

Page 521

Control Structures Chapter 10

A computer program typically contains three structures: instruction sequences, deci-
sions, and loops. A sequence is a set of sequentially executing instructions. A decision is a
branch (

goto

) within a program based upon some condition. A loop is a sequence of
instructions that will be repeatedly executed based on some condition. In this chapter we
will explore some of the common decision structures in 80x86 assembly language.

10.0 Chapter Overview

This chapter discusses the two primary types of control structures: decision and itera-
tion. It describes how to convert high level language statements like

if..then..else

,

case

(

switch

),

while, for

etc., into equivalent assembly language sequences. This chapter also dis-
cusses techniques you can use to improve the performance of these control structures. The
sections below that have a “•” prefix are essential. Those sections with a “

o

” discuss
advanced topics that you may want to put off for a while.

• Introduction to Decisions.
• IF..THEN..ELSE Sequences.
• CASE Statements.

 o

State machines and indirect jumps.
• Spaghetti code.
• Loops.
• WHILE Loops.
• REPEAT..UNTIL loops.
• LOOP..ENDLOOP.
• FOR Loops.
• Register usage and loops.

 o

Performance improvements.

 o

Moving the termination condition to the end of a loop.

 o

Executing the loop backwards.

 o

Loop invariants.

 o

Unraveling loops.

 o

Induction variables.

10.1 Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that switches
between two possible execution paths based on some condition. Normally (though not
always), conditional instruction sequences are implemented with the conditional jump
instructions. Conditional instructions correspond to the

if..then..else

statement in Pascal:

 IF (condition is true) THEN stmt1 ELSE stmt2 ;

Assembly language, as usual, offers much more flexibility when dealing with conditional
statements. Consider the following Pascal statement:

 IF ((X<Y) and (Z > T)) or (A <> B) THEN stmt1;

A “brute force” approach to converting this statement into assembly language might pro-
duce:

This document was created with FrameMaker 4.0.2

Chapter 10

Page 522

mov cl, 1 ;Assume true
mov ax, X
cmp ax, Y
jl IsTrue
mov cl, 0 ;This one’s false

IsTrue: mov ax, Z
cmp ax, T
jg AndTrue
mov cl, 0 ;It’s false now

AndTrue: mov al, A
cmp al, B

 je OrFalse
 mov cl, 1 ;Its true if A <> B

OrFalse: cmp cl, 1
 jne SkipStmt1
<Code for stmt1 goes here>

SkipStmt1:

As you can see, it takes a considerable number of conditional statements just to process
the expression in the example above. This roughly corresponds to the (equivalent) Pascal
statements:

cl := true;
 IF (X >= Y) then cl := false;

IF (Z <= T) then cl := false;
IF (A <> B) THEN cl := true;
IF (CL = true) then stmt1;

Now compare this with the following “improved” code:

mov ax, A
cmp ax, B
jne DoStmt
mov ax, X
cmp ax, Y
jnl SkipStmt
mov ax, Z
cmp ax, T
jng SkipStmt

DoStmt:

<

Place code for Stmt1 here>

SkipStmt:

Two things should be apparent from the code sequences above: first, a single condi-
tional statement in Pascal may require several conditional jumps in assembly language;
second, organization of complex expressions in a conditional sequence can affect the effi-
ciency of the code. Therefore, care should be exercised when dealing with conditional
sequences in assembly language.

Conditional statements may be broken down into three basic categories:

if..then..else

statements,

case

statements, and indirect jumps. The following sections will describe these
program structures, how to use them, and how to write them in assembly language.

10.2 IF..THEN..ELSE Sequences

The most commonly used conditional statement is the

if..then

or

if..then..else

statement.
These two statements take the following form shown in Figure 10.1.

The

if..then

statement is just a special case of the

if..then..else

statement (with an empty
ELSE block). Therefore, we’ll only consider the more general

if..then..else

 form. The basic
implementation of an

if..then..else

statement in 80x86 assembly language looks something
like this:

Control Structures

Page 523

 {Sequence of statements to test some condition}
 J

cc

ElseCode
 {Sequence of statements corresponding to the THEN block}

jmp EndOfIF

ElseCode:
{Sequence of statements corresponding to the ELSE block}

EndOfIF:

 Note:

J

cc

 represents some conditional jump instruction.

For example, to convert the Pascal statement:

IF (a=b) then c := d else b := b + 1;

to assembly language, you could use the following 80x86 code:

mov ax, a
 cmp ax, b
 jne ElseBlk
 mov ax, d
 mov c, ax
 jmp EndOfIf

ElseBlk:
inc b

EndOfIf:

For simple expressions like

 (A=B)

 generating the proper code for an

if..then..else

state-
ment is almost trivial. Should the expression become more complex, the associated assem-
bly language code complexity increases as well. Consider the following

if

statement
presented earlier:

IF ((X > Y) and (Z < T)) or (A<>B) THEN C := D;

Figure 10.1 IF..THEN and IF..THEN..ELSE Statement Flow

Continue execution
down here after the
completion of the
THEN or if skipping the
THEN block.

Test for some condition

Execute this block of
statements if the
condition is true.

IF..THEN

Test for some condition

Execute this block of
statements if the
condition is true.

Execute this block of
statements if the
condition is false

Continue execution
down here after the
completion of the
THEN or ELSE blocks

IF..THEN..ELSE

Chapter 10

Page 524

When processing complex

if

statements such as this one, you’ll find the conversion
task easier if you break this

if

statement into a sequence of three different

if

statements as
follows:

IF (A<>B) THEN C := D
IF (X > Y) THEN IF (Z < T) THEN C := D;

This conversion comes from the following Pascal equivalences:

IF (expr1 AND expr2) THEN stmt;

is equivalent to

IF (expr1) THEN IF (expr2) THEN stmt;

and

IF (expr1 OR expr2) THEN stmt;

is equivalent to

IF (expr1) THEN stmt;
IF (expr2) THEN stmt;

In assembly language, the former

if

statement becomes:

mov ax, A
cmp ax, B
jne DoIF
mov ax, X
cmp ax, Y
jng EndOfIf
mov ax, Z
cmp ax, T
jnl EndOfIf

DoIf:
mov ax, D

 mov C, ax
EndOfIF:

 As you can probably tell, the code necessary to test a condition can easily become
more complex than the statements appearing in the

else

and then blocks. Although it
seems somewhat paradoxical that it may take more effort to test a condition than to act
upon the results of that condition, it happens all the time. Therefore, you should be pre-
pared for this situation.

