
-- --

Make — A Program for Maintaining Computer Programs PS1:12-1

Make — A Program for Maintaining Computer Pr ograms

S. I. Feldman

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be reprocessed or
recompiled after a change is made in some part of the source.Make provides a simple mecha-
nism for maintaining up-to-date versions of programs that result from many operations on a
number of files.It is possible to tellMake the sequence of commands that create certain files,
and the list of files that require other files to be current before the operations can be done.When-
ev er a change is made in any part of the program, theMake command will create the proper files
simply, correctly, and with a minimum amount of effort.

The basic operation ofMake is to find the name of a needed target in the description,
ensure that all of the files on which it depends exist and are up to date, and then create the target
if it has not been modified since its generators were.The description file really defines the graph
of dependencies;Make does a depth-first search of this graph to determine what work is really
necessary.

Make also provides a simple macro substitution facility and the ability to encapsulate com-
mands in a single file for convenient administration.

Revised April, 1986

Intr oduction

It is common practice to divide large programs into smaller, more manageable pieces.The pieces may require
quite different treatments: some may need to be run through a macro processor, some may need to be processed by a
sophisticated program generator (e.g., Yacc[1] or Lex[2]). Theoutputs of these generators may then have to be com-
piled with special options and with certain definitions and declarations.The code resulting from these transforma-
tions may then need to be loaded together with certain libraries under the control of special options.Related mainte-
nance activities involve running complicated test scripts and installing validated modules.Unfortunately, it is very
easy for a programmer to forget which files depend on which others, which files have been modified recently, and
the exact sequence of operations needed to make or exercise a new version of the program.After a long editing ses-
sion, one may easily lose track of which files have been changed and which object modules are still valid, since a
change to a declaration can obsolete a dozen other files.Forgetting to compile a routine that has been changed or
that uses changed declarations will result in a program that will not work, and a bug that can be very hard to track
down. Onthe other hand, recompiling everything in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program development and mainte-
nance. Ifthe information on inter-file dependences and command sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been edited since the last
‘‘ make’’. In most cases, the description file is easy to write and changes infrequently. It is usually easier to type the
make command than to issue even one of the needed operations, so the typical cycle of program development opera-
tions becomes

-- --

PS1:12-2 Make — A Program for Maintaining Computer Programs

think — edit —make— test .. .

Make is most useful for medium-sized programming projects; it does not solve the problems of maintaining
multiple source versions or of describing huge programs.Make was designed for use on Unix, but a version runs on
GCOS.

Basic Features

The basic operation ofmake is to update a target file by ensuring that all of the files on which it depends exist
and are up to date, then creating the target if it has not been modified since its dependents were.Make does a depth-
first search of the graph of dependences.The operation of the command depends on the ability to find the date and
time that a file was last modified.

To illustrate, let us consider a simple example: A program namedprog is made by compiling and loading
three C-language filesx.c, y.c, and z.c with the lS library. By convention, the output of the C compilations will be
found in files namedx.o, y.o, and z.o. Assume that the filesx.c andy.c share some declarations in a file nameddefs,
but thatz.cdoes not.That is,x.c andy.c have the line

#include "defs"

The following text describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o −lS −o prog

x.o y.o : defs

If this information were stored in a file namedmakefile, the command

make

would perform the operations needed to recreateprog after any changes had been made to any of the four source
filesx.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as above), file names and
‘‘ last-modified’’ t imes from the file system, and built-in rules to bridge some of the gaps. Inour example, the first
line says thatprog depends on three ‘‘ .o’’ fi les. Oncethese object files are current, the second line describes how to
load them to createprog. The third line says thatx.o andy.o depend on the filedefs. From the file system,make
discovers that there are three ‘‘ .c’’ fi les corresponding to the needed ‘‘ .o’’ fi les, and uses built-in information on how
to generate an object from a source file (i.e., issue a ‘‘cc −c’’ command).

The following long-winded description file is equivalent to the one above, but takes no advantage ofmake’s
innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o −lS −o prog

x.o : x.c defs
cc −c x.c

y.o : y.c defs
cc −c y.c

z.o : z.c
cc −c z.c

If none of the source or object files had changed since the last timeprog was made, all of the files would be
current, and the command

make

would just announce this fact and stop.If, however, thedefsfile had been edited,x.c andy.c (but notz.c) would be
recompiled, and thenprog would be created from the new ‘‘ .o’’ fi les. If only the filey.c had changed, only it would
be recompiled, but it would still be necessary to reloadprog.

