TV ILAT v iyt i ivianp A ity weriipgetetl gt il I 1 wdesdobm o

Make — A Program for Maintaining Computer Programs

S. I. eldman

AT&T Bell Laboratories
Murray Hill, New Jerse 07974

ABSTRAT

In a programming project, it is easy to lose track of which files need to be reprocessed or
recompiled after a change is made in some part of the soMale provides a simple mecha-
nism for maintaining up-to-dateexsions of programs that result from mamperations on a
number of files.It is possible to telMake the sequence of commands that create certain files,
and the list of files that require other files to be current before the operations can b@/tene.
eve a change is made in grpart of the program, thielake command will create the proper files
simply, correctly, and with a minimum amount of fefrt.

The basic operation dflake is to find the name of a neededgetrin the description,
ensure that all of the files on which it depenxisteand are up to date, and then create tlyetar
if it has not been modified since its generators wé&tee description file really defines the graph
of dependenciedvlake does a depth-first search of this graph to determine wbidt i really
necessary

Make also praides a simple macro substituticacflity and the ability to encapsulate com-
mands in a single file for ceenient administration.

Revised April, 1986

Intr oduction

It is common practice to dide lage programs into smallemore manageable piece$he pieces may require
quite diferent treatments: some may need to be run through a macro prpsassomay need to be processed by a
sophisticated program generator (e.@¢d{1] or L[2]). Theoutputs of these generators may theveha be com-
piled with special options and with certain definitions and declaratidhs.code resulting from these transforma-
tions may then need to be loaded together with certain libraries under the control of special Belatesl mainte-
nance actities involve unning complicated test scripts and installimidated modulesUnfortunately it is very
easy for a programmer to fmt which files depend on which others, which filegehlleen modified recenthand
the act sequence of operations needed toentakxercise a ne version of the programAfter a long editing ses-
sion, one may easily lose track of which filegéhéieen changed and which object modules are diitlysince a
change to a declaration can obsolete a dozen other Fiegetting to compile a routine that has been changed or
that uses changed declarations will result in a program that will owd¢, @nd a bg that can beery hard to track
down. Onthe other hand, recompiling@ything in sight just to be safe iemy wasteful.

The program described in this report mechanizesyrofithe actvities of program deslopment and mainte-
nance. lfthe information on intefile dependences and command sequences is stored in a file, the simple command

malke

is frequently sufcient to update the interesting filesgaalless of the number thatVeakeen edited since the last
“make”. In most cases, the description file is easy to write and changes infrequeistlysually easier to type the
malke command than to issueam one of the needed operations, so the typigalecof program deslopment opera-
tions becomes

1 e debm &= IVIGARR v iyt eeni i A tan ity wYyihiipgtet B gt At

think — edit —male — test ...

Make is most useful for medium-sized programming projects; it does na¢ $@vproblems of maintaining
multiple source grsions or of describing huge progranhdake was designed for use on Unixuba \ersion runs on
GCOs.

Basic Features

The basic operation ohale is to update a tget file by ensuring that all of the files on which it deperxiist e
and are up to date, then creating thgdaif it has not been modified since its dependents wéede does a depth-
first search of the graph of dependencEise operation of the command depends on the ability to find the date and
time that a file was last modified.

To illustrate, let us consider a simpleaenple: A program nameprog is made by compiling and loading
three C-language filesc, y.c, and z.c with thelS library. By corvention, the output of the C compilations will be
found in files named.o, y.0, andz.0. Assume that the filesc andy.c share some declarations in a file nardets
but thatz.c does not.That is,x.c andy.c have the line

#include "defs"
The following text describes the relationships and operations:

prog : X.0 y.0 z.0
cc X.0 yo z.0 -IS -0 prog

X.0 yo: defs
If this information were stored in a file nammélefile, the command

malke
would perform the operations needed to recrpabg after aly changes had been made ty af the four source
filesx.c,yc, z.c, or defs

Make operates using three sources of information: a-siseplied description file (as ak®), file names and
“ last-modified’ times from the file system, andilt-in rules to bridge some of thepgs. Inour ekample, the first
line says thaprog depends on thre&.¢” files. Oncehese object files are current, the second line descrimetoho
load them to creatprog. The third line says that.o andy.o depend on the fildefs From the file systemmale
discovers that there are threec” fi les corresponding to the needed™ fi les, and usesuit-in information on hav
to generate an object from a source fike,(issue a‘tc —c” command).