Probably the biggest problem with the implementation of complex conditional state-
ments in assembly language is trying to figure out what you’ve done after you’ve written
the code. Probably the biggest advantage high level languages offer over assembly lan-
guage is that expressions are much easier to read and comprehend in a high level lan-
guage. The HLL version is self-documenting whereas assembly language tends to hide
the true nature of the code. Therefore, well-written comments are an essential ingredient
to assembly language implementations of

if..then..else

 statements. An elegant implementa-
tion of the example above is:

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;
; Implemented as:
; IF (A <> B) THEN GOTO DoIF;

mov ax, A
cmp ax, B
jne DoIF

; IF NOT (X > Y) THEN GOTO EndOfIF;

mov ax, X
cmp ax, Y
jng EndOfIf

; IF NOT (Z < T) THEN GOTO EndOfIF ;

mov ax, Z
cmp ax, T
jnl EndOfIf

Control Structures

Page 525

; THEN Block:

DoIf: mov ax, D
mov C, ax

; End of IF statement

EndOfIF:

Admittedly, this appears to be going overboard for such a simple example. The fol-
lowing would probably suffice:

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;

; Test the boolean expression:

mov ax, A
cmp ax, B
jne DoIF
mov ax, X
cmp ax, Y
jng EndOfIf
mov ax, Z
cmp ax, T
jnl EndOfIf

; THEN Block:

DoIf: mov ax, D
 mov C, ax

; End of IF statement

EndOfIF:

However, as your

if

statements become complex, the density (and quality) of your com-
ments become more and more important.

10.3 CASE Statements

The Pascal

case

statement takes the following form :

 CASE variable OF
const

1

:stmt

1

;
 const

2

:stmt

2

;
 .

 .
 .
const

n

:stmt

n

END;

When this statement executes, it checks the value of variable against the constants

const

1

 … const

n

. If a match is found then the corresponding statement executes. Standard
Pascal places a few restrictions on the

case

 statement. First, if the value of variable isn’t in
the list of constants, the result of the

case

 statement is undefined. Second, all the constants
appearing as

case

 labels must be unique. The reason for these restrictions will become
clear in a moment.

Most introductory programming texts introduce the

case

 statement by explaining it as
a sequence of

if..then..else

statements. They might claim that the following two pieces of
Pascal code are equivalent:

CASE I OF
0: WriteLn(‘I=0’);
1: WriteLn(‘I=1’);
2: WriteLn(‘I=2’);

END;

IF I = 0 THEN WriteLn(‘I=0’)
ELSE IF I = 1 THEN WriteLn(‘I=1’)
ELSE IF I = 2 THEN WriteLn(‘I=2’);

Chapter 10

Page 526

While semantically these two code segments may be the same, their implementation
is usually different

1

. Whereas the

if..then..else if

chain does a comparison for each condi-
tional statement in the sequence, the

case

 statement normally uses an indirect jump to
transfer control to any one of several statements with a single computation. Consider the
two examples presented above, they could be written in assembly language with the fol-
lowing code:

 mov bx, I
 shl bx, 1 ;Multiply BX by two
 jmp cs:JmpTbl[bx]

JmpTbl word stmt0, stmt1, stmt2

Stmt0: print
 byte “I=0”,cr,lf,0
 jmp EndCase

Stmt1: print
 byte “I=1”,cr,lf,0
 jmp EndCase

Stmt2: print
 byte “I=2”,cr,lf,0

EndCase:

; IF..THEN..ELSE form:

 mov ax, I
 cmp ax, 0
 jne Not0

print
byte “I=0”,cr,lf,0
jmp EndOfIF

Not0: cmp ax, 1
jne Not1
print
byte “I=1”,cr,lf,0
jmp EndOfIF

Not1: cmp ax, 2
 jne EndOfIF

Print
byte “I=2”,cr,lf,0

EndOfIF:

Two things should become readily apparent: the more (consecutive) cases you have,
the more efficient the jump table implementation becomes (both in terms of space and
speed). Except for trivial cases, the

case

 statement is almost always faster and usually by a
large margin. As long as the

case

 labels are consecutive values, the

case

 statement version
is usually smaller as well.

What happens if you need to include non-consecutive

case

 labels or you cannot be
sure that the

case

 variable doesn’t go out of range? Many Pascals have extended the defi-
nition of the

case

 statement to include an

otherwise

clause. Such a

case

 statement takes the
following form:

 CASE variable OF
const:stmt;

 const:stmt;
 . .

 . .
 . .
const:stmt;
OTHERWISE stmt

END;

 If the value of variable matches one of the constants making up the

case

 labels, then
the associated statement executes. If the variable’s value doesn’t match any of the

case

1. Versions of Turbo Pascal, sadly, treat the

case

statement as a form of the

if..then..else

statement.

Control Structures

Page 527

labels, then the statement following the

otherwise

clause executes. The

otherwise

clause is
implemented in two phases. First, you must choose the minimum and maximum values
that appear in a

case

 statement. In the following

case

 statement, the smallest

case

 label is
five, the largest is 15:

 CASE I OF
5:stmt1;

 8:stmt2;
 10:stmt3;
 12:stmt4;

15:stmt5;
OTHERWISE stmt6

END;

Before executing the jump through the jump table, the 80x86 implementation of this

case

 statement should check the

case

 variable to make sure it’s in the range 5..15. If not,
control should be immediately transferred to stmt6:

mov bx, I
cmp bx, 5
jl Otherwise
cmp bx, 15
jg Otherwise
shl bx, 1
jmp cs:JmpTbl-10[bx]

 The only problem with this form of the

case

 statement as it now stands is that it
doesn’t properly handle the situation where I is equal to 6, 7, 9, 11, 13, or 14. Rather than
sticking extra code in front of the conditional jump, you can stick extra entries in the jump
table as follows:

mov bx, I
cmp bx, 5
jl Otherwise
cmp bx, 15
jg Otherwise
shl bx, 1
jmp cs:JmpTbl-10[bx]

Otherwise: {put stmt6 here}
jmp CaseDone

JmpTbl word stmt1, Otherwise, Otherwise, stmt2, Otherwise
word stmt3, Otherwise, stmt4, Otherwise, Otherwise
word stmt5
etc.

Note that the value 10 is subtracted from the address of the jump table. The first entry
in the table is always at offset zero while the smallest value used to index into the table is
five (which is multiplied by two to produce 10). The entries for 6, 7, 9, 11, 13, and 14 all
point at the code for the Otherwise clause, so if I contains one of these values, the Other-
wise clause will be executed.

