

Page 83

System Organization Chapter Three

To write even a modest 80x86 assembly language program requires considerable
familiarity with the 80x86 family. To write

good

 assembly language programs requires a
strong knowledge of the underlying hardware. Unfortunately, the underlying hardware is
not consistent. Techniques that are crucial for 8088 programs may not be useful on 80486
systems. Likewise, programming techniques that provide big performance boosts on an
80486 chip may not help at all on an 80286. Fortunately, some programming techniques
work well whatever microprocessor you’re using. This chapter discusses the effect hard-
ware has on the performance of computer software.

3.0 Chapter Overview

This chapter describes the basic components that make up a computer system: the
CPU, memory, I/O, and the bus that connects them. Although you can write software that
is ignorant of these concepts, high performance software requires a complete understand-
ing of this material.

This chapter begins by discussing bus organization and memory organization. These
two hardware components will probably have a bigger performance impact on your soft-
ware than the CPU’s speed. Understanding the organization of the system bus will allow
you to design data structures that operate and maximum speed. Similarly, knowing about
memory performance characteristics, data locality, and cache operation can help you
design software that runs as fast as possible. Of course, if you’re not interested in writing
code that runs as fast as possible, you can skip this discussion; however, most people do
care about speed at one point or another, so learning this information is useful.

Unfortunately, the 80x86 family microprocessors are a complex group and often over-
whelm beginning students. Therefore, this chapter describes four hypothetical members
of the 80x86 family: the 886, 8286, the 8486, and the 8686 microprocessors. These represent
simplified versions of the 80x86 chips and allow a discussion of various architectural fea-
tures without getting bogged down by huge CISC instruction sets. This text uses the x86
hypothetical processors to describe the concepts of instruction encoding, addressing
modes, sequential execution, the prefetch queue, pipelining, and superscalar operation.
Once again, these are concepts you do not need to learn if you only want to write

correct

software. However, if you want to write

fast

 software as well, especially on advanced pro-
cessors like the 80486, Pentium, and beyond, you will need to learn about these concepts.

Some might argue that this chapter gets too involved with computer architecture.
They feel such material should appear in an architectural book, not an assembly language
programming book. This couldn’t be farther from the truth! Writing

good

assembly lan-
guage programs requires a strong knowledge of the architecture. Hence the emphasis on
computer architecture in this chapter.

3.1 The Basic System Components

The basic operational design of a computer system is called its

architecture

. John Von
Neumann, a pioneer in computer design, is given credit for the architecture of most com-
puters in use today. For example, the 80x86 family uses the

Von Neumann

architecture

(VNA). A typical Von Neumann system has three major components: the

central processing
unit

 (or

CPU

),

memory,

and

input/output

 (or

I/O

). The way a system designer combines
these components impacts system performance (see Figure 3.1).

In VNA machines, like the 80x86 family, the CPU is where all the action takes place.
All computations occur inside the CPU. Data and CPU instructions reside in memory
until required by the CPU. To the CPU, most I/O devices look like memory because the

This document was created with FrameMaker 4.0.2

Chapter 03

Page 84

CPU can store data to an output device and read data from an input device. The major dif-
ference between memory and I/O locations is the fact that I/O locations are generally
associated with external devices in the outside world.

3.1.1 The System Bus

The

system bus

 connects the various components of a VNA machine. The 80x86 family
has three major busses: the

address

 bus, the

data

 bus, and the

control

 bus. A bus is a collec-
tion of wires on which electrical signals pass between components in the system. These
busses vary from processor to processor. However, each bus carries comparable informa-
tion on all processors; e.g., the data bus may have a different implementation on the 80386
than on the 8088, but both carry data between the processor, I/O, and memory.

A typical 80x86 system component uses

standard TTL logic levels.

 This means each
wire on a bus uses a standard voltage level to represent zero and one

1

. We will always
specify zero and one rather than the electrical levels because these levels vary on different
processors (especially laptops).

3.1.1.1 The Data Bus

The 80x86 processors use the

data bus

 to shuffle data between the various components
in a computer system. The size of this bus varies widely in the 80x86 family. Indeed, this
bus defines the “size” of the processor.

On typical 80x86 systems, the data bus contains eight, 16, 32, or 64 lines. The 8088 and
80188 microprocessors have an eight bit data bus (eight data lines). The 8086, 80186, 80286,
and 80386SX processors have a 16 bit data bus. The 80386DX, 80486, and Pentium Over-
drive



 processors have a 32 bit data bus. The Pentium



 and Pentium Pro processors
have a 64 bit data bus. Future versions of the chip (the 80686/80786?) may have a larger
bus.

Having an eight bit data bus does not limit the processor to eight bit data types. It
simply means that the processor can only access one byte of data per memory cycle (see

1. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the
range 2.4-5v. If the signal on a bus line is between 0.8v and 2.4v, it’s value is indeterminate. Such a condition
should only exist when a bus line is changing from one state to the other.

Figure 3.1 Typical Von Neumann Machine

CPU

Memory

I/O Devices

System Organization

Page 85

“The Memory Subsystem” on page 87 for a description of memory cycles). Therefore, the
eight bit bus on an 8088 can only transmit half the information per unit time (memory
cycle) as the 16 bit bus on the 8086. Therefore, processors with a 16 bit bus are naturally
faster than processors with an eight bit bus. Likewise, processors with a 32 bit bus are
faster than those with a 16 or eight bit data bus. The size of the data bus affects the perfor-
mance of the system more than the size of any other bus.

You’ll often hear a processor called an

eight, 16, 32, or 64 bit processor.

 While there is a
mild controversy concerning the size of a processor, most people now agree that the num-
ber of data lines on the processor determines its size. Since the 80x86 family busses are
eight, 16, 32, or 64 bits wide, most data accesses are also eight, 16, 32, or 64 bits. Although
it is possible to process 12 bit data with an 8088, most programmers process 16 bits since
the processor will fetch and manipulate 16 bits anyway. This is because the processor
always fetches eight bits. To fetch 12 bits requires two eight bit memory operations. Since
the processor fetches 16 bits rather than 12, most programmers use all 16 bits. In general,
manipulating data which is eight, 16, 32, or 64 bits in length is the most efficient.

Although the 16, 32, and 64 bit members of the 80x86 family

can

process data up to the
width of the bus, they can also access smaller memory units of eight, 16, or 32 bits. There-
fore, anything you can do with a small data bus can be done with a larger data bus as well;
the larger data bus, however, may access memory faster and can access larger chunks of
data in one memory operation. You’ll read about the exact nature of these memory
accesses a little later (see “The Memory Subsystem” on page 87).

Table 17: 80x86 Processor Data Bus Sizes

Processor Data Bus Size

 8088 8

 80188 8

 8086 16

 80186 16

 80286 16

 80386sx 16

 80386dx 32

 80486 32

 80586 class/ Pentium (Pro) 64

The “Size” of a Processor

There has been a considerable amount of disagreement among hardware and software engineers
concerning the “size” of a processor like the 8088. From a hardware designer’s perspective, the 8088
is purely an eight bit processor – it has only eight data lines and is bus compatible with memory
and I/O devices designed for eight bit processors. Software engineers, on the other hand, have
argued that the 8088 is a 16 bit processor. From their perspective they cannot distinguish between
the 8088 (with an eight-bit data bus) and the 8086 (which has a 16-bit data bus). Indeed, the only dif-
ference is the speed at which the two processors operate; the 8086 with a 16 bit data bus is faster.
Eventually, the hardware designers won out. Despite the fact that software engineers cannot differ-
entiate the 8088 and 8086 in their programs, we call the 8088 an eight bit processor and the 8086 a 16
bit processor. Likewise, the 80386SX (which has a sixteen bit data bus) is a 16 bit processor while the
80386DX (which has a full 32 bit data bus) is a 32 bit processor.

Chapter 03

Page 86

3.1.1.2 The Address Bus

The data bus on an 80x86 family processor transfers information between a particular
memory location or I/O device and the CPU. The only question is, “

Which memory location
or I/O device?

 ” The address bus answers that question. To differentiate memory locations
and I/O devices, the system designer assigns a unique memory address to each memory
element and I/O device. When the software wants to access some particular memory
location or I/O device, it places the corresponding address on the address bus. Circuitry
associated with the memory or I/O device recognizes this address and instructs the mem-
ory or I/O device to read the data from or place data on the data bus. In either case, all
other memory locations ignore the request. Only the device whose address matches the
value on the address bus responds.

With a single address line, a processor could create exactly two unique addresses: zero
and one. With

n

 address lines, the processor can provide 2

n

 unique addresses (since there
are 2

n

 unique values in an

n

-bit binary number). Therefore, the number of bits on the
address bus will determine the

maximum

 number of addressable memory and I/O loca-
tions. The 8088 and 8086, for example, have 20 bit address busses. Therefore, they can
access up to 1,048,576 (or 2

20

) memory locations. Larger address busses can access more
memory. The 8088 and 8086, for example, suffer from an anemic address space

2

 – their
address bus is too small. Later processors have larger address busses:

Future 80x86 processors will probably support 48 bit address busses. The time is com-
ing when most programmers will consider four gigabytes of storage to be too small, much
like they consider one megabyte insufficient today. (There was a time when one megabyte
was considered far more than anyone would ever need!) Fortunately, the architecture of
the 80386, 80486, and later chips allow for an easy expansion to a 48 bit address bus
through

segmentation

.

3.1.1.3 The Control Bus

The control bus is an eclectic collection of signals that control how the processor com-
municates with the rest of the system. Consider for a moment the data bus. The CPU
sends data to memory and receives data from memory on the data bus. This prompts the
question, “Is it sending or receiving?” There are two lines on the control bus,

read

and

write

, which specify the direction of data flow. Other signals include system clocks, inter-
rupt lines, status lines, and so on. The exact make up of the control bus varies among pro-

2. The address space is the set of all addressable memory locations.

Table 18: 80x86 Family Address Bus Sizes

Processor
Address Bus

Size
Max Addressable

Memory
In English!

8088 20 1,048,576 One Megabyte

8086 20 1,048,576 One Megabyte

80188 20 1,048,576 One Megabyte

80186 20 1,048,576 One Megabyte

80286 24 16,777,216 Sixteen Megabytes

80386sx 24 16,777,216 Sixteen Megabytes

80386dx 32 4,294,976,296 Four Gigabytes

80486 32 4,294,976,296 Four Gigabytes

80586 / Pentium (Pro) 32 4,294,976,296 Four Gigabytes

System Organization

Page 87

cessors in the 80x86 family. However, some control lines are common to all processors and
are worth a brief mention.

The

read

and

 write

control lines control the direction of data on the data bus. When
both contain a logic one, the CPU and memory-I/O are not communicating with one
another. If the read line is low (logic zero), the CPU is reading data from memory (that is,
the system is transferring data from memory to the CPU). If the write line is low, the sys-
tem transfers data from the CPU to memory.

The

byte enable lines

are another set of important control lines

.

 These control lines
allow 16, 32, and 64 bit processors to deal with smaller chunks of data. Additional details
appear in the next section.

The 80x86 family, unlike many other processors, provides two distinct address spaces:
one for memory and one for I/O. While the memory address busses on various 80x86 pro-
cessors vary in size, the I/O address bus on all 80x86 CPUs is 16 bits wide. This allows the
processor to address up to 65,536 different I/O

locations.

 As it turns out, most devices (like
the keyboard, printer, disk drives, etc.) require more than one I/O location. Nonetheless,
65,536 I/O locations are more than sufficient for most applications. The original IBM PC
design only allowed the use of 1,024 of these.

Although the 80x86 family supports two address spaces, it does not have two address
busses (for I/O and memory). Instead, the system shares the address bus for both I/O and
memory addresses. Additional control lines decide whether the address is intended for
memory or I/O. When such signals are active, the I/O devices use the address on the L.O.
16 bits of the address bus. When inactive, the I/O devices ignore the signals on the
address bus (the memory subsystem takes over at that point).

3.1.2 The Memory Subsystem

A typical 80x86 processor addresses a maximum of 2

n

 different memory locations,
where

n

 is the number of bits on the address bus

3

. As you’ve seen already, 80x86 proces-
sors have 20, 24, and 32 bit address busses (with 48 bits on the way).

Of course, the first question you should ask is, “What exactly is a memory location?”
The 80x86 supports

byte addressable memory

. Therefore, the basic memory unit is a byte. So
with 20, 24, and 32 address lines, the 80x86 processors can address one megabyte, 16
megabytes, and four gigabytes of memory, respectively.

Think of memory as a linear array of bytes. The address of the first byte is zero and the
address of the last byte is 2

n

-1. For an 8088 with a 20 bit address bus, the following
pseudo-Pascal array declaration is a good approximation of memory:

Memory: array [0..1048575] of byte;

To execute the equivalent of the Pascal statement “Memory [125] := 0;” the CPU places
the value zero on the data bus, the address 125 on the address bus, and asserts the write
line (since the CPU is writing data to memory, see Figure 3.2)

To execute the equivalent of “CPU := Memory [125];” the CPU places the address 125
on the address bus, asserts the read line (since the CPU is reading data from memory), and
then reads the resulting data from the data bus (see Figure 3.2).

The above discussion applies

only

when accessing a single byte in memory. So what
happens when the processor accesses a word or a double word? Since memory consists of
an array of bytes, how can we possibly deal with values larger than eight bits?

Different computer systems have different solutions to this problem. The 80x86 family
deals with this problem by storing the L.O. byte of a word at the address specified and the
H.O. byte at the next location. Therefore, a word consumes two consecutive memory

3. This is the

maximum

. Most computer systems built around 80x86 family do not include the maximum address-
able amount of memory.

Chapter 03

Page 88

addresses (as you would expect, since a word consists of two bytes). Similarly, a double
word consumes four consecutive memory locations. The address for the double word is
the address of its L.O. byte. The remaining three bytes follow this L.O. byte, with the H.O.
byte appearing at the address of the double word

plus three

(see Figure 3.4) Bytes, words,
and double words may begin at

any

valid address in memory. We will soon see, however,
that starting larger objects at an arbitrary address is not a good idea.

Note that it is quite possible for byte, word, and double word values to overlap in
memory. For example, in Figure 3.4 you could have a word variable beginning at address
193, a byte variable at address 194, and a double word value beginning at address 192.
These variables would all overlap.

The 8088 and 80188 microprocessors have an eight bit data bus. This means that the
CPU can transfer eight bits of data at a time. Since each memory address corresponds to
an eight bit byte, this turns out to be the most convenient arrangement (from the hardware
perspective), see Figure 3.5.

The term “byte addressable memory array” means that the CPU can address memory
in chunks as small as a single byte. It also means that this is the

smallest

unit of memory
you can access at once with the processor. That is, if the processor wants to access a four
bit value, it must read eight bits and then ignore the extra four bits. Also realize that byte
addressability does not imply that the CPU can access eight bits on any arbitrary bit
boundary. When you specify address 125 in memory, you get the entire eight bits at that
address, nothing less, nothing more. Addresses are integers; you cannot, for example,
specify address 125.5 to fetch fewer than eight bits.

The 8088 and 80188 can manipulate word and double word values, even with their
eight bit data bus. However, this requires multiple memory operations because these pro-
cessors can only move eight bits of data at once. To load a word requires two memory
operations; to load a double word requires four memory operations.

Figure 3.2 Memory Write Operation

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
 125

Figure 3.3 Memory Read Operation

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
 125

System Organization

Page 89

The 8086, 80186, 80286, and 80386sx processors have a 16 bit data bus. This allows
these processors to access twice as much memory in the same amount of time as their
eight bit brethren. These processors organize memory into two

banks

: an “even” bank and
an “odd” bank (see Figure 3.6). Figure 3.7 illustrates the connection to the CPU (D0-D7
denotes the L.O. byte of the data bus, D8-D15 denotes the H.O. byte of the data bus):

The 16 bit members of the 80x86 family can load a word from any arbitrary address.
As mentioned earlier, the processor fetches the L.O. byte of the value from the address
specified and the H.O. byte from the next consecutive address. This creates a subtle prob-
lem if you look closely at the diagram above. What happens when you access a word on
an odd address? Suppose you want to read a word from location 125. Okay, the L.O. byte
of the word comes from location 125 and the H.O. word comes from location 126. What’s
the big deal? It turns out that there are two problems with this approach.

Figure 3.4 Byte, Word, and Double word Storage in Memory

195

194

193

192

191

190

189

188

187

186

Double Word
at address
192

Word at
address 188

Byte at
address 186

Address

Figure 3.5 Eight-Bit CPU-Memory Interface

CPU

Address

Data

Data comes from memory
eight bits at a time.

Chapter 03

Page 90

First, look again at Figure 3.7. Data bus lines eight through 15 (the H.O. byte) connect
to the odd bank, and data bus lines zero through seven (the L.O. byte) connect to the even
bank. Accessing memory location 125 will transfer data to the CPU on the H.O. byte of the
data bus; yet we want this data in the L.O. byte! Fortunately, the 80x86 CPUs recognize
this situation and automatically transfer the data on D8-D15 to the L.O. byte.

The second problem is even more obscure. When accessing words, we’re really access-
ing two separate bytes, each of which has its own byte address. So the question arises,
“What address appears on the address bus?” The 16 bit 80x86 CPUs always place even
addresses on the bus. Even bytes always appear on data lines D0-D7 and the odd bytes
always appear on data lines D8-D15. If you access a word at an even address, the CPU can
bring in the entire 16 bit chunk in one memory operation. Likewise, if you access a single
byte, the CPU activates the appropriate bank (using a “byte enable” control line). If the
byte appeared at an odd address, the CPU will automatically move it from the H.O. byte
on the bus to the L.O. byte.

So what happens when the CPU accesses a

word

at an odd address, like the example
given earlier? Well, the CPU cannot place the address 125 onto the address bus and read
the 16 bits from memory. There are no odd addresses coming out of a 16 bit 80x86 CPU.
The addresses are always even. So if you try to put 125 on the address bus, this will put
124 on to the address bus. Were you to read the 16 bits at this address, you would get the
word at addresses 124 (L.O. byte) and 125 (H.O. byte) – not what you’d expect. Accessing
a word at an odd address requires two memory operations. First the CPU must read the
byte at address 125, then it needs to read the byte at address 126. Finally, it needs to swap
the positions of these bytes internally since both entered the CPU on the wrong half of the
data bus.

Figure 3.6 Byte Addresses in Word Memory

Even Odd

0 1

2 3

4 5

6 7

Figure 3.7 16-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

CPU

Address

Data

D0-D7

D8-D15

Even Odd

System Organization

Page 91

Fortunately, the 16 bit 80x86 CPUs hide these details from you. Your programs can
access words at

any

 address and the CPU will properly access and swap (if necessary) the
data in memory. However, to access a word at an odd address requires two memory oper-
ations (just like the 8088/80188). Therefore, accessing words at odd addresses on a 16 bit
processor is slower than accessing words at even addresses.

By carefully arranging how
you use memory, you can improve the speed of your program.

Accessing 32 bit quantities always takes at least two memory operations on the 16 bit
processors. If you access a 32 bit quantity at an odd address, the processor will require
three memory operations to access the data.

