also be useful to check the names of prototype parameters correspond to the namesin
definitions.®® If pr ot o- par am mat ch isset, LCLint will report an error if the name of a
definition parameter does not match the corresponding prototype parameter (after removing the
pr ot opar anpr ef i x).

9.3 Naming Restrictions

Additional naming restrictions can be used to check that names do no conflict with names reserved
for the standard library, and that identifier are sufficiently distinct (either for the compiler and
linker, or for the programmer.) Restrictions may be different for names that are needed by the
linker (external names) and names that are only needed during compilations (internal names).
Names of non-st at i ¢ functions and global variables are external; all other names are internal.

9.3.1 Reserved Names

Many names are reserved for the implementation and standard library. A complete list of reserved
names can be found in [vdL, p. 126-128] or [ANSI, Section 4]. Some name prefixessuch asst r
followed by alowercase character are reserved for future library extensions. Most C compilers do
not detect naming conflicts, and they can lead to unpredictable program behavior. If ansi -

r eser ved ison, LCLint reports errors for external names that conflict with reserved names. If
ansi -reserved-i nt ernal ison, errors are aso reported for internal names.

If the cpp- nanes flagisset, LCLint will report identifier names that are keywords or reserved
wordsin C++. Thisisuseful if the code may later be compiled with a C++ compiler (of course, this
is not enough to ensure the meaning of the code is not changed when it is compiled as C++.)

9.3.2 Distinct Identifiers

LCLint can check that identifiers differ within a given number of characters, optionally ignoring
alphabetic case and differences between characters that ook similar. The number of significant
characters may be different for external and internal names.

Using +di st i nct - ext er nal - names sets the number of significant characters for external
names to six and makes alphabetical case insignificant for external names. Thisisthe minimum
significance acceptable in an ANSI-conforming compiler. Most modern compilers exceed these
minimums (which are particularly hard to follow if one uses the Czech or Slovak naming
convention). The number of significant characters can be changed using the ext er nal - namne-

| engt h <number>flag. If ext er nal - name- case-insensitive ison, alphabetical case
isignored in comparing external names. LCLint reportsidentifiers that differ only in a phabetic
case.

For internal identifiers, a conforming compiler must recognize at least 31 characters and treat
alphabetical cases distinctly. Nevertheless, it may still be useful to check that internal names are
more distinct then required by the compiler to minimize the likelihood that identifiers are confused
in the program. Analogously to external names, thei nt er nal - nane- | engt h <number>
flag sets the number of significant charactersin an internal name and i nt er nal - name- case-

% While using header files as documentation is not generally recommended, it is common enough
practice that it makes sense to check that parameter names are consistent. A discrepancy may indicate an
error in the parameter order in the function prototype.

44

LCLint User’s Guide

i nsensi ti ve setsthe case sensitivity. Thei nt er nal - nane- | ook- al i ke flag further
restricts distinctions between identifiers. When set, similar-looking characters match — the
lowercase letter “| ” matches the uppercase letter “1 ” and the number “1”; the letter “O’ or “0”
matches the number “0”; “5” matches*S”; and “2” matches“Z”. Identifiersthat are not distinct
except for look-alike characters will produce an error message. External names are also internal
names, so they must satisfy both the external and internal distinct identifier checks.

names.c Running L.CLint

1 char *stringrev (char *s);
gint f (int x)
5 int |ookalike = 1;
6 i nt | ookali ke = 2;

if (x > 3)
10 int x = |ookalike;

x += | ookali ke;
}

return x;

}

> [clint names.c +distinctinternalnames +internalnamelookalike
+ansireserved
LCLint 2.4 --- 10 Apr 98

names.c:1: Name stringreverse is reserved for future ANSI library
extensions. Functions that begin with "str" and a lowercase
letter may be added to <stdlib.h> or <string.h>. (See ANSI,
Section 4.13.7)

names.c:6: Internal identifier looka1ike is not distinguishable from

lookalike except by lookalike characters

names.c:5: Declaration of lookalike

names.c:10: Variable x shadows outer declaration
names.c:3: Previous declaration of x: int

Finished LCLint checking --- 3 code errors found

Figure 18. Naming checks.

The decision
to retain the
old six-
character
case-
insensitive
restriction on
significance
was most
painful.
ANSIC
Rationale

Other Checks 45

10. Other Checks

The section describes other errors detected by LCLint that are not directly related to extra
information provided in annotations. Many of the checks are significantly improved, however,
because of the extrainformation that is known about the program.

10.1 Undefined Evaluation Order

The order in which side effects take place in a C program is not entirely defined by the code.
Certain execution points are known as sequence points — afunction call (after the arguments have
been evaluated), the end of afull expression (an initializer, expression in an expression statement,
the control expression of ani f, swi t ch, whi | e or do statement, each expression of af or
statement, and the expressionin ar et ur n statement), and after the first operand or a&&, | | , ? or
, operand.

All side effects before a sequence point must be complete before the sequence point, and no
evaluations after the sequence point shall have taken place [ANSI, Section 2.1.2.3]. Between
seguence points, side effects and eval uations may take place in any order. Hence, the order in
which expressions or arguments are evaluated is not specified. Compilers are free to evauate
function arguments and parts of expressions (that do not contain sequence points) in any order. The
behavior of code is undefined if it uses avalue that is modified by another expression that is not
required to be evaluated before or after the other use.

L CLint detects instances where undetermined order of evaluation produces undefined behavior. |If
modifies clauses and globals lists are used, this checking is enabled in expressions involving
function calls. Evaluation order checking is controlled by the eval - or der flag.

| order.c Running LCLint

extern int glob; > Iclint order.c +evalorderuncon
)) LCLint 2.4 --- 10 Apr 98

extern int nmystery (void);
order.c:11: Expression has undefined behavior (value of right

extern int nodglob (void) operand modified by left operand): x++ * x

/* @l obal s gl ob@/

* S) order.c:13: Expression has undefined behavior (left operand uses
/*@rodifies glob@/ ; i, modified by right operand): y[i] = i++
int f (int x, int y[]) order.c:14: Expression has undefined behavior (value of right
{ operand modified by left operand): modglob() * glob
17 0int i = x++ * X; From the modifies clause, modgl ob may modify gl ob.
The behavior is undefined since we don’t know if glob
13 y[i] =i++ is evaluated before, after or during the modification.
14 i += nodgl ob() * gl ob; order.c:15: Expression has undefined behavior (unconstrained
15 1 += nystery() * glob; function mystery used in left operand may set global variable
16 return i glob used in right operand): mystery() * glob
} Not reported without +eval or der uncon.

Finished LCLint checking --- 4 code errors found

Figure 19. Evaluation order

When checking systems without modifies and globals information, evaluation order checking may
report errors when unconstrained functions are called in procedure arguments. Since LCLint has no
annotations to constrain what these functions may modify, it cannot be guaranteed that the
evaluation order is defined if another argument calls an unconstrained function or uses a global

46 LCLint User’s Guide

variable or storage reachable from a parameter to the unconstrained function. Its best to add
modifies and globals clauses to constrain the unconstrained functionsin ways that eliminate the
possibility of undefined behavior. For large legacy systems, this may require too much effort.
Instead, the - eval - or der - uncon flag may be used to prevent reporting of undefined behavior
due to the order of evaluation of unconstrained functions.

10.2 Problematic Control Structures

A number of control structures that are syntactically legal may indicate likely bugsin programs.
LCLint can detect errorsinvolving likely infinite loops (Section 10.2.1), fall through cases and
missing casesin swi t ch statements (Section 10.2.2), br eak statements within deeply nested loops
or switches (Section 10.2.3), clauses of i f, whi | e or f or statementsthat are empty statements or
unblocked single statements (Section 10.2.4) and incomplete if-else logic (Section 10.2.5).
Although any of these may appear in a correct program, depending on the programming style used
they may indicate likely bugs or style violations that should be detected and eliminated.

10.2.1 Likely Infinite Loops

LCLint reports an error if it detects aloop that appears to be infinite. An error isreported for aloop
that does not modify any value used in its condition test inside the body of the loop or in the
condition test itself. This checking is enhanced by modifies clauses and globals lists since they
provide more information about what global variable may be used in the condition test and what
values may be modified by function callsin the loop body.

Figure 20 shows examples of infinite loops detected by LCLint. An error is reported for the loop in
line 14, since neither of the values used in the loop condition (x directly and gl ob1 through the
call tof) ismodified by the body of the loop. If the declaration of g is changed to include gl ob1
in the modifies clause no error is reported. (In this example, if we assume the annotations are
correct, then the programmer has probably called the wrong function in the loop body. Thisisn’t
surprising, given the horrible choices of function and variable names!)

If an unconstrained function is called within the loop body, LCLint will assume that it modifies a
value used in the condition test and not report an infinite loop error, unlessi nf | oopsuncon is
on. Ifi nfl oopsunconison, LCLint will report infinite loop errors for loops where thereis no
explicit modification of avalue used in the condition test, but where they may be an undetected
modification through a call to an unconstrained function (e.g., line 15 in Figure 20).

10.2.2 Switches

The automatic fall-through of C switch statements is almost never the intended behavior.?® LCLint
detects case statements with code that may fall through to the next case. Thecasebr eak flag
controls reporting of fall through cases. A single fall through case may be marked by preceding the
case keywordwith/ *@ al | t hr ough@/ toindicate explicitly that execution falls through to
this case.

% peter van der Linden estimates that default fall through is the wrong behavior 97% of the time.
[vdL95, p. 37]

Other Checks 47

[loopc Running LCLint
extern int globl, glob2; > Iclint loop.c +infloopsuncon

)) LCLint 2.4 --- 10 Apr 98
extern int f (void)

/@l obal s gl obl@/ loop.c: (in function upto)
/*@mdifies nothing@/ ; loop.c:14: Suspected infinite loop. No value used in loop test (x,

. . glob1) is modified by test or loop body.
ext f rn vol d g (void) . loop.c:15: Suspected infinite loop. No condition values modified.
/*@odi fies glob2@/ ; A))
Modification possible through unconstrained calls: h

extern void h (void
() Finished LCLint checking --- 2 code errors found

void upto (int x)
An error is reported for line 14 since the only value

14 while (x > f()) 9(); modified by the loop test or body if gl ob2 and the value
;5 while (f() < 3) h(); of the loop test does not depend on gl 0b2.

The error for line 15 would not be reported if
+i nf | oopsuncon wasn 't used.

Figure 20. Infinite loop checking

For switches on enumtypes, LCLint reports an error if amember of the enumerator does not appear
as acase in the switch body (and thereisno def aul t case). (Controlled by mi sscase.)

| switch.c Running LCLint

t ypedef enum { > Iclint switch.c
YES, NO DEFINITELY, LCLint 2.4 --- 10 Apr 98
PROBABLY, MAYBE } ynm

switch.c: (in function decide)
switch.c:11: Fall through case (no preceding break)
switch.c:14: Missing case in switch: DEFINITELY

voi d decide (ynmy)

switch (y)

case PROBABLY: Finished LCLint checking --- 2 code errors found

case NO printf ("No!'");
11 case MAYBE: printf ("Maybe"); | Nofall through error is reported for the NOcase,

/*@allthrough@/ since there are no statements associated with the
case YES: printf ("Yes!"); previous case. Thel *@ al | t hrough@/
4} comment prevents a message from being produced

} for the YES case.

Figure 21. Switch checking.

10.2.3 Deep Breaks

Thereis no syntax provided by C (other than got o) for breaking out of a nested loop. All br eak
and cont i nue statements act only on the innermost surrounding loop or switch. This often leads
to serious problems®’ when a programmer intends to break the outer loop or switch instead. LCLint
optionally reports errors for br eak and cont i nue statements in nested contexts.

Four types of br eak errors are reported:

2l «goftware Glitch Cripples AT& T Network”, Telephony, 22 January 1990.

48 LCLint User’s Guide

* break insidealoop (whi | e or f or) that isinside aloop. Controlled by | oopl oopbr eak.
To indicate that abr eak isinside an inner loop, precede the br eak by / * @ nner break@/ .

* break insidealoopthatisinsideaswi t ch statement. Controlled by swi t chl oopbr eak.
To mark the br eak as aloop break, precede the br eak by / * @ oopbreak@/ .

* break insideaswi t ch statement that isinside aloop. Controlled by | oopswi t chbr eak. To
mark the br eak as a switch break, precedethebr eak by / * @wi t chbreak@/ .