There is a problem with this implementation of the

case

 statement. If the

case

 labels
contain non-consecutive entries that are widely spaced, the following

case

 statement
would generate an extremely large code file:

CASE I OF
0: stmt1;
100: stmt2;

 1000: stmt3;
 10000: stmt4;

Otherwise stmt5
END;

 In this situation, your program will be much smaller if you implement the

case

 state-
ment with a sequence of

if

statements rather than using a jump statement. However, keep
one thing in mind- the size of the jump table does not normally affect the execution speed
of the program. If the jump table contains two entries or two thousand, the

case

 statement
will execute the multi-way branch in a constant amount of time. The

if

statement imple-

Chapter 10

Page 528

mentation requires a linearly increasing amount of time for each

case

 label appearing in
the

case

 statement.

Probably the biggest advantage to using assembly language over a HLL like Pascal is
that you get to choose the actual implementation. In some instances you can implement a

case

 statement as a sequence of

if..then..else

statements, or you can implement it as a jump
table, or you can use a hybrid of the two:

CASE I OF
0:stmt1;

 1:stmt2;
 2:stmt3;
 100:stmt4;
 Otherwise stmt5

END;

could become:

mov bx, I
 cmp bx, 100
 je Is100
 cmp bx, 2

ja Otherwise
shl bx, 1
jmp cs:JmpTbl[bx]

 etc.

Of course, you could do this in Pascal with the following code:

 IF I = 100 then stmt4
ELSE CASE I OF

0:stmt1;
 1:stmt2;
 2:stmt3;

Otherwise stmt5
END;

 But this tends to destroy the readability of the Pascal program. On the other hand, the
extra code to test for 100 in the assembly language code doesn’t adversely affect the read-
ability of the program (perhaps because it’s so hard to read already). Therefore, most peo-
ple will add the extra code to make their program more efficient.

The C/C++

switch

 statement is very similar to the Pascal

case

 statement. There is only
one major semantic difference: the programmer must explicitly place a

break

 statement in
each

case

 clause to transfer control to the first statement beyond the

switch

. This

break

 cor-
responds to the

jmp

 instruction at the end of each

case

 sequence in the assembly code
above. If the corresponding

break

 is not present, C/C++ transfers control into the code of
the following

case

. This is equivalent to leaving off the

jmp

 at the end of the

case

’s
sequence:

switch (i)
{
case 0:

stmt1

;
case 1:

stmt2

;
case 2:

stmt3

;
break;

case 3:

stmt4

;
break;

default:

stmt5

;
}

This translates into the following 80x86 code:

mov bx, i
cmp bx, 3
ja DefaultCase

shl bx, 1
jmp cs:JmpTbl[bx]

JmpTbl word case0, case1, case2, case3

Control Structures

Page 529

case0: <stmt1’s code>

case1: <stmt2’s code>

case2: <stmt3’s code>

jmp EndCase ;Emitted for the

break

 stmt.

case3: <stmt4’s code>
jmp EndCase ;Emitted for the

break

 stmt.

DefaultCase: <stmt5’s code>
EndCase:

10.4 State Machines and Indirect Jumps

Another control structure commonly found in assembly language programs is the

state machine

. A state machine uses a

state variable

 to control program flow. The FORTRAN
programming language provides this capability with the assigned goto statement. Certain
variants of C (e.g., GNU’s GCC from the Free Software Foundation) provide similar fea-
tures. In assembly language, the indirect jump provides a mechanism to easily implement
state machines.

So what is a state machine? In very basic terms, it is a piece of code

2

 which keeps track
of its execution history by entering and leaving certain “states”. For the purposes of this
chapter, we’ll not use a very formal definition of a state machine. We’ll just assume that a
state machine is a piece of code which (somehow) remembers the history of its execution
(its

state

) and executes sections of code based upon that history.

In a very real sense, all programs are state machines. The CPU registers and values in
memory constitute the “state” of that machine. However, we’ll use a much more con-
strained view. Indeed, for most purposes only a single variable (or the value in the IP reg-
ister) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure which you
want to perform one operation the first time you call it, a different operation the second
time you call it, yet something else the third time you call it, and then something new
again on the fourth call. After the fourth call it repeats these four different operations in
order. For example, suppose you want the procedure to add

ax

and

bx

the first time, sub-
tract them on the second call, multiply them on the third, and divide them on the fourth.
You could implement this procedure as follows:

State byte 0
StateMach proc

cmp state,0
jne TryState1

; If this is state 0, add BX to AX and switch to state 1:

add ax, bx
inc State ;Set it to state 1
ret

; If this is state 1, subtract BX from AX and switch to state 2

TryState1: cmp State, 1
jne TryState2
sub ax, bx
inc State
ret

; If this is state 2, multiply AX and BX and switch to state 3:

TryState2: cmp State, 2

2. Note that state machines need not be software based. Many state machines’ implementation are hardware
based.

Chapter 10

Page 530

jne MustBeState3
push dx
mul bx
pop dx
inc State
ret

; If none of the above, assume we’re in State 4. So divide
; AX by BX.

MustBeState3:
push dx
xor dx, dx ;Zero extend AX into DX.
div bx
pop dx
mov State, 0 ;Switch back to State 0
ret

StateMach endp

Technically, this procedure is not the state machine. Instead, it is the variable

State

 and the

cmp/jne

 instructions which constitute the state machine.

There is nothing particularly special about this code. It’s little more than a

case

 state-
ment implemented via the

if..then..else

construct. The only thing special about this proce-
dure is that it remembers how many times it has been called

3

 and behaves differently
depending upon the number of calls. While this is a

correct

 implementation of the desired
state machine, it is not particularly efficient. The more common implementation of a state
machine in assembly language is to use an

indirect jump

. Rather than having a state vari-
able which contains a value like zero, one, two, or three, we could load the state variable
with the

address

 of the code to execute upon entry into the procedure. By simply jumping
to that address, the state machine could save the tests above needed to execute the proper
code fragment. Consider the following implementation using the indirect jump:

State word State0
StateMach proc

jmp State

; If this is state 0, add BX to AX and switch to state 1:

State0: add ax, bx
mov State, offset State1 ;Set it to state 1
ret

; If this is state 1, subtract BX from AX and switch to state 2

State1: sub ax, bx
mov State, offset State2 ;Switch to State 2
ret

; If this is state 2, multiply AX and BX and switch to state 3:

State2: push dx
mul bx
pop dx
mov State, offset State3 ;Switch to State 3
ret

; If in State 3, do the division and switch back to State 0:

State3: push dx
xor dx, dx ;Zero extend AX into DX.
div bx
pop dx
mov State, offset State0 ;Switch to State 0
ret

StateMach endp

The

jmp

instruction at the beginning of the

StateMach

 procedure transfers control to
the location pointed at by the

State

 variable. The first time you call

StateMach

 it points at

3. Actually, it remembers how many times,

MOD 4

, that it has been called.