The 32 bit 80x86 processors (the 80386, 80486, and Pentium Overdrive) use four banks
of memory connected to the 32 bit data bus (see Figure 3.8). The address placed on the
address bus is always some multiple of four. Using various “byte enable” lines, the CPU
can select which of the four bytes at that address the software wants to access. As with the
16 bit processor, the CPU will automatically rearrange bytes as necessary.

With a 32 bit memory interface, the 80x86 CPU can access any byte with one memory
operation. If (address MOD 4) does not equal three, then a 32 bit CPU can access a word at
that address using a single memory operation. However, if the remainder is three, then it
will take two memory operations to access that word (see Figure 3.9). This is the same
problem encountered with the 16 bit processor, except it occurs half as often.

A 32 bit CPU can access a double word in a single memory operation

if

the address of
that value is evenly divisible by four. If not, the CPU will require two memory operations.

Once again, the CPU handles all of this automatically. In terms of loading correct data
the CPU handles everything for you. However, there is a performance benefit to proper
data alignment. As a general rule you should always place word values at even addresses
and double word values at addresses which are evenly divisible by four. This will speed
up your program.

Figure 3.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

CPU

Address

Data

D0-D7

D8-D15

D16-D23

D24-D31

Byte 0 1 2 3

Figure 3.9 Accessing a Word at (Address

mod

 4) = 3.

Chapter 03

Page 92

3.1.3 The I/O Subsystem

Besides the 20, 24, or 32 address lines which access memory, the 80x86 family provides
a 16 bit I/O address bus. This gives the 80x86 CPUs two separate address spaces: one for
memory and one for I/O operations. Lines on the control bus differentiate between mem-
ory and I/O addresses. Other than separate control lines and a smaller bus, I/O address-
ing behaves exactly like memory addressing. Memory and I/O devices both share the
same data bus and the L.O. 16 lines on the address bus.

There are three limitations to the I/O subsystem on the IBM PC: first, the 80x86 CPUs
require special instructions to access I/O devices; second, the designers of the IBM PC
used the “best” I/O locations for their own purposes, forcing third party developers to
use less accessible locations; third, 80x86 systems can address no more than 65,536 (2

16

)
I/O addresses. When you consider that a typical VGA display card requires over 128,000
different locations, you can see a problem with the size of I/O bus.

Fortunately, hardware designers can map their I/O devices into the memory address
space as easily as they can the I/O address space. So by using the appropriate circuitry,
they can make their I/O devices look just like memory. This is how, for example, display
adapters on the IBM PC work.

Accessing I/O devices is a subject we’ll return to in later chapters. For right now you
can assume that I/O and memory accesses work the same way.

3.2 System Timing

Although modern computers are quite fast and getting faster all the time, they still
require a finite amount of time to accomplish even the smallest tasks. On Von Neumann
machines, like the 80x86, most operations are

serialized

. This means that the computer exe-
cutes commands in a prescribed order. It wouldn’t do, for example, to execute the state-
ment

I:=I*5+2

; before I

:=J

; in the following sequence:

I := J;
I := I * 5 + 2;

Clearly we need some way to control which statement executes first and which executes
second.

Of course, on real computer systems, operations do not occur instantaneously. Mov-
ing a copy of

J

into

I

 takes a certain amount of time. Likewise, multiplying

I

 by five and
then adding two and storing the result back into

I

takes time. As you might expect, the sec-
ond Pascal statement above takes quite a bit longer to execute than the first. For those
interested in writing fast software, a natural question to ask is, “How does the processor
execute statements, and how do we measure how long they take to execute?”

The CPU is a very complex piece of circuitry. Without going into too many details, let
us just say that operations inside the CPU must be very carefully coordinated or the CPU
will produce erroneous results. To ensure that all operations occur at just the right
moment, the 80x86 CPUs use an alternating signal called the

system clock

.

3.2.1 The System Clock

At the most basic level, the

system clock

handles all synchronization within a computer
system. The system clock is an electrical signal on the control bus which alternates
between zero and one at a periodic rate (see Figure 3.10). CPUs are a good example of a
complex synchronous logic system (see the previous chapter). The system clock gates
many of the logic gates that make up the CPU allowing them to operate in a synchronized
fashion.

System Organization

Page 93

The frequency with which the system clock alternates between zero and one is the

sys-
tem clock frequency

. The time it takes for the system clock to switch from zero to one and
back to zero is the

clock period.

One full period is also called a

clock cycle

. On most modern
systems, the system clock switches between zero and one at rates exceeding several mil-
lion times per second. The clock frequency is simply the number of clock cycles which
occur each second. A typical 80486 chip runs at speeds of 66million cycles per second.
“Hertz” (Hz) is the technical term meaning one cycle per second. Therefore, the aforemen-
tioned 80486 chip runs at 66 million hertz, or 66 megahertz (MHz). Typical frequencies for
80x86 parts range from 5 MHz up to 200 MHz and beyond. Note that one clock period (the
amount of time for one complete clock cycle) is the reciprocal of the clock frequency. For
example, a 1 MHz clock would have a clock period of one microsecond (1/1,000,000

th

 of a
second). Likewise, a 10 MHz clock would have a clock period of 100 nanoseconds (100 bil-
lionths of a second). A CPU running at 50 MHz would have a clock period of 20 nanosec-
onds. Note that we usually express clock periods in millionths or billionths of a second.

To ensure synchronization, most CPUs start an operation on either the

falling edge

(when the clock goes from one to zero) or the

 rising edge

 (when the clock goes from zero to
one). The system clock spends most of its time at either zero or one and very little time
switching between the two. Therefore clock edge is the perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot perform
tasks any faster than the clock

4

. However, just because a CPU is running at some clock fre-
quency doesn’t mean that it is executing that many operations each second. Many opera-
tions take multiple clock cycles to complete so the CPU often performs operations at a
significantly lower rate.

3.2.2 Memory Access and the System Clock

Memory access is probably the most common CPU activity. Memory access is defi-
nitely an operation synchronized around the system clock. That is, reading a value from
memory or writing a value to memory occurs no more often than once every clock cycle

5

.
Indeed, on many 80x86 processors, it takes several clock cycles to access a memory loca-
tion. The

memory access time

 is the number of clock cycles the system requires to access a
memory location; this is an important value since longer memory access times result in
lower performance.

Different 80x86 processors have different memory access times ranging from one to
four clock cycles. For example, the 8088 and 8086 CPUs require

four

clock cycles to access
memory; the 80486 requires only one. Therefore, the 80486 will execute programs which
access memory faster than an 8086, even when running at the same clock frequency.

4. Some later versions of the 80486 use special clock doubling circuitry to run twice as fast as the input clock fre-
quency. For example, with a 25 MHz clock the chip runs at an effective rate of 50 MHz. However, the internal
clock frequency

is

50 MHz. The CPU still won’t execute operations faster than 50 million operations per second.
5. This is true even on the clock doubled CPUs.

Figure 3.10 The System Clock

1
0

Time

One Clock
 ÒPeriodÓ

Chapter 03

Page 94

Memory access time is the amount of time between a memory operation request (read
or write) and the time the memory operation completes. On a 5 MHz 8088/8086 CPU the
memory access time is roughly 800 ns (nanoseconds). On a 50 MHz 80486, the memory
access time is slightly less than 20 ns. Note that the memory access time for the 80486 is 40
times faster than the 8088/8086. This is because the 80486’s clock frequency is ten times
faster and it uses one-fourth the clock cycles to access memory.

When reading from memory, the memory access time is the amount of time from the
point that the CPU places an address on the address bus and the CPU takes the data off
the data bus. On an 80486 CPU with a one cycle memory access time, a read looks some-
thing like shown in Figure 3.11. Writing data to memory is similar (see Figure 3.11).

Note that the CPU doesn’t wait for memory. The access time is specified by the clock
frequency. If the memory subsystem doesn’t work fast enough, the CPU will read garbage
data on a memory read operation and will not properly store the data on a memory write
operation. This will surely cause the system to fail.

Memory devices have various ratings, but the two major ones are capacity and speed
(access time). Typical dynamic RAM (random access memory) devices have capacities of
four (or more) megabytes and speeds of 50-100 ns. You can buy bigger or faster devices,
but they are much more expensive. A typical 33 MHz 80486 system uses 70 ns memory
devices.

Wait just a second here! At 33 MHz the clock period is roughly 33 ns. How can a sys-
tem designer get away with using 70 ns memory? The answer is

wait states

.

Figure 3.11 An 80486 Memory Read Cycle

The CPU places
the address on
the address bus
during this time
period The memory system must

decode the address and
place the data on the data
bus during this time period

The CPU reads the
data from the data
bus during this time
period

Figure 3.12 An 80486 Memory Write Cycle

The CPU places
the address and
data onto the bus
at this time

Sometime before the end
of the clock period the
memory subsystem must
grab and store the specified
value

System Organization

Page 95

3.2.3 Wait States

A wait state is nothing more than an extra clock cycle to give some device time to
complete an operation. For example, a 50 MHz 80486 system has a 20 ns clock period. This
implies that you need 20 ns memory. In fact, the situation is worse than this. In most com-
puter systems there is additional circuitry between the CPU and memory: decoding and
buffering logic. This additional circuitry introduces additional delays into the system (see
Figure 3.13). In this diagram, the system loses 10ns to buffering and decoding. So if the
CPU needs the data back in 20 ns, the memory must respond in less than 10 ns.

You can actually buy 10ns memory. However, it is very expensive, bulky, consumes a
lot of power, and generates a lot of heat. These are bad attributes. Supercomputers use this
type of memory. However, supercomputers also cost millions of dollars, take up entire
rooms, require special cooling, and have giant power supplies. Not the kind of stuff you
want sitting on your desk.

If cost-effective memory won’t work with a fast processor, how do companies manage
to sell fast PCs? One part of the answer is the wait state. For example, if you have a 20
MHz processor with a memory cycle time of 50 ns and you lose 10 ns to buffering and
decoding, you’ll need 40 ns memory. What if you can only afford 80 ns memory in a 20
MHz system? Adding a wait state to extend the memory cycle to 100 ns (two clock cycles)
will solve this problem. Subtracting 10ns for the decoding and buffering leaves 90 ns.
Therefore, 80 ns memory will respond well before the CPU requires the data.

Almost every general purpose CPU in existence provides a signal on the control bus
to allow the insertion of wait states. Generally, the decoding circuitry asserts this line to
delay one additional clock period, if necessary. This gives the memory sufficient access
time, and the system works properly (see Figure 3.14).

Sometimes a single wait state is not sufficient. Consider the 80486 running at 50 MHz.
The normal memory cycle time is less than 20 ns. Therefore, less than 10 ns are available
after subtracting decoding and buffering time. If you are using 60 ns memory in the sys-
tem, adding a single wait state will not do the trick. Each wait state gives you 20 ns, so
with a single wait state you would need 30 ns memory. To work with 60 ns memory you
would need to add

three

wait states (zero wait states = 10 ns, one wait state = 30 ns, two
wait states = 50 ns, and three wait states = 70 ns).

Needless to say, from the system performance point of view, wait states are

not

a good
thing. While the CPU is waiting for data from memory it cannot operate on that data.

Figure 3.13 Decoding and Buffing Delays

CPU

D
e
c
o
d
e
r

B
u
f
f
e
r

address

data

5 ns delay
through
decoder

5 ns delay
through
buffer

Chapter 03

Page 96

Adding a single wait state to a memory cycle on an 80486 CPU

doubles

 the amount of time
required to access the data. This, in turn,

halves

 the speed of the memory access. Running
with a wait state on every memory access is almost like cutting the processor clock fre-
quency in half. You’re going to get a lot less work done in the same amount of time.

You’ve probably seen the ads. “80386DX, 33 MHz, 8 megabytes 0 wait state RAM...
only $1,000!” If you look closely at the specs you’ll notice that the manufacturer is using 80
ns memory. How can they build systems which run at 33 MHz and have zero wait states?
Easy. They lie.

There is no way an 80386 can run at 33 MHz, executing an arbitrary program, without
ever inserting a wait state. It is flat out impossible. However, it is quite possible to design
a memory subsystem which

under certain, special, circumstances

 manages to operate with-
out wait states part of the time. Most marketing types figure if their system

ever

operates
at zero wait states, they can make that claim in their literature. Indeed, most marketing
types have no idea what a wait state is other than it’s bad and having zero wait states is
something to brag about.

However, we’re not doomed to slow execution because of added wait states. There are
several tricks hardware designers can play to achieve zero wait states

most

of the time. The
most common of these is the use of

cache

(pronounced “cash”) memory.

3.2.4 Cache Memory

If you look at a typical program (as many researchers have), you’ll discover that it
tends to access the same memory locations repeatedly. Furthermore, you also discover
that a program often accesses adjacent memory locations. The technical names given to
this phenomenon are

temporal locality of reference

and

 spatial locality of reference

. When
exhibiting spatial locality, a program accesses neighboring memory locations. When dis-
playing temporal locality of reference a program repeatedly accesses the same memory
location during a short time period. Both forms of locality occur in the following Pascal
code segment:

for i := 0 to 10 do
A [i] := 0;

There are two occurrences each of spatial and temporal locality of reference within this
loop. Let’s consider the obvious ones first.

Figure 3.14 Inserting a Wait State into a Memory Read Operation

The CPU places
the address on
the address bus
during this time
period

The memory system must
decode the address and
place the data on the data
bus during this time period,
since one clock cycle is insufficient,
the systems adds a second clock cycle,
a wait state

The CPU reads the
data from the data
bus during this time
period

System Organization

Page 97

In the Pascal code above, the program references the variable

i

 several times. The

for

loop compares

i

 against 10 to see if the loop is complete. It also increments

i

by one at the
bottom of the loop. The assignment statement also uses

i

 as an array index. This shows
temporal locality of reference in action since the CPU accesses

i

 at three points in a short
time period.

This program also exhibits spatial locality of reference. The loop itself zeros out the
elements of array

A

 by writing a zero to the first location in

A

, then to the second location
in

A

, and so on. Assuming that Pascal stores the elements of

A

 into consecutive memory
locations

6

, each loop iteration accesses adjacent memory locations.

There is an additional example of temporal and spatial locality of reference in the Pas-
cal example above, although it is not so obvious. Computer

instructions

 which tell the sys-
tem to do the specified task also appear in memory. These instructions appear
sequentially in memory – the spatial locality part. The computer also executes these
instructions repeatedly, once for each loop iteration – the temporal locality part.

If you look at the execution profile of a typical program, you’d discover that the pro-
gram typically executes less than half the statements. Generally, a typical program might
only use 10-20% of the memory allotted to it. At any one given time, a one megabyte pro-
gram might only access four to eight kilobytes of data and code. So if you paid an outra-
geous sum of money for expensive zero wait state RAM, you wouldn’t be using most of it
at any one given time! Wouldn’t it be nice if you could buy a small amount of fast RAM
and dynamically reassign its address(es) as the program executes?

This is exactly what cache memory does for you. Cache memory sits between the CPU
and main memory. It is a small amount of very fast (zero wait state) memory. Unlike nor-
mal memory, the bytes appearing within a cache do not have fixed addresses. Instead,
cache memory can reassign the address of a data object. This allows the system to keep
recently accessed values in the cache. Addresses which the CPU has never accessed or
hasn’t accessed in some time remain in main (slow) memory. Since most memory accesses
are to recently accessed variables (or to locations near a recently accessed location), the
data generally appears in cache memory.

Cache memory is not perfect. Although a program may spend considerable time exe-
cuting code in one place, eventually it will call a procedure or wander off to some section
of code outside cache memory. In such an event the CPU has to go to main memory to
fetch the data. Since main memory is slow, this will require the insertion of wait states.

A cache

hit

occurs whenever the CPU accesses memory and finds the data in the
cache. In such a case the CPU can usually access data with zero wait states. A cache

miss

occurs if the CPU accesses memory and the data is not present in cache. Then the CPU has
to read the data from main memory, incurring a performance loss. To take advantage of
locality of reference, the CPU copies data into the cache whenever it accesses an address
not present in the cache. Since it is likely the system will access that same location shortly,
the system will save wait states by having that data in the cache.

As described above, cache memory handles the temporal aspects of memory access,
but not the spatial aspects. Caching memory locations

 when you access them

 won’t speed
up the program if you constantly access consecutive locations (spatial locality of refer-
ence). To solve this problem, most caching systems read several consecutive bytes from
memory when a cache miss occurs

7

. The 80486, for example, reads 16 bytes at a shot upon
a cache miss. If you read 16 bytes, why read them in blocks rather than as you need them?
As it turns out, most memory chips available today have special modes which let you
quickly access several consecutive memory locations on the chip. The cache exploits this
capability to reduce the average number of wait states needed to access memory.

If you write a program that randomly accesses memory, using a cache might actually
slow you down. Reading 16 bytes on each cache miss is expensive if you only access a few

6. It does, see “Memory Layout and Access” on page 145.
7. Engineers call this block of data a cache

line

.

Chapter 03

Page 98

bytes in the corresponding cache line. Nonetheless, cache memory systems work quite
well.

It should come as no surprise that the ratio of cache hits to misses increases with the
size (in bytes) of the cache memory subsystem. The 80486 chip, for example, has 8,192
bytes of on-chip cache. Intel claims to get an 80-95% hit rate with this cache (meaning
80-95% of the time the CPU finds the data in the cache). This sounds very impressive.
However, if you play around with the numbers a little bit, you’ll discover it’s not all

that

impressive. Suppose we pick the 80% figure. Then one out of every five memory accesses,
on the average, will not be in the cache. If you have a 50 MHz processor and a 90 ns mem-
ory access time, four out of five memory accesses require only one clock cycle (since they
are in the cache) and the fifth will require about 10 wait states

8

. Altogether, the system
will require 15 clock cycles to access five memory locations, or three clock cycles per
access, on the average. That’s equivalent to two wait states added to every memory
access. Now do you believe that your machine runs at zero wait states?

There are a couple of ways to improve the situation. First, you can add more cache
memory. This improves the cache hit ratio, reducing the number of wait states. For exam-
ple, increasing the hit ratio from 80% to 90% lets you access 10 memory locations in 20
cycles. This reduces the average number of wait states per memory access to one wait
state – a substantial improvement. Alas, you can’t pull an 80486 chip apart and solder
more cache onto the chip. However, the 80586/Pentium CPU has a significantly larger
cache than the 80486 and operates with fewer wait states.

Another way to improve performance is to build a

two-level

caching system. Many
80486 systems work in this fashion. The first level is the on-chip 8,192 byte cache. The next
level, between the on-chip cache and main memory, is a secondary cache built on the com-
puter system circuit board (see Figure 3.15).

A typical secondary cache contains anywhere from 32,768 bytes to one megabyte of mem-
ory. Common sizes on PC subsystems are 65,536 and 262,144 bytes of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache
to begin with?” Well, the secondary cache generally does not operate at zero wait states.
The circuitry to support 262,144 bytes of 10 ns memory (20 ns total access time) would be

very

expensive. So most system designers use slower memory which requires one or two
wait states. This is still

much

faster than main memory. Combined with the on-chip cache,
you can get better performance from the system.

8. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90).
However, the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive
addresses in about 40 ns after accessing the first location. Therefore, the 80486 will require an additional six clock
cycles to read the remaining three double words. The total is 11 clock cycles or 10 wait states.

Figure 3.15 A Two Level Caching System

CPU

On-chip (primary)
cache Secondary Cache

Main
Memory

System Organization

Page 99

Consider the previous example with an 80% hit ratio. If the secondary cache requires
two cycles for each memory access and three cycles for the first access, then a cache miss
on the on-chip cache will require a total of six clock cycles. All told, the average system
performance will be two clocks per memory access. Quite a bit faster than the three
required by the system without the secondary cache. Furthermore, the secondary cache
can update its values in parallel with the CPU. So the number of cache misses (which
affect CPU performance) goes way down.

You’re probably thinking, “So far this all sounds interesting, but what does it have to
do with programming?” Quite a bit, actually. By writing your program carefully to take
advantage of the way the cache memory system works, you can improve your program’s
performance. By colocating variables you commonly use together in the same cache line,
you can force the cache system to load these variables as a group, saving extra wait states
on each access.

If you organize your program so that it tends to execute the same sequence of instruc-
tions repeatedly, it will have a high degree of temporal locality of reference and will, there-
fore, execute faster.

3.3 The 886, 8286, 8486, and 8686 “Hypothetical” Processors

To understand how to improve system performance, it’s time to explore the internal
operation of the CPU. Unfortunately, the processors in the 80x86 family are complex
beasts. Discussing their internal operation would probably cause more confusion than
enlightenment. So we will use the 886, 8286, 8486, and 8686 processors (the “x86” proces-
sors). These “paper processors” are extreme simplifications of various members of the
80x86 family. They highlight the important architectural features of the 80x86.

The 886, 8286, 8486, and 8686 processors are all identical except for the way they exe-
cute instructions. They all have the same

register set

, and they “execute” the same

instruc-
tion set

. That sentence contains some new ideas; let’s attack them one at a time.

3.3.1 CPU Registers

CPU registers are

very

special memory locations constructed from flip-flops. They are
not part of main memory; the CPU implements them on-chip. Various members of the
80x86 family have different register sizes. The 886, 8286, 8486, and 8686 (x86 from now on)
CPUs have exactly four registers, all 16 bits wide. All arithmetic and location operations
occur in the CPU registers.

Because the x86 processor has so few registers, we’ll give each register its own name
and refer to it by that name rather than its address. The names for the x86 registers are

AX –The accumulator register
BX –The base address register
CX –The count register
DX –The data register

Besides the above registers, which are visible to the programmer, the x86 processors also
have an

instruction pointer

 register which contains the address of the next instruction to
execute. There is also a

flags

register that holds the result of a comparison. The flags regis-
ter remembers if one value was less than, equal to, or greater than another value.

Because registers are on-chip and handled specially by the CPU, they are much faster
than memory. Accessing a memory location requires one or more clock cycles. Accessing
data in a register usually takes zero clock cycles. Therefore, you should try to keep vari-
ables in the registers. Register sets are very small and most registers have special purposes
which limit their use as variables, but they are still an excellent place to store temporary
data.

Chapter 03

Page 100

3.3.2 The Arithmetic & Logical Unit

The arithmetic and logical unit (ALU) is where most of the action takes place inside
the CPU. For example, if you want to add the value five to the AX register, the CPU:

• Copies the value from AX into the ALU,
• Sends the value five to the ALU,
• Instructs the ALU to add these two values together,
• Moves the result back into the AX register.

3.3.3 The Bus Interface Unit

The bus interface unit (BIU) is responsible for controlling the address and data busses
when accessing main memory. If a cache is present on the CPU chip then the BIU is also
responsible for accessing data in the cache.

3.3.4 The Control Unit and Instruction Sets

A fair question to ask at this point is “How exactly does a CPU perform assigned
chores?” This is accomplished by giving the CPU a fixed set of commands, or

instructions

,
to work on. Keep in mind that CPU designers construct these processors using logic gates
to execute these instructions. To keep the number of logic gates to a reasonably small set
(tens or hundreds of thousands), CPU designers must necessarily restrict the number and
complexity of the commands the CPU recognizes. This small set of commands is the
CPU’s

instruction set.

Programs in early (pre-Von Neumann) computer systems were often “hard-wired”
into the circuitry. That is, the computer’s wiring determined what problem the computer
would solve. One had to rewire the circuitry in order to change the program. A very diffi-
cult task. The next advance in computer design was the

programmable

 computer system,
one that allowed a computer programmer to easily “rewire” the computer system using a
sequence of sockets and plug wires. A computer program consisted of a set of rows of
holes (sockets), each row representing one operation during the execution of the program.
The programmer could select one of several instructions by plugging a wire into the par-
ticular socket for the desired instruction (see Figure 3.16). Of course, a major difficulty
with this scheme is that the number of possible instructions is severely limited by the
number of sockets one could physically place on each row. However, CPU designers
quickly discovered that with a small amount of additional logic circuitry, they could
reduce the number of sockets required from

n

 holes for

n

 instructions to log

2

(

n

) holes for

n

instructions. They did this by assigning a

numeric

 code to each instruction and then

Figure 3.16 Patch Panel Programming

.

Instr #1

Instr #2

Instr #3
 .
 .
 .

m
ov

e

ad
d

su
bt

ra
ct

m
ul

tip
ly

di
vi

de

an
d

or xo
r

System Organization

Page 101

encode that instruction as a binary number using log

2

(

n

) holes (see Figure 3.17). This
addition requires eight logic functions to decode the A, B, and C bits from the patch panel,
but the extra circuitry is well worth the cost because it reduces the number of sockets that
must be repeated for each instruction.

Of course, many CPU instructions are not stand-alone. For example, the

move

 instruc-
tion is a command that moves data from one location in the computer to another (e.g.,
from one register to another). Therefore, the

move

instruction requires two operands: a

source operand

 and a

destination operand.

 The CPU’s designer usually encodes these source
and destination operands as part of the machine instruction, certain sockets correspond to
the source operand and certain sockets correspond to the destination operand.
Figure 3.17 shows one possible combination of sockets to handle this. The

move

 instruc-
tion would move data from the source register to the destination register, the

add

 instruc-
tion would add the value of the source register to the destination register, etc.

One of the primary advances in computer design that the VNA provides is the con-
cept of a

stored program.

 One big problem with the patch panel programming method is
that the number of program steps (machine instructions) is limited by the number of rows
of sockets available on the machine. John Von Neumann and others recognized a relation-
ship between the sockets on the patch panel and bits in memory; they figured they could
store the binary equivalents of a machine program in main memory and fetch each pro-
gram from memory, load it into a special

decoding register

 that connected directly to the
instruction decoding circuitry of the CPU.

Figure 3.17 Encoding Instructions

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

Figure 3.18 Encoding Instructions with Source and Destination Fields

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A

CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

DD SS

DD -or- SS Register

 00 AX
 01 BX
 10 CX
 11 DX

Chapter 03

Page 102

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the

con-
trol unit

 (CU), fetches instruction codes (also known as

operation codes

or

opcodes

) from
memory and moves them to the instruction decoding register. The control unit contains a
special registers, the

instruction pointer

 that contains the address of an executable instruc-
tion. The control unit fetches this instruction’s code from memory and places it in the
decoding register for execution. After executing the instruction, the control unit incre-
ments the instruction pointer and fetches the next instruction from memory for execution,
and so on.

When designing an instruction set, the CPU’s designers generally choose opcodes that
are a multiple of eight bits long so the CPU can easily fetch complete instructions from
memory. The goal of the CPU’s designer is to assign an appropriate number of bits to the
instruction class field (move, add, subtract, etc.) and to the operand fields. Choosing more
bits for the instruction field lets you have more instructions, choosing additional bits for
the operand fields lets you select a larger number of operands (e.g., memory locations or
registers). There are additional complications. Some instructions have only one operand
or, perhaps, they don’t have any operands at all. Rather than waste the bits associated
with these fields, the CPU designers often reuse these fields to encode additional opcodes,
once again with some additional circuitry. The Intel 80x86 CPU family takes this to an
extreme with instructions ranging from one to about ten bytes long. Since this is a little too
difficult to deal with at this early stage, the x86 CPUs will use a different, much simpler,
encoding scheme.

3.3.5 The x86 Instruction Set

The x86 CPUs provide 20 basic instruction classes. Seven of these instructions have
two operands, eight of these instructions have a single operand, and five instructions have
no operands at all. The instructions are

mov

 (two forms)

, add, sub, cmp, and, or, not, je, jne,
jb, jbe, ja, jae, jmp, brk, iret, halt, get,

 and

put

. The following paragraphs describe how each of
these work.

The

mov

 instruction is actually two instruction classes merged into the same instruc-
tion. The two forms of the

mov

 instruction take the following forms:

mov reg, reg/memory/constant
mov memory, reg

where

reg

 is any of

 ax, bx, cx,

or

dx

;

constant

 is a numeric constant (using hexadecimal nota-
tion), and

memory

 is an operand specifying a memory location. The next section describes
the possible forms the memory operand can take. The “reg/memory/constant” operand
tells you that this particular operand may be a register, memory location, or a constant.

The

arithmetic and logical instructions

take the following forms:

add reg, reg/memory/constant
sub reg, reg/memory/constant
cmp reg, reg/memory/constant
and reg, reg/memory/constant
or reg, reg/memory/constant
not reg/memory

The

add

 instruction adds the value of the second operand to the first (register) operand,
leaving the sum in the first operand. The

sub

 instruction subtracts the value of the second
operand from the first, leaving the difference in the first operand. The

cmp

 instruction
compares the first operand against the second and saves the result of this comparison for
use with one of the conditional jump instructions (described in a moment). The

and

and

 or

instructions compute the corresponding bitwise logical operation on the two operands
and store the result into the first operand. The

not

 instruction inverts the bits in the single
memory or register operand.

The

control transfer instructions

 interrupt the sequential execution of instructions in
memory and transfer control to some other point in memory either unconditionally, or

System Organization

Page 103

after testing the result of the previous

cmp

 instruction. These instructions include the fol-
lowing:

ja dest -- Jump if above
jae dest -- Jump if above or equal
jb dest -- Jump if below
jbe dest -- Jump if below or equal
je dest -- Jump if equal
jne dest -- Jump if not equal
jmp dest -- Unconditional jump
iret -- Return from an interrupt

The first six instructions in this class let you check the result of the previous cmp instruc-
tion for greater than, greater or equal, less than, less or equal, equality, or inequality

9

. For
example, if you compare the

ax

 and

bx

 registers with the

cmp

 instruction and execute the

ja

instruction, the x86 CPU will jump to the specified destination location if

ax

 was greater
than

bx

. If

ax

 is not greater than

bx

, control will fall through to the next instruction in the
program. The

jmp

 instruction unconditionally transfers control to the instruction at the
destination address. The iret instruction returns control from an

interrupt service routine

,
which we will discuss later.

The

get

 and

put

 instructions let you read and write integer values.

Get

 will stop and
prompt the user for a hexadecimal value and then store that value into the

ax

 register.

Put

displays (in hexadecimal) the value of the

ax

 register.

The remaining instructions do not require any operands, they are

halt

 and

brk

.

Halt

 ter-
minates program execution and

brk

stops the program in a state that it can be restarted.

The x86 processors require a unique opcode for every different instruction, not just the
instruction classes. Although “mov ax, bx” and “mov ax, cx” are both in the same class,
they must have different opcodes if the CPU is to differentiate them. However, before
looking at all the possible opcodes, perhaps it would be a good idea to learn about all the
possible operands for these instructions.

3.3.6 Addressing Modes on the x86

The x86 instructions use five different operand types: registers, constants, and three
memory addressing schemes. Each form is called an

addressing mode

. The x86 processors
support the

register

 addressing mode

10

, the

immediate

addressing mode, the

indirect

addressing mode, the

indexed

 addressing mode, and the

direct

 addressing mode. The fol-
lowing paragraphs explain each of these modes.

Register operands are the easiest to understand. Consider the following forms of the

mov

instruction:

mov ax, ax
mov ax, bx
mov ax, cx
mov ax, dx

The first instruction accomplishes absolutely nothing. It copies the value from the

ax

register back into the

ax

 register. The remaining three instructions copy the value of

bx

,

cx

and

dx

 into

ax

. Note that the original values of

bx

,

cx

, and

dx

 remain the same. The first
operand (the

destination

) is not limited to

ax

; you can move values to any of these registers.

Constants are also pretty easy to deal with. Consider the following instructions:

mov ax, 25
mov bx, 195
mov cx, 2056
mov dx, 1000

9. The x86 processors only performed

unsigned

 comparisons.
10. Technically, registers do not have an address, but we apply the term

addressing mode

 to registers nonetheless.

Chapter 03

Page 104

These instructions are all pretty straightforward; they load their respective registers with
the specified hexadecimal constant

11

.

There are three addressing modes which deal with accessing data in memory. These
addressing modes take the following forms:

mov ax, [1000]
mov ax, [bx]
mov ax, [1000+bx]

The first instruction above uses the

direct

 addressing mode to load

ax

 with the 16 bit
value stored in memory starting at location 1000 hex.

The

mov ax, [bx]

 instruction loads

ax

 from the memory location specified by the
contents of the

bx

 register. This is an

indirect

addressing mode. Rather than using the value
in

bx

, this instruction accesses to the memory location whose address appears in

bx

. Note
that the following two instructions:

mov bx, 1000
mov ax, [bx]

are equivalent to the single instruction:

mov ax, [1000]

Of course, the second sequence is preferable. However, there are many cases where the
use of indirection is faster, shorter, and better. We’ll see some examples of this when we
look at the individual processors in the x86 family a little later.

The last memory addressing mode is the

indexed

addressing mode. An example of this
memory addressing mode is

mov ax, [1000+bx]

This instruction adds the contents of

bx

 with 1000 to produce the address of the memory
value to fetch. This instruction is useful for accessing elements of arrays, records, and
other data structures.

3.3.7 Encoding x86 Instructions

Although we could arbitrarily assign opcodes to each of the x86 instructions, keep in
mind that a real CPU uses logic circuitry to decode the opcodes and act appropriately on
them. A typical CPU opcode uses a certain number of bits in the opcode to denote the
instruction class (e.g., mov, add, sub), and a certain number of bits to encode each of the
operands. Some systems (e.g., CISC, or Complex Instruction Set Computers) encode these
fields in a very complex fashion producing very compact instructions. Other systems (e.g.,
RISC, or Reduced Instruction Set Computers) encode the opcodes in a very simple fashion
even if it means wasting some bits in the opcode or limiting the number of operations. The
Intel 80x86 family is definitely CISC and has one of the most complex opcode decoding
schemes ever devised. The whole purpose for the hypothetical x86 processors is to present
the concept of instruction encoding without the attendant complexity of the 80x86 family,
while still demonstrating CISC encoding.

A typical x86 instruction takes the form shown in Figure 3.19. The basic instruction is
either one or three bytes long. The instruction opcode consists of a single byte that con-
tains three fields. The first field, the H.O. three bits, defines the instruction class. This pro-
vides eight combinations. As you may recall, there are 20 instruction classes; we cannot
encode 20 instruction classes with three bits, so we’ll have to pull some tricks to handle
the other classes. As you can see in Figure 3.19, the basic opcode encodes the mov instruc-
tions (two classes, one where the rr field specifies the destination, one where the mmm
field specifies the destination), the

add, sub, cmp, and,

 and

or

 instructions. There is one

11. All numeric constants on the x86 are given in hexadecimal. The “h” suffix is not necessary.

System Organization

Page 105

additional class: special. The special instruction class provides a mechanism that allows us
to expand the number of available instruction classes, we will return to this class shortly.

To determine a particular instruction’s opcode, you need only select the appropriate
bits for the iii, rr, and mmm fields. For example, to encode the

mov ax, bx

 instruction you
would select iii=110 (mov reg, reg), rr=00 (ax), and mmm=001 (bx). This produces the
one-byte instruction 11000001 or 0C0h.

Some x86 instructions require more than one byte. For example, the instruction

mov ax, [1000]

 loads the ax register from memory location 1000. The encoding for the
opcode is 11000110 or 0C6h. However, the encoding for

mov ax,[2000]

’s opcode is also
0C6h. Clearly these two instructions do different things, one loads the

ax

 register from
memory location 1000h while the other loads the

ax

 register from memory location 2000.
To encode an address for the [xxxx] or [xxxx+bx] addressing modes, or to encode the con-
stant for the immediate addressing mode, you must follow the opcode with the 16-bit
address or constant, with the L.O. byte immediately following the opcode in memory and
the H.O. byte after that. So the three byte encoding for

mov ax, [1000]

 would be 0C6h, 00h,
10h

12

 and the three byte encoding for

mov ax, [2000]

 would be 0C6h, 00h, 20h.

The special opcode allows the x86 CPU to expand the set of available instructions.
This opcode handles several zero and one-operand instructions as shown in Figure 3.20
and Figure 3.21.

12. Remember, all numeric constants are hexadecimal.

Figure 3.19 Basic x86 Instruction Encoding.

i i i r r m m m

i i i

000 = special
001 = or
010 = and
011 = cmp
100 = sub
101 = add
110 = mov reg, mem/reg/const
111 = mov mem, reg

r r

00 = AX
01 = BX
10 = CX
11 = DX

mmm

0 0 0 = AX
0 0 1 = BX
0 1 0 = CX
0 1 1 = DX
1 0 0 = [BX]
1 0 1 = [xxxx+BX]
1 1 0 = [xxxx]
1 1 1 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [bx+xxxx], [xxxxx],
or a constant.

Figure 3.20 Single Operand Instruction Encodings

0 0 0 i i m m m

i i

00 = zero operand instructions
01 = jump instructions
10 = not
11 = illegal (reserved)

mmm (if ii = 10)

000 = AX
001 = BX
010 = CX
011 = DX
100 = [BX]
101 = [xxxx+BX]
110 = [xxxx]
111 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [bx+xxxx], [xxxxx],
or a constant.

Chapter 03

Page 106

There are four one-operand instruction classes. The first encoding (00) further
expands the instruction set with a set of zero-operand instructions (see Figure 3.21). The
second opcode is also an expansion opcode that provides all the x86

jump

instructions (see
Figure 3.22). The third opcode is the

not

 instruction. This is the bitwise logical not opera-
tion that inverts all the bits in the destination register or memory operand. The fourth sin-
gle-operand opcode is currently unassigned. Any attempt to execute this opcode will halt
the processor with an illegal instruction error. CPU designers often reserve unassigned
opcodes like this one to extend the instruction set at a future date (as Intel did when mov-
ing from the 80286 processor to the 80386).

There are seven jump instructions in the x86 instruction set. They all take the follow-
ing form:

jxx

address

The

jmp

 instruction copies the 16-bit immediate value (address) following the opcode
into the IP register. Therefore, the CPU will fetch the next instruction from this target
address; effectively, the program “jumps” from the point of the

jmp

 instruction to the
instruction at the target address.