* break insideaswi t ch inside another swi t ch. Controlled by swi t chswi t chbr eak. To
indicate that the br eak isfor the inner switch, use/ * @ nner br eak @/ .

Since cont i nue only makes sense within loops, errors are only reported for cont i nue statements
within nested loops. (Controlled by | oopl oopcont i nue.) A safeinner cont i nue may be
preceded by / * @ nner cont i nue@ / to suppress error messageslocally. Thedeepbr eak flag
sets all nested break and continue checking flags.

LCLint reports an error if the marker preceding abr eak is not consistent with its effect. An error
isreported if i nner br eak precedes abr eak that is not breaking an inner loop, swi t chbr eak
precedes abr eak that is not breaking a switch, or | oopbr eak precedesabr eak that is not
breaking aloop.

10.2.4 Loop and If Bodies

An empty statement after ani f, whi | e or f or often indicates a potential bug. A single statement
(i.e., not acompound block) after ani f, whi | e or f or isnot likely to indicate a bug, but make the
code harder to read and edit. LCLint can report errorsfor if or loop statements with empty bodies
or bodies that are not compound statements. Separate flags control checking for statements
followingan i f,whileorfor:

« [if, while, for]enpty —report errorsfor empty bodies(e.g.,i f (x > 3) ;)
« [if, while, for] bl ock — report errorsfor non-block bodies (e.g.,i f (x > 3) x++;)

Thei f statement checks also apply to the body of the el se clause. Ani f bl ock error isnot
reported if the body of theel se clauseisani f statement, to allow el se i f chains.

10.2.5 Complete if-else Logic

Although it may be perfectly reasonable in many contexts, ani f -el se chain with nofinal el se
may indicate missing logic or forgetting to check error cases. If el sei f - conpl et e ison,
LCLint reportserrorswhen ani f statement that is the body of an el se clause does not have a
matching el se clause. For example, the code,

if (x ==0) { return "nil"; }
else if (x == 1) { return "many"; }

produces an error message since the second i f has no matching el se branch.

10.3 Suspicious Statements

LCLint detects errors involving statements with no apparent effects (Section 10.3.1) and statements
that ignore the result of acalled function (Section 10.3.2).

10.3.1 Statements with No Effects

LCLint can report errors for statements that have no effect. (Controlled by no- ef f ect .)
Because of modifies clauses, LCLint can detect more errors than traditional checkers. Unless the
no- ef f ect - uncon flag ison, errors are not reported for statements that involve callsto
unconstrained functions since the unconstrained function may cause a modification.

Other Checks 49

 noeffect.c | RummngLCLint
extern void > Iclint noeffect.c +noeffectuncon
normodcal I (int *x) /*@/; LCLint 2.4 --- 10 Apr 98
Recall that /*@?*/ is shorthand for
modifies nothing and use no globals. noeffect.c:6: Statement has no effect: y == *x
extern void nysterycall (int *x); noeffect.c:7: Statement has no effect: nomodcall(x)

noeffect.c:8: Statement has no effect (possible

int noeffect (int *x, int vy) undetected modification through call to

{ unconstrained function mysterycall):
== *X;
nonodeal | (x) mysterycall(x)
myst er ycal | (;()) Not reported without +noef f ect uncon.
return *x; . . .
} Finished LCLint checking --- 3 code errors found

Figure 22. Statements with no effect.

10.3.2 Ignored Return Values

LCLint reports an error when areturn value isignored. Checking may be controlled based on the
type of the return value: r et - val - i nt controls reporting of ignored return values of typei nt ,
andr et - val - bool for return values of typebool , andr et - val - ot her s for al other types.
A function statement may be cast to voi d to prevent this error from being reported.

Alternate types (Section 8.2.2) can be used to declare functions that return values that may safely be
ignored by declaring the result type to alternately by voi d. Severa functionsin the standard
library are specified to alternately return voi d to prevent ignored return value errors for standard
library functions (e.g., st r cpy) where the result may be safely ignored (see Appendix F).

Figure 23 shows example of ignored return value errors reported by LCLint.

10.4 Unused Declarations

LCLint detects constants, functions, parameters, variables, types, enumerator members, and
structure or union fields that are declared but never used. Theflagsconst use, f cnuse,

par anuse, var use, t ypeuse, enummenuse andf i el duse control whether unused
declaration errors are reported for each kind of declaration. Errorsfor exported declarations are
reported only if t opuse ison (see Section 10.5).

The/ * @inused@ / annotation can be used before a declaration to indicate that the item declared
need not be used. Unused declaration errors are not reported for identifiers declared with unused.

50 LCLint User’s Guide

i ignore.c Running LCLint

extern int fi (void); > lclint ignore.c
extern bool fb (void); LCLint 2.4 --- 10 Apr 98
extern int /*@lt void@/

fv (void); ignore.c: (in function ignore)

ignore.c:8: Return value (type int) ignored: fi()

int ignore (void) ignore.c:10: Return value (type bool) ignored: fb()

g fi ();

9 (void) fi (); Finished LCLint checking --- 2 code errors found
10 fb ();
11 fv (); The message for line 8 would not be reported if
12 return fv (); -retval i nt isset,; for line 10, if - r et val bool is set.
} No message is reported for line 9 because the result is cast

to voi d, and no message is reported for line 11 because f v
is declared to alternately return voi d.

Figure 23. Ignored return values.

10.5 Complete Programs

LCLint can be used on both complete and partial programs. When checking complete programs,
additional checks can be done to ensure that every identifier declared by the programis defined and
used, and that functions that do not need to be exported are declared st at i c.

LCLint checks that all declared variables and functions are defined (controlled by conpdef) .
Declarations of functions and variables that are defined in an external library, may be preceded by
/ *@xt ernal @/ to suppress undefined declaration errors.

LCLint reports external declarations that are unused (controlled by t opuse). Which declarations
are reported al so depends on the declaration use flags (see Section 10.4).

Theparti al flag setsflagsfor checking a partial system. Top-level unused declarations,
undefined declarations, and unnecessary external names are not reported if parti al isset.

10.5.1 Unnecessary External Names

LCLint can report variables and functions that are declared with global scope (i.e., without using

st ati c), that are not used outside the file in which they are defined. In a stand-alone system,
these identifiers should usually be declared using st at i ¢ to limit their scope. If theexport -

st ati c flagison, LCLint will report declarations that could have file scope. It should only be
used when all relevant source files are listed on the LCLint command line; otherwise, variables and
functions may be incorrectly identified as only used in the file scope since LCLint did not process
the other file in which they are used.

10.5.2 Declarations Missing from Headers

A common practice in C programming styles, is that every function or variable exported by M. ¢
isdeclaredin M. h. If theexport - header flagison, LCLint will report exported declarationsin
M. ¢ that are not declared in M. h.

Other Checks

10.6 Compiler Limits

The ANSI Standard includes limits on minimum numbers that a conforming compiler must support.

Whether of not a particular compiler exceeds these limits, it is worth checking that a program does
not exceed them so that other compilers may safely compileit. In addition, exceeding alimit may
indicate a problem in the code (e.g., it istoo complex if the control nest depth limit is exceeded)
that should be fixed regardless of the compiler. LCLint checks the following limits. For each

[imit, the maximum value may be set from the command line (or locally using a stylized comment).

If theansi -1i mts flagison, al limits are checked with the minimum values of a conforming
compiler.

i ncl ude- nest
Maximum nesting depth of fileinclusion (#i ncl ude). (ANSI minimum is 8)
control - nest-depth

Maximum nesting of compound statements, control structures. (ANSI minimum is 15)
num enum nenber s

Number of membersin an enumdeclaration. (ANSI minimum is 127)
numstruct-fields

Number of fieldsinast ruct or uni on declaration. (ANSI minimum is 127)

From bnelson@netcom.com (Bob Nelson)
Subject Re: NT vs. Linux
Date Fri, 5 Jul 1996 05:11:22 GMT

Newsgroups comp.os.linux.advocacy,comp.sys.ibm.pc.hardware,
comp.os.ms-windows.win95.misc, comp.os.mswindows.nt.misc,
alt.flame,alt.fan.bill-gates,alt.destroy.microsoft

Toni Anzlovar (toni.anzlovar@kiss.uni-lj.si) wrote:

> Why does everybody want to RUN WORD? Why does nobody want to write and edit
> text?

Simple. A *tremendous® number of documents are written using Microsoft Word. One that is particularly
ironic is the guide to LCLint -- a very popular lint tool -- often the lint of choice in the linux world.

Since human
beings
themselves are
not fully
debugged yet,
there will be
bugsin your
code no matter
what you do.
Chris Mason,
Zero-defects
memo
(Microsoft
Secrets,
Cusumano
and Selby)

52 LCLint User’s Guide Appendix

Appendix A Availability

The web home page for LCLint is
http://ww. sds.lcs.mt.edu/lclint/

It includes thisguide in HTML format, samples demonstrating LCLint, and links to related web
Sites.

LCLint can be downloaded from
http://ww. sds.lcs.nmit.edu/lclint/dowl oad. ht m

or obtained viaanonymousf t p from
ftp://sds.lcs.mt.edu/pub/lclint/

Win32 and several UNIX platforms are supported. Source codeisfreely available.

Appendix B Communication

LCLint development is largely driven by suggestions and comments from users. We are also very
interested in hearing about your experiences using LCLint in developing or maintaining programs,
enforcing coding standards, or teaching courses. For general information, suggestions, and
guestionson LCLint send mail tol cl i nt @ds. | cs. m t. edu.

Toreport abugin LCLint send amessagetol cl i nt - bug@ds. | cs. nit. edu.

There are two mailing lists associated with LCLint:

[clint-announce@ds.lcs.mt.edu
Reserved for announcements of new releases and bug fixes. (Everyone who sends mail

regarding LCLint is added to thislist.)
Iclint-interest@ds.lcs.mt.edu

Informal discussions on the use and development of LCLint. To subscribe, send a (human-
readable) messagetol cl i nt - request @ds. | cs. ni t. edu or use the form at

http://ww. sds. mit.edu/lclint/lists.html. Themailinglistisarchived at
http://ww. sds. mt.edu/lclint/lclint-interest/

LCLint discussions relating to checks enabled by specifications or annotations are welcome in the
conp. speci fication. | arch Usenet group. Messages more focused on C-specific checking
would be more appropriate for thel cl i nt -i nt er est list of one of the C language groups.

Annotations 53

Appendix C Flags

Flags can be grouped into four major categories:

» Global flagsfor controlling initializations and global behavior

» Message format flags for controlling how messages are displayed

» Mode selectors for coarse control of LCLint checking

» Checking flags that control checking and what classes of messages are reported.

Global flags can be used in initialization files and at the command line; all other flags may also be
used in control comments.

Global Flags

Global flags can be set at the command line or in an options file, but cannot be set locally using
stylized comments. These flags control on-line help, initialization files, pre-processor flags,
libraries and outpuit.

Help

On-line help provides documentation on LCLint operation and flags. When ahelp flag is used, no
checking isdone by LCLint. Help flags may be preceded by - or +.

hel p

Display genera help overview, including list of additional help topics.
hel p <topic>

Display help on <topic>. Available topics:

annot ati ons describe annotations

conment s describe control comments

flags describe flag categories

flags <category> al flags pertaining to <category> (one of the categories listed by
[clint -help flags)

flags al pha al flagsin alphabetical order

flags full print afull description of all flags

mai | print information on mailing lists

modes flags settings in modes

prefi xcodes character codes for setting namespace prefixes

ref erences print references to relevant papers and web sites

vars describe environment variables

version print maintainer and version information

hel p <fl ag>

Describeflag <flag>. (May list severa flags.)

war n-f | ags
Display awarning when aflag is set in asurprising way. An error isreported if an obsolete
(LCLint Version 1.4 or earlier) flag is set, aflag is set to its current value (i.e., the + or -
may be wrong), or a mode selector flag is set after mode checking flags that will be reset by
the mode were set. By default, war n- f | ags ison. To suppress flag warnings, use
-war n- f | ags.

54 LCLint User’s Guide Appendix

Initialization

These flags control directories and files used by LCLint. They may be used from the command line
or in an options file, but may not be used as control comments in the source code. Except where
noted. they have the same meaning preceded by - or +.

tnmpdir <directory>
Set directory for writing temp files. Defaultis/ t np/ .
| <directory>
Add directory to path searched for C include files. Note thereis no space after thel , to be

consistent with C preprocessor flags.
S<directory>

Add directory to path search for . | cl specification files.

f <file>
Load optionsfile <file>. If thisflag is used from the command line, the default
~/ . lclintrcfileisnotloaded. Thisflag may be used in an optionsfile to load

in another optionsfile.
nof

Prevents the default optionsfiles(. /. I clintrcand~/. I clintrc)frombeng

loaded. (Setting - nof overrides +nof , causing the optionsfiles to be loaded normally.)
sys-dirs

Set directories for system files (default is" / usr /i ncl ude"). Separate directories with

colons(e.g.,"/usr/include:/usr/local/lib"). Flag settings propagateto filesin a

system directory. If - sys-dir-errors isset, no errors are reported for filesin system

directories.