Control Structures

Page 531

the

State0

 label. Thereafter, each subsection of code sets the

State

 variable to point at the
appropriate successor code.

10.5 Spaghetti Code

One major problem with assembly language is that it takes several statements to real-
ize a simple idea encapsulated by a single HLL statement. All too often an assembly lan-
guage programmer will notice that s/he can save a few bytes or cycles by jumping into
the middle of some programming structure. After a few such observations (and corre-
sponding modifications) the code contains a whole sequence of jumps in and out of por-
tions of the code. If you were to draw a line from each jump to its destination, the
resulting listing would end up looking like someone dumped a bowl of spaghetti on your
code, hence the term “spaghetti code”.

Spaghetti code suffers from one major drawback- it’s difficult (at best) to read such a
program and figure out what it does. Most programs start out in a “structured” form only
to become spaghetti code at the altar of efficiency. Alas, spaghetti code is rarely efficient.
Since it’s difficult to figure out exactly what’s going on, it’s very difficult to determine if
you can use a better algorithm to improve the system. Hence, spaghetti code may wind up
less efficient.

While it’s true that producing some spaghetti code in your programs may improve its
efficiency, doing so should always be a last resort (when you’ve tried everything else and
you still haven’t achieved what you need), never a matter of course. Always start out writ-
ing your programs with straight-forward

if

s and

case

 statements. Start combining sections
of code (via

jmp

instructions) once everything is working and well understood. Of course,
you should never obliterate the structure of your code unless the gains are worth it.

A famous saying in structured programming circles is “After

goto

s, pointers are the
next most dangerous element in a programming language.” A similar saying is “Pointers
are to data structures what

goto

s are to control structures.” In other words, avoid excessive
use of pointers. If pointers and

goto

s are bad, then the indirect jump must be the worst
construct of all since it involves both

goto

s and pointers! Seriously though, the indirect
jump instructions should be avoided for casual use. They tend to make a program harder
to read. After all, an indirect jump can (theoretically) transfer control to any label within a
program. Imagine how hard it would be to follow the flow through a program if you have
no idea what a pointer contains and you come across an indirect jump using that pointer.
Therefore, you should always exercise care when using jump indirect instructions.

10.6 Loops

Loops represent the final basic control structure (sequences, decisions, and loops)
which make up a typical program. Like so many other structures in assembly language,
you’ll find yourself using loops in places you’ve never dreamed of using loops. Most
HLLs have implied loop structures hidden away. For example, consider the BASIC state-
ment

IF A$ = B$ THEN 100

. This

if

statement compares two strings and jumps to statement
100 if they are equal. In assembly language, you would need to write a loop to compare
each character in

A$

 to the corresponding character in

B$

 and then jump to statement 100
if and only if all the characters matched. In BASIC, there is no loop to be seen in the pro-
gram. In assembly language, this very simple

if

statement requires a loop. This is but a
small example which shows how loops seem to pop up everywhere.

Program loops consist of three components: an optional initialization component, a
loop termination test, and the body of the loop. The order with which these components
are assembled can dramatically change the way the loop operates. Three permutations of
these components appear over and over again. Because of their frequency, these loop
structures are given special names in HLLs:

while

loops,

repeat..until

loops (

do..while

 in
C/C++), and

loop..endloop

loops.

Chapter 10

Page 532

10.6.1 While Loops

The most general loop is the while loop. It takes the following form:

WHILE boolean expression DO statement;

There are two important points to note about the while loop. First, the test for termi-
nation appears at the beginning of the loop. Second as a direct consequence of the position
of the termination test, the body of the loop may never execute. If the termination condi-
tion always exists, the loop body will always be skipped over.

Consider the following Pascal while loop:

I := 0;
WHILE (I<100) do I := I + 1;

I := 0;

is the initialization code for this loop. I is a loop control variable, because it con-
trols the execution of the body of the loop.

 (I<100)

 is the loop termination condition. That
is, the loop will not terminate as long as I is less than 100.

 I:=I+1;

 is the loop body. This is
the code that executes on each pass of the loop. You can convert this to 80x86 assembly
language as follows:

mov I, 0
WhileLp: cmp I, 100

jge WhileDone
inc I
jmp WhileLp

WhileDone:

Note that a Pascal while loop can be easily synthesized using an

if

and a

goto

state-
ment. For example, the Pascal while loop presented above can be replaced by:

I := 0;
1: IF (I<100) THEN BEGIN

I := I + 1;
GOTO 1;

END;

More generally, any while loop can be built up from the following:

optional initialization code
1: IF not termination condition THEN BEGIN

loop body
GOTO 1;

END;

Therefore, you can use the techniques from earlier in this chapter to convert

if

statements
to assembly language. All you’ll need is an additional

jmp

(

goto

) instruction.

10.6.2 Repeat..Until Loops

The

repeat..until (do..while)

loop tests for the termination condition at the end of the
loop rather than at the beginning. In Pascal, the

repeat..until

 loop takes the following form:

optional initialization code
REPEAT

loop body
UNTIL termination condition

This sequence executes the initialization code, the loop body, then tests some condi-
tion to see if the loop should be repeated. If the boolean expression evaluates to false, the
loop repeats; otherwise the loop terminates. The two things to note about the

repeat..until

loop is that the termination test appears at the end of the loop and, as a direct consequence
of this, the loop body executes at least once.

Like the

while

loop, the

repeat..until

 loop can be synthesized with an

if

statement and a

goto

. You would use the following:

Control Structures

Page 533

initialization code
1: loop body

IF NOT termination condition THEN GOTO 1

Based on the material presented in the previous sections, you can easily synthesize

repeat..until

 loops in assembly language.