The

jmp

 instruction is an example of an

unconditional jump instruction

. It always trans-
fers control to the target address. The remaining six instructions are

conditional jump
instructions

. They test some condition and jump if the condition is true; they fall through
to the next instruction if the condition is false. These six instructions,

ja, jae, jb, jbe, je,

 and

jne

 let you test for greater than, greater than or equal, less than, less than or equal, equality,
and inequality. You would normally execute these instructions immediately after a

cmp

Figure 3.21 Zero Operand Instruction Encodings

0 0 0 0 0 i i i

i i i

000 = illegal
001 = illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put

Figure 3.22 Jump Instruction Encodings

0 0 0 0 1 i i i

mmm (if ii = 10)

000 = j e
001 = jne
010 = j b
011 = jbe
100 = j a
101 = jae
110 = jmp
111 = ill egal

This 16-bit field is always present
and contains the target address to
jump move into the instruction
pointer register if the jump
is taken.

System Organization

Page 107

instruction since it sets the less than and equality flags that the conditional jump instruc-
tions test. Note that there are eight possible jump opcodes, but the x86 uses only seven of
them. The eighth opcode is another illegal opcode.

The last group of instructions, the zero operand instructions, appear in Figure 3.21.
Three of these instructions are illegal instruction opcodes. The

brk

 (break) instruction
pauses the CPU until the user manually restarts it. This is useful for pausing a program
during execution to observe results. The

iret

 (interrupt return) instruction returns control
from an

interrupt service routine

. We will discuss interrupt service routines later. The

halt

program terminates program execution. The

get

 instruction reads a hexadecimal value
from the user and returns this value in the

ax

 register; the

put

 instruction outputs the value
in the

ax

 register.

3.3.8 Step-by-Step Instruction Execution

The x86 CPUs do

not

complete execution of an instruction in a single clock cycle. The
CPU executes several steps for each instruction. For example, the CU issues the following
commands to execute the

mov reg, reg/memory/constant

instruction:

• Fetch the instruction byte from memory.
• Update the

ip

 register to point at the next byte.
• Decode the instruction to see what it does.
• If required, fetch a 16-bit instruction operand from memory.
• If required, update

ip

 to point beyond the operand.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand.
• Store the fetched value into the destination register

A step-by-step description may help clarify what the CPU is doing. In the first step,
the CPU fetches the instruction byte from memory. To do this, it copies the value of the

ip

register to the address bus and reads the byte at that address. This will take one clock
cycle

13

.

After fetching the instruction byte, the CPU updates

ip

 so that it points at the next byte
in the instruction stream. If the current instruction is a multibyte instruction,

ip

 will now
point at the operand for the instruction. If the current instruction is a single byte instruc-
tion,

ip

 would be left pointing at the next instruction. This takes one clock cycle.

The next step is to decode the instruction to see what it does. This will tell the CPU,
among other things, if it needs to fetch additional operand bytes from memory. This takes
one clock cycle.

During decoding, the CPU determines the types of operands the instruction requires.
If the instruction requires a 16 bit constant operand (i.e., if the

mmm

 field is 101, 110, or
111) then the CPU fetches that constant from memory. This step may require zero, one, or
two clock cycles. It requires zero cycles if there is no 16 bit operand; it requires one clock
cycle if the 16 bit operand is word-aligned (that is, begins at an even address); it requires
two clock cycles if the operand is not word aligned (that is, begins at an odd address).

If the CPU fetches a 16 bit memory operand, it must increment

ip

 by two so that it
points at the next byte following the operand. This operation takes zero or one clock
cycles. Zero clock cycles if there is no operand; one if an operand is present.

Next, the CPU computes the address of the memory operand. This step is required
only when the

mmm

 field of the instruction byte is 101 or 100. If the

mmm

 field contains
101, then the CPU computes the sum of the

bx

 register and the 16 bit constant; this
requires two cycles, one cycle to fetch

bx

’s value, the other to computer the sum of

bx

 and
xxxx. If the

mmm

 field contains 100, then the CPU fetches the value in

bx

 for the memory

13. We will assume that clock cycles and memory cycles are equivalent.

Chapter 03

Page 108

address, this requires one cycle. If the

mmm

 field does not contain 100 or 101, then this step
takes zero cycles.

Fetching the operand takes zero, one, two, or three cycles depending upon the oper-
and itself. If the operand is a constant (

mmm

=111), then this step requires zero cycles
because we’ve already fetched this constant from memory in a previous step. If the oper-
and is a register (

mmm

 = 000, 001, 010, or 011) then this step takes one clock cycle. If this is
a word aligned memory operand (

mmm

=100, 101, or 110) then this step takes two clock
cycles. If it is an unaligned memory operand, it takes three clock cycles to fetch its value.

The last step to the

mov

instruction is to store the value into the destination location.
Since the destination of the

load

 instruction is always a register, this operation takes a sin-
gle cycle.

Altogether, the

mov

instruction takes between five and eleven cycles, depending on its
operands and their alignment (starting address) in memory.

The CPU does the following for the

mov memory, reg

instruction:

• Fetch the instruction byte from memory (one clock cycle).
• Update

ip

 to point at the next byte (one clock cycle).
• Decode the instruction to see what it does (one clock cycle).
• If required, fetch an operand from memory (zero cycles if [bx] addressing

mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode and the
value xxxx immediately following the opcode starts on an even address,
or two clock cycles if the value xxxx starts at an odd address).

• If required, update

ip

 to point beyond the operand (zero cycles if no such
operand, one clock cycle if the operand is present).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the register to store (one clock cycle).
• Store the fetched value into the destination location (one cycle if a regis-

ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

The timing for the last two items is different from

the other mov

because

that instruction

can read data from memory; this version of

mov

 instruction “loads” its data from a regis-
ter. This instruction takes five to eleven clock cycles to execute.

The

add, sub, cmp, and,

and

 or

instructions do the following:

• Fetch the instruction byte from memory (one clock cycle).
• Update

ip

 to point at the next byte (one clock cycle).
• Decode the instruction (one clock cycle).
• If required, fetch a constant operand from memory (zero cycles if [bx]

addressing mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode
and the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

• If required, update

ip

 to point beyond the constant operand (zero or one
clock cycles).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the operand and send it to the ALU (zero cycles if a con-
stant, one cycle if a register, two cycles if a word-aligned memory oper-
and, or three clock cycles if an odd-address aligned memory operand).

• Fetch the value of the first operand (a register) and send it to the ALU
(one clock cycle).

• Instruct the ALU to add, subtract, compare, logically and, or logically or
the values (one clock cycle).

• Store the result back into the first register operand (one clock cycle).

System Organization

Page 109

These instructions require between eight and seventeen clock cycles to execute.

The not instruction is similar to the above, but may be a little faster since it only has a
single operand:

• Fetch the instruction byte from memory (one clock cycle).
• Update

ip

 to point at the next byte (one clock cycle).
• Decode the instruction (one clock cycle).
• If required, fetch a constant operand from memory (zero cycles if [bx]

addressing mode, one cycle if [xxxx] or [xxxx+bx] addressing mode and
the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

• If required, update

ip

 to point beyond the constant operand (zero or one
clock cycles).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the operand and send it to the ALU (one cycle if a regis-
ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

• Instruct the ALU to logically not the values (one clock cycle).
• Store the result back into the operand (one clock cycle if a register, two

clock cycles if an even-aligned memory location, three cycles if
odd-aligned memory location).

The

not

 instruction takes six to fifteen cycles to execute.

The conditional jump instructions work as follows:

• Fetch the instruction byte from memory (one clock cycle).
• Update

ip

 to point at the next byte (one clock cycle).
• Decode the instructions (one clock cycle).
• Fetch the target address operand from memory (one cycle if xxxx is at an

even address, two clock cycles if at an odd address).
• Update

ip

 to point beyond the address (one clock cycle).
• Test the “less than” and “equality” CPU flags (one cycle).
• If the flag values are appropriate for the particular conditional jump, the

CPU copies the 16 bit constant into the

ip

 register (zero cycles if no branch,
one clock cycle if branch occurs).

The unconditional jump instruction is identical in operation to the

mov reg, xxxx

instruction except the destination register is the x86’s ip register rather than

ax, bx, cx,

or

dx

.

The brk, iret,

halt

,

put

, and

get

 instructions are of no interest to us here. They appear in the
instruction set mainly for programs and experiments. We can’t very well give them
“cycle” counts since they may take an indefinite amount of time to complete their task.

3.3.9 The Differences Between the x86 Processors

All the x86 processors share the same instruction set, the same addressing modes, and
execute their instructions using the same sequence of steps. So what’s the difference? Why
not invent one processor rather than four?

The main reason for going through this exercise is to explain performance differences
related to four hardware features:

pre-fetch queues

,

caches

,

pipelines

 and

superscalar designs

.
The 886 processor is an inexpensive “device” which doesn’t implement any of these fancy
features. The 8286 processor implements the prefetch queue. The 8486 has a pre-fetch
queue, a cache, and a pipeline. The 8686 has all of the above features with superscalar
operation. By studying each of these processors you can see the benefits of each feature.

Chapter 03

Page 110

3.3.10 The 886 Processor

The 886 processor is the slowest member of the x86 family. Timings for each instruc-
tion were discussed in the previous sections. The

mov

instruction, for example, takes
between five and twelve clock cycles to execute depending upon the operands. The fol-
lowing table provides the timing for the various forms of the instructions on the 886 pro-
cessors.

There are three important things to note from this. First, longer instructions take more
time to execute. Second, instructions that do not reference memory generally execute
faster; this is especially true if there are wait states associated with memory access (the
table above assumes zero wait states). Finally, instructions using complex addressing
modes run slower.

Instructions which use register operands are shorter, do not access
memory, and do not use complex addressing modes.

This is why you should attempt to keep
your variables in registers.

3.3.11 The 8286 Processor

The key to improving the speed of a processor is to perform operations in parallel. If,
in the timings given for the 886, we were able to do two operations on each clock cycle, the
CPU would execute instructions twice as fast when running at the same clock speed.
However, simply deciding to execute two operations per clock cycle is not so easy. Many
steps in the execution of an instruction share

functional units

in the CPU (functional units
are groups of logic that perform a common operation, e.g., the ALU and the CU). A func-
tional unit is only capable of one operation at a time. Therefore, you cannot do two opera-
tions that use the same functional unit concurrently (e.g., incrementing the

ip

 register and
adding two values together). Another difficulty with doing certain operations concur-
rently is that one operation may depend on the other’s result. For example, the last two
steps of the

add

 instruction involve adding to values and then storing their sum. You can-
not store the sum into a register until after you’ve computed the sum. There are also some
other resources the CPU cannot share between steps in an instruction. For example, there

Table 19: Execution Times for 886 Instructions

Instruction

 ⇒

Addressing Mode

⇓

mov
(both forms)

add, sub,
cmp, and, or,

not jmp jxx

reg, reg 5 7

reg, xxxx 6-7 8-9

reg, [bx] 7-8 9-10

reg, [xxxx] 8-10 10-12

reg, [xxxx+bx] 10-12 12-14

[bx], reg 7-8

[xxxx], reg 8-10

[xxxx+bx], reg 10-12

reg 6

[bx] 9-11

[xxxx] 10-13

[xxxx+bx] 12-15

xxxx 6-7 6-8

System Organization

Page 111

is only one data bus; the CPU cannot fetch an instruction opcode at the same time it is try-
ing to store some data to memory. The trick in designing a CPU that executes several steps
in parallel is to arrange those steps to reduce conflicts or add additional logic so the two
(or more) operations can occur simultaneously by executing in different functional units.

Consider again the steps the

mov reg, mem/reg/const

 instruction requires:

• Fetch the instruction byte from memory.
• Update the

ip

 register to point at the next byte.
• Decode the instruction to see what it does.
• If required, fetch a 16-bit instruction operand from memory.
• If required, update

ip

 to point beyond the operand.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand.
• Store the fetched value into the destination register

The first operation uses the value of the

ip

 register (so we cannot overlap incrementing
ip with it) and it uses the bus to fetch the instruction opcode from memory. Every step that
follows this one depends upon the opcode it fetches from memory, so it is unlikely we will
be able to overlap the execution of this step with any other.

The second and third operations do not share any functional units, nor does decoding
an opcode depend upon the value of the

ip

 register. Therefore, we can easily modify the
control unit so that it increments the

ip

 register at the same time it decodes the instruction.
This will shave one cycle off the execution of the

mov

 instruction.

The third and fourth operations above (decoding and optionally fetching the 16-bit
operand) do not look like they can be done in parallel since you must decode the instruc-
tion to determine if it the CPU needs to fetch a 16-bit operand from memory. However, we
could design the CPU to go ahead and fetch the operand anyway, so that it’s available if
we need it. There is one problem with this idea, though, we must have the address of the
operand to fetch (the value in the

ip

 register) and if we must wait until we are done incre-
menting the

ip

 register before fetching this operand. If we are incrementing

ip

 at the same
time we’re decoding the instruction, we will have to wait until the next cycle to fetch this
operand.

Since the next three steps are optional, there are several possible instruction sequences
at this point:

#1 (step 4, step 5, step 6, and step 7) – e.g., mov ax, [1000+bx]

#2 (step 4, step 5, and step 7) – e.g., mov ax, [1000]

#3 (step 6 and step 7) – e.g., mov ax, [bx]

#4 (step 7) – e.g., mov ax, bx

In the sequences above, step seven always relies on the previous set in the sequence.
Therefore, step seven cannot execute in parallel with any of the other steps. Step six also
relies upon step four. Step five cannot execute in parallel with step four since step four
uses the value in the

ip

 register, however, step five can execute in parallel with any other
step. Therefore, we can shave one cycle off the first two sequences above as follows:

#1 (step 4, step 5/6, and step 7)

#2 (step 4, step 5/7)

#3 (step 6 and step 7)

#4 (step 7)

Of course, there is no way to overlap the execution of steps seven and eight in the

mov

instruction since it must surely fetch the value before storing it away. By combining these
steps, we obtain the following steps for the

mov

 instruction:

• Fetch the instruction byte from memory.
• Decode the instruction and update ip
• If required, fetch a 16-bit instruction operand from memory.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand, if required update

ip

 to point beyond xxxx.

Chapter 03

Page 112

• Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we’ve shaved one or two cycles off the
execution of the

mov

 instruction. This simple optimization works with most of the other
instructions as well.

Another problem with the execution of the

mov

 instruction concerns opcode align-
ment. Consider the

mov ax, [1000]

 instruction that appears at location 100 in memory. The
CPU spends one cycle fetching the opcode and, after decoding the instruction an deter-
mining it has a 16-bit operand, it takes two additional cycles to fetch that operand from
memory (because that operand appears at an odd address – 101). The real travesty here is
that the extra clock cycle to fetch these two bytes is unnecessary, after all, the CPU fetched
the L.O. byte of the operand when it grabbed the opcode (remember, the x86 CPUs are
16-bit processors and always fetch 16 bits from memory), why not save that byte and use
only one additional clock cycle to fetch the H.O. byte? This would shave one cycle off the
execution time when the instruction begins at an even address (so the operand falls on an
odd address). It would require only a one-byte register and a small amount of additional
logic to accomplish this, well worth the effort.

While we are adding a register to buffer up operand bytes, let’s consider some addi-
tional optimizations that could use the same logic. For example, consider what happens
with that same

mov

 instruction above executes. If we fetch the opcode and L.O. operand
byte on the first cycle and the H.O. byte of the operand on the second cycle, we’ve actually
read

four

 bytes, not three. That fourth byte is the opcode of the next instruction. If we
could save this opcode until the execution of the next instruction, we could shave a cycle
of its execution time since it would not have to fetch the opcode byte. Furthermore, since
the instruction decoder is idle while the CPU is executing the mov instruction, we can
actually decode the next instruction while the current instruction is executing, thereby
shaving yet another cycle off the execution of the next instruction. On the average, we will
fetch this extra byte on every other instruction. Therefore, implementing this simple
scheme will allow us to shave two cycles off about 50% of the instructions we execute.

Can we do anything about the other 50% of the instructions? The answer is yes. Note
that the execution of the mov instruction is not accessing memory on every clock cycle.
For example, while storing the data into the destination register the bus is idle. During
time periods when the bus is idle we can

pre-fetch

 instruction opcodes and operands and
save these values for executing the next instruction.

The major improvement to the 8286 over the 886 processor is the

prefetch queue.

 When-
ever the CPU is not using the Bus Interface Unit (BIU), the BIU can fetch additional bytes
from the instruction stream. Whenever the CPU needs an instruction or operand byte, it
grabs the next available byte from the prefetch queue. Since the BIU grabs two bytes at a
time from memory at one shot and the CPU generally consumes fewer than two bytes per
clock cycle, any bytes the CPU would normally fetch from the instruction stream will
already be sitting in the prefetch queue.

Note, however, that we’re not guaranteed that all instructions and operands will be
sitting in the prefetch queue when we need them. For example, the

jmp 1000

 instruction
will invalidate the contents of the prefetch queue. If this instruction appears at location
400, 401, and 402 in memory, the prefetch queue will contain the bytes at addresses 403,
404, 405, 406, 407, etc. After loading

ip

 with 1000 the bytes at addresses 403, etc., won’t do
us any good. So the system has to pause for a moment to fetch the double word at address
1000 before it can go on.

Another improvement we can make is to overlap instruction decoding with the last
step of the previous instruction. After the CPU processes the operand, the next available
byte in the prefetch queue is an opcode, and the CPU can decode it in anticipation of its
execution. Of course, if the current instruction modifies the

ip

 register, any time spent
decoding the next instruction goes to waste, but since this occurs in parallel with other
operations, it does not slow down the system.

System Organization

Page 113

This sequence of optimizations to the system requires quite a few changes to the hard-
ware. A block diagram of the system appears in Figure 3.23. The instruction execution
sequence now assumes that the following events occur in the background:

CPU Prefetch Events:

• If the prefetch queue is not full (generally it can hold between eight and
thirty-two bytes, depending on the processor) and the BIU is idle on the
current clock cycle, fetch the next word from memory at the address in

ip

at the beginning of the clock cycle

14

.

• If the instruction decoder is idle and the current instruction does not
require an instruction operand, begin decoding the opcode at the front of
the prefetch queue (if present), otherwise begin decoding the third byte in
the prefetch queue (if present). If the desired byte is not in the prefetch
queue, do not execute this event.

The instruction execution timings make a few optimistic assumptions, namely that
any necessary opcodes and instruction operands are already present in the prefetch queue
and that it has already decoded the current instruction opcode. If either cause is not true,
an 8286 instruction’s execution will delay while the system fetches the data from memory
or decodes the instruction. The following are the steps for each of the 8286 instructions:

mov reg, mem/reg/const

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand. Zero cycles if constant (assuming already in the

prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

• Store the result in the destination register, one cycle.

mov mem, reg

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand (a register), one cycle.
• Store into the destination operand. Two cycles if even-aligned memory

value, three cycles if odd-aligned memory value.

instr reg, mem/reg/const (instr = add, sub, cmp, and, or)

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).