The following long-winded description file is egalent to the one abme, but takes no adantage ofmale’s
innate knavledge:
prog : X.0 Y.0 z.0
cC X.0 yo z.0 -IS -0 prog
X.0: X.c defs

CC —C X.C
y.0: y.c defs

cC —C yc
z.0:z.C

cC —C z.C

If none of the source or object files had changed since the laspriimevas made, all of the files auld be
current, and the command

malke

would just announce thisé€t and stoplf, however, the defsfile had been edited,c andy.c (but notz.c) would be
recompiled, and theprog would be created from the we*.o” fi les. Ifonly the filey.c had changed, only iteuld
be recompiled, Wt it would still be necessary to reloptbg.

TV ILAT v iyt i ivianp A ity weriipgetetl gt il I 1 e duobm W

If no taiget name is gen on the make command line, the first i@et mentioned in the description is created;
otherwise the specified tgts are madeThe command

make x.0

would recompilex.o if x.c or defshad changed.

If the file «ists after the commands aneeeuted, its time of last modification is used in further decisions; oth-
erwise the current time is usel.is often quite useful to include rules with mnemonic names and commands that do
not actually produce a file with that namehese entries can taldvantage oimale’s ability to generate files and
substitute macrosThus, an entry'save” might be included to cgpa certain set of files, or an entricleanup’
might be used to throaway unneeded intermediate filetn other cases one may maintain a zero-length file purely
to keep track of the time at which certain actions were perforiiéés technique is useful for maintaining remote
archives and listings.

Make has a simple macro mechanism for substituting in depepndier®s and command string8lacros are
defined by command guments or description file lines with embedded equal si§nsacro is ivoked by preced-
ing the name by a dollar sign; macro names longer than one character must be parenthiesinesne of the
macro is either the single character after the dollar sign or a name inside parerfthedeioning are \alid macro
invocations:

$(CFLAGS)
$2
$(xy)
$z
$(2)
The last two invocations are identical$$ is a dollar signAll of these macros are assignezlues during input, as

shavn belav. Four special macros changalwes during thexecution of the command:[3$@, $?, and $<They
will be discussed laterThe following fragment shes the use:

OBJECTS =x.0p z.0
LIBES = -IS
prog: $(OBJECTS)
cc $(OBJECTS)$(LIBES) -oprog

The command
make

loads the three object files with ti&library. The command
make "LIBES= -l -IS"

loads them with both the kg* —II'") and the Standard‘€IS’) libraries, since macro definitions on the command
line override definitions in the description(lt is necessary to quotegaments with embedded blanks UNIX T
commands.)

The folloving sections detail the form of description files and the command line, and discuss options and
built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, depsndiefocmation, and
exeutable commandsThere is also a comment a@ntion: all characters after a sharp (#) are ignored, as is the
sharp itself. Blank lines and lines lggnning with a sharp are totally ignoretf.a non-comment line is too long, it
can be continued using a backsla#fithe last character of a line is a backslash, the backslastinegand follav-
ing blanks and tabs are replaced by a single blank.

T UNIX is a trademark of P&T Bell Laboratories.

I wadnsdab= T IVIGARR v iyt eeni i A tan ity wYyihiipgtet B gt At

A macro definition is a line containing an equal sign not preceded by a colon orTdagabame (string of let-
ters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripgéuk)followving are \alid macro definitions:

2=xyz
abc = -l -ly -IS
LIBES =

The last definition assigns LIBES the null strirg.macro that is ner explicitly defined has the null string as
vaue. Macrodefinitions may also appear on thale command line (see beld.

Other lines gie information about tget files. The general form of an entry is:

targetl [taget2 . . .] :[:] [dependentl . . .] [; commands] [# . .]
[(tab) commands] [# . . .]