10.6.3 LOOP..ENDLOOP Loops

If

while

loops test for termination at the beginning of the loop and

repeat..until

loops
check for termination at the end of the loop, the only place left to test for termination is in
the middle of the loop. Although Pascal and C/C++

4

 don’t directly support such a loop,
the

loop..endloop

structure can be found in HLL languages like Ada. The

loop..endloop

 loop
takes the following form:

LOOP
loop body

ENDLOOP;

Note that there is no explicit termination condition. Unless otherwise provided for,
the

loop..endloop

 construct simply forms an infinite loop. Loop termination is handled by
an

if

and

goto

statement

5

. Consider the following (pseudo) Pascal code which employs a

loop..endloop

 construct:

 LOOP
READ(ch)
IF ch = ‘.’ THEN BREAK;
WRITE(ch);

ENDLOOP;

In real Pascal, you’d use the following code to accomplish this:

1:
READ(ch);
IF ch = ‘.’ THEN GOTO 2; (* Turbo Pascal supports BREAK! *)
WRITE(ch);
GOTO 1

2:

In assembly language you’d end up with something like:

LOOP1: getc
cmp al, ‘.’
je EndLoop
putc
jmp LOOP1

EndLoop:

10.6.4 FOR Loops

The

for

loop is a special form of the

while

loop which repeats the loop body a specific
number of times. In Pascal, the

for

loop looks something like the following:

FOR var := initial TO final DO stmt
or

FOR var := initial DOWNTO final DO stmt

Traditionally, the

for

loop in Pascal has been used to process arrays and other objects
accessed in sequential numeric order. These loops can be converted directly into assembly
language as follows:

4. Technically, C/C++

does

 support such a loop. “for(;;)” along with break provides this capability.
5. Many high level languages use statements like NEXT, BREAK, CONTINUE, EXIT, and CYCLE rather than
GOTO; but they’re all forms of the GOTO statement.

Chapter 10

Page 534

In Pascal:

FOR var := start TO stop DO stmt;

In Assembly:

mov var, start
FL: mov ax, var

cmp ax, stop
jg EndFor

; code corresponding to stmt goes here.

inc var
jmp FL

EndFor:

Fortunately, most

for

loops repeat some statement(s) a fixed number of times. For
example,

 FOR I := 0 to 7 do write(ch);

In situations like this, it’s better to use the 80x86

loop

instruction rather than simulate a

for

loop:

mov cx, 7
LP: mov al, ch

call putc
loop LP

Keep in mind that the

loop

instruction normally appears at the end of a loop whereas
the

for

loop tests for termination at the beginning of the loop. Therefore, you should take
precautions to prevent a runaway loop in the event

cx

is zero (which would cause the

loop

instruction to repeat the loop 65,536 times) or the stop value is less than the start value. In
the case of

FOR var := start TO stop DO stmt;

assuming you don’t use the value of var within the loop, you’d probably want to use the
assembly code:

mov cx, stop
sub cx, start
jl SkipFor
inc cx

LP:

stmt

loop LP
SkipFor:

Remember, the

sub

and

cmp

instructions set the flags in an identical fashion. There-
fore, this loop will be skipped if

stop

 is less than

start

. It will be repeated

 (stop-start)+1

times
otherwise. If you need to reference the value of

var

 within the loop, you could use the fol-
lowing code:

mov ax, start
mov var, ax
mov cx, stop
sub cx, ax
jl SkipFor
inc cx

LP: stmt
inc var
loop LP

SkipFor:

The

downto

version appears in the exercises.

10.7 Register Usage and Loops

Given that the 80x86 accesses registers much faster than memory locations, registers
are the ideal spot to place loop control variables (especially for small loops). This point is

Control Structures

Page 535

amplified since the

loop

instruction requires the use of the

cx

register. However, there are
some problems associated with using registers within a loop. The primary problem with
using registers as loop control variables is that registers are a limited resource. In particu-
lar, there is only one

cx

register. Therefore, the following will not work properly:

mov cx, 8
Loop1: mov cx, 4
Loop2:

stmts

loop Loop2

stmts

loop Loop1

The intent here, of course, was to create a set of nested loops, that is, one loop inside
another. The inner loop (

Loop2

) should repeat four times for each of the eight executions of
the outer loop (

Loop1

). Unfortunately, both loops use the

loop

instruction. Therefore, this
will form an infinite loop since

cx

will be set to zero (which

loop

 treats like 65,536) at the
end of the first

loop

 instruction. Since

cx

is always zero upon encountering the second

loop

instruction, control will always transfer to the

Loop1

 label. The solution here is to save and
restore the

cx

register or to use a different register in place of

cx

for the outer loop:

mov cx, 8
Loop1: push cx

mov cx, 4
Loop2:

stmts

loop Loop2
pop cx

stmts

loop Loop1

or:

mov bx, 8
Loop1: mov cx, 4
Loop2:

stmts

loop Loop2

stmts

dec bx
jnz Loop1

Register corruption is one of the primary sources of bugs in loops in assembly lan-
guage programs, always keep an eye out for this problem.

10.8 Performance Improvements

The 80x86 microprocessors execute sequences of instructions at blinding speeds.
You’ll rarely encounter a program that is slow which doesn’t contain any loops. Since
loops are the primary source of performance problems within a program, they are the
place to look when attempting to speed up your software. While a treatise on how to write
efficient programs is beyond the scope of this chapter, there are some things you should be
aware of when designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to execute one itera-
tion of the loop.

10.8.1 Moving the Termination Condition to the End of a Loop

Consider the following flow graphs for the three types of loops presented earlier:

Repeat..until

loop:

Initialization code
Loop body

Test for termination
Code following the loop

While

loop:

Chapter 10

Page 536

Initialization code
Loop termination test

Loop body
Jump back to test

Code following the loop

Loop..endloop

loop:

Initialization code
Loop body, part one
Loop termination test
Loop body, part two
Jump back to loop body part 1

Code following the loop

As you can see, the

 repeat..until

 loop is the simplest of the bunch. This is reflected in the
assembly language code required to implement these loops. Consider the following

repeat..until

 and

while

loops that are identical:

SI := DI - 20; SI := DI - 20;
while (SI <= DI) do repeat
begin

stmts stmts

SI := SI + 1; SI := SI + 1;

end; until SI > DI;

The assembly language code for these two loops is

6

:

mov si, di mov si, di
sub si, 20 sub si, 20

WL1: cmp si, di U:

stmts

jnle QWL inc si

stmts

cmp si, di
inc si jng RU
jmp WL1

QWL:

As you can see, testing for the termination condition at the end of the loop allowed us
to remove a

jmp

instruction from the loop. This can be significant if this loop is nested
inside other loops. In the preceding example there wasn’t a problem with executing the
body at least once. Given the definition of the loop, you can easily see that the loop will be
executed exactly 20 times. Assuming

cx

is available, this loop easily reduces to:

lea si, -20[di]
mov cx, 20

WL1:

stmts

inc si
loop WL1

Unfortunately, it’s not always quite this easy. Consider the following Pascal code:

WHILE (SI <= DI) DO BEGIN

stmts

SI := SI + 1;

END;

In this particular example, we haven’t the slightest idea what

si

contains upon entry
into the loop. Therefore, we cannot assume that the loop body will execute at least once.
Therefore, we must do the test before executing the body of the loop. The test can be
placed at the end of the loop with the inclusion of a single

jmp

instruction:

jmp short Test
RU:

stmts

inc si

Test: cmp si, di
jle RU

6. Of course, a good compiler would recognize that both loops perform the same operation and generate identical
code for each. However, most compilers are not this good.