Pre-processor

These flags are used to define or undefine pre-processor constants. The- | <directory>flagis
also passed to the C pre-processor.
D<initializer>
Passed to the C pre-processor.
Winitializer>
Passed to the C pre-processor.

Libraries
These flags control the creation and use of libraries.

dump <file>
Save state in <file> for loading. The default extension . | cd isadded if <file> hasno

extension.
| oad <file>

Load state from <file> (created by - dunp). The default extension . | cd isadded if <file>
has no extension. Only one library file may be loaded.

By default, the standard library isloaded if the - | oad flag is not used to load a user library. If no
user library isloaded, one of the following flags may be used to select a different standard library.
Precede the flag by + to load the described library (or to prevent alibrary from being loaded using
no- | i b). See Appendix F for information on the provided libraries.

no-lib

Do not load any library. This prevents the standard library from being loaded.
ansi-lib

Annotations 55

Use the ANSI standard library (selected by default).

strict-lib
Use gtrict version of the ANSI standard library.
posi x-lib

Use the POSIX standard library.
posi x-strict-lib

Use the strict version of the POSIX standard library.
uni x-1ib

Use UNIX version of standard library.
uni x-strict-lib

Use the strict version of the UNIX standard library.

Output

These flags control what additional information LCLint prints. Setting +<£1ag> causesthe
described information to be printed; setting - <f1ag> preventsit. By default, al these flags are
Off.

use-stderr

Send error messages to standard error (instead of standard output).
show sumary

Show a summary of all errors reported and suppressed. Counts of suppressed errors are not
necessarily correct since turning aflag off may prevent some checking from being done to
save computation, and errors that are not reported may propagate differently from when they

are reported.
show scan

Show file names are they are processed.
show al | -uses

Show list of uses of all external identifiers sorted by number of uses.
stats

Display number of lines processed and checking time.

time-di st
Display distribution of where checking time is spent.

qui et
Suppress herald and error count. (If qui et isnot set, LCLint prints out a herald with
version information before checking begins, and aline summarizing the total number of
errors reported.)

which-1ib
Print out the standard library filename and creation information.

limt <number>
At most <number> similar errors are reported consecutively. Further errors are suppressed,
and a message showing the number of suppressed messages s printed.

Expected Errors

Normally, LCLint will expect to report no errors. The exit status will be success (0) if no errors are
reported, and failure if any errors are reported. Flags can be used to set the expected number of
reported errors. Because of the provided error suppression mechanisms, these options should
probably not be used for final checking real programs but may be useful in developing programs
using make.

expect <number>
Exactly <number> code errors are expected. LCLint will exit with failure exit status unless
<number> code errors are detected.

80

56 LCLint User’s Guide Appendix

Message Format

These flags control how messages are printed. They may be set at the command line, in options
files, or locally in syntactic comments. Thel i ne-1 enandl i m t flags may be preceded by + or
- with the same meaning; for the other flags, + turns on the describe printing and - turnsit off. The
box to the left of each flag givesits default value.

show- col um

Show column number where error is found.
show f unc
Show name of function (or macro) definition containing error. The function nameis printed
once before the first message detected in that function.
showall -conj s
Show all possible alternate types (see Section 8.2.2).
paren-file-fornmat
Use <file>(<line>) format in messages.
hints
Provide hints describing an error and how a message may be suppressed for the first error

reported in each error class.

force-hints
Provide hintsfor al errors reported, even if the hint has already been displayed for the same
error class.

line-len <number>
Set length of maximum message line to <number> characters. LCLint will split messages
longer than <number> characterslong into multiple lines.

Mode Selector Flags

Mode selects flags set the mode checking flags to predefined values. They provide a quick coarse-
grain way of controlling what classes of errors are reported. Specific checking flags may be set after
amode flag to override the mode settings. Mode flags may be used locally, however the mode
settings will override specific command line flag settings. A warning is produced if amode flag is
used after a mode checking flag has been set.

These are brief descriptions to give agenera idea of what each mode does. To see the complete
flag settingsin each mode, usel cl i nt - hel p nodes. A mode flag has the same effect when
used with either + or - .

weak
Weak checking, intended for typical unannotated C code. No modifies checking, macro
checking, rep exposure, or clean interface checking isdone. Return values of typei nt may
beignored. Thetypesbool ,i nt, char and user-defined enumtypes are all equivalent.

Old style declarations are unreported.
st andar d

The default mode. All checking done by weak, plus modifies checking, global alias
checking, use all parameters, using released storage, ignored return values or any type, macro
checking, unreachable code, infinite loops, and fall-through cases. Thetypesbool ,i nt and
char aredistinct. Old style declarations are reported.

plain: -
m:- - ++

shortcut

plain: -

m:- +++

plain: +
plain: +

plain: +

plain: -

Annotations

checks
Moderately strict checking. All checking done by st andar d, plus must modification

checking, rep exposure, return alias, memory management and complete interfaces.
strict

Absurdly strict checking. All checking done by checks, plus modifications and global
variables used in unspecified functions, strict standard library, and strict typing of C
operators. A special reward will be presented to the first person to produce areal program
that produces no errorswith st ri ct checking.

Checking Flags

These flags control checking done by LCLint. They may be set locally using syntactic comments,
from the command line, or in an optionsfile. Some flags directly control whether a certain class of
message is reported. Preceding the flag by + turns reporting on, and preceding the flag by - turns
reporting off. Other flags control checking less directly by determining default values (what
annotations are implicit), making types equivalent (to prevent certain type errors), controlling
representation access, etc. For these flags, the effect of + is described, and the effect of - isthe
opposite (or explicitly explained if there is no clear opposite). The organization of this section
mirrors Sections 3-10.

Key

To the left of each flag name is aflag descriptor encoding what kind of flag it isand its default
value. The descriptions are:

A plain flag. The value after the colon gives the default setting (e.g., thisflag is off.)

A mode checking flag. The value of the flag is set by the mode selector. The four signs give the
setting in the weak, standard, checks and strict modes. (e.g., thisflag is off in the weak and standard
modes, and on in the checks and strict modes.)

A shortcut flag. Thisflag sets other flags, so it has no default value.

Types

Abstract Types
i mp- abst ract

Implicit abst r act annotation for type declarations that do not use concr et e.
mut -rep

Representation of mutable type has sharing semantics.

Access (Section 3.1)
access- nodul e

An abstract type defined in M. h (or specified in M. | cl) isaccessiblein M. c.
access-file

An abstract type named type isaccessiblein filesnamed type. <extension>.
access-czech

An abstract type named type may be accessible in afunction named type name. (see

Section 9.1.1)
access- sl ovak

An abstract type named type may be accessible in afunction named typeName. (see
Section.9.1.2)

plain: -

shortcut

plain: -
plain:
unset
plain:
FALSE
plain:
TRUE
m:- - ++
m:- +++
m:++++

shortcut

plain: +

m- - -+
mi++- -

m:- - - +

m:- +++
mi- - - +

m:- - - +

58 LCLint User’s Guide Appendix

access-czechosl ovak
An abstract type named type may be accessible in afunction named type name or

typeName. (See Section 9.1.3)
access-al |

Setsaccess- nodul e,access-fil e andaccess-czech.

Boolean Types (Section 3.3)

These flags control the type name used to represent booleans, and whether the boolean typeis
abstract.

bool

Boolean typeis an abstract type.
bool type <name>

Set name of boolean typeto <name>.
bool f al se <name>

Set name of boolean false to <name>.
bool t rue <name>

Set name of boolean true to <name>.

Predicates
pr ed- bool -ptr
Type of condition test is a pointer.
pr ed- bool -i nt
Type of condition test is an integral type.
pr ed- bool - ot hers

Type of condition test is not a boolean, pointer or integral type.
pr ed- bool

Setspr edbool i nt, predbool ptr and pr ebool ot hers.

pred- assi gn
The condition test is an assignment expression. If an assignment is intended, add an extra
parentheses nesting (e.g.,i f ((a = b)) ..).

Primitive Operations
ptr-arith
Arithmetic involving pointer and integer.
ptr-negate
Allow the operand of the! operator to be a pointer.
bi t wi se-si gned
An operand to a bitwise operator is not an unsigned value. This may have unexpected results
depending on the signed representations.
shift-signed
The left operand to a shift operator is not an unsigned value.
strict-ops
Primitive operation does not type check strictly.
si zeof -t ype
Operand of si zeof operator isatype. (Safer to use expression, i nt *x = si zeof
(*x);instead of si zeof (int).)

plain: +

plain: +

plain: +

m:- +++

mi- +++

m:- +++

mi+- - -

mi+- - -
Mi++- -

mi+- - -

Annotations 59

Format Codes
f or mat - code
Invalid format code in format string for pri ntf1i ke or scanf | i ke function.
format -type
Type-mismatch in parameter corresponding to format codeinaprintfli ke or
scanf | i ke function.

Main

nmai n-type
Type of mai n does not match expected type (function returning ani nt , taking no
parameters or two parameters of typei nt andchar **))

Comparisons

bool - conpar e
Comparison between boolean values. Thisis dangerous since there may be multiple TRUE
valuesif any non-zero value isinterpreted as TRUE.

real - conpare
Comparison involving f | oat or doubl e values. Thisisdangerous sinceit may produce
unexpected results because floating point representations are inexact.

ptr-conpare
Comparison between pointer and number.

Type Equivalence

voi d- abst r act
Allow voi d * to match pointersto abstract types. (Casting a pointer to an abstract typeto a
pointer tovoi d isokay if +voi d- abst ract isset.)

cast-fcn-ptr

A pointer to afunction is cast to (or used as) a pointer to void (or vice versa).
f or war d- decl
~ Forward declarations of pointers to abstract representation match abstract type.
| Mp-type
A variable declaration has no explicit type. Thetypeisimplicitly int.
i nconpl ete-type
A formal parameter is declared with an incompletetype (e.g.,i nt[]1[]).
char - i ndex
Allow char toindex arrays.
enum i ndex
Allow members of enum type to index arrays.
bool -i nt
Makebool andi nt areequivalent. (No type errors are reported when a boolean is used
where an integral typeis expected and vice versa.)
char-int
Makechar andi nt typesequivaent
enum i nt
Make enumandi nt typesequivaent
fl oat - doubl e
Makef | oat and doubl e types equivalent
i gnore-qual s
Ignore type qualifiers (I ong, short, unsi gned).
rel ax- qual s

m- - - -

plain: -
mi+- - -
plain: -
plain: -

mi+- - -

plain: +
plain: -
plain: +

plain: -

plain: +

mi- - ++

shortcut

m:- - - +

m:- - - +

m:- - - +

m-- -+

60 LCLint User’s Guide Appendix

Report qualifier mismatches only if dangerous (information may be lost since alarger typeis
assigned to (or passed as) a smaller one or a comparison uses si gned and unsi gned

~ values)

i gnor e-si gns
Ignore signs in type comparisons (unsi gned matches si gned).

| ong-i nt egral
Allow long type to match an arbitrary integral type (e.g., dev_t).
| ong- unsi gned-i nt egr al
Allow unsigned long type to match an arbitrary integral type (e.g., dev_t).
mat ch- any-i nt egr al
Allow any integral type to match an arbitrary
| ong- unsi gned- unsi gned-i nt egr al
Allow unsigned long type to match an arbitrary unsigned integral type (e.g., si ze_t).
| ong- si gned-i nt egr al
Allow long type to match an arbitrary signed integral type (e.g., ssi ze_t).

numliteral

Integer literals can be used as floats.
char-int-literal

A character constant may beused asani nt .
zero-ptr

Litera 0 may be used as a pointer.
rel ax-types

Allow all numeric types to match.