Items inside braaks may be omittedTargets and dependents are strings of letters, digits, periods, and slashes.
(Shell metacharacters¥ and “?” are expanded.) Acommand is anstring of characters not including a sharp
(except in quotes) or mdine. Commandsnay appear either after a semicolon on a depegdére or on lines
beaginning with a tab immediately follting a dependendine.

A dependeng line may hae dther a single or a double colo’ target name may appear on more than one
dependengline, hut all of those lines must be of the same (single or double colon) type.

1. For the usual single-colon case, at most one of these depgrithescmay hee a ommand sequence associ-
ated with it. If the taget is out of date with gnof the dependents on yamf the lines, and a command
sequence is specifiedvéa a rull one folloving a semicolon or tab), it isxecuted; otherwise a dafilt cre-
ation rule may be iroked.

2. Inthe double-colon case, a command sequence may be associated with each depieagdrtbe taget is
out of date with ay of the files on a particular line, the associated commandsxerated. Abuilt-in rule
may also bexecuted. Thigdetailed form is of particularalue in updating arché-type files.

If a taget must be created, the sequence of commandsdated. Normallyeach command line is printed
and then passed to a separat®dation of the Shell after substituting for macr¢¥he printing is suppressed in
silent mode or if the command linedies with an @ sign)Make normally stops if ajm command signals an error
by returning a non-zero error codéerrors are ignored if the-i"’ flags has been specified on thake command
line, if the Bke target name‘IGNORE” appears in the description file, or if the command string in the description
file begins with a lyphen. Som&NIX commands return meaningless stati}cause each command line is passed
to a separate wocation of the Shell, care must be eakwith certain commands (e.gd and Shell control com-
mands) that hae meaning only within a single Shell process; the results agott@n before the me line is
executed.

Before issuing ancommand, certain macros are s§@ is set to the name of the file to tmedde’. $?is set
to the string of names that were found to be younger than tied.tdf the command as generated by an implicit
rule (see belw), $< is the name of the related file that caused the action,[aisdi$ prefix shared by the current
and the dependent file names.

If a file must be madeub there are noxplicit commands or rel@nt kuilt-in rules, the commands associated
with the name'.DEFAULT” are used.If there is no such hammale prints a message and stops.

Command Usage
Themale command ta&s four kinds of @uments: macro definitions, flags, description file names, aget tar
file names.
male [flags] [macro definitions][targets]

The folloving summary of the operation of the commaxpgl&ns hev these aguments are interpreted.

First, all macro definition guments (aguments with embedded equal signs) are analyzed and the assign-
ments madeCommand-line macrosverride corresponding definitions found in the description files.

TV ILAT

v iyt i ivianp A ity weriipgetetl gt il I 1 wadnsdaobm 7

Next, the flag agyuments arexamined. Thepermissible flags are

Ignoreerror codes returned byvioked commands. Thisnode is entered if thake target name'!IGNORE”
appears in the description file.

Silentmode. Donot print command lines beforgeeuting. Thismode is also entered if theké target name
“ SILENT” appears in the description file.

Do not use the wilt-in rules.

No execute mode.Print commands, i do not &ecute them.Even lines bginning with an ‘@’ sign are
printed.

Touch the taget files (causing them to be up to date) rather than issue the usual commands.

Question. The make command returns a zero or non-zero status code depending on whetheagethfldas
or is not up to date.

Printout the complete set of macro definitions angegadescriptions
Delug mode.Print out detailed information on files and timeamined.

Descriptionfile name. The net agument is assumed to be the name of a descriptionAifde name of'="’
denotes the standard inpuf.there are no'*f’’ arguments, the file namedalefile or Makefile in the current
directory is read.The contents of the description filegegide the liilt-in rules if they are present).

Finally, the remaining @uments are assumed to be the names géts&to be made; there done in left to

right order If there are no suchguments, the first name in the description files that does git Wéth a period is
“ made’.

Implicit Rules

The male program uses a table of interestingfizes and a set of transformation rules to supphaulef

dependeng information and implied command¢The Appendix describes these tables and meansenfiding

them.