14. This operation fetches only a byte if ip contains an odd value.

Figure 3.23 CPU With a Prefetch Queue

CPU

B
I
U

Control
Unit

Prefetch
Queue

A
L
U

R
e
g
i
s
t
e
r
s

Data

Address

Execution
Unit

Chapter 03

Page 114

• Fetch the source operand. Zero cycles if constant (assuming already in the
prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

• Fetch the value of the first operand (a register), one cycle.
• Compute the sum, difference, etc., as appropriate, one cycle.
• Store the result in the destination register, one cycle.

not mem/reg

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand. One cycle if a register, two cycles if

even-aligned memory value, three cycles if odd-aligned memory value.
• Logically not the value, one cycle.
• Store the result, one cycle if a register, two cycles if even-aligned memory

value, three cycles if odd-aligned memory value.

jcc xxxx (conditional jump, cc=a, ae, b, be, e, ne)

• Test the current condition code (less than and equal) flags, one cycle.
• If the flag values are appropriate for the particular conditional branch, the

CPU copies the 16-bit instruction operand into the

ip

 register, one cycle.

jmp xxxx

• The CPU copies the 16-bit instruction operand into the

ip

 register, one
cycle.

As for the 886, we will not consider the execution times of the other x86 instructions since
most of them are indeterminate.

The jump instructions look like they execute very quickly on the 8286. In fact, they
may execute very slowly. Don’t forget, jumping from one location to another invalidates
the contents of the prefetch queue. So although the jmp instruction looks like it executes in
one clock cycle, it forces the CPU to flush the prefetch queue and, therefore, spend several
cycles fetching the next instruction, fetching additional operands, and decoding that
instruction. Indeed, it make be two or three instructions after the jmp instruction before
the CPU is back to the point where the prefetch queue is operating smoothly and the CPU
is decoding opcodes in parallel with the execution of the previous instruction. The has one
very important implication to your programs:

if you want to write fast code, make sure to
avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they
actually make the jump. If the condition is false, they fall through to the next instruction
and continue to use the values in the prefetch queue as well as any pre-decoded instruc-
tion opcodes. Therefore, if you can determine, while writing the program, which condi-
tion is most likely (e.g., less than vs. not less than), you should arrange your program so
that the most common case falls through and conditional jump rather than take the
branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. It
never requires more than one clock cycle to fetch a single byte instruction, but it always
requires two cycles to fetch a three-byte instruction. Therefore, if the target of a jump
instruction is two one-byte instructions, the BIU can fetch both instructions in one clock
cycle and begin decoding the second one while executing the first. If these instructions are
three-byte instructions, the CPU may not have enough time to fetch and decode the sec-
ond or third instruction by the time it finishes the first. Therefore, you should attempt to
use shorter instructions whenever possible since they will improve the performance of the
prefetch queue.

The following table provides the (optimistic) execution times for the 8286 instructions:

System Organization

Page 115

Note how much faster the

mov

instruction runs on the 8286 compared to the 886. This is
because the prefetch queue allows the processor to overlap the execution of adjacent
instructions. However, this table paints an overly rosy picture. Note the disclaimer:
“assuming the opcode is present in the prefetch queue and has been decoded.” Consider
the following three instruction sequence:

????: jmp 1000
1000: jmp 2000
2000: mov cx, 3000[bx]

The second and third instructions will

not

execute as fast as the timings suggest in the
table above. Whenever we modify the value of the

ip

 register the CPU flushes the prefetch
queue. So the CPU cannot fetch and decode the next instruction. Instead, it must fetch the
opcode, decode it, etc., increasing the execution time of these instructions. At this point
the only improvement we’ve made is to execute the “update

ip

” operation in parallel with
another step.

Usually, including the prefetch queue improves performance. That’s why Intel pro-
vides the prefetch queue on every model of the 80x86, from the 8088 on up. On these pro-
cessors, the BIU is constantly fetching data for the prefetch queue whenever the program
is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8286 processor runs
much faster than the 886 because it can keep the prefetch queue full. However, consider
the following instructions:

100: mov ax, [1000]
105: mov bx, [2000]
10A: mov cx, [3000]

a. Cost of prefetch and decode on the next instruction.
b. If not taken.

Table 20: Execution Times for 8286 Instructions

Instruction

 ⇒

Addressing Mode

⇓

mov
(both forms)

add, sub,
cmp, and, or,

not jmp jxx

reg, reg 2 4

reg, xxxx 1 3

reg, [bx] 3-4 5-6

reg, [xxxx] 3-4 5-6

reg, [xxxx+bx] 4-5 6-7

[bx], reg 3-4 5-6

[xxxx], reg 3-4 5-6

[xxxx+bx], reg 4-5 6-7

reg 3

[bx] 5-7

[xxxx] 5-7

[xxxx+bx] 6-8

xxxx 1+pfd

a

2

b

2+pfd

Chapter 03

Page 116

Since the

ax, bx,

 and

cx

 registers are 16 bits, here’s what happens (assuming the first
instruction is in the prefetch queue and decoded):

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction (zero cycles).
• There is an operand to this instruction, so get it from the prefetch queue

(zero cycles).
• Get the value of the second operand (one cycle). Update

ip

.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

End of first instruction. Two bytes currently in prefetch queue.

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction to see what it does (zero cycles).
• If there is an operand to this instruction, get that operand from the

prefetch queue (one clock cycle because we’re still missing one byte).
• Get the value of the second operand (one cycle). Update

ip

.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

End of second instruction. Three bytes currently in prefetch queue.

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction (zero cycles).
• If there is an operand to this instruction, get that operand from the

prefetch queue (zero cycles).
• Get the value of the second operand (one cycle). Update

ip

.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

As you can see, the second instruction requires one more clock cycle than the other
two instructions. This is because the BIU cannot fill the prefetch queue quite as fast as the
CPU executes the instructions. This problem is exasperated when you limit the size of the
prefetch queue to some number of bytes. This problem doesn’t exist on the 8286 processor,
but most certainly does exist in the 80x86 processors.

You’ll soon see that the 80x86 processors tend to exhaust the prefetch queue quite eas-
ily. Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch
new opcodes from memory, slowing the program. Executing shorter instructions helps
keep the prefetch queue full. For example, the 8286 can load

two

one-byte instructions
with a single memory cycle, but it takes 1.5 clock cycles to fetch a single three-byte instruc-
tion. Usually, it takes longer to execute those four one-byte instructions than it does to exe-
cute the single three-byte instruction. This gives the prefetch queue time to fill and decode
new instructions. In systems with a prefetch queue, it’s possible to find eight two-byte
instructions which operate faster than an equivalent set of four four-byte instructions. The
reason is that the prefetch queue has time to refill itself with the shorter instructions.

Moral of the story:

when programming a processor with a prefetch queue, always use the
shortest instructions possible to accomplish a given task.

3.3.12 The 8486 Processor

Executing instructions in parallel using a bus interface unit and an execution unit is a
special case of

pipelining

. The 8486 incorporates pipelining to improve performance. With
just a few exceptions, we’ll see that pipelining allows us to execute one instruction per
clock cycle.

The advantage of the prefetch queue was that it let the CPU overlap instruction fetch-
ing and decoding with instruction execution. That is, while one instruction is executing,
the BIU is fetching and decoding the next instruction. Assuming you’re willing to add

System Organization

Page 117

hardware, you can execute almost all operations in parallel. That is the idea behind pipe-
lining.

3.3.12.1 The 8486 Pipeline

Consider the steps necessary to do a generic operation:

• Fetch opcode.
• Decode opcode and (in parallel) prefetch a possible 16-bit operand.
• Compute complex addressing mode (e.g.,

[xxxx+bx]

), if applicable.
• Fetch the source value from memory (if a memory operand) and the des-

tination register value (if applicable).
• Compute the result.
• Store result into destination register.

Assuming you’re willing to pay for some extra silicon, you can build a little
“mini-processor” to handle each of the above steps. The organization would look some-
thing like Figure 3.24.

If you design a separate piece of hardware for each stage in the

pipeline

 above, almost

all

these steps can take place in parallel. Of course, you cannot fetch and decode the
opcode for any one instruction at the same time, but you can fetch one opcode while
decoding the previous instruction. If you have an

n

-stage pipeline, you will usually have

n

instructions executing concurrently. The 8486 processor has a six stage pipeline, so it over-
laps the execution of six separate instructions.

Figure 3.25,

Instruction Execution in a Pipeline

, demonstrates pipelining. T1, T2, T3, etc.,
represent consecutive “ticks” of the system clock. At T=T1 the CPU fetches the opcode
byte for the first instruction.

At T=T2, the CPU begins decoding the opcode for the first instruction. In parallel, it
fetches 16-bits from the prefetch queue in the event the instruction has an operand. Since
the first instruction no longer needs the opcode fetching circuitry, the CPU instructs it to
fetch the opcode of the second instruction in parallel with the decoding of the first instruc-
tion. Note there is a minor conflict here. The CPU is attempting to fetch the next byte from
the prefetch queue for use as an operand, at the same time it is fetching 16 bits from the

Figure 3.24 A Pipelined Implementation of Instruction Execution

Fetch
Opcode

Decode
Opcode /
Prefetch
Operand

Compute
Address

Fetch
Source
and Dest
Values

Compute
Result

Store
Result

Stage 1 2 3 4 5 6

Figure 3.25 Instruction Execution in a Pipeline

DecodeOpcode Address Vakues Compute Store

T1 T2 T3 T4 T5 T6 T7 T8 T9 ...

Etc.

Instr #1

Instr #2

Instr #3

DecodeOpcode Address Vakues Compute

DecodeOpcode Address Vakues Compute

Store

Store

Chapter 03

Page 118

prefetch queue for use as an opcode. How can it do both at once? You’ll see the solution in
a few moments.

At T=T3 the CPU computes an operand address for the first instruction, if any. The
CPU does nothing on the first instruction if it does not use the

 [xxxx+bx]

 addressing mode.
During T3, the CPU also decodes the opcode of the second instruction and fetches any
necessary operand. Finally the CPU also fetches the opcode for the third instruction. With
each advancing tick of the clock, another step in the execution of each instruction in the
pipeline completes, and the CPU fetches yet another instruction from memory.

At T=T6 the CPU completes the execution of the first instruction, computes the result
for the second, etc., and, finally, fetches the opcode for the sixth instruction in the pipeline.
The important thing to see is that after T=T5 the CPU completes an instruction on every
clock cycle.

Once the CPU fills the pipeline, it completes one instruction on each cycle

. Note that
this is true even if there are complex addressing modes to be computed, memory oper-
ands to fetch, or other operations which use cycles on a non-pipelined processor. All you
need to do is add more stages to the pipeline, and you can still effectively process each
instruction in one clock cycle.

3.3.12.2 Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little too simplistic.
There are two drawbacks to that simple pipeline: bus contention among instructions and
non-sequential program execution. Both problems may increase the average execution
time of the instructions in the pipeline.

Bus contention occurs whenever an instruction needs to access some item in memory.
For example, if a

mov mem, reg

instruction needs to store data in memory and a

mov reg, mem

 instruction is reading data from memory, contention for the address and
data bus may develop since the CPU will be trying to simultaneously fetch data and write
data in memory.

One simplistic way to handle bus contention is through a

pipeline stall

. The CPU, when
faced with contention for the bus, gives priority to the instruction furthest along in the
pipeline. The CPU suspends fetching opcodes until the current instruction fetches (or
stores) its operand. This causes the new instruction in the pipeline to take two cycles to
execute rather than one (see Figure 3.26).

This example is but one case of bus contention. There are many others. For example,
as noted earlier, fetching instruction operands requires access to the prefetch queue at the
same time the CPU needs to fetch an opcode. Furthermore, on processors a little more
advanced than the 8486 (e.g., the 80486) there are other sources of bus contention popping
up as well. Given the simple scheme above, it’s unlikely that most instructions would exe-
cute at one clock per instruction (CPI).

Figure 3.26 A Pipeline Stall

Value Load Compute Store

T5 T6 T7 T8 T9 T10 T11 ...

Address Value Load Compute Store

Operand Address Value Load Compute Store

Instr #1

Instr #2

Instr #3

Pipeline stall occurs here
because Instr #1 is fetching
a value at the same time the
CPU wants to fetch an opcode

Instr #3 appears to take two
clock cycles to complete
because of the pipeline stall

System Organization

Page 119

Fortunately, the intelligent use of a cache system can eliminate many pipeline stalls
like the ones discussed above. The next section on caching will describe how this is done.
However, it is not always possible, even with a cache, to avoid stalling the pipeline. What
you cannot fix in hardware, you can take care of with software. If you avoid using mem-
ory, you can reduce bus contention and your programs will execute faster. Likewise, using
shorter instructions also reduces bus contention and the possibility of a pipeline stall.

What happens when an instruction

modifies

 the

ip

 register? By the time the instruction

jmp 1000

completes execution, we’ve already started five other instructions and we’re only one
clock cycle away from the completion of the first of these. Obviously, the CPU must not
execute those instructions or it will compute improper results.

The only reasonable solution is to

flush

 the entire pipeline and begin fetching opcodes
anew. However, doing so causes a severe execution time penalty. It will take six clock
cycles (the length of the 8486 pipeline) before the next instruction completes execution.
Clearly, you should avoid the use of instructions which interrupt the sequential execution
of a program. This also shows another problem – pipeline length. The longer the pipeline
is, the more you can accomplish per cycle in the system. However, lengthening a pipeline
may slow a program if it jumps around quite a bit. Unfortunately, you cannot control the
number of stages in the pipeline. You can, however, control the number of transfer instruc-
tions which appear in your programs. Obviously you should keep these to a minimum in
a pipelined system.

3.3.12.3 Cache, the Prefetch Queue, and the 8486

System designers can resolve many problems with bus contention through the intelli-
gent use of the prefetch queue and the cache memory subsystem. They can design the
prefetch queue to buffer up data from the instruction stream, and they can design the
cache with separate data and code areas. Both techniques can improve system perfor-
mance by eliminating some conflicts for the bus.

The prefetch queue simply acts as a buffer between the instruction stream in memory
and the opcode fetching circuitry. Unfortunately, the prefetch queue on the 8486 does not
enjoy the advantage it had on the 8286. The prefetch queue works well for the 8286
because the CPU isn’t constantly accessing memory. When the CPU isn’t accessing mem-
ory, the BIU can fetch additional instruction opcodes for the prefetch queue. Alas, the 8486
CPU is constantly accessing memory since it fetches an opcode byte on every clock cycle.
Therefore, the prefetch queue cannot take advantage of any “dead” bus cycles to fetch
additional opcode bytes – there aren’t any “dead” bus cycles. However, the prefetch
queue is still valuable on the 8486 for a very simple reason: the BIU fetches two bytes on
each memory access, yet some instructions are only one byte long. Without the prefetch
queue, the system would have to explicitly fetch each opcode, even if the BIU had already
“accidentally” fetched the opcode along with the previous instruction. With the prefetch
queue, however, the system will not refetch any opcodes. It fetches them once and saves
them for use by the opcode fetch unit.

For example, if you execute two one-byte instructions in a row, the BIU can fetch both
opcodes in one memory cycle, freeing up the bus for other operations. The CPU can use
these available bus cycles to fetch additional opcodes or to deal with other memory
accesses.

Of course, not all instructions are one byte long. The 8486 has two instruction sizes:
one byte and three bytes. If you execute several three-byte load instructions in a row,
you’re going to run slower, e.g.,

mov ax, 1000
mov bx, 2000
mov cx, 3000
add ax, 5000

Chapter 03

Page 120

Each of these instructions reads an opcode byte and a 16 bit operand (the constant).
Therefore, it takes an average of 1.5 clock cycles to read each instruction above. As a result,
the instructions will require six clock cycles to execute rather than four.

Once again we return to that same rule:

the fastest programs are the ones which use the
shortest instructions

. If you can use shorter instructions to accomplish some task, do so. The
following instruction sequence provides a good example:

mov ax, 1000
mov bx, 1000
mov cx, 1000
add ax, 1000

We can reduce the size of this program and increase its execution speed by changing it to:

mov ax, 1000
mov bx, ax
mov cx, ax
add ax, ax

This code is only five bytes long compared to 12 bytes for the previous example. The
previous code will take a minimum of five clock cycles to execute, more if there are other
bus contention problems. The latter example takes only four

15

. Furthermore, the second
example leaves the bus free for three of those four clock periods, so the BIU can load addi-
tional opcodes. Remember,

shorter

 often means

faster

.

While the prefetch queue can free up bus cycles and eliminate bus contention, some
problems still exist. Suppose the average instruction length for a sequence of instructions
is 2.5 bytes (achieved by having three three-byte instructions and one one-byte instruction
together). In such a case the bus will be kept busy fetching opcodes and instruction oper-
ands. There will be no free time left to access memory. Assuming some of those instruc-
tions access memory the pipeline will stall, slowing execution.

Suppose, for a moment, that the CPU has two separate memory spaces, one for
instructions and one for data, each with their own bus. This is called the Harvard Archi-
tecture since the first such machine was built at Harvard. On a Harvard machine there
would be no contention for the bus. The BIU could continue to fetch opcodes on the
instruction bus while accessing memory on the data/memory bus (see Figure 3.27),

15. Actually, both of these examples will take longer to execute. See the section on hazards for more details.

Figure 3.27 A Typical Harvard Machine

CPU

Data Memory

I/O Devices

Data/Memory Bus

Instruction Bus Instruction Memory

System Organization

Page 121

In the real world, there are very few true Harvard machines. The extra pins needed on
the processor to support two physically separate busses increase the cost of the processor
and introduce many other engineering problems. However, microprocessor designers
have discovered that they can obtain many benefits of the Harvard architecture with few
of the disadvantages by using separate on-chip caches for data and instructions.
Advanced CPUs use an internal Harvard architecture and an external Von Neumann
architecture. Figure 3.28 shows the structure of the 8486 with separate data and instruc-
tion caches.

Each path inside the CPU represents an independent bus. Data can flow on all paths
concurrently. This means that the prefetch queue can be pulling instruction opcodes from
the instruction cache while the execution unit is writing data to the data cache. Now the
BIU only fetches opcodes from memory whenever it cannot locate them in the instruction
cache. Likewise, the data cache buffers memory. The CPU uses the data/address bus only
when reading a value which is not in the cache or when flushing data back to main mem-
ory.

By the way, the 8486 handles the instruction operand / opcode fetch contention prob-
lem in a sneaky fashion. By adding an extra decoder circuit, it decodes the instruction at
the beginning of the prefetch queue and three bytes into the prefetch queue in parallel.
Then, if the previous instruction did not have a 16-bit operand, the CPU uses the result
from the first decoder; if the previous instruction uses the operand, the CPU uses the
result from the second decoder.