-- --

Make — A Program for Maintaining Computer Programs PS1:12-3

If no target name is given on themake command line, the first target mentioned in the description is created;
otherwise the specified targets are made.The command

make x.o

would recompilex.o if x.c or defshad changed.

If the file exists after the commands are executed, its time of last modification is used in further decisions; oth-
erwise the current time is used.It is often quite useful to include rules with mnemonic names and commands that do
not actually produce a file with that name.These entries can take advantage ofmake’s ability to generate files and
substitute macros.Thus, an entry ‘‘save’’ m ight be included to copy a certain set of files, or an entry ‘‘cleanup’’
might be used to throw away unneeded intermediate files.In other cases one may maintain a zero-length file purely
to keep track of the time at which certain actions were performed.This technique is useful for maintaining remote
archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command strings.Macros are
defined by command arguments or description file lines with embedded equal signs.A macro is invoked by preced-
ing the name by a dollar sign; macro names longer than one character must be parenthesized.The name of the
macro is either the single character after the dollar sign or a name inside parentheses.The following are valid macro
invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two inv ocations are identical.$$ is a dollar sign.All of these macros are assigned values during input, as
shown below. Four special macros change values during the execution of the command: $∗, $@, $?, and $<.They
will be discussed later. The following fragment shows the use:

OBJECTS = x.o y.o z.o
LIBES = −lS
prog: $(OBJECTS)

cc $(OBJECTS)$(LIBES) −oprog
. . .

The command

make

loads the three object files with thelS library. The command

make "LIBES= −ll −lS"

loads them with both the Lex (‘‘ −ll’ ’) and the Standard (‘‘−lS’’) libraries, since macro definitions on the command
line override definitions in the description.(It is necessary to quote arguments with embedded blanks inUNIX†
commands.)

The following sections detail the form of description files and the command line, and discuss options and
built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency information, and
executable commands.There is also a comment convention: all characters after a sharp (#) are ignored, as is the
sharp itself.Blank lines and lines beginning with a sharp are totally ignored.If a non-comment line is too long, it
can be continued using a backslash.If the last character of a line is a backslash, the backslash, newline, and follow-
ing blanks and tabs are replaced by a single blank.

† UNIX is a trademark of AT&T Bell Laboratories.

-- --

PS1:12-4 Make — A Program for Maintaining Computer Programs

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name (string of let-
ters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripped.)The following are valid macro definitions:

2 = xyz
abc = −ll −ly −lS
LIBES =

The last definition assigns LIBES the null string.A macro that is never explicitly defined has the null string as
value. Macrodefinitions may also appear on themake command line (see below).

Other lines give information about target files. The general form of an entry is:

target1 [target2 . . .] :[:] [dependent1 . . .] [; commands] [# . . .]
[(tab)commands] [# . . .]
. . .

Items inside brackets may be omitted.Targets and dependents are strings of letters, digits, periods, and slashes.
(Shell metacharacters ‘‘∗’’ and ‘‘?’’ are expanded.) Acommand is any string of characters not including a sharp
(except in quotes) or newline. Commandsmay appear either after a semicolon on a dependency line or on lines
beginning with a tab immediately following a dependency line.

A dependency line may have either a single or a double colon.A target name may appear on more than one
dependency line, but all of those lines must be of the same (single or double colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a command sequence associ-
ated with it. If the target is out of date with any of the dependents on any of the lines, and a command
sequence is specified (even a null one following a semicolon or tab), it is executed; otherwise a default cre-
ation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line; if the target is
out of date with any of the files on a particular line, the associated commands are executed. Abuilt-in rule
may also be executed. Thisdetailed form is of particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command line is printed
and then passed to a separate invocation of the Shell after substituting for macros.(The printing is suppressed in
silent mode or if the command line begins with an @ sign).Make normally stops if any command signals an error
by returning a non-zero error code.(Errors are ignored if the ‘‘−i’ ’ fl ags has been specified on themake command
line, if the fake target name ‘‘.IGNORE’’ appears in the description file, or if the command string in the description
file begins with a hyphen. SomeUNIX commands return meaningless status).Because each command line is passed
to a separate invocation of the Shell, care must be taken with certain commands (e.g.,cd and Shell control com-
mands) that have meaning only within a single Shell process; the results are forgotten before the next line is
executed.