) Thedefault sufix list is:

Object file

C source file

Efl source file

Ratfor source file

Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

-

'—~;_<D~'<~'<'cn'—h'-*i‘|>b'o

The folloving diagram summarizes the daft transformation pathdf there are tw paths connecting a pair of suf-

fixes,

were

but there were ax.l, malke would discard the intermediate C-language file and use the direct link in the graph

the longer one is used only if the intermediate fiktsor is named in the description.

.0

.C .r e fs.y.yr.wyeld

vl yroo.ye

If the file x.owere needed and there werexanin the description or directarit would be compiled.If there
also amx.l, that grammar wuld be run through bebefore compiling the resultHowever, if there were na.c

above.

1 wadnsdabm W7 IVIGARR v iyt eeni i A tan ity wYyihiipgtet B gt At

It is possible to change the names of some of the compilers used in db#, defthe flag guments with
which they are invoked by knowing the macro names usetdhe compiler names are the macros AS, CC, RC, EC,
YACC, YACCR, YACCE, and LEX.The command

make CC=navcc

will cause the‘hewcc” command to be used instead of the usual C compilbe macros CFLGS, RFLAGS,
EFLAGS, YFLAGS, and LFLASS may be set to cause these commands to be issued with optional flags.

male "CFLAGS=-0"

causes the optimizing C compiler to be used.

Another special macro is ‘V|TH'. The “ VPATH macro should be set to a list of directories separated by
colons. Whermmale searches for a file as a result of a dependegiation, it will first search the current directory
and then each of the directories on tMPATH" list. If the file is found, the actual path to the file will be used,
rather than just the filenaméf ‘‘'VPATH" is ot defined, then only the current directory is searchdate that
“VPATH" is intended to act lik the System V'VPATH" support, lut there is no guarantee that it functions identi-
cally.

One use for'YPATH" is when one has seral programs that compile from the same souiee source can
be kept in one directory and each set of object files (along with a separalig be in a separate subdirectoifhe
“VPATH" macro would point to the source directory in this case.

Example

As an &le of the use ahale, we will present the description file used to maintainrttsde command
itself. Thecode formale is spread wer a rumber of C source files and @ad¢ grammar The description file con-
tains:

TV ILAT £ v i

Pt eArEE A v AanpAan it iy wyriipgHtet gt Rt I wdesdeobm [

Description file for the Ma&command

P=uwund-3|opr-r2 #sndto GCOS to be printed

FILES = Malefile version.c defs main.c doname.c misc.c files.c dosygiam.y le.c gcos.c
OBJECTS = ®ersion.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES= -IS

LINT =lint —p

CFLAGS =-0

make: $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 mak
size male

$(OBJECTS): defs
gram.o: l&.c

clea

nup:
-rm *.0 gram.c
-du

install:

@size mak fusr/bin/male
cp male fusr/bin/male ; m make

print: $(FILES) # print recently changed files

test:

lint :

pr $? | $P
touch print

make —dp | grep —-v TIME >1zap
/usr/bin/male —dp | grep -v TIME >2zap
diff 1zap 2zap

rm 1zap 2zap

dosys.c doname.c files.c main.c misecsion.c gram.c
$(LINT) dosys.c doname.c files.c main.c misecsion.c gram.c
rm gram.c

arch:

ar uv /sys/source/s2/mala $(FILES)

Make usually prints out each command before issuindfite folloving output results from typing the simple com-

mand

malke

in a directory containing only the source and description file:

cc
cc
cc
cc
cc
cc
yac
mv
cc

—cversion.c
—cmain.c
—cdoname.c
—cmisc.c
—cfiles.c
—cdosys.c

c gram.y
y.tahc gram.c
—cgram.c

cc \ersion.o main.o doname.o misc.o files.o dosys.o gram.o —-IS -® mak
13188+3348+3044 = 19580b = 046174b

Although no

ne of the source files or grammars were mentioned by name in the descriptioaldiliaund them

using its suix rules and issued the needed commaridse string of digits results from thisize make” command;

the printing

of the command line itselfag suppressed by an @ sighhe @ sign on thsize command in the

1 wfadnsdebm W IVIGARR v iyt eeni i A tan ity wYyihiipgtet B gt At

description file suppressed the printing of the command, so only the sizes are written.