Although you cannot control the presence, size, or type of cache on a CPU, as an
assembly language programmer you must be aware of how the cache operates to write
the best programs. On-chip instruction caches are generally quite small (8,192 bytes on the
80486, for example). Therefore, the shorter your instructions, the more of them will fit in
the cache (getting tired of “shorter instructions” yet?). The more instructions you have in
the cache, the less often bus contention will occur. Likewise, using registers to hold tempo-
rary results places less strain on the data cache so it doesn’t need to flush data to memory
or retrieve data from memory quite so often.

Use the registers wherever possible!

Figure 3.28 Internal Structure of the 8486 CPU

8486 CPU

B
I
U

Data/Address
Busses

Instruct ion
Cache

Prefetch
Queue

D
a
t
a

C
a
c
h
e

E
x
e
c
u
t
i
o
n

U
n
i
t

Chapter 03

Page 122

3.3.12.4 Hazards on the 8486

There is another problem with using a pipeline: the data hazard. Let’s look at the exe-
cution profile for the following instruction sequence:

mov bx, [1000]
mov ax, [bx]

When these two instructions execute, the pipeline will look something like
Figure 3.29.

Note a major problem here. These two instructions fetch the 16 bit value whose
address appears at location 1000 in memory.

But this sequence of instructions won’t work
properly!

 Unfortunately, the second instruction has already used the value in

bx

 before the
first instruction loads the contents of memory location 1000 (T4 & T6 in the diagram
above).

CISC processors, like the 80x86, handle hazards automatically

16

. However, they will
stall the pipeline to synchronize the two instructions. The actual execution on the 8486
would look something like shown in Figure 3.29.

By delaying the second instruction two clock cycles, the 8486 guarantees that the load
instruction will load

ax

 from the proper address. Unfortunately, the second load instruc-
tion now executes in three clock cycles rather than one. However, requiring two extra
clock cycles is better than producing incorrect results. Fortunately, you can reduce the
impact of hazards on execution speed within your software.

Note that the data hazard occurs when the source operand of one instruction was a
destination operand of a previous instruction. There is nothing wrong with loading

bx

from [1000] and then loading

ax

 from

 [bx]

,

unless they occur one right after the other.

 Suppose
the code sequence had been:

mov cx, 2000
mov bx, [1000]
mov ax, [bx]

16. RISC chips do not. If you tried this sequence on a RISC chip you would get an incorrect answer.

Figure 3.29 A Hazard on the 8486

into bx

T1 T2 T3 T4 T5 T6 T7 ...

Operand Address Store mov bx, [1000]

mov ax, [bx]

Opcode

Operand Load Load StoreOpcode

1000 ***

bx [bx] into ax

from [1000]

Load Compute

Address

Figure 3.30 A Hazard on the 8486

into bx

T3 T4 T5 T6 T7 ...

Address Store mov bx, [1000]

mov ax, [bx]Operand Load Load Store

bx [bx] into ax

from [1000]

Load Compute

Address Delay Delay

System Organization

Page 123

We could reduce the effect of the hazard that exists in this code sequence by simply

rearranging the instructions.

 Let’s do that and obtain the following:

mov bx, [1000]
mov cx, 2000
mov ax, [bx]

Now the

mov ax

 instruction requires only one additional clock cycle rather than two. By
inserting yet another instruction between the

mov bx

 and

mov ax

instructions you can elim-
inate the effects of the hazard altogether

17

.

On a pipelined processor, the order of instructions in a program may dramatically
affect the performance of that program. Always look for possible hazards in your instruc-
tion sequences. Eliminate them wherever possible by rearranging the instructions.

3.3.13 The 8686 Processor

With the pipelined architecture of the 8486 we could achieve, at best, execution times
of one CPI (clock per instruction). Is it possible to execute instructions faster than this? At
first glance you might think, “Of course not, we can do at most one operation per clock
cycle. So there is no way we can execute more than one instruction per clock cycle.” Keep
in mind however, that a single instruction is

not

a single operation. In the examples pre-
sented earlier each instruction has taken between six and eight operations to complete. By
adding seven or eight separate units to the CPU, we could effectively execute these eight
operations in one clock cycle, yielding one CPI. If we add more hardware and execute, say,
16 operations at once, can we achieve 0.5 CPI? The answer is a qualified “yes.” A CPU
including this additional hardware is a

superscalar

CPU and can execute more than one
instruction during a single clock cycle. That’s the capability that the 8686 processor adds.

A superscalar CPU has, essentially, several execution units (see Figure 3.31). If it
encounters two or more instructions in the instruction stream (i.e., the prefetch queue)
which can execute independently, it will do so.

There are a couple of advantages to going superscalar. Suppose you have the follow-
ing instructions in the instruction stream:

17. Of course, any instruction you insert at this point must

not

modify the values in the ax and bx registers.

Figure 3.31 Internal Structure of the 8686 CPU

8686 CPU

B
I
U

Data/Address
Busses

Instruct ion
Cache

Prefetch
Queue

D
a
t
a

C
a
c
h
e

E
x
e
c
u
t
i
o
n

U
n
i
t

#
1

E
x
e
c
u
t
i
o
n

U
n
i
t

#
2

Chapter 03

Page 124

mov ax, 1000
mov bx, 2000

If there are no other problems or hazards in the surrounding code, and all six bytes for
these two instructions are currently in the prefetch queue, there is no reason why the CPU
cannot fetch and execute both instructions in parallel. All it takes is extra silicon on the
CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up
program sequences which have hazards. One limitation of the 8486 CPU is that once a
hazard occurs, the offending instruction will completely stall the pipeline. Every instruc-
tion which follows will also have to wait for the CPU to synchronize the execution of the
instructions. With a superscalar CPU, however, instructions following the hazard may
continue execution through the pipeline as long as they don’t have hazards of their own.
This alleviates (though does not eliminate) some of the need for careful instruction sched-
uling.

As an assembly language programmer, the way you write software for a superscalar
CPU can dramatically affect its performance. First and foremost is that rule you’re proba-
bly sick of by now:

use short instructions

. The shorter your instructions are, the more
instructions the CPU can fetch in a single operation and, therefore, the more likely the
CPU will execute faster than one CPI. Most superscalar CPUs do not completely duplicate
the execution unit. There might be multiple ALUs, floating point units, etc. This means
that certain instruction sequences can execute very quickly while others won’t. You have
to study the exact composition of your CPU to decide which instruction sequences pro-
duce the best performance.

3.4 I/O (Input/Output)

There are three basic forms of input and output that a typical computer system will
use:

 I/O-mapped I/O

,

memory-mapped input/output

, and

direct memory access

(DMA).
I/O-mapped input/output uses special instructions to transfer data between the com-
puter system and the outside world; memory-mapped I/O uses special memory locations
in the normal address space of the CPU to communicate with real-world devices; DMA is
a special form of memory-mapped I/O where the peripheral device reads and writes
memory without going through the CPU. Each I/O mechanism has its own set of advan-
tages and disadvantages, we will discuss these in this section.

The first thing to learn about the input/output subsystem is that I/O in a typical com-
puter system is radically different than I/O in a typical high level programming language.
In a real computer system you will rarely find machine instructions that behave like
writeln, printf, or even the x86 Get and Put instructions

18

. In fact, most input/output
instructions behave exactly like the x86’s

mov

 instruction. To send data to an output
device, the CPU simply moves that data to a special memory location (in the I/O address
space if I/O-mapped input/output [see “The I/O Subsystem” on page 92] or to an
address in the memory address space if using memory-mapped I/O). To read data from
an input device, the CPU simply moves data from the address (I/O or memory) of that
device into the CPU. Other than there are usually more wait states associated with a typi-
cal peripheral device than actual memory, the input or output operation looks very simi-
lar to a memory read or write operation (see “Memory Access and the System Clock” on
page 93).

An I/O

port

 is a device that looks like a memory cell to the computer but contains con-
nections to the outside world.

An I/O port typically uses a latch rather than a flip-flop to
implement the memory cell. When the CPU writes to the address associated with the
latch, the latch device captures the data and makes it available on a set of wires external to
the CPU and memory system (see Figure 3.32). Note that I/O ports can be read-only,
write-only, or read/write. The port in Figure 3.32, for example, is a write-only port. Since

18. Get and Put behave the way they do in order to simplify writing x86 programs.

System Organization

Page 125

the outputs on the latch do not loop back to the CPU’s data bus, the CPU cannot read the
data the latch contains. Both the address decode and write control lines must be active for
the latch to operate; when reading from the latch’s address the decode line is active, but
the write control line is not.

Figure 3.33 shows how to create a read/write input/output port. The data written to
the output port loops back to a transparent latch. Whenever the CPU reads the decoded
address the read and decode lines are active and this activates the lower latch. This places
the data previously written to the output port on the CPU’s data bus, allowing the CPU to
read that data. A read-only (input) port is simply the lower half of Figure 3.33; the system
ignores any data written to an input port.

A perfect example of an output port is a parallel printer port. The CPU typically
writes an ASCII character to a byte-wide output port that connects to the DB-25F connect
on the back of the computer’s case. A cable transmits this data to a the printer where an
input port (to the printer) receives the data. A processor inside the printer typically con-
verts this ASCII character to a sequence of dots it prints on the paper.

Generally, a given peripheral device will use more than a single I/O port. A typical
PC parallel printer interface, for example, uses three ports: a read/write port, an input
port, and an output port. The read/write port is the data port (it is read/write to allow the
CPU to read the last ASCII character it wrote to the printer port). The input port returns
control signals from the printer; these signals indicate whether the printer is ready to
accept another character, is off-line, is out of paper, etc. The output port transmits control
information to the printer such as whether data is available to print.

To the programmer, the difference between I/O-mapped and memory-mapped
input/output operations is the instruction to use. For memory-mapped I/O, any instruc-
tion that accesses memory can access a memory-mapped I/O port. On the x86, the

mov,

Figure 3.32 An Output Port Created with a Single Latch

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data Data to outside world

Figure 3.33 An Input/Output Port Requires Two Latches

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data

Data Bus to CPU

L
a
t
c
h

CPU read control line

Address decode line

R

En

Data

Data to outside world

Chapter 03

Page 126

add, sub, cmp, and, or,

 and

not

 instructions can read memory; the

mov

 and

not

 instructions
can write data to memory. I/O-mapped input/output uses special instructions to access
I/O ports. For example, the x86 CPUs use the

get

 and

put

 instructions

19

, the Intel 80x86
family uses the

in

 and

out

 instructions. The 80x86

in

 and

out

 instructions work just like the

mov

 instruction except they place their address on the I/O address bus rather than the
memory address bus (See “The I/O Subsystem” on page 92.).

Memory-mapped I/O subsystems and I/O-mapped subsystems both require the
CPU to move data between the peripheral device and main memory. For example, to
input a sequence of ten bytes from an input port and store these bytes into memory the
CPU must read each value and store it into memory. For very high-speed I/O devices the
CPU may be too slow when processing this data a byte at a time. Such devices generally
contain an interface to the CPU’s bus so it directly read and write memory. This is known
as

direct memory access

 since the peripheral device accesses memory directly, without using
the CPU as an intermediary. This often allows the I/O operation to proceed in parallel
with other CPU operations, thereby increasing the overall speed of the system. Note, how-
ever, that the CPU and DMA device cannot both use the address and data busses at the
same time. Therefore, concurrent processing only occurs if the CPU has a cache and is exe-
cuting code and accessing data found in the cache (so the bus is free). Nevertheless, even if
the CPU must halt and wait for the DMA operation to complete, the I/O is still much
faster since many of the bus operations during I/O or memory-mapped input/output
consist of instruction fetches or I/O port accesses which are not present during DMA
operations.

3.5 Interrupts and Polled I/O

Many I/O devices cannot accept data at an arbitrary rate. For example, a Pentium
based PC is capable of sending several million characters a second to a printer, but that
printer is (probably) unable to print that many characters each second. Likewise, an input
device like a keyboard is unable to provide several million keystrokes per second (since it
operates at human speeds, not computer speeds). The CPU needs some mechanism to
coordinate data transfer between the computer system and its peripheral devices.

One common way to coordinate data transfer is to provide some

status bits

 in a sec-
ondary input port. For example, a one in a single bit in an I/O port can tell the CPU that a
printer is ready to accept more data, a zero would indicate that the printer is busy and the
CPU should not send new data to the printer. Likewise, a one bit in a different port could
tell the CPU that a keystroke from the keyboard is available at the keyboard data port, a
zero in that same bit could indicate that no keystroke is available. The CPU can test these
bits prior to reading a key from the keyboard or writing a character to the printer.

Assume that the printer data port is memory-mapped to address 0FFE0h and the
printer status port is bit zero of memory-mapped port 0FFE2h. The following code waits
until the printer is ready to accept a byte of data and then it writes the byte in the L.O. byte
of

ax

 to the printer port:

0000: mov bx, [FFE2]
0003: and bx, 1
0006: cmp bx, 0
0009: je 0000
000C: mov [FFE0], ax

 . .
 . .
 . .

The first instruction fetches the data at the status input port. The second instruction
logically ands this value with one to clear bits one through fifteen and set bit zero to the
current status of the printer port. Note that this produces the value zero in

bx

 if the printer

19. Get and put are a little fancier than true I/O-mapped instructions, but we will ignore that difference here.

System Organization

Page 127

is busy, it produces the value one in

bx

 if the printer is ready to accept additional data. The
third instruction checks

bx

 to see if it contains zero (i.e., the printer is busy). If the printer is
busy, this program jumps back to location zero and repeats this process over and over
again until the printer status bit is one

20

.

The following code provides an example of reading a keyboard. It presumes that the
keyboard status bit is bit zero of address 0FFE6h (zero means no key pressed) and the
ASCII code of the key appears at address 0FFE4h when bit zero of location 0FFE6h con-
tains a one:

0000: mov bx, [FFE6]
0003: and bx, 1
0006: cmp bx, 0
0009: je 0000
000C: mov ax, [FFE4]

 . .
 . .
 . .

This type of I/O operation, where the CPU constantly tests a port to see if data is
available, is

polling

, that is, the CPU polls (asks) the port if it has data available or if it is
capable of accepting data. Polled I/O is inherently inefficient. Consider what happens in
the previous code segment if the user takes ten seconds to press a key on the keyboard –
the CPU spins in a loop doing nothing (other than testing the keyboard status port) for
those ten seconds.

In early personal computer systems (e.g., the Apple II), this is exactly how a program
would read data from the keyboard; when it wanted to read a key from the keyboard it
would poll the keyboard status port until a key was available. Such computers could not
do other operations while waiting for keystrokes. More importantly, if too much time
passes between checking the keyboard status port, the user could press a second key and
the first keystroke would be lost

21

.

The solution to this problem is to provide an

interrupt

 mechanism. An interrupt is an
external hardware event (like a keypress) that causes the CPU to interrupt the current
instruction sequence and call a special

interrupt service routine

. (ISR). An interrupt service
routine typically saves all the registers and flags (so that it doesn’t disturb the computa-
tion it interrupts), does whatever operation is necessary to handle the source of the inter-
rupt, it restores the registers and flags, and then it resumes execution of the code it
interrupted. In many computer systems (e.g., the PC), many I/O devices generate an
interrupt whenever they have data available or are able to accept data from the CPU. The
ISR quickly processes the request in the

background

, allowing some other computation to
proceed normally in the

foreground

.

CPUs that support interrupts must provide some mechanism that allows the pro-
grammer to specify the address of the ISR to execute when an interrupt occurs. Typically,
an

interrupt vector

 is a special memory location that contains the address of the ISR to exe-
cute when an interrupt occurs. The x86 CPUs, for example, contain two interrupt vectors:
one for a general purpose interrupt and one for a

reset

 interrupt (the reset interrupt corre-
sponds to pressing the reset button on most PCs). The Intel 80x86 family supports up to
256 different interrupt vectors.

After an ISR completes its operation, it generally returns control to the foreground
task with a special “return from interrupt” instruction. On the x86 the

iret

 (interrupt
return) instruction handles this task. An ISR should always end with this instruction so
the ISR can return control to the program it interrupted.

A typical interrupt-driven input system uses the ISR to read data from an input port
and buffer it up whenever data becomes available. The foreground program can read that

20. Note that this is a hypothetical example. The PC’s parallel printer port is

not

 mapped to memory addresses
0FFE0h and 0FFE2h on the x86.
21. A keyboard data port generally provides only the last character typed, it does not provide a “keyboard buffer”
for the system.

Chapter 03

Page 128

data from the buffer at its leisure without losing any data from the port. Likewise, a typi-
cal interrupt-driven output system (that gets an interrupt whenever the output device is
ready to accept more data) can remove data from a buffer whenever the peripheral device
is ready to accept new data.

3.6 Laboratory Exercises

In this laboratory you will use the “SIMX86.EXE” program found in the Chapter
Three subdirectory. This program contains a built-in assembler (compiler), debugger, and
interrupter for the x86 hypothetical CPUs. You will learn how to write basic x86 assembly
language programs, assemble (compile) them, modify the contents of memory, and exe-
cute your x86 programs. You will also experiment with memory-mapped I/O,
I/O-mapped input/output, DMA, and polled as well as interrupt-driven I/O systems.

In this set of laboratory exercises you will use the SIMx86.EXE program to enter, edit,
initialize, and emulate x86 programs. This program requires that you install two files in
your WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH3 subdi-
rectory for more details.

3.6.1 The SIMx86 Program – Some Simple x86 Programs

To run the SIMx86 program double click on its icon or choose run from the Windows
file menu and enter the pathname for SIMx86. The SIMx86 program consists of three main
screen that you can select by clicking on the

Editor, Memory, or Emulator

 notebook tabs in
the window. By default, SIMx86 opens the Editor screen. From the Editor screen you can
edit and assemble x86 programs; from Memory screen you can view and modify the con-
tents of memory; from the Emulator screen you execute x86 programs and view x86 pro-
grams in memory.

The SIMx86 program contains two menu items: File and Edit. These are standard Win-
dows menus so there is little need to describe their operation except for two points. First,
the New, Open, Save, and Save As items under the file menu manipulate the data in the
text editor box on the Editor screen, they do not affect anything on the other screens. Sec-
ond, the Print menu item in the File menu prints the source code appearing in the text edi-
tor if the Editor screen is active, it prints the entire form if the Memory or Emulator
screens are active.

To see how the SIMx86 program operates, switch to the Editor screen (if you are not
already there). Select “Open” from the File menu and choose “EX1.X86” from the Chapter
Three subdirectory. That file should look like the following:

mov ax, [1000]
mov bx, [1002]
add ax, bx
sub ax, 1
mov bx, ax
add bx, ax
add ax, bx
halt

This short code sequence adds the two values at location 1000 and 1002, subtracts one
from their sum, and multiplies the result by three (

(ax + ax) + ax) = ax*3

), leaving the result
in

ax

 and then it halts.

On the Editor screen you will see three objects: the editor window itself, a box that
holds the “Starting Address,” and an “Assemble” button. The “Starting Address” box
holds a hexadecimal number that specifies where the assembler will store the machine
code for the x86 program you write with the editor. By default, this address is zero. About
the only time you should change this is when writing interrupt service routines since the
default reset address is zero. The “Assemble” button directs the SIMx86 program to con-

System Organization

Page 129

vert your assembly language source code into x86 machine code and store the result
beginning at the Starting Address in memory. Go ahead and press the “Assemble” button
at this time to assemble this program to memory.