Control Structures

Page 537

Although the code is as long as the original

while

loop, the

jmp

instruction executes only
once rather than on each repetition of the loop. Note that this slight gain in efficiency is
obtained via a slight loss in readability. The second code sequence above is closer to spa-
ghetti code that the original implementation. Such is often the price of a small perfor-
mance gain. Therefore, you should carefully analyze your code to ensure that the
performance boost is worth the loss of clarity. More often than not, assembly language
programmers sacrifice clarity for dubious gains in performance, producing impossible to
understand programs.

10.8.2 Executing the Loop Backwards

Because of the nature of the flags on the 80x86, loops which range from some number
down to (or up to) zero are more efficient than any other. Compare the following Pascal
loops and the code they generate:

for I := 1 to 8 do for I := 8 downto 1 do
K := K + I - J; K := K + I - j;

mov I, 1 mov I, 8
FLP: mov ax, K FLP: mov ax, K

add ax, I add ax, I
sub ax, J sub ax, J
mov K, ax mov K, ax
inc I dec I
cmp I, 8 jnz FLP
jle FLP

Note that by running the loop from eight down to one (the code on the right) we saved a
comparison on each repetition of the loop.

Unfortunately, you cannot force all loops to run backwards. However, with a little
effort and some coercion you should be able to work most loops so they operate back-
wards. Once you get a loop operating backwards, it’s a good candidate for the

loop

instruction (which will improve the performance of the loop on pre-486 CPUs).

The example above worked out well because the loop ran from eight down to one.
The loop terminated when the loop control variable became zero. What happens if you
need to execute the loop when the loop control variable goes to zero? For example, sup-
pose that the loop above needed to range from seven down to zero. As long as the upper
bound is positive, you can substitute the

jns

instruction in place of the

jnz

instruction
above to repeat the loop some specific number of times:

mov I, 7
FLP: mov ax, K

add ax, I
sub ax, J
mov K, ax
dec I
jns FLP

This loop will repeat eight times with I taking on the values seven down to zero on
each execution of the loop. When it decrements zero to minus one, it sets the sign flag and
the loop terminates.

Keep in mind that some values may look positive but they are negative. If the loop
control variable is a byte, then values in the range 128..255 are negative. Likewise, 16-bit
values in the range 32768..65535 are negative. Therefore, initializing the loop control vari-
able with any value in the range 129..255 or 32769..65535 (or, of course, zero) will cause the
loop to terminate after a single execution. This can get you into a lot of trouble if you’re
not careful.

Chapter 10

Page 538

10.8.3 Loop Invariant Computations

A loop invariant computation is some calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the loop. You can
compute them outside the loop and reference the value of the computation inside. The fol-
lowing Pascal code demonstrates a loop which contains an invariant computation:

FOR I := 0 TO N DO
K := K+(I+J-2);

Since

 J

 never changes throughout the execution of this loop, the sub-expression “

J-2

”
can be computed outside the loop and its value used in the expression inside the loop:

temp := J-2;
FOR I := 0 TO N DO

K := K+(I+temp);

Of course, if you’re really interested in improving the efficiency of this particular loop,
you’d be much better off (most of the time) computing

 K

 using the formula:

This computation for K is based on the formula:

 However, simple computations such as this one aren’t always possible. Still, this demon-
strates that a better algorithm is almost always better than the trickiest code you can come
up with.

In assembly language, invariant computations are even trickier. Consider this conver-
sion of the Pascal code above:

mov ax, J
add ax, 2
mov temp, ax
mov ax, n
mov I, ax

FLP: mov ax, K
add ax, I
sub ax, temp
mov K, ax
dec I
cmp I, -1
jg FLP

Of course, the first refinement we can make is to move the loop control variable (I) into a
register. This produces the following code:

mov ax, J
inc ax
inc ax
mov temp, ax
mov cx, n

FLP: mov ax, K
add ax, cx
sub ax, temp
mov K, ax
dec cx
cmp cx, -1
jg FLP

K K N

1+

()

temp

×()

N

2+

()

N

2+

()×

2
---+ +=

i

i

0=

N

∑

N

1+

()

N

()×

2
--------------------------------------=

Control Structures

Page 539

This operation speeds up the loop by removing a memory access from each repetition of
the loop. To take this one step further, why not use a register to hold the “temp” value
rather than a memory location:

mov bx, J
inc bx
inc bx
mov cx, n

FLP: mov ax, K
add ax, cx
sub ax, bx
mov K, ax
dec cx
cmp cx, -1
jg FLP

Furthermore, accessing the variable K can be removed from the loop as well:

mov bx, J
inc bx
inc bx
mov cx, n
mov ax, K

FLP: add ax, cx
sub ax, bx
dec cx
cmp cx, -1
jg FLP
mov K, ax

One final improvement which is begging to be made is to substitute the

loop

instruc-
tion for the

dec cx

 /

cmp cx,-1 / JG FLP

 instructions. Unfortunately, this loop must be
repeated whenever the loop control variable hits zero, the loop instruction cannot do this.
However, we can unravel the last execution of the loop (see the next section) and do that
computation outside the loop as follows:

mov bx, J
inc bx
inc bx
mov cx, n
mov ax, K

FLP: add ax, cx
sub ax, bx
loop FLP
sub ax, bx
mov K, ax

As you can see, these refinements have considerably reduced the number of instruc-
tions executed inside the loop and those instructions that do appear inside the loop are
very fast since they all reference registers rather than memory locations.

Removing invariant computations and unnecessary memory accesses from a loop
(particularly an inner loop in a set of nested loops) can produce dramatic performance
improvements in a program.