Function Interfaces

Modification (Section 4.1)

nodi fi es
Undocumented modification of caller-visible state. Without +noduncon, modification
errors are only reported in the definitions of functions declared with a modifies clause (or
specified).

must - nod
Documented modification is not detected. An object listed in the modifies clause for a

function, is not modified by the implementation.
nod- uncon

Report modification errorsin functions declared without a modifies clause.(Sets nod-
nonods, nod- gl obs- nonbds and nod- st ri ct - gl obs- nonods.)

nod- nonods
Report modification errors (not involving global variables) in functions declared without a

modifies clause.
nod- uncon- nonods

An unconstrained function is called in afunction body where modifications are checked.
Since the unconstrained function may modify anything, there may be undetected

modifications in the checked function.
nod-internal -strict

A function that modifiesi nt er nal St at e is called from afunction that does not list
i nt er nal St at e inits modifies clause.
nod-fil e-sys
A function modifies the file system but does not list f i | eSyst emin its modifies clause.

Annotations

Global Variables (Section 4.2)

Errorsinvolving the use and modification of global and file static variables are reported depending
on flag settings, annotations where the global variableis declared, and whether or not the function
where the global is used was declared with a globals clause.

plain: + gl obs

Undocumented use of a checked global variable in afunction with aglobalslist.
m:++++ gl ob-use

A global listed in the globals list is not used in the implementation.
m:- - -+ gl ob-nogl obs

Use of achecked global in afunction with no globals list.
m:---+ 1internal -gl obs

Undocumented use of internal state (should have gl obal s i nt er nal St at e).
m:---+ i nternal - gl obs-nogl obs

Use of internal state in function with no globalslist.

m:- +++ gl ob-state

A function returns with global in inconsistent state (null or undefined)
m:--++ all-gl obs

Report use and modification errors for globals not annotated with unchecked.
m:++++ check-strict-gl obs

Report use and modification errorsfor checkedstri ct globals.

Modification of Global Vaniables
m:- +++ nod- gl obs

Undocumented modification of a checked global variable.

m:- - - + nod- gl obs-unchecked
Undocumented modification of an unchecked global variable.

m:- - - + nod- gl obs- nonods
Undocumented modification of a checked global variable in afunction with no modifies
clause.

m:---+ nod-strict-gl obs-nonods
Undocumented modification of acheckedst ri ct global variable in afunction declared
with no modifies clause.

Globals Lists and Modifies Clauses
mi- - -+ Wwar n-mi ssi ng- gl obs
Global variable used in modifies clauseis not listed in globalslist. (The global isadded to
the globals list.)
m:- - -+ warn-m ssi ng- gl obs- nogl obs
Global variable used in modifies clause of afunction with no globalslist.
m:- - ++ gl obs-i np- nods- not hi ng
A function declared with a globals list but no modifies clause is assumed to modify nothing.
m:---- nods-i np-nogl obs
A function declared with amodifies clause but no globals list is assumed to use no globals.

62 LCLint User’s Guide Appendix

Implicit Checking Qualifiers

m:---- 1 np-checked- gl obs
Implicit checked qualifier on global variables with no checking annotation.
m:---- 1 np-checked-statics

Implicit checked qualifier file static scope variables with no checking annotation.
m:---- 1 np-checknod- gl obs
Implicit checknod qualifier on global variables with no checking annotation.

m:---- 1 np-checknod-statics

Implicit checknod qualifier file static scope variables with no checking annotation.
m:---+ 1 np-checkedstrict-gl obs

Implicit checked qualifier on global variables with no checking annotation.
mi---+ 1 np-checkedstrict-statics

Implicit checked qualifier file static scope variables with no checking annotation.
m:- - ++ | np-checknod-internals

Implicit checknod qualifier on function scope static variables with no checking annotation.
m:- +++ i mp- gl obs-weak

Global Aliasing
shortcut gl ob-ali as
Function returns with global aliasing external state (setscheckstri ct-gl ob-al i as,
checked- gl ob- al i as, checknod- gl ob-al i as andunchecked- gl ob-al i as).
m:- +++ checkstrict-gl ob-alias
Function returnswith acheckstri ct global aiasing externa state.
m:- +++ checked- gl ob-ali as
Function returns with achecked global aliasing externa state.
m:- +++ checknmod- gl ob-ali as
Function returns with achecknod global aliasing external state.
m:- - ++ unchecked- gl ob-al i as
Function returns with an unchecked global aiasing external state.

Declaration Consistency (Section 4.3)
m:- +++ 1 ncon-defs
Identifier redeclared or redefined with inconsistent type.
m:- +++ 1 ncon-defs-1lib
Identifier defined in alibrary is redefined with inconsistent type
m:---- overl oad

Standard library function overloaded.
m:- +++ match-fields

A st ruct or enumtypeis redefined with inconsistent fields or members.

m:- +++

m---+

mi- +++

m:- - - +

m:- - ++

m:- +++

m:- +++

m:- - - +

Annotations

Memory Management

Reporting of memory management errors is controlled by flags setting checking and implicit
annotations and code annotations.

Deallocation Errors (Section5.2)
use-rel eased

Storage used after it may have been rel eased.
strict-use-rel eased

An array element used after it may have been released.

Inconsistent Branches
branch-state
Storage has inconsistent states of alternate paths through a branch (e.g., it isreleased in the

true branch of an if-statement, but there is no else branch.)
strict-branch-state

Storage through array fetch hasinconsistent states of alternate paths through a branch. Since
array elements are not checked accurately, this may lead to spurious errors.

dep- arrays
Treat array elements asdependent storage. Checking of array elements cannot be done
accurately by LCLint. If dep- ar r ays isnot set, array elements are assumed to be
independent, so code that rel eases the same element more than once will produce no error. If
dep- arr ays isset, array elements are assumed to be dependent, so code that releases the
same element more that once will produce an error, but so will code that releases different
elements correctly will produce a spurious error.

Memory Leaks
nust -free
Allocated storage was not released before return or scope exit Errors are reported for onl y,

f r esh or owned storage.
conp- destroy

All only references derivable fromout onl y parameter of typevoi d * must be released.
(Thisisthe type of the parameter to f r ee, but may also be used for user-defined

deall ocation functions.)
strict-destroy

Report complete destruction errors for array elements that may have been released. (If
strict-destroy isnotset, LCLint will assumethat if any array element was released,
the entire array was correctly released.)

63

64 LCLint User’s Guide Appendix

Transfer Errors

A transfer error is reported when storage is transferred (by an assignment, passing a parameter, or
returning) in away that isinconsistent.

shortcut NMemMtrans

Sets all memory transfer errors flags.
m:- +++ only-trans

Only storage transferred to non-only reference (memory leak).
m:- +++ ownedtrans

Owned storage transferred to non-owned reference (memory |eak).
m:- +++ fresh-trans

Newly-allocated storage transferred to non-only reference (memory leak).
m:- +++ sShared-trans

Shared storage transferred to non-shared reference
m:- +++ dependent-trans

Inconsistent dependent transfer. Dependent storage is transferred to a non-dependent

reference.

m:- +++ tenp-trans
Temporary storage (associated with at enp formal parameter) is transferred to anon-
temporary reference. The storage may be released or new aliases created.

m:- +++ kept-trans

Kept storage transferred to non-temporary reference.
m:- +++ keep-trans

Keep storage istransferred in away that may add a new aliastoit, or release it.
m:- +++ refcount-trans

Reference counted storage is transferred in an inconsistent way.
m:- +++ newr ef-trans

A new reference transferred to a reference counted reference (reference count is not set

correctly).
m:- +++ | medi at e-trans

An immediate address (result of &) istransferred inconsistently.
m:- +++ Static-trans

Static storage istransferred in an inconsistent way.
mi- +++ expose-trans
Inconsistent exposure transfer. Exposed storage is transferred to anon-exposed, non-
obser ver reference.
m:- +++ oObserver-trans
Inconsistent obser ver transfer. Observer storage is transferred to a non-observer reference.
m:- +++ unqualified-trans
Unqualified storage is transferred in an inconsistent way.

Initializers
m:- - ++ only-ung-gl obal -trans
Only storage transferred to an unqualified global or static reference. Thismay lead to a

memory leak, since the new reference is not necessarily released.
m:--++ sStatic-init-trans

Static storage isused as an initial value in an inconsistent way.
m:--++ unqualified-init-trans
Unqualified storageis used as an initial value in an inconsistent way.

Dernived Storage
m:- +++ CONMp- Mem pass

m:++++

plain: +
plain: +
plain: +
plain: +
shortcut

m:- +++

m:- +++

m:- +++

m:- +++

m:- - ++

Annotations

Storage derivable from a parameter does not match the alias kind expected for the formal
parameter.

Stack References

st ack-ref
A stack reference is pointed to by an external reference when the function returns. Since the
call frame will be destroyed when the function returns the return value will point to dead
storage. (Section 5.2.6)

Implicit Memory Annotations (Section 5.3)
gl ob-i np-only
Assume unannotated global storageisonly.
param i np-tenp
Assume unannotated parameter ist enp.
ret-inmp-only
Assume unannotated returned storageisonl y.
struct-inp-only
Assume unannotated structure or union fieldisonl y.
code-inp-only
Setsgl ob-i nmp-only,ret-inp-onlyandstruct-inp-only.
mem i np
Report memory errors for unqualified storage.
pass- unknown
Passing a value as an unannotated parameter clears its annotation. Thiswill prevent many
spurious errors from being report for unannotated programs, but eliminates the possibility of
detecting many errors.

Sharing

Aliasing (Section 6)

al i as-uni que
An actual parameter that is passed asauni que formal parameter is aliased by another
parameter or global variable.

may- al i as- uni que
An actual parameter that is passed asauni que formal parameter may be aliased by another

parameter or global variable.
nmust - not - al i as

An alias has been added to at enp-qualifier parameter or global that is visible externally

when the function returns.
ret-alias

A function returns an alias to parameter or global.

65

shortcut

mi- - ++
mi- - ++

mi- - ++

plain: +

m:- - - +

mi- - ++

m:- +++

m:- +++

66 LCLint User’s Guide Appendix

Exposure (Section 6.2)

r ep- expose
Theinternal representation of an abstract typeisvisible to the caller. This means clients may
have access to a pointer into the abstract representation. (Setsassi gn- expose,ret -
expose, and cast - expose.)

assi gn- expose
Abstract representation is exposed by an assignment or passed parameter.

cast - expose

Abstract representation is exposed through a cast.
ret - expose

Abstract representation is exposed by areturn value.

Observer Modlifications
nod- obser ver

Possible modification of observer storage.
nod- obser ver - uncon

Storage declared with observer may be modified through a call to an unconstrained function.

String Literals (Section 6.2.1)

read-only-trans
Report memory transfer errors for initializations to read-only string literals

read-onl y-strings
String literals are read-only (ANSI semantics). An error isreported if astring literal may be
modified or released.

Use Before Definition (Section 7.1)
use- def
~ Thevalue of alocation that may not be initialized on some execution path is used.
| mp-outs
Allow unannotated pointer parameters to functions to be implicit out parameters.
conp- def
.Stora%e ?erivabl e from a parameter, return value or global variableis not completely defined.
uni on- de

No field of aunion isdefined. (No error isreported if at least one union field is defined.)
nmust - def i ne

Parameter declared with out is not defined before return or scope exit.

Null Pointers (Section 7.2)
nul |

A possibly null pointer may be dereferenced, or used somewhere a non-null pointer is
expected.

Annotations

Macros (Section 8)
These flags control expansion and checking of macro definitions and invocations.

Macro Expansion

These flags control which macros are checked as functions or constants, and which are expanded in
the pre-processing phase. Macros preceded by / * @ot f uncti on@/ are never expanded
regardless of these flag settings. These flags may be used in source-file control comments.

plain:- fcn-nmacros
Macros defined with parameter lists are not expanded and are checked as functions.
plain:- const-nmacros
Macros defined without parameter lists are not expanded and are checked as constants.
shortcut al | - macros
Setsf cn- macr os and const - macr os.
plain:- |ib-macros
Macros defining identifiers declared in aloaded library are not expanded and are checked
according to the library information.

Macro Definitions
These flags control what errors are reported in macro definitions.

m:- +++ NMacro-stnt
Macro definition is not syntactically equivalent to function. Thismeansif the macrois used
asadstatement (e.g.,i f (test) nmcro() ;) unexpected behavior may result. Onefix is
to surround the macro body withdo { ...} while (FALSE).

m:- +++ [ITAcr 0- par ans
A macro parameter is not used exactly once in all possible invocations of the macro.

m:- +++ [ITACro- assi gn
A macro parameter is used as the left side of an assignment expression.

m:- +++ [TACr O- par ens
A macro parameter is used without parentheses (in potentially dangerous context).

mi---+ acro-enpty
Macro definition of afunction is empty.

m:- +++ macr o-r edef
Macro isredefined. Thereis another macro defined with the same name.

m:- +++ [ITACT O- unr ecog
An unrecognized identifier appearsin amacro definition. Since the identifier may be
defined where the macro is used, this could be okay, but LCLint will not be able to check the
unrecognized identifier appropriately.