Now press the “Memory” tab to select the memory screen. On this screen you will see
a set of 64 boxes arranged as eight rows of eight boxes. To the left of these eight rows you
will see a set of eight (hexadecimal) memory addresses (by default, these are 0000, 0008,
0010, 0018, 0020, 0028, 0030, and 0038). This tells you that the first eight boxes at the top of
the screen correspond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7; the second row of eight
boxes correspond to locations 8, 9, A, B, C, D, E, and F; and so on. At this point you should
be able to see the machine codes for the program you just assembled in memory locations
0000 through 000D. The rest of memory will contain zeros.

The memory screen lets you look at and possibly modify 64 bytes of the total 64K
memory provided for the x86 processors. If you want to look at some memory locations
other than 0000 through 003F, all you need do is edit the first address (the one that cur-
rently contains zero). At this time you should change the starting address of the memory
display to 1000 so you can modify the values at addresses 1000 and 1002 (remember, the
program adds these two values together). Type the following values into the correspond-
ing cells: at address 1000 enter the value 34, at location 1001 the value 12, at location 1002
the value 01, and at location 1003 the value 02. Note that if you type an illegal hexadecimal
value, the system will turn that cell red and beep at you.

By typing an address in the memory display starting address cell, you can look at or
modify locations almost anywhere in memory. Note that if you enter a hexadecimal
address that is not an even multiple of eight, the SIMx86 program disable up to seven cells
on the first row. For example, if you enter the starting address 1002, SIMx86 will disable
the first two cells since they correspond to addresses 1000 and 1001. The first active cell is
1002. Note the SIMx86 reserves memory locations FFF0 through FFFF for mem-
ory-mapped I/O. Therefore, it will not allow you to edit these locations. Addresses FFF0
through FFF7 correspond to read-only input ports (and you will be able to see the input
values even though SIMx86 disables these cells). Locations FFF8 through FFFF are
write-only output ports, SIMx86 displays garbage values if you look at these locations.

On the Memory page along with the memory value display/edit cells, there are two
other entry cells and a button. The “Clear Memory” button clears memory by writing
zeros throughout. Since your program’s object code and initial values are currently in
memory, you should not press this button. If you do, you will need to reassemble your
code and reenter the values for locations 1000 through 1003.

The other two items on the Memory screen let you set the interrupt vector address
and the reset vector address. By default, the reset vector address contains zero. This means
that the SIMx86 begins program execution at address zero whenever you reset the emula-
tor. Since your program is currently sitting at location zero in memory, you should not
change the default reset address.

The “Interrupt Vector” value is FFFF by default. FFFF is a special value that tells
SIMx86 “there is no interrupt service routine present in the system, so ignore all inter-
rupts.” Any other value must be the address of an ISR that SIMx86 will call whenever an
interrupt occurs. Since the program you assembled does not have an interrupt service rou-
tine, you should leave the interrupt vector cell containing the value FFFF.

Finally, press the “Emulator” tab to look at the emulator screen. This screen is much
busier than the other two. In the upper left hand corner of the screen is a data entry box
with the label

IP

. This box holds the current value of the x86

instruction pointer

 register.
Whenever SIMx86 runs a program, it begins execution with the instruction at this address.
Whenever you press the reset button (or enter SIMx86 for the first time), the

IP

 register
contains the value found in the reset vector. If this register does not contain zero at this
point, press the reset button on the Emulator screen to reset the system.

Immediately below the

ip

 value, the Emulator page

disassembles

 the instruction found
at the address in the

ip

 register. This is the very next instruction that SIMx86 will execute
when you press the “Run” or “Step” buttons. Note that SIMx86 does not obtain this

Chapter 03

Page 130

instruction from the source code window on the Editor screen. Instead, it decodes the
opcode in memory (at the address found in

ip

) and generates this string itself. Therefore,
there may be minor differences between the instruction you wrote and the instruction
SIMx86 displays on this page. Note that a disassembled instruction contains several
numeric values in front of the actual instruction. The first (four-digit) value is the memory
address of that instruction. The next pair of digits (or the next three pairs of digits) are the
opcodes and possible instruction operand values. For example, the

mov ax, [1000]

 instruc-
tion’s machine code is C6 00 10 since these are the three sets of digits appearing at this
point.

Below the current disassembled instruction, SIMx86 displays 15 instructions it disas-
sembles. The starting address for this disassemble is

not

 the value in the

ip

 register.
Instead, the value in the lower right hand corner of the screen specifies the starting disas-
sembly address. The two little arrows next to the disassembly starting address let you
quickly increment or decrement the disassembly starting address. Assuming the starting
address is zero (change it to zero if it is not), press the down arrow. Note that this incre-
ments the starting address by one. Now look back at the disassembled listing. As you can
see, pressing the down arrow has produced an interesting result. The first instruction (at
address 0001) is “****”. The four asterisks indicate that this particular opcode is an illegal
instruction opcode. The second instruction, at address 0002, is

not ax

. Since the program
you assembled did not contain an illegal opcode or a

not ax

 instruction, you may be won-
dering where these instructions came from. However, note the starting address of the first
instruction: 0001. This is the second byte of the first instruction in your program. In fact,
the illegal instruction (opcode=00) and the not ax instruction (opcode=10) are actually a
disassembly of the

mov ax, [1000]

 two-byte operand. This should clearly demonstrate a
problem with disassembly – it is possible to get “out of phase” by specify a starting
address that is in the middle of a multi-byte instruction. You will need to consider this
when disassembling code.

In the middle of the Emulator screen there are several buttons: Run, Step, Halt, Inter-
rupt, and Reset (the “Running” box is an annunciator, not a button). Pressing the Run but-
ton will cause the SIMx86 program to run the program (starting at the address in the

ip

register) at “full” speed. Pressing the Step button instructs SIMx86 to execute only the
instruction that

ip

 points at and then stop. The Halt button, which is only active while a
program is running, will stop execution. Pressing the Interrupt button generates an inter-
rupt and pressing the Reset button resets the system (and halts execution if a program is
currently running). Note that pressing the Reset button clears the x86 registers to zero and
loads the

ip

 register with the value in the reset vector.

The “Running” annunciator is gray if SIMx86 is not currently running a program. It
turns red when a program is actually running. You can use this annunciator as an easy
way to tell if a program is running if the program is busy computing something (or is in
an infinite loop) and there is no I/O to indicate program execution.

The boxes with the

ax, bx, cx,

 and

dx

 labels let you modify the values of these registers
while a program is not running (the entry cells are not enabled while a program is actually
running). These cells also display the current values of the registers whenever a program
stops or between instructions when you are stepping through a program. Note that while
a program is running the values in these cells are static and do not reflect their current val-
ues.

The “Less” and “Equal” check boxes denote the values of the less than and equal
flags. The x86 cmp instruction sets these flags depending on the result of the comparison.
You can view these values while the program is not running. You can also initialize them
to true or false by clicking on the appropriate box with the mouse (while the program is
not running).

In the middle section of the Emulator screen there are four “LEDs” and four “toggle
switches.” Above each of these objects is a hexadecimal address denoting their mem-
ory-mapped I/O addresses. Writing a zero to a corresponding LED address turns that
LED “off” (turns it white). Writing a one to a corresponding LED address turns that LED

System Organization

Page 131

“on” (turns it red). Note that the LEDs only respond to bit zero of their port addresses.
These output devices ignore all other bits in the value written to these addresses.

The toggle switches provide four memory-mapped input devices. If you read the
address above each switch SIMx86 will return a zero if the switch is off. SIMx86 will
return a one if the switch is in the on position. You can toggle a switch by clicking on it
with the mouse. Note that a little rectangle on the switch turns red if the switch is in the
“on” position.

The two columns on the right side of the Emulate screen (“Input” and “Output”) dis-
play input values read with the

get

 instruction and output values the

put

 instruction
prints.

For this first exercise, you will use the Step button to single step through each of the
instructions in the EX1.x86 program. First, begin by pressing the Reset button

22

. Next,
press the Step button once. Note that the values in the

ip

 and

ax

 registers change. The

ip

register value changes to 0003 since that is the address of the next instruction in memory,

ax

’s value changed to 1234 since that’s the value you placed at location 1000 when operat-
ing on the Memory screen. Single step through the remaining instructions (by repeatedly
pressing Step) until you get the “Halt Encountered” dialog box.

For your lab report:

 explain the results obtained after the execution of each instruc-
tion. Note that single-stepping through a program as you’ve done here is an excellent way
to ensure that you fully understand how the program operates. As a general rule, you
should always single-step through every program you write when testing it.

3.6.2 Simple I/O-Mapped Input/Output Operations

Go to the Editor screen and load the EX2.x86 file into the editor. This program intro-
duces some new concepts, so take a moment to study this code:

mov bx, 1000
a: get

mov [bx], ax
add bx, 2
cmp ax, 0
jne a

mov cx, bx
mov bx, 1000
mov ax, 0

b: add ax, [bx]
add bx, 2
cmp bx, cx
jb b

put
halt

The first thing to note are the two strings “a:” and “b:” appearing in column one of the
listing. The SIMx86 assembler lets you specify up to 26 statement

labels

 by specifying a sin-
gle alphabetic character followed by a colon. Labels are generally the operand of a jump
instruction of some sort. Therefore, the “jne a” instruction above really says “jump if not
equal to the statement prefaced with the ‘a:’ label” rather than saying “jump if not equal to
location ten (0Ah) in memory.”

Using labels is much more convenient than figuring out the address of a target
instruction manually, especially if the target instruction appears later in the code. The
SIMx86 assembler computes the address of these labels and substitutes the correct address

22. It is a good idea to get in the habit of pressing the Reset button before running or stepping through any pro-
gram.

Chapter 03

Page 132

for the operands of the jump instructions. Note that you

can

specify a numeric address in
the operand field of a jump instruction. However, all numeric addresses must begin with
a decimal digit (even though they are hexadecimal values). If your target address would
normally begin with a value in the range A through F, simply prepend a zero to the num-
ber. For example, if “jne a” was supposed to mean “jump if not equal to location 0Ah” you
would write the instruction as “jne 0a”.

This program contains two loops. In the first loop, the program reads a sequence of
values from the user until the user enters the value zero. This loop stores each word into
successive memory locations starting at address 1000h. Remember, each word read by the
user requires two bytes; this is why the loop adds two to

bx

 on each iteration.

The second loop in this program scans through the input values and computes their
sum. At the end of the loop, the code prints the sum to the output window using the

put

instruction.

For your lab report:

 single-step through this program and describe how each instruc-
tion works. Reset the x86 and run this program at full speed. Enter several values and
describe the result. Discuss the get and put instruction. Describe why they do
I/O-mapped input/output operations rather than memory-mapped input/output opera-
tions.

3.6.3 Memory Mapped I/O

From the Editor screen, load the EX3.x86 program file. That program takes the follow-
ing form (the comments were added here to make the operation of this program clearer):

a: mov ax, [fff0]
mov bx, [fff2]

mov cx, ax ;Computes Sw0 and Sw1
and cx, bx
mov [fff8], cx

mov cx, ax ;Computes Sw0 or Sw1
or cx, bx
mov [fffa], cx

mov cx, ax ;Computes Sw0 xor Sw1
mov dx, bx ;Remember, xor = AB’ + A’B
not cx
not bx
and cx, bx
and dx, ax
or cx, dx
mov [fffc], cx

not cx ;Computes Sw0 = Sw1
mov [fffe], cx ;Remember, equals = not xor

mov ax, [fff4] ;Read the third switch.
cmp ax, 0 ;See if it’s on.
je a ;Repeat this program while off.
halt

Locations 0FFF0h, 0FFF2h, and 0FFF4h correspond to the first three toggle switches
on the Execution page. These are memory-mapped I/O devices that put a zero or one into
the corresponding memory locations depending upon whether the toggle switch is in the
on or off state. Locations 0FFF8h, 0FFFAh, 0FFFCh, and 0FFFEh correspond to the four
LEDs. Writing a zero to these locations turns the corresponding LED off, writing a one
turns it on.

System Organization

Page 133

This program computes the logical and, or, xor, and xnor (not xor) functions for the
values read from the first two toggle switches. This program displays the results of these
functions on the four output LEDs. This program reads the value of the third toggle
switch to determine when to quit. When the third toggle switch is in the on position, the
program will stop.

For your lab report:

 run this program and cycle through the four possible combina-
tions of on and off for the first two switches. Include the results in your lab report.

3.6.4 DMA Exercises

In this exercise you will start a program running (EX4.x86) that examines and oper-
ates on values found in memory. Then you will switch to the Memory screen and modify
values in memory (that is, you will directly access memory while the program continues
to run), thus simulating a peripheral device that uses DMA.

The EX4.x86 program begins by setting memory location 1000h to zero. Then it loops
until one of two conditions is met – either the user toggles the FFF0 switch or the user
changes the value in memory location 1000h. Toggling the FFF0 switch terminates the pro-
gram. Changing the value in memory location 1000h transfers control to a section of the
program that adds together

n

 words, where

n

 is the new value in memory location 1000h.
The program sums the words appearing in contiguous memory locations starting at
address 1002h. The actual program looks like the following:

d: mov cx, 0 ;Clear location 1000h before we
mov [1000], cx ; begin testing it.

; The following loop checks to see if memory location 1000h changes or if
; the FFF0 switch is in the on position.

a: mov cx, [1000] ;Check to see if location 1000h
cmp cx, 0 ; changes. Jump to the section that
jne c ; sums the values if it does.

mov ax, [fff0] ;If location 1000h still contains zero,
cmp ax, 0 ; read the FFF0 switch and see if it is
je a ; off. If so, loop back. If the switch
halt ; is on, quit the program.

; The following code sums up the “cx” contiguous words of memory starting at
; memory location 1002. After it sums up these values, it prints their sum.

c: mov bx, 1002 ;Initialize BX to point at data array.
mov ax, 0 ;Initialize the sum

b: add ax, [bx] ;Sum in the next array value.
add bx, 2 ;Point BX at the next item in the array.
sub cx, 1 ;Decrement the element count.
cmp cx, 0 ;Test to see if we’ve added up all the
jne b ; values in the array.

put ;Print the sum and start over.
jmp d

Load this program into SIMx86 and assemble it. Switch to the Emulate screen, press
the Reset button, make sure the FFF0 switch is in the off position, and then run the pro-
gram. Once the program is running switch to the memory screen by pressing the Memory
tab. Change the starting display address to 1000. Change the value at location 1000h to 5.
Switch back to the emulator screen. Assuming memory locations 1002 through 100B all
contain zero, the program should display a zero in the output column.

Switch back to the memory page. What does location 1000h now contain? Change the
L.O. bytes of the words at address 1002, 1004, and 1006 to 1, 2, and 3, respectively. Change

Chapter 03

Page 134

the value in location 1000h to three. Switch to the Emulator page. Describe the output in
your lab report. Try entering other values into memory. Toggle the FFF0 switch when you
want to quit running this program.

For your lab report:

 explain how this program uses DMA to provide program input.
Run several tests with different values in location 1000h and different values in the data
array starting at location 1002. Include the results in your report.

For additional credit:

 Store the value 12 into memory location 1000. Explain why the
program prints

two

 values instead of just one value.

3.6.5 Interrupt Driven I/O Exercises

In this exercise you will load

two

 programs into memory: a main program and an
interrupt service routine. This exercise demonstrates the use of interrupts and an interrupt
service routine.

The main program (EX5a.x86) will constantly compare memory locations 1000h and
1002h. If they are not equal, the main program will print the value of location 1000h and
then copy this value to location 1002h and repeat this process. The main program repeats
this loop until the user toggles switch FFF0 to the on position. The code for the main pro-
gram is the following:

a: mov ax, [1000] ;Fetch the data at location 1000h and
cmp ax, [1002] ; see if it is the same as location
je b ; 1002h. If so, check the FFF0 switch.
put ;If the two values are different, print
mov [1002], ax ; 1000h’s value and make them the same.

b: mov ax, [fff0] ;Test the FFF0 switch to see if we
cmp ax, 0 ; should quit this program.
je a
halt

The interrupt service routine (EX5b.x86) sits at location 100h in memory. Whenever an
interrupt occurs, this ISR simply increments the value at location 1000h by loading this
value into

ax

, adding one to the value in

ax

, and then storing this value back to location
1000h. After these instructions, the ISR returns to the main program. The interrupt service
routine contains the following code:

mov ax, [1000] ;Increment location 1000h by one and
add ax, 1 ; return to the interrupted code.
mov [1000], ax
iret

You must load and assemble both files before attempting to run the main program.
Begin by loading the main program (EX5a.x86) into memory and assemble it at address
zero. Then load the ISR (EX5b.x86) into memory, set the Starting Address to 100, and then
assemble your code.

Warning:

if you forget to change the starting address you will wipe out
your main program when you assemble the ISR. If this happens, you will need to repeat this proce-
dure from the beginning.

After assembling the code, the next step is to set the interrupt vector so that it contains
the address of the ISR. To do this, switch to the Memory screen. The interrupt vector cell
should currently contain 0FFFFh (this value indicates that interrupts are disabled).
Change this to 100 so that it contains the address of the interrupt service routine. This also
enables the interrupt system.

Finally, switch to the Emulator screen, make sure the FFF0 toggle switch is in the off
position, reset the program, and start it running. Normally, nothing will happen. Now
press the interrupt button and observe the results.

System Organization

Page 135

For your lab report:

 describe the output of the program whenever you press the inter-
rupt button. Explain all the steps you would need to follow to place the interrupt service
routine at address 2000h rather than 100h.

For additional credit:

 write your own interrupt service routine that does something
simple. Run the main program and press the interrupt button to test your code. Verify that
your ISR works properly.

3.6.6 Machine Language Programming & Instruction Encoding Exercises

To this point you have been creating machine language programs with SIMx86’s
built-in assembler. An assembler is a program that translates an ASCII source file contain-
ing textual representations of a program into the actual machine code. The assembler pro-
gram saves you a considerable amount of work by translating human readable
instructions into machine code. Although tedious, you can perform this translation your-
self. In this exercise you will create some very short

machine language

programs by encod-
ing the instructions and entering their hexadecimal opcodes into memory on the memory
screen.

Using the instruction encodings found in Figure 3.19, Figure 3.20, Figure 3.21, and
Figure 3.22, write the hexadecimal values for the opcodes beside each of the following
instructions:

You can assume that the program starts at address zero and, therefore, label “

a

” will be at
address 0003 since the

mov cx, 0

 instruction is three bytes long.

 mov cx, 0

a: get

 put

 add ax, ax

 put

 add ax, ax

 put

 add ax, ax

 put

 add cx, 1

 cmp cx, 4

 jb a

 halt

Binary Opcode Hex Operand

Chapter 03

Page 136

For your lab report:

 enter the hexadecimal opcodes and operands into memory start-
ing at location zero using the Memory editor screen. Dump these values and include them
in your lab report. Switch to the Emulator screen and disassemble the code starting at
address zero. Verify that this code is the same as the assembly code above. Print a copy of
the disassembled code and include it in your lab report. Run the program and verify that
it works properly.