10.8.4 Unraveling Loops

For small loops, that is, those whose body is only a few statements, the overhead
required to process a loop may constitute a significant percentage of the total processing
time. For example, look at the following Pascal code and its associated 80x86 assembly
language code:

Chapter 10

Page 540

FOR I := 3 DOWNTO 0 DO A [I] := 0;

mov I, 3
FLP: mov bx, I

shl bx, 1
mov A [bx], 0
dec I
jns FLP

Each execution of the loop requires five instructions. Only one instruction is perform-
ing the desired operation (moving a zero into an element of

A

). The remaining four
instructions convert the loop control variable into an index into

A

 and control the repeti-
tion of the loop. Therefore, it takes 20 instructions to do the operation logically required by
four.

While there are many improvements we could make to this loop based on the infor-
mation presented thus far, consider carefully exactly what it is that this loop is doing-- it’s
simply storing four zeros into

 A[0]

 through

A[3

]. A more efficient approach is to use four

mov

instructions to accomplish the same task. For example, if

A

 is an array of words, then
the following code initializes

A

 much faster than the code above:

mov A, 0
mov A+2, 0
mov A+4, 0
mov A+6, 0

You may improve the execution speed and the size of this code by using the

ax

regis-
ter to hold zero:

xor ax, ax
mov A, ax
mov A+2, ax
mov A+4, ax
mov A+6, ax

Although this is a trivial example, it shows the benefit of loop unraveling. If this sim-
ple loop appeared buried inside a set of nested loops, the 5:1 instruction reduction could
possibly double the performance of that section of your program.

Of course, you cannot unravel all loops. Loops that execute a variable number of
times cannot be unraveled because there is rarely a way to determine (at assembly time)
the number of times the loop will be executed. Therefore, unraveling a loop is a process
best applied to loops that execute a known number of times.

Even if you repeat a loop some fixed number of iterations, it may not be a good candi-
date for loop unraveling. Loop unraveling produces impressive performance improve-
ments when the number of instructions required to control the loop (and handle other
overhead operations) represent a significant percentage of the total number of instructions
in the loop. Had the loop above contained 36 instructions in the body of the loop (exclu-
sive of the four overhead instructions), then the performance improvement would be, at
best, only 10% (compared with the 300-400% it now enjoys). Therefore, the costs of unrav-
eling a loop, i.e., all the extra code which must be inserted into your program, quickly
reaches a point of diminishing returns as the body of the loop grows larger or as the num-
ber of iterations increases. Furthermore, entering that code into your program can become
quite a chore. Therefore, loop unraveling is a technique best applied to small loops.

Note that the superscalar x86 chips (Pentium and later) have

branch prediction hardware

and use other techniques to improve performance. Loop unrolling on such systems many
actually

slow down

 the code since these processors are optimized to execute short loops.

10.8.5 Induction Variables

The following is a slight modification of the loop presented in the previous section:

Control Structures

Page 541

FOR I := 0 TO 255 DO A [I] := 0;

mov I, 0
FLP: mov bx, I

shl bx, 1
mov A [bx], 0
inc I
cmp I, 255
jbe FLP

Although unraveling this code will still produce a tremendous performance improve-
ment, it will take 257 instructions to accomplish this task

7

, too many for all but the most
time-critical applications. However, you can reduce the execution time of the body of the
loop tremendously using

induction variables

. An induction variable is one whose value
depends entirely on the value of some other variable. In the example above, the index into
the array A tracks the loop control variable (it’s always equal to the value of the loop con-
trol variable times two). Since I doesn’t appear anywhere else in the loop, there is no sense
in performing all the computations on I. Why not operate directly on the array index
value? The following code demonstrates this technique:

mov bx, 0
FLP: mov A [bx], 0

inc bx
inc bx
cmp bx, 510
jbe FLP

Here, several instructions accessing memory were replaced with instructions that
only access registers. Another improvement to make is to shorten the

MOVA[bx],0

 instruc-
tion using the following code:

lea bx, A
xor ax, ax

FLP: mov [bx], ax
inc bx
inc bx
cmp bx, offset A+510
jbe FLP

This code transformation improves the performance of the loop even more. However,
we can improve the performance even more by using the

loop

instruction and the

cx

regis-
ter to eliminate the

cmp

instruction

8

:

lea bx, A
xor ax, ax
mov cx, 256

FLP: mov [bx], ax
inc bx
inc bx
loop FLP

This final transformation produces the fastest executing version of this code

9

.

10.8.6 Other Performance Improvements

There are many other ways to improve the performance of a loop within your assem-
bly language programs. For additional suggestions, a good text on compilers such as
“Compilers, Principles, Techniques, and Tools” by Aho, Sethi, and Ullman would be an

7. For this particular loop, the STOSW instruction could produce a big performance improvement on many 80x86
processors. Using the STOSW instruction would require only about six instructions for this code. See the chapter
on string instructions for more details.
8. The LOOP instruction is not the best choice on the 486 and Pentium processors since dec cx” followed by “jne
lbl” actually executes faster.
9. Fastest is a dangerous statement to use here! But it is the fastest of the examples presented here.

Chapter 10

Page 542

excellent place to look. Additional efficiency considerations will be discussed in the vol-
ume on efficiency and optimization.

10.9 Nested Statements

As long as you stick to the templates provides in the examples presented in this chap-
ter, it is very easy to nest statements inside one another. The secret to making sure your
assembly language sequences nest well is to ensure that each construct has one entry
point and one exit point. If this is the case, then you will find it easy to combine state-
ments. All of the statements discussed in this chapter follow this rule.

Perhaps the most commonly nested statements are the if..then..else statements. To see
how easy it is to nest these statements in assembly language, consider the following Pas-
cal code:

if (x = y) then
if (I >= J) then writeln(‘At point 1’)
else writeln(‘At point 2)

else write(‘Error condition’);

To convert this nested if..then..else to assembly language, start with the outermost

if

,
convert it to assembly, then work on the innermost

if

:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; Put innermost IF here

jmp IfDone0

; Else write(‘Error condition’);

Else0: print
byte “Error condition”,0

IfDone0:

As you can see, the above code handles the “

if (X=Y)...

” instruction, leaving a spot for
the second

 if

. Now add in the second

if

as follows:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; IF (I >= J) then writeln(‘At point 1’)

mov ax, I
cmp ax, J
jnge Else1
print
byte “At point 1”,cr,lf,0
jmp IfDone1

; Else writeln (‘At point 2’);

Else1: print
byte “At point 2”,cr,lf,0

IfDone1:

jmp IfDone0

; Else write(‘Error condition’);

Control Structures

Page 543

Else0: print
byte “Error condition”,0

IfDone0:

The nested

if

appears in italics above just to help it stand out.