68 LCLint User’s Guide Appendix

Corresponding Declarations
mi++++ Macr o- mat ch- nane
Aniter orconstant macro isdefined using a different name from the one used in the

previous syntactic comment
shortcut nacr o- decl

A macro definition has no corresponding declaration. (Setsmacr of cndecl and

nmacr oconst decl .)
m:- +++ macro-f cn-decl

Macro definition with parameter list has no corresponding function prototype. Without a

prototype, the types of the macro result and parameters are unknown.
m:- +++ Mmacr o- const - decl

A macro definition without parameter list has no corresponding constant declaration.
plain: + next-1ine-macros

A constant or iter declaration is not immediately followed by a macro definition.

Side-Effect Free Parameters (Section 8.2.1)

These flags control error reporting for parameters with inconsistent side-effects in invocations of
checked function macros and function calls.

m:- +++ sef-parans

An actual parameter with side-effects is passed as aformal parameter declared with sef .
m:- - ++ sef-uncon

An actual parameter involving a call to an unconstrained function (declared without modifies
clause) that may modify anything is passed asasef parameter.

Iterators
plain: - has-yield
An iterator has been declared with no parameters annotated with yi el d.

Naming Conventions

plain: + nane- checks
Turns all name checking on or off without changing other settings.

Type-Based Naming Conventions (Section 9.1)

Czech Naming Convention
shortcut czech
Selects complete Czech naming convention (setsaccess- czech, czech-f cns,
czech-vars,czech-consts,czech-macros,andczech-t ypes).
plain: + access-czech
Allow access to abstract types following Czech naming convention. The representation of an
abstract type named t is accessible in the definition of afunction or constant named

t name.
plain:- czech-fcns

Function or iterator name is not consistent with Czech naming convention.
plain: - czech-vars

Variable name is not consistent with Czech naming convention.

plain:- czech-nmacros

Expanded macro name is not consistent with Czech naming convention.
plain: - czech-consts

plain: -

shortcut

plain: -

plain: -
plain: -
plain: -
plain: -

plain: -

shortcut

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: +

plain: -

Annotations

Constant name is not consistent with Czech naming convention.
czech-types

Type nameis not consistent with Czech naming convention. Czech type names must not
use the underscore character.

Slovak Naming Convention
sl ovak
Selects complete Slovak naming convention (setsaccess- sl ovak, sl ovak- f cns,
sl ovak-vars, sl ovak- const s, sl ovak- macr os, and sl ovak- t ypes).
access- sl ovak
Allow access to abstract types following Slovak naming convention. The representation of an
abstract type named t is accessible in the definition of afunction or constant named tName.
sl ovak-fcns

Function or iterator name is not consistent with Slovak naming convention.
sl ovak- macr os

Expanded macro name is not consistent with Slovak naming convention.
sl ovak-vars

Variable nameis not consistent with Slovak naming convention.
sl ovak- const s
Constant name is not consistent with Slovak naming convention.
sl ovak-types
Type nameis not consistent with Slovak naming convention. Slovak type names may not
include uppercase letters.

Czechoslovak Naming Convention

czechosl ovak
Selects complete Czechoslovak naming convention (setsaccess- czechosl ovak,
czechosl ovak-fcns, czechosl ovak- var s, czechosl ovak- const s,
czechosl ovak- macr os, and czechosl ovak-t ypes).

access-czechosl ovak
Allow access to abstract types by Czechoslovak naming convention. The representation of an
abstract type named ¢ is accessible in the definition of afunction or constant named ¢ name

or tName.
czechosl ovak-fcns

Function name is not consistent with Czechoslovak haming convention.
czechosl ovak- nacr os

Expanded macro name is not consistent with Czechoslovak naming convention.
czechosl ovak-vars

Variable nameis not consistent with Czechoslovak naming convention.
czechosl ovak-consts

Constant name is not consistent with Czechoslovak naming convention.
czechosl ovak-types

Type nameis not consistent with Czechoslovak naming convention. Czechoslovak type
names may not include uppercase letters or the underscore character.

Namespace Prefixes (Section9.2)
macr o-var-prefix <prefix string>

Set namespace prefix for variables declared in amacro body. (Defaultism .)
nmacr o- var - pr ef i x- excl ude

A variable declared outside a macro body starts with the macr o- var - pref i x.
tag-prefi x <prefix string>

Set namespace prefix of st ruct , uni on or enumtag identifiers.
t ag- prefi x- excl ude

69

plain:

plain:

plain:

plain:

plain:

plain:

plain:

plain:

plain:

70 LCLint User’s Guide Appendix

Anidentifier that is not atag startswith thet agpr ef i x.
enum prefix <prefix string>

Set namespace prefix for enummembers.
enum pr ef i x- excl ude

Anidentifier that is not an enummember starts with the enunpr ef i x.
file-static-prefix <prefix string>

Set namespace prefix for filest at i ¢ declarations.
file-static-prefix-exclude

Anidentifier that is not file static startswiththef i | est ati cprefi x.
gl obal -prefix <prefix string>

Set namespace prefix for global variables.
gl obal - prefi x-excl ude

Anidentifier that is not aglobal variable starts with the gl obal prefi x.
type-prefix <prefix string>

Set namespace prefix for user-defined types.
type- prefix-excl ude

An identifier that is not atype name startswith thet ypepr ef i x.
external -prefix <prefix string>

Set namespace prefix for external identifiers.
ext ernal - prefix-excl ude

Anidentifier that is not external starts with the ext er nal prefi x.
| ocal -prefix <prefix string>

Set namespace prefix for local variables.
| ocal - prefix-exclude
Anidentifier that is not alocal variable startswith thel ocal prefi x.
unchecked-macro-prefi X <prefix string>
Set namespace prefix for unchecked macros.
unchecked- macr o- pr ef i x- excl ude
An identifier that is not the name of an unchecked macro starts with the
uncheckedmacr opr ef i x.
const-prefi x <prefix string>

Set namespace prefix for constants.
const - prefi x- excl ude

An identifier that is not a constant starts with the const ant pref i x.
iter-prefix <prefix string>

Set namespace prefix for iterators.
iter-prefix-exclude

Anidentifier thatisnot ani t er startswiththeit erprefi x.

plain: -

mi- - ++

m---+

mi- +++

m:- - ++
m:- - - +

mi- - ++

plain: -

plain: 6

plain: -

plain: 31

plain: -

plain: -

Annotations

prot o- param prefi X <prefix string>

Set namespace prefix for parameters in function prototypes.
pr ot o- par am prefi x- excl ude

An identifier that is not a parameter in afunction prototype starts with the
pr ot opr ar npr ef i x.
pr ot o- par am name

A parameter in afunction prototype has a name (can interfere with macro definitions).
pr ot o- param mat ch

The name of a parameter in afunction definition does not match the corresponding name of
the parameter in a function prototype (after removing the pr ot opar anpr ef i x).

Naming Restrictions (Section 9.3)
shadow
Declaration reuses name visible in outer scope.

Reserved Names
ansi -reserved

External name conflicts with name reserved for the compiler or standard library.
ansi -reserved-i nt ernal

Internal name conflicts with name reserved for the compiler or standard library.
cpp- nanmes

Internal or external name conflicts with a C++ reserved word. (Will cause problemsiif
program is compiled with a C++ compiler.)

Distinct External Names
di sti nct - ext ernal - nanes
An external name is not distinguishable from another external name using

ext er nal nanel en significant characters.

ext ernal - nanme-1 en <number>
Sets the number of significant charactersin an external name (ANSI default minimum is 6).
Sets+di st i nct - ext er nal - nanes.

ext er nal - name- case-insensitive
Make alphabetic case insignificant in external names. According to ANSI standard, case
need not be significant in an external name. If +di sti nct - ext er nal - nanes isnot set,
sets+di st i nct - ext er nal - names with unlimited external name length.

Distinct Intemal Names
di stinct-internal -names
An internal name is not distinguishable from another internal name using
i nt er nal nanel en significant characters. (Also effected by i nt er nal - nane- case-
i nsensitiveandinternal -nane-| ookal i ke.)
i nt ernal - name-1 en <number>
Set the number of significant charactersin an internal name. Sets +di sti nct -
i nternal - names.
i nt ernal - nane-case-insensitive
Set whether caseis significant an internal names (- i nt er nal - nane- case-
i nsensi tive meanscaseissignificant). If +di sti nct-i nternal - names isnot set,
sets+di st i nct -i nt er nal - names with unlimited internal name length.
i nt ernal - nane- | ookal i ke
Set whether similar looking characters (e.g., “1” and “I ") match in internal names.

71

72 LCLint User’s Guide Appendix

Other Checks

Undefined Evaluation Order (Section 10.1)
m:- +++ eval - order
Behavior of an expression is unspecified or implementati on-dependent because sub-

expressions contain interfering side effects that may be evaluated in any order.
m:---+ eval -order-uncon

An expression may be undefined because a sub-expression contains acall to an
unconstrained function (no modifies clause) that may modify something that may be
modified or used by another sub-expression.

Problematic Control Structures (Section 10.2)
m:- +++ 1 nf-1oops
Likely infinite loop is detected (Section 10.2.1).
m:- - ++ 1 nf-1oops-uncon
Likely infinite loop is detected. Loop test or body calls an unconstrained function that may

produce an undetected modification.
m---+ elseif-conplete

Thereisno finas else following an else if construct (Section 10.2.5).
m:- +++ case- break

Thereis anon-empty case in aswitch not followed by abr eak (Section 10.2.2).

m:- +++ M Ss-case
A switch on an enumtype is missing a case for amember of the enumerator.

m:---- | oop-exec
Assume al loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to always execute to prevent spurious messages.

Deep Break (Section10.2.3)
shortcut deep- break
Report errorsfor br eak statementsinside anested whi | e, f or or swi t ch. (Setsal nested

break and continue flags.)
m:- - ++ | oop- | oop- br eak

Thereisabr eak insideawhi | e, f or or iterator loop that isinside awhi | e, f or or
iterator loop. Mark with/ * @ nner br eak @/ to suppress the message.

m:- - ++ Sw tch-1 oop-break
Thereisabr eak insideawhi | e, f or or iterator loop that isinside aswi t ch statement.
Mark with/ * @ oopbr eak@/ .

m:---+ | oop-switch-break
Thereisabr eak insideaswi t ch statement that isinsideawhi | e, f or or iterator loop.
Mark with /* @wi t chbr eak @/ .

m-- -+
m:- - -+
shortcut
shortcut
m:- - ++
mi- - - +
mi- - - +
mi- - - +
m:++++
m:- - - +
m:- +++
m:- +++
m-- -+
m:- +++

Annotations 73

swi t ch-swi t ch- break
Thereisabr eak inside aswi t ch statement that isinside another swi t ch statement. Mark
with / *@ nner break@/ .

| oop-1 oop-conti nue
Thereisacont i nue inside awhile, for or iterator loop that isinside awhile, for or iterator
loop. Mark with/ * @ nner conti nue@/ .

Loop and if Bodies (Section 10.2.4)

all -enmpty
Anif, while or for statement has no body (setsi f - enpt y, whi | e- enpty andf or -
enpty.)

al | - bl ock
Thebody of ani f,whi | e or f or statement isnot ablock (setsi f - bl ock, whi | e-
bl ock and f or - bl ock.)

whi | e-enpty

A while statement has no body.
whi | e- bl ock

The body of awhi | e statement is not a block
for-enpty

A f or statement has no body.
for-bl ock

The body of af or statement is not a block.
if-enpty

An if statement has no body.
i fbl ock

Thebody of ani f statement isnot a block.

Suspicious Statements (Section 10.3)
unr eachabl e

Codeis not reached on any possible execution.
noef f ect

Statement has no effect.
noef f ect - uncon

Statement involving call to unconstrained function may have no effect.
nor et

Thereisapath with nor et ur n in afunction declared to return anon-voi d value.

74 LCLint User’s Guide Appendix

Ignored Return Values (Section 10.3.2)

These flags control when errors are reported for function calls that do not use the return value.
Casting the function call to voi d or declaring the called functiontoreturn/* @l t voi d@/ .

m:- +++ ret-val - bool
Return value of type bool ignored.
mi- +++ ret-val-int
Return value of typei nt ignored.
mi++++ ret-val -other
Return value of type other than bool ori nt ignored.
shortcut ret-val
Return valueignored (Setsr et val bool ,retvalint,retval ot her.)