Before issuing any command, certain macros are set.$@ is set to the name of the file to be ‘‘made’’. $? is set
to the string of names that were found to be younger than the target. If the command was generated by an implicit
rule (see below), $< is the name of the related file that caused the action, and $∗ is the prefix shared by the current
and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the commands associated
with the name ‘‘.DEFAULT’’ are used.If there is no such name,make prints a message and stops.

Command Usage

Themake command takes four kinds of arguments: macro definitions, flags, description file names, and target
file names.

make [flags] [macro definitions][targets]

The following summary of the operation of the command explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the assign-
ments made.Command-line macros override corresponding definitions found in the description files.

-- --

Make — A Program for Maintaining Computer Programs PS1:12-5

Next, the flag arguments are examined. Thepermissible flags are

−i Ignoreerror codes returned by invoked commands. Thismode is entered if the fake target name ‘‘.IGNORE’’
appears in the description file.

−s Silentmode. Donot print command lines before executing. Thismode is also entered if the fake target name
‘‘ .SILENT’’ appears in the description file.

−r Do not use the built-in rules.

−n No execute mode.Print commands, but do not execute them.Even lines beginning with an ‘‘@’’ sign are
printed.

−t Touch the target files (causing them to be up to date) rather than issue the usual commands.

−q Question.Themake command returns a zero or non-zero status code depending on whether the target file is
or is not up to date.

−p Printout the complete set of macro definitions and target descriptions

−d Debug mode.Print out detailed information on files and times examined.

−f Descriptionfile name.The next argument is assumed to be the name of a description file.A fi le name of ‘‘−’ ’
denotes the standard input.If there are no ‘‘−f ’ ’ arguments, the file namedmakefile or Makefile in the current
directory is read.The contents of the description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are done in left to
right order. If there are no such arguments, the first name in the description files that does not begin with a period is
‘‘ made’’.

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to supply default
dependency information and implied commands.(The Appendix describes these tables and means of overriding
them.) Thedefault suffix list is:

.o Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.l Lex source grammar

The following diagram summarizes the default transformation paths.If there are two paths connecting a pair of suf-
fixes, the longer one is used only if the intermediate file exists or is named in the description.

.o

.c .r .e .f .s .y .yr .ye .l .d

.y .l .yr .ye

If the file x.owere needed and there were anx.c in the description or directory, it would be compiled.If there
were also anx.l, that grammar would be run through Lex before compiling the result.However, if there were nox.c
but there were anx.l, make would discard the intermediate C-language file and use the direct link in the graph
above.

-- --

PS1:12-6 Make — A Program for Maintaining Computer Programs

It is possible to change the names of some of the compilers used in the default, or the flag arguments with
which they are invoked by knowing the macro names used.The compiler names are the macros AS, CC, RC, EC,
YA CC, YACCR, YACCE, and LEX.The command

make CC=newcc

will cause the ‘‘newcc’’ command to be used instead of the usual C compiler. The macros CFLAGS, RFLAGS,
EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with optional flags.Thus,

make "CFLAGS=−O"

causes the optimizing C compiler to be used.

Another special macro is ‘VPATH’. The ‘‘ VPATH’’ macro should be set to a list of directories separated by
colons. Whenmake searches for a file as a result of a dependency relation, it will first search the current directory
and then each of the directories on the ‘‘VPATH’’ l ist. If the file is found, the actual path to the file will be used,
rather than just the filename.If ‘ ‘VPATH’’ i s not defined, then only the current directory is searched.Note that
‘‘ VPATH’’ i s intended to act like the System V ‘‘VPATH’’ support, but there is no guarantee that it functions identi-
cally.

One use for ‘‘VPATH’’ i s when one has several programs that compile from the same source.The source can
be kept in one directory and each set of object files (along with a separate would be in a separate subdirectory. The
‘‘ VPATH’’ macro would point to the source directory in this case.