3.6.7 Self Modifying Code Exercises

In the previous laboratory exercise, you discovered that the system doesn’t really dif-
ferentiate data and instructions in memory. You were able to enter hexadecimal data and
the x86 processor treats it as a sequence of executable instructions. It is also possible for a
program to store data into memory and then execute it. A program is

self-modifying

if it
creates or modifies some of the instructions it executes.

Consider the following x86 program (EX6.x86):

sub ax, ax
mov [100], ax

a: mov ax, [100]
cmp ax, 0
je b
halt

b: mov ax, 00c6
mov [100], ax
mov ax, 0710
mov [102], ax
mov ax, a6a0
mov [104], ax
mov ax, 1000
mov [106], ax
mov ax, 8007
mov [108], ax
mov ax, 00e6
mov [10a], ax
mov ax, 0e10
mov [10c], ax
mov ax, 4
mov [10e], ax
jmp 100

This program writes the following code to location 100 and then executes it:

mov ax, [1000]
put
add ax, ax
add ax, [1000]
put
sub ax, ax
mov [1000], ax
jmp 0004 ;0004 is the address of the A: label.

For your lab report:

 execute the EX7.x86 program and verify that it generates the
above code at location 100.

Although this program demonstrates the principle of self-modifying code, it hardly
does anything useful. As a general rule, one would not use self-modifying code in the
manner above, where one segment writes some sequence of instructions and then exe-
cutes them. Instead, most programs that use self-modifying code only modify existing
instructions and often only the operands of those instructions.

System Organization

Page 137

Self-modifying code is rarely found in modern assembly language programs. Pro-
grams that are self-modifying are hard to read and understand, difficult to debug, and
often unstable. Programmers often resort to self-modifying code when the CPU’s architec-
ture lacks sufficient power to achieve a desired goal. The later Intel 80x86 processors do
not lack for instructions or addressing modes, so it is very rare to find 80x86 programs that
use self-modifying code

23

. The x86 processors, however, have a very weak instruction set,
so there are actually a couple of instances where self-modifying code may prove useful.

A good example of an architectural deficiency where the x86 is lacking is with respect
to subroutines. The x86 instruction set does not provide any (direct) way to call and return
from a subroutine. However, you can easily simulate a call and return using the

jmp

instruction and self-modifying code. Consider the following x86 “subroutine” that sits at
location 100h in memory:

; Integer to Binary converter.
; Expects an unsigned integer value in AX.
; Converts this to a string of zeros and ones storing this string of
; values into memory starting at location 1000h.

mov bx, 1000 ;Starting address of string.
mov cx, 10 ;16 (10h) digits in a word.

a: mov dx, 0 ;Assume current bit is zero.
cmp ax, 8000 ;See if AX’s H.O. bit is zero or one.
jb b ;Branch if AX’x H.O. bit is zero.
mov dx, 1 ;AX’s H.O. bit is one, set that here.

b: mov [bx], dx ;Store zero or one to next string loc.
add bx, 1 ;Bump BX up to next string location.
add ax, ax ;AX = AX *2 (shift left operation).
sub cx, 1 ;Count off 16 bits.
cmp cx, 0 ;Repeat 16 times.
ja a
jmp 0 ;Return to caller via self-mod code.

The only instruction that a program will modify in this subroutine is the very last

jmp

instruction. This jump instruction must transfer control to the first instruction beyond the

jmp

 in the calling code that transfers control to this subroutine; that is, the caller must store
the return address into the operand of the

jmp

 instruction in the code above. As it turns
out, the

jmp

 instruction is at address 120h (assuming the code above starts at location
100h). Therefore, the caller must store the return address into location 121h (the operand
of the

jmp

 instruction). The following sample “main” program makes three calls to the
“subroutine” above:

mov ax, 000c ;Address of the BRK instr below.
mov [121], ax ;Store into JMP as return address.
mov ax, 1234 ;Convert 1234h to binary.
jmp 100 ;”Call” the subroutine above.
brk ;Pause to let the user examine 1000h.

mov ax, 0019 ;Address of the brk instr below.
mov [121], ax
mov ax, fdeb ;Convert 0FDEBh to binary.
jmp 100
brk

mov ax, 26 ;Address of the halt instr below.
mov [121], ax
mov ax, 2345 ;Convert 2345h to binary.
jmp 100

halt

23. Many viruses and copy protection programs use self modifying code to make it difficult to detect or bypass
them.

Chapter 03

Page 138

Load the subroutine (EX7s.x86) into SIMx86 and assemble it starting at location 100h.
Next, load the main program (EX7m.x86) into memory and assemble it starting at location
zero. Switch to the Emulator screen and verify that all the return addresses (0ch, 19h, and
26h) are correct. Also verify that the return address needs to be written to location 121h.
Next, run the program. The program will execute a

brk

 instruction after each of the first
two calls. The brk instruction pauses the program. At this point you can switch to the
memory screen at look at locations 1000-100F in memory. They should contain the
pseudo-binary conversion of the value passed to the subroutine. Once you verify that the
conversion is correct, switch back to the Emulator screen and press the Run button to con-
tinue program execution after the

brk

.

For your lab report:

 describe how self-modifying code works and explain in detail
how this code uses self-modifying code to simulate call and return instructions. Explain
the modifications you would need to make to move the main program to address 800h
and the subroutine to location 900h.

For additional credit:

 Actually change the program and subroutine so that they work
properly at the addresses above (800h and 900h).

3.7 Programming Projects

Note: You are to write these programs in x86 assembly language code using the
SIMx86 program. Include a specification document, a test plan, a program listing, and
sample output with your program submissions

1) The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

2) Create a callable subroutine that performs the multplication inproblem (1) above. Pass the
two values to multiple to the subroutine in the

ax

 and

bx

 registers. Return the product in
the

cx

 register. Use the self-modifying code technique found in the section “Self Modifying
Code Exercises” on page 136.

3) Write a program that reads two two-bit numbers from switches (FFF0/FFF2) and
(FFF4/FFF6). Treating these bits as logical values, your code should compute the three-bit
sum of these two values (two-bit result plus a carry). Use the logic equations for the full
adder from the previous chapter.

Do not simply add these values using the x86 add instruction.

Display the three-bit result on LEDs FFF8, FFFA, and FFFC.

4) Write a subroutine that expects an address in BX, a count in CX, and a value in AX. It
should write CX copies of AX to successive words in memory starting at address BX.
Write a main program that calls this subroutine several times with different addresses.
Use the self-modifying code subroutine call and return mechanism described in the labo-
ratory exercises.

5) Write the generic logic function for the x86 processor (see Chapter Two). Hint:

add ax, ax

does a shift left on the value in

ax

. You can test to see if the high order bit is set by checking
to see if

ax

 is greater than 8000h.

6) Write a program that reads the generic function number for a four-input function from the
user and then continually reads the switches and writes the result to an LED.

7) Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in

cx

, and locates the maximum value in that array. Dis-
play the value after scanning the array.

8) Write a program that computes the two’s complement of an array of values starting at
location 1000h.

CX

 should contain the number of values in the array. Assume each array
element is a two-byte integer.

9) Write a “light show” program that displays a “light show” on the SIMx86’s LEDs. It
should accomplish this by writing a set of values to the LEDs, delaying for some time

System Organization

Page 139

period (by executing an empty loop) and then repeating the process over and over again.
Store the values to write to the LEDs in an array in memory and fetch a new set of LED
values from this array on each loop iteration.

10) Write a simple program that

sorts

 the words in memory locations 1000..10FF in ascending
order. You can use a simple

insertion sort

algorithm. The Pascal code for such a sort is

for i := 0 to n-1 do
for j := i+1 to n do

if (memory[i] > memory[j]) then
begin

temp := memory[i];
memory[i] := memory[j];
memory[j] := temp;

end;

3.8 Summary

Writing good assembly language programs requires a strong knowledge of the under-
lying hardware. Simply knowing the instruction set is insufficient. To produce the best
programs, you must understand how the hardware executes your programs and accesses
data.

Most modern computer systems store programs and data in the same memory space
(the

Von Neumann architecture

). Like most Von Neumann machines, a typical 80x86 system
has three major components: the

central processing unit

 (CPU),

 input/output

 (I/O), and

memory

. See:

• “The Basic System Components” on page 83

Data travels between the CPU, I/O devices, and memory on the

system bus.

 There are
three major busses employed by the 80x86 family, the

address bus

, the

data bus

, and the

con-
trol bus

. The address bus carries a binary number which specifies which memory location
or I/O port the CPU wishes to access; the data bus carries data between the CPU and
memory or I/O; the control bus carries important signals which determine whether the
CPU is reading or writing memory data or accessing an I/O port. See:

• “The System Bus” on page 84
• “The Data Bus” on page 84
• “The Address Bus” on page 86
• “The Control Bus” on page 86

The number of data lines on the data bus determines the

size

 of a processor. When we
say that a processor is an

eight bit processor

 we mean that it has eight data lines on its data
bus. The size of the data which the processor can handle internally on the CPU does not
affect the size of that CPU. See:

• “The Data Bus” on page 84
• “The “Size” of a Processor” on page 85

The address bus transmits a binary number from the CPU to memory and I/O to
select a particular memory element or I/O port. The number of lines on the address bus
sets the maximum number of memory locations the CPU can access. Typical address bus
sizes on the 80x86 CPUs are 20, 24, and 32 bits. See:

• “The Address Bus” on page 86

The 80x86 CPUs also have a control bus which contains various signals necessary for
the proper operation of the system. The system clock, read/write control signals, and I/O
or memory control signals are some samples of the many lines which appear on the con-
trol bus. See:

• “The Control Bus” on page 86

Chapter 03

Page 140

The memory subsystem is where the CPU stores program instructions and data. On
80x86 based systems, memory appears as a linear array of bytes, each with its own unique
address. The address of the first byte in memory is zero, and the address of the last avail-
able byte in memory is 2

n

-1, where

n

 is the number of lines on the address bus. The 80x86
stores words in two consecutive memory locations. The L.O. byte of the word is at the
lowest address of those two bytes; the H.O. byte immediately follows the first at the next
highest address. Although a word consumes two memory addresses, when dealing with
words we simply use the address of its L.O. byte as the address of that word. Double
words consume four consecutive bytes in memory. The L.O. byte appears at the lowest
address of the four, the H.O. byte appears at the highest address. The “address” of the
double word is the address of its L.O. byte. See:

• “The Memory Subsystem” on page 87

CPUs with 16, 32, or 64 bit data busses generally organize memory in

banks

. A 16 bit
memory subsystem uses two banks of eight bits each, a 32 bit memory subsystem uses
four banks of eight bits each, and a 64 bit system uses eight banks of eight bits each.
Accessing a word or double word at the same address within all the banks is faster than
accessing an object which is split across two addresses in the different banks. Therefore,
you should attempt to align word data so that it begins on an even address and double
word data so that it begins on an address which is evenly divisible by four. You may place
byte data at any address. See:

• “The Memory Subsystem” on page 87

The 80x86 CPUs provide a separate 16 bit I/O address space which lets the CPU
access any one of 65,536 different I/O ports. A typical I/O device connected to the IBM PC
only uses 10 of these address lines, limiting the system to 1,024 different I/O ports. The
major benefit to using an I/O address space rather than mapping all I/O devices to mem-
ory space is that the I/O devices need not infringe upon the addressable memory space.
To differentiate I/O and memory accesses, there are special control lines on the system
bus. See:

• “The Control Bus” on page 86
• “The I/O Subsystem” on page 92

The system clock controls the speed at which the processor performs basic operations.
Most CPU activities occur on the rising or falling edge of this clock. Examples include
instruction execution, memory access, and checking for wait states. The faster the system
clock runs, the faster your program will execute; however, your memory must be as fast as
the system clock or you will need to introduce wait states, which slow the system back
down. See:

• “System Timing” on page 92
• “The System Clock” on page 92
• “Memory Access and the System Clock” on page 93
• “Wait States” on page 95

Most programs exhibit a

locality of reference.

 They either access the same memory loca-
tion repeatedly within a small period of time (

temporal locality

) or they access neighboring
memory locations during a short time period (

spatial locality

). A

cache memory subsystem

exploits this phenomenon to reduce wait states in a system. A small cache memory system
can achieve an 80-95% hit ratio.

Two-level caching systems

 use two different caches (typi-
cally one on the CPU chip and one off chip) to achieve even better system performance.
See:

• “Cache Memory” on page 96

CPUs, such as those in the 80x86 family, break the execution of a machine instruction
down into several distinct steps, each requiring one clock cycle. These steps include fetch-
ing an instruction opcode, decoding that opcode, fetching operands for the instruction,
computing memory addresses, accessing memory, performing the basic operation, and
storing the result away. On a very simplistic CPU, a simple instruction may take several
clock cycles. The best way to improve the performance of a CPU is to execute several

System Organization

Page 141

internal operations in parallel with one another. A simple scheme is to put an instruction
prefetch queue on the CPU. This allows you to overlap opcode fetching and decoding
with instruction execution, often cutting the execution time in half. Another alternative is
to use an instruction pipeline so you can execute several instructions in parallel. Finally,
you can design a superscalar CPU which executes two or more instructions concurrently.
These techniques will all improve the running time of your programs. See:

• “The 886 Processor” on page 110
• “The 8286 Processor” on page 110
• “The 8486 Processor” on page 116
• “The 8686 Processor” on page 123

Although pipelined and superscalar CPUs improve overall system performance,
extracting the best performance from such complex CPUs requires careful planning by the
programmer. Pipeline stalls and hazards can cause a major loss of performance in poorly
organized programs. By carefully organizing the sequence of the instructions in your pro-
grams you can make your programs run as much as two to three times faster. See:

• “The 8486 Pipeline” on page 117
• “Stalls in a Pipeline” on page 118
• “Cache, the Prefetch Queue, and the 8486” on page 119
• “Hazards on the 8486” on page 122
• “The 8686 Processor” on page 123

The I/O subsystem is the third major component of a Von Neumann machine (mem-
ory and the CPU being the other two). There are three primary ways to move data
between the computer system and the outside world: I/O-mapped input/output, mem-
ory-mapped input/output, and direct memory access (DMA). For more information, see:

• “I/O (Input/Output)” on page 124

To improve system performance, most modern computer systems use interrupts to
alert the CPU when an I/O operation is complete. This allows the CPU to continue with
other processing rather than waiting for an I/O operation to complete (polling the I/O
port). For more information on interrupts and polled I/O operatoins, see:

• “Interrupts and Polled I/O” on page 126

Chapter 03

Page 142

3.9 Questions

1. What three components make up Von Neumann Machines?

2. What is the purpose of

a) The system bus
b) The address bus
c) The data bus
d) The control bus

3. Which bus defines the “size” of the processor?

4. Which bus controls how much memory you can have?

5. Does the size of the data bus control the maximum value the CPU can process? Explain.

6. What are the data bus sizes of:

a) 8088 b) 8086 c) 80286 d) 80386sx
e) 80386 f) 80486 g) 80586/Pentium

7. What are the address bus sizes of the above processors?

8. How many “banks” of memory do each of the above processors have?

9. Explain how to store a word in byte addressable memory (that is, at what addresses).
Explain how to store a double word.

10. How many memory operations will it take to read a word from the following addresses
on the following processors?

11. Repeat the above for double words

12. Explain which addresses are best for byte, word, and doubleword variables on an 8088,
80286, and 80386 processor.

13. How many different I/O locations can you address on the 80x86 chip? How many are typ-
ically available on a PC?

14. What is the purpose of the system clock?

Table 21: Memory Cycles for Word Accesses

100 101 102 103 104 105

8088

80286

80386

Table 22: Memory Cycles for Doubleword Accesses

100 101 102 103 104 105

8088

80286

80386

System Organization

Page 143

15. What is a clock cycle?

16. What is the relationship between clock frequency and the clock period?

17. How many clock cycles are required for each of the following to read a byte from mem-
ory?

a) 8088 b) 8086 c) 80486

18. What does the term “memory access time” mean?

19. What is a

wait state?

20. If you are running an 80486 at the following clock speeds, how many wait states are
required if you are using 80ns RAM (assuming no other delays)?

a) 20 MHz b) 25 MHz c) 33 MHz d) 50 MHz e) 100 MHz

21. If your CPU runs at 50 MHz, 20ns RAM probably won’t be fast enough to operate at zero
wait states. Explain why.

22. Since sub-10ns RAM is available, why aren’t all system zero wait state systems?

23. Explain how the cache operates to save some wait states.

24. What is the difference between spatial and temporal locality of reference?

25. Explain where temporal and spatial locality of reference occur in the following Pascal
code:

while i < 10 do begin
x := x * i;
i := i + 1;

end;

26. How does cache memory improve the performance of a section of code exhibiting spatial
locality of reference?

27. Under what circumstances is a cache not going to save you any wait states?

28. What is the effective (average) number of wait states the following systems will operate
under?

a) 80% cache hit ratio, 10 wait states (WS) for memory, 0 WS for cache.
b) 90% cache hit ratio; 7 WS for memory; 0 WS for cache.
c) 95% cache hit ratio; 10 WS memory; 1 WS cache.
d) 50% cache hit ratio; 2 WS memory; 0 WS cache.

29. What is the purpose of a two level caching system? What does it save?

30. What is the effective number of wait states for the following systems?

a) 80% primary cache hit ratio (HR) zero WS; 95% secondary cache HR with 2 WS; 10 WS
for main memory access.
b) 50% primary cache HR, zero WS; 98% secondary cache HR, one WS; five WS for main
memory access.
c) 95% primary cache HR, one WS; 98% secondary cache HR, 4 WS; 10 WS for main mem-
ory access.

31. Explain the purpose of the

bus interface unit

, the

execution unit

, and the

control unit.

32. Why does it take more than one clock cycle to execute an instruction. Give some x86
examples.

33. How does a prefetch queue save you time? Give some examples.

Chapter 03

Page 144

34. How does a pipeline allow you to (seemingly) execute one instruction per clock cycle?
Give an example.

35. What is a hazard?

36. What happens on the 8486 when a hazard occurs?

37. How can you eliminate the effects of a hazard?

38. How does a jump (JMP/Jcc) instruction affect

a) The prefetch queue.
b) The pipeline.

39. What is a pipeline stall?

40. Besides the obvious benefit of reducing wait states, how can a cache improve the perfor-
mance of a pipelined system?

41. What is a Harvard Architecture Machine?

42. What does a superscalar CPU do to speed up execution?

43. What are the two main techniques you should use on a superscalar CPU to ensure your
code runs as quickly as possible? (note: these are mechanical details, “Better Algorithms”
doesn’t count here).

44. What is an interrupt? How does it improved system performance?

45. What is polled I/O?

46. What is the difference between memory-mapped and I/O mapped I/O?

47. DMA is a special case of memory-mapped I/O. Explain.