Unused Declarations (Section 10.4)

These flags control when errors are reported for declarations that are never used. The unused
annotation can be used to prevent unused errors from being report for a particular declaration.

m:---+ top-use

An externa declaration is not used in any file.
m:- +++ Cconst-use

Constant never used.
m:- +++ enum nem use

Member of enumerator never used.
m:++++ var-use

Variable never used.
m:- +++ paramuse

Function parameter never used.
m:++++ fcn-use

Function is never used.
m:++++ type-use

Defined type never used.
m:- +++ field-use

Field of structure or union typeis never used.
m:---+ unused-speci al

Declaration in aspecia file (correspondingto . | or. y file) is unused.

Complete Programs (Section 10.5)
m:- - ++ decl - undef
Function, variable, iterator or constant declared but never defined.
shortcut parti al
Check as partial system (sets- decl - undef , - export -1 ocal and prevents checking of
macros in headers without corresponding . c files.)

Exports
m:---+ export-| ocal
A declaration is exported but not used outside this module. (Declaration can use the
st ati c quaifier.)
mi- - ++ export - header

A declaration (other than a variable) is exported but does not appear in a header file.
m:- - ++ export-header-var

A variable declaration is exported but does not appear in a header file.

plain: +
plain: +

plain: -

plain: +
mi- - ++

m:- +++

m:- - ++
m:- - - +

mi- +++

plain: +

shortcut

m:- - - +
15

m:- - - +
509
m:- - - +
127
m- - - +
127
m:- - ++

plain: +

plain: +

Annotations

Unrecognized Identifiers
unr ecog
An unrecognized identifier is used.
Sys-unrecog
Report unrecognized identifiers that start with the system prefix, _ (two underscores).
repeat - unr ecog
Report multiple messages for unrecognized identifiers. If r epeat unr ecog isnot set, an
error is reported only the first time a particular unrecognized identifier appearsin thefile.

Multiple Definition and Declarations
r edef

A function or variable is defined more than once.
redecl

An identifier is declared more than once.
nest ed- extern

An ext er n declaration is used inside a function body.

ANSI C Conformance
nopar ans
A function is declared without a parameter list prototype.
ol d-style
[Function definition isin old style syntax. Standard prototype syntax is preferred.
exit-arg
Argument to exi t hasimplementation defined behavior. The only valid argumentsto exi t
are EXI T_SUCCESS, EXI T_FAI LURE and 0. An error isreported if LCLint can detect
statically that the argument to exi t is not one of these.
use-var-args
Report if <var ar gs. h>isused (should use st dar g. h).

Limits (Section 10.6)
ansi-limts
Check for violations of standard limits (Setscont r ol - nest - dept h, stri ng-

literal-1en,include-nest,numstruct-fields,andnum enum nmenbers).

control - nest-depth <number>
Set maximum nesting depth of compound statements, iteration control structures, and
selection control structures (ANSI minimum is 15).
string-literal-len <number>
Set maximum length of string literals (ANSI minimum is 509).
num struct-fields <number>
Set maximum number of fieldsinast ruct or uni on (ANSI minimum is 127).
num enum menber s <number>
Set maximum number of members of an enumtype (ANSI minimum is 127).
i ncl ude- nest <number>
Set maximum number of nested #i ncl ude files (ANSI minimum is 8).

Header Inclusion (Appendix F)

ski p- ansi - header s
Prevent inclusion of header filesin a system directory with names that match standard ANSI
headers. The symbolic information in the standard library isused instead. In effect only if a
library that includes the ANSI library isused. The ANSI headers are: assert, ct ype,
errno,float,limts,|ocal e,mat h,setjnp,signal,stdarg,stddef,stdio,
stdlib,strings,string,tine,andwchar.

ski p- posi x- header s

75

plain: +

plain: -

plain: +

m---+

global: -

global: -

plain: @

plain: -
plain: -
plain: +

plain: +

m:- +++

plain: +

76 LCLint User’s Guide Appendix

Prevent inclusion of header filesin a system directory with names that match standard
POSIX headers. The symbolic information in the standard library is used instead. In effect
only if alibrary that includes the POSIX library isused. The POSIX headersare: di r ent ,
fentl, grp, pwd,term os,sys/stat,sys/tines,sys/types,sys/utsnane,
sys/wai t,uni std,anduti ne.

war n- posi x- header s
Report use of a POSIX header when checking a program with anon-POSIX library.

ski p-sys- headers
Prevent inclusion of all header filesin system directories.
sys-di r - expand- macr os
Expand macros in system directories regardless of other settings, except for macros
corresponding to names defined in aload library.
sys-dir-errors
Report errorsin filesin system directories (set by - sys-di r s).

si ngl e-i ncl ude

Optimize header inclusion to only include each header file once.
never-incl ude

Use library information instead of including header files.

Comments
These flags control how syntactic comments are interpreted (see Appendix E).

coment - char <char>
Set the marker character for syntactic comments. Comments beginning with / * <char> are
interpreted by LCLint.

noaccess

I gnore access comments.
nocomrent s

Ignore al stylized comments.
sup-counts
Actual number of errors does not match number in/ * @ <n>@/
lint-coments
Interpret traditional lint comments (/ * FALLTHROUGH*/ , / * NOTREACHED* /
/ * PRI NTFLI KE* /).
war n-1int-coments

Print awarning and suggest an alternative when atraditional lint comment is used.
unr ecog- conment s

Stylized comment is unrecogni zed.

plain: -

plain: +

plain: +

plain: +

plain: +

plain: +

plain: -

plain: +
plain: +

plain: +

plain: -

plain: +

Annotations 77

Parsing

cont i nue- comrent
A line continuation marker (\) appears inside a comment on the same line as the comment
close. Preprocessors should handle this correctly, but it causes problems for some
preprocessors.

nest - comrent
A comment open sequence (/ *) appears inside acomment. This usually indicates that an

earlier comment was not closed.
dupl i cate-qual s
Report duplicate type qualifiers (e.g., | ong | ong). Duplicate type qualifiers not supported
by ANSI, but some compilers (e.g., gcc) do support duplicate qualifiers.
gnu- ext ensi ons
Support some GNU (gcc) and Microsoft language extensions.

Array Formal Parameters

These flags control reporting of common errors caused by confusion about the semantics of array

formal parameters.
si zeof -formal -array

Thesi zeof operator is used on aparameter declared as an array. (In many instances this
has unexpected behavior, since the result is the size of a pointer to the element type, not the
number of elementsin the array.)

fixed-formal -array
An array formal parameter is declared with afixed size (e.g.,i nt x[20]). Thisislikely to

be confusing, since the sizeisignored.
formal -array

A formal parameter is declared as an array. Thisis probably not a problem, but can be
confusing sinceit is treated as a pointer.

General Checks

These flags should probably not be set globally since they turn off general checks that should
always be done. They may be used locally to suppress spurious errors.

abstract

A data abstraction barrier is violated.
contr ol

A control flow error is detected.

synt ax
Parse error.

try-to-recover
Try to recover fromaparseerror. If tryt or ecover isnot set, LCLint will abort checking
after aparse error is detected. If itisset, LCLint will attempt to recover, but LCLint does
performs only minimal error recovery. Itislikely that trying to recover after a parse error
will lead to an internal assertion failing.

type
Type mismatch.

78 LCLint User’s Guide Appendix

Flag Name Abbreviations

Within a flag name, abbreviations may be used. Table 2 shows the flag name abbreviations. The
expanded and short forms are interchangeable in flag names.

For example, gl obsi npnodsnot hi ng and gl obal si npl i esnodi fi esnot hi ng denote
the same flag. Abbreviationsin flag names allow pronounceable, descriptive names to be used
without making flag names excessively long (although one must admit even

gl obsi npnodsnot hi ng isabit of amouthful.)

To make flag names more readable, the space, dash (-), and underscore (_) characters may be used
inside aflag name. So, gl obal s-i npl i es-nodi fi es- not hi ng,
gl ob_i nps_nodsnot hi ng and gl obsi nprnodsnot hi ng are equivalent.

Expanded Form Short Form
const ant const
decl arati on decl
function fcn
gl obal gl ob
inplicit,inplied i p
iterator iter
| ength I en
nodi fi es nods
nodi fy nmod
nenory nmem
par anet er param
poi nt er ptr
return ret
vari abl e var
unconstr ai ned, unconst uncon

Table 2. Flag name abbreviations.

(MY QUALTTY ASSURANCE "] =|{TVE CLASSIFIED THE BUGS ||| (TALL T SEE ARE LETRAL |
REVIEL) OF YOUR BETA Sl BY SEVERITY: 1)LETHAL, |[£ l. BND VEXIMG. LUHERES
PRODUCT TURMNED UP A | 3| 3) BONEHEADED, 3) VE‘.R'LNE-J 5 LBDNEHEP\DEDT
FEL) BUGS, LWALLY. j—) H e — L — |
o ||[. —IE _'"| | ! \ T—z‘ il M TRYING TO

|| ' I s Fl RENT A STADTUM
| | IU___ 3 IF l I| TO HOLD THE
S —] i =
@ —J_jﬂ{ | | : PRINTOUT.
HE“L é — - h“___:F_p o j?:.‘ JI N

Copyright 2 1995 United Feature Syndicate, Inc.
Fedistribution in whole or in part prohibited

Annotations 79

Appendix D Annotations

The grammar below isthe C syntax from [K& R,A13] modified to show the syntax of syntactic
comments. Only productions effected by L CLint annotations are shown. In the annotations, the @
represents the comment marker char, set by - corment char (defaultis @.

Functions

direct-declarator:
direct-declarator (parameter-type-list,,) specials.y globals,, modifies,,
| direct-declarator (identifier-list,,) specialsy globals,, modifiesy

specials: (Section 7.4)
| * @pecial-tag specitem,” ; ,, @/

special-tag: uses | sets |defines |al | ocat es |rel eases | state-tag: state-clause
state-tag: pr e | post

state-clause: onl y | shar ed | owned | dependent | observer | exposed
|isnull | notnull

globals: (Section 4.2)
| * @ obal s globitem,” ; ., @/
| 1 * @l obal s declaration-list,p ; oy @/

globitem:
globannot” identifier
| internal State
| fileSystem

globannot: undef | kil l ed

modifies: (Section 4.1)
I * @wodi f i es moditem,” ; 5 @/
| /*@modifies nothing ;. @/
| /1*@/ (Abbreviation for no globals and modifies nothing.)

moditem:
expression
| internal State
| fileSystem

80 LCLint User’s Guide Appendix

Iterators (Section 8.4)

The globals and modifies clauses for an iterator are the same as those for a function, except they are
not enclosed by a comment, since the iterator is aready a comment.

direct-declarator:
I * @t er identifier (parameter-type-list,,) iter-globals,, iter-modifies, @ |

iter-globals:
gl obal s declaration-list,p,; op:

iter-modifies:
modi fi es moditem,+ ; .
| modi fies nothing ;.

Constants (Section 8.1)

external-declaration:
| * @onst ant declaration ; ,,, @/

Alternate Types (Section 8.2.2)
Alternate types may be used in the type specification of parameters and return values.

extended-type:
type-specifier alt-type,p,

alt-type:
I *@l t basic-type,” @/

Declarator Annotations

General annotations appear after storage-class-specifiers and before type-specifiers. Multiple
annotations may be used in any order. Here, annotations are without the surrounding comment. In
a declaration, the annotation would be surrounded by / * @and @/ . In aglobals or modifies clause
or iterator or constant declaration, no surrounding comments would be used since they are within a
comment.

Type Definitions (Section 3)

A type definition may use any either abst r act or concr et e, either mut abl e or i nmrut abl e,
and r ef count ed. Only apointertoast ruct may be declared with r ef count ed. Mutability
annotations may not be used with concrete types since concrete types inherit their mutability from
the actual type.

abstract

Typeis abstract (representation is hidden from clients).
concrete

Typeis concrete (representation is visible to clients).

Annotations

i mut abl e

Instances of the type cannot change value. (Section 3.2)
nmut abl e

Instances of the type can change value. (Section 3.2)
r ef count ed

Reference counted type. (Section 5.4)

Global Variables (Section4.2.1)
One check annotation may be used on a global or file-static variable declaration.

unchecked

Weakest checking for global use.
checknod

Check modification by not use of global.
checked
Check use and modification of global.
checkedstri ct
Check use of global, even in functions with no global list.