The last fev entries in the description file are useful maintenance sequefibesprint’’ entry prints only the
files that hae keen changed since the lashake print” command. Azero-length fileprint is maintained to d&ep
track of the time of the printing; the $? macro in the command line then picks up only the names of the files changed
sinceprint was touched. Therinted output can be sent to afeiiént printer or to a file by changing the definition
of theP macro:

malke print "P = opr —sp"
or
malke print "P= cat >zap"

Suggestions and \&@rnings

The most common ditulties arise frommale’s specific meaning of dependenclf file x.c has a ‘#include
"defs"” line, then the object file.o depends onefs the source filx.c does not.(If defsis changed, it is not neces-
sary to do aything to the filex.c, while it is necessary to recreat®.)

To discover whatmale would do, the*=n’’ option is \ery useful. The command
make n

ordersmale to print out the commands itowld issue without actually taking the time teeute them.If a change
to a file is absolutely certain to be benign (e.g., addingradeénition to an include file), thé-t'"’ (touch) option
can sae a bt of time: instead of issuing a ¢gr number of superfluous recompilatiomgle updates the modifica-
tion times on the &cted file. Thus, the command

make —ts

(“'touch silently’) causes the rel@ant files to appear up to dat@bvious care is necessagnce this mode of opera-
tion sulverts the intention ofmale and destrgs all memory of the pxgous relationships.

The delngging flag (~d’’) causeamale to print out a ery detailed description of what it is doing, including
the file times.The output is grbose, and recommended only as a last resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance ¢teowdrdd like
to thank S. C. Johnson and H. Gegka for being the prime guinea pigs duringdigoment ofmale.

References

1. S.C. Johnson,'Yacc — et Another CompileCompiler’, Bell Laboratories Computing Sciencechnical
Report #32, July 1978.

2. M. E. Lesk, ‘Lex — A Lexical Analyzer Generatdr’ Computing Science échnical Report #39, October
1975.

TV ILAT v iyt i ivianp A ity weriipgetetl gt il I 1 wadnsdubm W

Appendix. Suffixesand Transformation Rules

The male program itself does not kmowhat file name stikes are interesting or tvato transform a file with
one sufix into a file with another sfik. This information is stored in an internal table that has the form of a
description file.If the “~r’’ flag is used, this table is not used.

The list of sufixes is actually the dependgriést for the name' 'SUFFIXES’; male looks for a file with ap
of the sufixes on the listIf such a file gists, and if there is a transformation rule for that combinati@ie acts as
described earlierThe transformation rule names are the concatenation of theuffixes. Thename of the rule to
transform a‘.r” file to a *.0" file is thus “.r.0" . If the rule is present and ngpdicit command sequence has been
given in the usess description files, the command sequence for the rule™is used. Ifa mmmand is generated by
using one of these dixing rules, the macrol$is given the \alue of the stem (erything tut the sufix) of the name
of the file to be made, and the macro $< is the name of the dependent that caused the action.

The order of the sfik list is significant, since it is scanned from left to right, and the first name that is formed
that has both a file and a rule associated with it is usatw names are to be appended, the user can just add an
entry for *.SUFFIXES’ in his own description file; the dependents will be added to the usuaNistSUFFIXES’
line without ary dependents deletes the current li@t.is necessary to clear the current list if the order of names is
to be changed).

The following is an &cerpt from the defult rules file:

SUFFIXES:.0.c.e.rfiy.yr.ye.l.s
YACC=yacc
YACCR=yacc -r
YACCE=yacc —-e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.0:
$(CC) $(CFLAGS) —c $<
.e.0.ro .fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —c $<

8.0
$(AS) -0 $@ $<

y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —c ytahc
rm y.tahc
mv y.taho $@

y.c:

$(YACC) $(YFLAGS) $<
mv y.tabc $@