Example

As an example of the use ofmake, we will present the description file used to maintain themake command
itself. Thecode formake is spread over a number of C source files and a Yacc grammar. The description file con-
tains:

-- --

Make — A Program for Maintaining Computer Programs PS1:12-7

Description file for the Make command

P = und −3 | opr −r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= −lS
LINT = lint −p
CFLAGS = −O

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) −o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? | $P
touch print

test:
make −dp | grep −v TIME >1zap
/usr/bin/make −dp | grep −v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it.The following output results from typing the simple com-
mand

make

in a directory containing only the source and description file:

cc −cversion.c
cc −cmain.c
cc −cdoname.c
cc −cmisc.c
cc −cfiles.c
cc −cdosys.c
yacc gram.y
mv y.tab.c gram.c
cc −cgram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o −lS −o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,make found them
using its suffix rules and issued the needed commands.The string of digits results from the ‘‘size make’’ command;
the printing of the command line itself was suppressed by an @ sign.The @ sign on thesize command in the

-- --

PS1:12-8 Make — A Program for Maintaining Computer Programs

description file suppressed the printing of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences.The ‘‘print’ ’ entry prints only the
files that have been changed since the last ‘‘make print’’ command. Azero-length fileprint is maintained to keep
track of the time of the printing; the $? macro in the command line then picks up only the names of the files changed
sinceprint was touched. Theprinted output can be sent to a different printer or to a file by changing the definition
of theP macro:

make print "P = opr −sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise frommake’s specific meaning of dependency. If fi le x.c has a ‘‘#include
"defs"’’ l ine, then the object filex.o depends ondefs; the source filex.c does not.(If defsis changed, it is not neces-
sary to do anything to the filex.c, while it is necessary to recreatex.o.)

To discover whatmake would do, the ‘‘−n’’ option is very useful.The command

make −n

ordersmake to print out the commands it would issue without actually taking the time to execute them.If a change
to a file is absolutely certain to be benign (e.g., adding a new definition to an include file), the ‘‘−t’ ’ (touch) option
can save a lot of time: instead of issuing a large number of superfluous recompilations,make updates the modifica-
tion times on the affected file. Thus, the command

make −ts

(‘‘touch silently’’) causes the relevant files to appear up to date.Obvious care is necessary, since this mode of opera-
tion subverts the intention ofmake and destroys all memory of the previous relationships.

The debugging flag (‘‘−d’’) causesmake to print out a very detailed description of what it is doing, including
the file times.The output is verbose, and recommended only as a last resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance control.I would like
to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs during development ofmake.

References

1. S.C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler’’, Bell Laboratories Computing Science Technical
Report #32, July 1978.

2. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator’’, Computing Science Technical Report #39, October
1975.

-- --

Make — A Program for Maintaining Computer Programs PS1:12-9

Appendix. Suffixesand Transformation Rules

Themake program itself does not know what file name suffixes are interesting or how to transform a file with
one suffix into a file with another suffix. This information is stored in an internal table that has the form of a
description file.If the ‘‘−r’ ’ fl ag is used, this table is not used.

The list of suffixes is actually the dependency list for the name ‘‘.SUFFIXES’’; make looks for a file with any
of the suffixes on the list.If such a file exists, and if there is a transformation rule for that combination,make acts as
described earlier. The transformation rule names are the concatenation of the two suffixes. Thename of the rule to
transform a ‘‘ .r’’ fi le to a ‘‘ .o’’ fi le is thus ‘‘ .r.o’’ . If the rule is present and no explicit command sequence has been
given in the user’s description files, the command sequence for the rule ‘‘.r.o’’ i s used. Ifa command is generated by
using one of these suffixing rules, the macro $∗ is given the value of the stem (everything but the suffix) of the name
of the file to be made, and the macro $< is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name that is formed
that has both a file and a rule associated with it is used.If new names are to be appended, the user can just add an
entry for ‘‘.SUFFIXES’’ i n his own description file; the dependents will be added to the usual list.A ‘ ‘.SUFFIXES’’
line without any dependents deletes the current list.(It is necessary to clear the current list if the order of names is
to be changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .l .s
YA CC=yacc
YA CCR=yacc −r
YA CCE=yacc −e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as −
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o :

$(CC) $(CFLAGS) −c $<
.e.o .r.o .f.o :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) −c $<
.s.o :

$(AS) −o $@ $<
.y.o :

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) −c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c :
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

-- --