Memory Management (Section 1)
dependent
A reference to externally-owned storage. (Section 5.2.2)
keep
A parameter that is kept by the called function. The caller may use the storage after the call,

but the called function is responsible for making sure it is deallocated. (Section 5.2.4)
killref

A r ef count ed parameter. Thisreferenceiskilled by the call. (Section 5.4)
only
An unshared reference. Associated memory must be released before reference islost.

(Section 5.2)
owned

Storage may be shared by dependent references, but associated memory must be released

before this referenceislost. (Section 5.2.2)
shar ed

Shared reference that is never deallocated. (Section 5.2.5)

tenp
A temporary parameter. May not be released, and new aliasesto it may not be created.
(Section 5.2.2)

Aliasing (Section 6)
Both alias annotations may be used on a parameter declaration.

uni que
Parameter that may not be aliased by any other reference visible to the function.

(Section 6.1.1)
ret urned

Parameter that may be aliased by the return value. (Section 6.1.2)

81

82 LCLint User’s Guide Appendix

Exposure (Section6.2)
observer

Reference that cannot be modified. (Section 6.2.1)
exposed
Exposed reference to storage in another object. (Section 6.2)

Definition State (Section7.1)
out
~ Storage reachable from reference need not be defined.
in
All storage reachable from reference must be defined.
parti al
Partially defined. A structure may have undefined fields. No errors reported when fields are

used.
rel def

Relax definition checking. No errors when referenceis not defined, or when it is used.

Global State (Section7.1.2)

These annotations may only be used in globalslists. Both annotations may be used for the same
variable, to mean the variable is undefined before and after the call.

undef

Variable is undefined before the call.
killed

Variable is undefined after the call.

Null State (Section 7.2)
nul |

Possibly null pointer.
not nul |

Non-null pointer.
rel null

Relax null checking. No errorswhen NULL is assigned to it, or when it is used as a non-null
pointer.

Null Predicates (Section7.2.1)

A null predicate annotation may be used of the return value of afunction returning a boolean type,
taking a possibly-null pointer for its first argument.

truenul |

If result is TRUE, first parameter isNULL.
fal senul |

If result is TRUE, first parameter isnot NULL.

Annotations 83

Execution (Section 7.3)

Theexits,mayexit and never exi t s annotations may be used on any function. The
trueexit andf al seexit annotations may only be used on functions whose first argument isa
boolean.

exits

Fung:tion never returns.
mayexi t

Function may or may not return.
trueexit

Function does not return if first parameter is TRUE.
fal seexit

Function does not return if first parameter if FALSE.
neverexit

Function always returns.

Side-Effects (Section8.2.1)
sef
Corresponding actual parameter has no side effects.

Declaration
These annotations can be used on a declaration to control unused or undefined error reporting.

unused

Identifier need not be used (no unused errors reported.) (Section 10.4)
ext er nal

Identifier is defined externally (no undefined error reported.) (Section 10.5)

Case

fallthrough
Fall-through case. No message is reported if the previous case may fall-through into the one
immediately after thef al | t hr ough.

Break (Section10.2.3)
These annotations are used before abr eak or cont i nue statement.

i nner br eak
Break is breaking an inner loop or switch.
| oopbr eak

Break is breaking aloop.
swi t chbr eak

Break is breaking a switch.
i nnerconti nue

Continue is continuing an inner loop.

84 LCLint User’s Guide Appendix

Unreachable Code
This annotation is used before a statement to prevent unreachable code errors.

not r eached
Statement may be unreachable.

Special Functions (Appendix E)
These annotations are used immediately before afunction declaration.

printflike

Check variable argumentslike pri nt f library function.
scanfli ke

Check variable argumentslike scanf library function.

Control Comments 85

Appendix E Control Comments

Error Suppression

Several comments are provided for suppressing messages. In general, it isusually better to use
specific flags to suppress a particular error permanently, but the general error suppression flags may
be more convenient for quickly suppressing messages for code that will be corrected or documented
later.

i gnore

end
No errors will be reported in code regions between/ * @ gnore@/ and/ * @nd@/ . These
comments can be used to easily suppress an unlimited number of messages, but are dangerous
sinceif real errorsareintroduced inthei gnor e...end region they will not be reported. The
i gnor e and end comments must be matched — awarning is printed if the file endsin an
ignoreregion or if i gnor e is used inside ignore region.

[
No errors will be reported froman/ * @ @/ comment to the end of theline.

i <n>
No errorswill bereported froman/* @ <n>@/ (e.g.,/ * @ 3@ /) comment to the end of
theline. If there are not exactly » errors suppressed from the comment point to the end of the
line, LCLint will report an error. Thisismorerobust thani or i gnor e since amessageis
generated if the expected number errorsis not present. Since errors are not necessarily
detected until after thisfileis processed (for example, and unused variable error), suppress
count errors are reported after all files have been processed. The- supcount s flag may be
used to suppress these errors. Thisis useful when a system if being rechecked with different
flag settings.

t

t <n>
Likei andi <n>, except controlled by +t npconment s flag. These can be used to
temporarily suppress certain errors. Then, - t npconment s can be set to find them again.

Type Access

Control comments may also be used to override type access settings. The syntax / * @access
<type>, @/ allowsthefollowing code to access the representation of <type>. Similarly,

| * @oaccess <type>, “@/ restricts accessto the representation of <type>. Thetypeina
noaccess comment must have been declared as an abstract type. Type access applies from the
point of the comment to the end of the file or the next access control comment for this type.

Macro Expansion

The/ * @ot f unct i on@ / indicates that the next macro definition is not intended to be a function,
and should be expanded in line instead of checked as a macro function definition.

86 LCLint User’s Guide Appendix

Special Types

These syntactic comments are used to represent arbitrary integral types. Syntactically, they replace
theimpliciti nt type.

/*@ntegraltype@/
An arbitrary integral type. The actual type may be any one of short,i nt, | ong, unsi gned
short,unsi gned, or unsi gned | ong.

/*@nsi gnedi ntegral type@/
An arbitrary unsigned integral type. The actual type may be any one of unsi gned short,
unsi gned, or unsi gned | ong.

/| *@ignedi ntegral type@/
An arbitrary signed integral type. The actual type may be any one of short ,i nt, orl ong.

Traditional Lint Comments

Some of the control comments supported by most standard UNIX lints are supported by LCLint so
legacy systems can be checked more easily. These comments are not lexically consistent with LCLint
comments, and their meanings are less precise (and may vary between different lint programs), so we
recommend that LCLint comments are used instead except for checking legacy systems already
containing standard lint comments.

These standard lint comments supported by LCL.int:

[* FALLTHROUGH*/ (alternate misspelling, / * FALLTHRU* /)
Prevents errors for fall-through cases. Samemeaningas/ *@al | t hr ough@/ .

| * NOTREACHED* /
Prevents errors about unreachable code (until the end of the function). Same meaning as
/[*@otreached@/ .

/ * PRI NTFLI KE*/
Arguments similar to the pri nt f library function (there didn’t seem to be much of a
consensus among standard lints as to exactly what this means). LCLint supports:

[*@rintflike@/
Function takes zero or more arguments of any type, an unmodified char * format string
argument and zero of more arguments of type and number dictated by the format string.
Format codes are interpreted identically to the pri nt f standard library function. May
return aresult of any type. (LCLint interprets/ * PRI NTFLI KE*/ as
I*@rintflike@/.)

[*@canfli ke@/
Likeprintfli ke, except format codes are interpreted asin thescanf library function.

[* ARGSUSED* /

Turns off unused parameter messages for this function. The control comment,

/* @ par anuse@/ can be used to the same effect, or / * @inused@/ canbeusedin

individual parameter declarations.

LCLint will ignore standard lint commentsif - | i nt - comment s isused. If +war n-1i nt -
coment s isused, LCLint generates a message for standard lint comments and suggest
replacements.

Libraries 87

Appendix F Libraries

Libraries can be used to record interface information. A library containing information about the
Standard C Library is used to enable checking of library calls. Program libraries can be created to
enable fast checking of single modulesin alarge program.

Standard Libraries

In order to check callsto library functions, LCLint uses an annotated standard library. This contains
more information about function interfaces then is available in the system header files since it uses
annotations. Further, it contains only those functions documented in the ANSI Standard. Many
systemsinclude extrafunctionsin their system libraries; programsthat use these functions cannot be
compiled on other systems that do not provide them. Certain types defined by the library are treated
as abstract types (e.g., a program should not rely on how the FI LE type isimplemented). When
checking source code, LCLint does include system headers corresponding to filesin the library, but
instead uses the library description of the standard library.

The LCLint distribution includes severa different standard libraries: the ANSI standard library, the
POSIX standard library®, and an ad hoc UNIX library. Each library comes in two versions: the
standard version and the strict version.

ANSI Library
The default behavior of LCLint isto use the ANSI standard library (loaded from ansi . | cd). This

library is based on the standard library described in the ANSI C Standard. 1t includes functions and
types added by Amendment 1 to the ANSI C Standard.

POSIX Library

The POSIX library is selected by the +posi xI i b flag. The POSIX library is based on the IEEE Std
1003.1-1990.

UNIX Library

The UNIX library is selected by the +uni xI i b flag. Thislibrary isan ad hoc attempt to capture
additional functionality provided by many UNIX platforms. Unfortunately, UNIX systems vary
widely and very few are consistent with the ANSI Standard.

The differences between the standard library and the POSIX library are:

* Inthe UNIX library, f r ee is declared with a non-null parameter. ANSI C specifiesthat f r ee
should handle the argument NULL, but several UNIX platforms crash if NULL ispassedtof r ee.
« Extravariables, constants and functions are included in the UNIX library. Some declarations are
not part of the POSIX library, but are believed to be available on many UNIX systems. See
['i b/ uni x. h for alist of the UNIX-only declarations.

Code checked using the UNIX library can probably be ported to some UNIX systems without
difficulty. To enhancethe likelihood that a program is portable, the POSIX library should be used
instead.

% POSIX library was contributed by Jens Schweikhardt.

88 LCLint User’s Guide Appendix

Strict Libraries

Stricter versions of thelibrariesare used isthe - ansi - stri ct, posi x-strict-1ib oruni x-
strct-1ibflagisused. Theselibraries use a stricter interpretation of the library. They will detect
more errors in some programs, but may to produce many spurious errors for typical code.

The differences between the standard libraries and the strict libraries are:

» The standard libraries declare the printing functions (f pri ntf , pri nt f, and spri nt f) that may
return error codesto returni nt or voi d. This preventstypical programs from leading to deluge
of ignored return value errors, but may mean some relevant errors are not detected. In the strict
library, they are declared to returni nt , so ignored return value errors will be reported (depending
on other flag settings). Programs should check that this return value is non-negative.

» The standard libraries declare some parameters and return values to be alternate types (i nt or
bool , ori nt orchar). The ANSI standard specifies these typesasi nt to be compatible with
older versions of the library, but logically they make more sense asbool or char. In the strict
library, the stronger typeisused. The parameter to assert isi nt or bool inthe standard
library, and bool inthe strict library. The parameter to the character functionsi sal num
i sal pha,iscntrl,isdigit,isgraph,islower,isprint,ispunct,isspace,

i supper,isxdigit,tol ower andt oupper ischar ori nt inthe standard library and char in
the strict library. The type of the return value of the character classification functions (all of the
previous character functions except t ol ower andt oupper) isbool ori nt inthe standard
library and bool inthestrict library. Thetype of the first parameter to unget c ischar ori nt in
the standard library and char in the strict library (EOF should not be passed to unget c). The
second parameter to st rchr andstrrchr ischar ori nt inthe standard library and char in
the strict library.

» Theglobal variablesst di n, st dout and st derr aredeclared asunchecked variables (see
Section 4.2.1) in the standard libraries. In the strict libraries, they are checked.

» Theglobal variableer r no isdeclared unchecked in the standard libraries, but declared
checkedstri ct inthestrict libraries.

If nolibrary flag isused, LCLint will load the standard library, st andar d. | cd. If +nol i b isset,
no library isloaded. Thelibrary source files can easily be modified, and new libraries created to
better suit a particular application.

Generating the Standard Libraries

The standard libraries are generated from header filesincluded in the LCLint distribution. Some
libraries are generated from more than one header file. Sincethe POSIX library includesthe ANSI
library, the headers for the ANSI and POSI X libraries are combined to produce the POSIX library.
Similarly, the UNIX library is composed of the ANSI, POSIX and UNIX headers. The header files
include some sections that are conditionally selected by defining STRI CT.

The commands to generate the standard libraries are:

Iclint -nolib ansi.h -dunp ansi

Iclint -nolib -DSTRICT ansi.h -dunp ansistrict

Iclint -nolib ansi.h posix.h -dunp posix

Iclint -nolib -DSTRICT ansi.h posix.h -dunp posixstrict
Iclint -nolib ansi.h posix.h unix.h -dunp unix

Iclint -nolib -DSTRICT ansi.h posix.h unix.h -dunp unixstrict

Libraries 89

User Libraries

To enable running LCLint on large systems, mechanisms are provided for creating libraries
containing necessary information. This means source files can be checked independently, after a
library has been created. The command line option - dunp 1ibrary storesinformation in the file
library (the default extension, . | cd®, isadded). Then, - | oad library loadsthelibrary. The
library contains interface information from the files checked when the library was created.

Header File Inclusion
The standard behavior of LCLint on encountering
#i ncl ude <x. h>

isto search for afile named x. h on the include search path (set using —I) and then the system base
include path (read from the i ncl ude environment variable if set or using a default value, usually
/usr/include). If X. histhe name of aheader filein aloaded standard library (either ANSI or
POSIX) and x. h isfound in adirectory that is a system directory (as set by the - sysdi r s flag; the
defaultis/ usr /i ncl ude), x. h will not beincluded if ski p- ansi - header s or ski p- posi x-
header s (depending on whether x. h

isan ANSI or POSIX header file) is on (both are on by default). To force al headers to be included
normally, use - ski p- ansi - headers.

Sometimes headers in system directories contain non-standard syntax that LCLint is unable to parse.
The +ski p- sys- header s flag may be used to prevent any include file in a system directory from
being included.

LCLint isfast enough that it can be run on medium-size (10,000 line) programs without performance
concerns. It takes about one second to process a thousand source lines on aDEC Alpha. Libraries
can be used to enable efficient checking of small modulesin large programs. To further improve
performance, header file inclusion can be optimized.

When processing a complete system in which many files include the same headers, alarge fraction of
processing time is wasted re-reading header files unnecessarily. If you are checking a 100-file
program, and every fileincludesut i | s. h, LCLint will haveto processuti | s. h 100 times (as
would most C compilers). If the+si ngl e-i ncl ude flag is used, each header file is processed only
once. Single header file processing produces a significant efficiency improvement when checking
large programs split into many files, but is only safe if the same header file included in different
contexts always has the same meaning (i.e., it does not depend on preprocessor variable defined
differently at different inclusion sites).

When processing asingle filein alarge system, alarge fraction of the time is spent processing
included header files. This can be avoided if the information in the header filesis stored in alibrary
instead. If +never-i ncl ude isset, inclusion of filesending in . h isprevented. Fileswith
different suffixes are included normally. To do this the header files must not include any expanded
macros. That is, the header file must be processed with +al | - macr os, and there must be no

/ *@ot function@/ control commentsinthe header. Then, the +never -i ncl ude flag may
be used to prevent inclusion of header files. Alternately, non-function macros can be moved to a
different file with a name that does not end in . h. Remember, that this file must be included directly
fromthe. c file sinceif itisincluded from a. h fileindirectly, that . h fileisignored so the other file
is never included.

? |n earlier versions of LCLint, the default extension . | | drp was used. This has been shortened to
.1 cd.

90 LCLint User’s Guide Appendix

These options can be used for significant performance improvements on large systems. The
performance depends on how the code is structured, but checking a single module in alarge program
is severa times faster if libraries and +noi ncl ude are used.

Preprocessing Constants

LCLint defines the preprocessor constant _ LCLI NT___ (two underscores on each side) when
preprocessing source files. If you want to include code that is processed only when LCLint is used,
surround the codewith# ifdef _ LCLINT__ ... #endif.

Specifications 91

Appendix G Specifications

Another way of providing more information about programsisto use formal specifications. Although
this document has largely ignored specifications, LCLint was originally designed to use the
information in LCL specifications instead of source-code annotations. This document focuses on
annotations since it takes |ess effort to add annotations to source code than to maintain an additional
specification file. Annotations can express everything that can be expressed in LCL specifications
that isrelevant to LCLint checking. However, LCL specifications can provide more precise
documentation on program interfaces than is possible with LCLint annotations. This appendix
(extracted from [Evans94]) isavery brief introduction to LCL Specifications. For more information,
consult [GH93].

The Larch family of languagesis atwo-tiered approach to formal specification. A specification is
built using two languages — the Larch Shared Language (LSL), which isindependent of the
implementation language, and a Larch Interface Language designed for the specific implementation
language. An LSL specification defines sorts, analogous to abstract types in a programming
language, and operators, analogous to procedures. It expresses the underlying semantics of an
abstraction.

The interface language specifies an interface to an abstraction in a particular programming language.
It captures the details of the interface needed by a client using the abstraction and places constraints
on both correct implementations and uses of the module. The semantics of the interface are described
using primitives and sorts and operators defined in LSL specifications. Interface languages have been
designed for several programming languages.

LCL [GH93, Tan95] isaLarch interface language for Standard C. LCL uses a C-like syntax.
Traditionally, a C module M consists of asourcefile, M. ¢, and a header file, M. h. The header file
contains prototype declarations for functions, variables and constants exported by v, as well as those
macro definitions that implement exported functions or constants, and definitions of exported types.
When using LCL, amodule includes two additional files— M. | ¢l , aformal specification of », and
M. | h, whichisderived by LCLint (if thel h flagison) fromm. | ¢l . Clientsuse ™. | ¢l for
documentation, and should not need to look at any implementation file. The derived file, M. | h,
contains include directives (if M depends on other specified modules), prototypes of functions and
declarations of variables as specified in M. | ¢l . Thefile M. h should include M. | h and retain the
implementation aspects of the old M. h, but is no longer used for client documentation.

The LCLint release package includes a grammar for LCL and examples of LCL specifications.

m:- ++-

mi- - - +

plain: -

plain: -

plain: -

shortcut

plain: +

m:- +++

92 LCLint User’s Guide Appendix

Specification Flags
These flags are relevant only when LCLint is used with LCL specifications.

Global Flags

I cs
Generate . | cs files containing symbolic state of . | ¢l files (used for imports). By default
. | cs filesare generated for each . | ¢l file processed. Use- | cs to prevent generation of

. | cs files.
I h

Generate. | h files. By default, -1 hiissetand no . | h files are generated. Use +| h to enable
. | h file generation.

i <file>
Set LCL initialization fileto <file>. The LCL initiadization fileisreadif any . | cl filesare

listed on the command line. Thedefault fileisl clinit. | ci,foundonthe LARCH PATH.
| cl expect <number>

Exactly <number> specification errors are expected. Specification errors are errors detected
when checking the specifications. They do not depend on the source code.

Implicit Globals Checking Qualifiers

i mp- checked- spec- gl obs
Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

i np- checknod- spec- gl obs
Implicit checkod qualifier on global variables specified in an LCL file with no checking

annotation.
i mp- checkedstrict-spec-gl obs

Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

Implicit Annotations

spec- gl ob-i np-only
Implicit onl y annotation on global variable declaration in an LCL file with no alocation
annotation.

spec-ret-inp-only
Implicit onl y annotation on return value declaration in an LCL file with no allocation
annotation.

spec-struct-inp-only
Implicit onl y annotation on structure field declarationsin an LCL file with no allocation
annotation.

spec-inmp-only
Setsspec- gl ob-i np-onl y,spec-ret-inp-onlyandspec-struct-inp-only.

Macro Expansion

spec- macr os
Macros defining specified identifiers are not expanded and are checked according to the
specification.

Complete Programs and Specifications
spec- undef

plain: -

plain: -

shortcut
m:- - - +
m:- - - +
mi- - - +
m:- - - +
m:- - - +
m:- - - +

Specifications 93

Function, variable, iterator or constant specified but never defined.
spec- undecl
Function, variable, iterator or constant specified but never declared.
need- spec
There isinformation in the specification that is not duplicated in syntactic comments.
Normally, thisis not an error, but it may be useful to detect it to make sure checking
incompl ete systems without the specifications will still use this information.
export-any
An error isreported for any identifier that is exported but not specified. (Setsall export flags

below.)
export - const

Constant exported but not specified.
export-var

Variable exported but not specified.
export-fcn

Function exported but not specified.
export-iter

Iterator exported but not specified.
export-macro

An expanded macro exported but not specified
export-type

Type definition exported but not specified

94 LCLint User’s Guide Appendix

Appendix H Emacs

LCLint can be used most productively with the emacs text editor. The release package includes
emacs files for running LCLint and editing code with annotations.

Editing Abbreviations

An additional file, emacs/ | cl i nt - abbr evs contains abbreviations for LCLint syntactic
comments and annotations. If it isloaded, the comment surrounding an LCLint annotation will be
added automatically. For example, typing “onl y” and a space, will produce“/ * @nl y@/ .
Abbreviations are provided for each LCLint syntactic comment. The abbreviation of /* @wul | @ /
isnl | (not nul 1), sinceit is often necessary to type NULL.

Abbreviations are loaded and used when a. ¢ or . h fileis edited by adding these lines to your
. emacs file

(quietly-read-abbrev-file "<directory>/Iclint-abbrevs")
(setq c-node-hook (function (lanbda nil (abbrev-node 1))))

References 95

References

LCLint

[Evans94] David Evans. Using specifications to check source code. MIT/ILCS/TR 628, Laboratory
for Computer Science, MIT, June 1994,

SM Thesis. Describes research behind LCLint, focusing on how specifications can be
exploited to do lightweight checking. Includes case studies using LCL.int.

[EGHT94] David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A tool for using
specifications to check code. SIGSOFT Symposium on the Foundations of Software Engineering,
December 1994.

Introduction to LCLint. Shows how LCLint isused to find errorsin a sample program.

[Evans96] David Evans. Static Detection of Dynamic Memory Errors. SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’96), Philadelphia, PA., May 1996.

Describes approach for exploiting annotations added to code to detect awide class of errors.
Focuses on checks described in Sections 1-7 of this guide.

Larch

[GH93] Guttag, John V. and Horning, James J., with Stephen J. Garland, Kevin D. Jones, Andrés
Modet, and Jeannette M. Wing, Larch: Languages and Tools for Formal Specification, Springer-
Verlag, Texts and Monographs in Computer Science, 1993.

Overview of the Larch family of specification languages and related tools. Includes a chapter
on LCL, the Larch C interface language, on which LCLint is based.

[Tan95] Tan, Yang Meng. Formal Specification Techniques for Engineering Modular C, Kluwer
International Seriesin Software Engineering, Volume 1, Kluwer Academic Publishers, Boston, 1995.

Modified and updated version of MIT Ph D thesis, previously published as MIT/LCS/TR-619,
1994. Includes presentation of the semantics of LCL and a case study using LCL .

C

[ANSI] American National Standard for Information Systems, Programming Language, C. ANS|
X3.159-1989. (Believed to beidentical to I1SO/IEC 9899:1990).

Specification for C programming language. LCLint aims to be consistent with this document.

96 LCLint User’s Guide Appendix

[Hat95] Hatton, Les. Safer C: Developing Software for High-integrity and Safety-critical Systems.
McGraw-Hill International Seriesin Software Engineering, 1995.

A broad work on all aspects of developing safety-critical software, focusing on the C language.
Provides good justification for the use of C in safety-critical systems, and the necessity of tool-
supported programming standards. LCLint users will be interested to see how many of the
errors listed as only being dynamically detectable can be detected statically by LCLint.

[KR88] Kernighan, Brian W. and Ritchie, DennisM. The C Programming L anguage, second edition.
Prentice Hall, New Jersey, 1988.

Standard reference for ANSI C. If you haven't heard of this one, you probably didn’t get this
far (unlessyou started at the back).

[vdL94] Van der Linden, Peter. Expert C Programming: Deep C Secrets. SunSoft Press, Prentice
Hall, New Jersey, 1994,

Filled with useful information on the darker corners of C, as well aslots of industry anecdotes
and humor. LCLint's reserved name checking isloosely based on thelist of reserved namesin
this book.

Abstract Types

[LG86] Liskov, Barbara. and Guttag, John V. Abstraction and Specification in Program

Development,
MIT Press, Cambridge, MA, 1986.

Describes a programming methodol ogy using abstract types and specified interfaces. Much of
the methodology upon which LCLint is based comes from this book. Uses the CLU
programming language.