There is an obvious optimization which you do not really want to make until speed
becomes a real problem. Note in the innermost

if

statement above that the

JMP IFDONE1

instructions simply jumps to a

jmp

instruction which transfers control to

IfDone0

. It is very
tempting to replace the first

jmp

by one which jumps directly to

IFDone0

. Indeed, when
you go in and optimize your code, this would be a good optimization to make. However,
you shouldn’t make such optimizations to your code unless you really need the speed.
Doing so makes your code harder to read and understand. Remember, we would like all
our control structures to have one entry and one exit. Changing this jump as described
would give the innermost

if

statement two exit points.

The

for

loop is another commonly nested control structure. Once again, the key to
building up nested structures is to construct the outside object first and fill in the inner
members afterwards. As an example, consider the following nested

for

loops which add
the elements of a pair of two dimensional arrays together:

for i := 0 to 7 do
for k := 0 to 7 do

A [i,j] := B [i,j] + C [i,j];

As before, begin by constructing the outermost loop first. This code assumes that

dx

will be the loop control variable for the outermost loop (that is,

dx

is equivalent to “i”):

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; Put innermost FOR loop here

inc dx
jmp ForLp0

EndFor0:

Now add the code for the nested

for

loop. Note the use of the

cx

register for the loop
control variable on the innermost

for

loop of this code.

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; for cx := 0 to 7 do

mov cx, 0
ForLp1: cmp cx, 7

jnle EndFor1

; Put code for A[dx,cx] := b[dx,cx] + C [dx,cx] here

inc cx
jmp ForLp1

EndFor1:

inc dx
jmp ForLp0

EndFor0:

Once again the innermost

for

loop is in italics in the above code to make it stand out.
The final step is to add the code which performs that actual computation.

Chapter 10

Page 544

10.10 Timing Delay Loops

Most of the time the computer runs too slow for most people’s tastes. However, there
are occasions when it actually runs

too fast

. One common solution is to create an empty
loop to waste a small amount of time. In Pascal you will commonly see loops like:

for i := 1 to 10000 do ;

In assembly, you might see a comparable loop:

mov cx, 8000h
DelayLp: loop DelayLp

By carefully choosing the number of iterations, you can obtain a relatively accurate
delay interval. There is, however, one catch. That relatively accurate delay interval is only
going to be accurate on

your

 machine. If you move your program to a different machine
with a different CPU, clock speed, number of wait states, different sized cache, or half a
dozen other features, you will find that your delay loop takes a completely different
amount of time. Since there is better than a hundred to one difference in speed between
the high end and low end PCs today, it should come as no surprise that the loop above
will execute 100 times faster on some machines than on others.

The fact that one CPU runs 100 times faster than another does not reduce the need to
have a delay loop which executes some fixed amount of time. Indeed, it makes the prob-
lem that much more important. Fortunately, the PC provides a hardware based timer
which operates at the same speed regardless of the CPU speed. This timer maintains the
time of day for the operating system, so it’s very important that it run at the same speed
whether you’re on an 8088 or a Pentium. In the chapter on interrupts you will learn to
actually patch into this device to perform various tasks. For now, we will simply take
advantage of the fact that this timer chip forces the CPU to increment a 32-bit memory
location (40:6ch) about 18.2 times per second. By looking at this variable we can determine
the speed of the CPU and adjust the count value for an empty loop accordingly.

The basic idea of the following code is to watch the BIOS timer variable until it
changes. Once it changes, start counting the number of iterations through some sort of
loop until the BIOS timer variable changes again. Having noted the number of iterations,
if you execute a similar loop the same number of times it should require about 1/18.2 sec-
onds to execute.

The following program demonstrates how to create such a

Delay

 routine:

.xlist
include stdlib.a
includelib stdlib.lib
.list

; PPI_B is the I/O address of the keyboard/speaker control
; port. This program accesses it simply to introduce a
; large number of wait states on faster machines. Since the
; PPI (Programmable Peripheral Interface) chip runs at about
; the same speed on all PCs, accessing this chip slows most
; machines down to within a factor of two of the slower
; machines.

PPI_B equ 61h

; RTC is the address of the BIOS timer variable (40:6ch).
; The BIOS timer interrupt code increments this 32-bit
; location about every 55 ms (1/18.2 seconds). The code
; which initializes everything for the Delay routine
; reads this location to determine when 1/18th seconds
; have passed.

RTC textequ <es:[6ch]>

dseg segment para public ‘data’

Control Structures

Page 545

; TimedValue contains the number of iterations the delay
; loop must repeat in order to waste 1/18.2 seconds.

TimedValue word 0

; RTC2 is a dummy variable used by the Delay routine to
; simulate accessing a BIOS variable.

RTC2 word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Main program which tests out the DELAY subroutine.

Main proc
mov ax, dseg
mov ds, ax

print
byte “Delay test routine”,cr,lf,0

; Okay, let’s see how long it takes to count down 1/18th
; of a second. First, point ES as segment 40h in memory.
; The BIOS variables are all in segment 40h.
;
; This code begins by reading the memory timer variable
; and waiting until it changes. Once it changes we can
; begin timing until the next change occurs. That will
; give us 1/18.2 seconds. We cannot start timing right
; away because we might be in the middle of a 1/18.2
; second period.

mov ax, 40h
mov es, ax
mov ax, RTC

RTCMustChange: cmp ax, RTC
je RTCMustChange

; Okay, begin timing the number of iterations it takes
; for an 18th of a second to pass. Note that this
; code must be very similar to the code in the Delay
; routine.

mov cx, 0
mov si, RTC
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, RTC
loope TimeRTC

neg cx ;CX counted down!
mov TimedValue, cx ;Save away

mov ax, ds
mov es, ax

printf
byte “TimedValue = %d”,cr,lf
byte “Press any key to continue”,cr,lf
byte “This will begin a delay of five “

Chapter 10

Page 546

byte “seconds”,cr,lf,0
dword TimedValue

getc

mov cx, 90
DelayIt: call Delay18

loop DelayIt

Quit: ExitPgm ;DOS macro to quit program.
Main endp

; Delay18-This routine delays for approximately 1/18th sec.
; Presumably, the variable “TimedValue” in DS has
; been initialized with an appropriate count down
; value before calling this code.

Delay18 proc near
push ds
push es
push ax
push bx
push cx
push dx
push si

mov ax, dseg
mov es, ax
mov ds, ax

; The following code contains two loops. The inside
; nested loop repeats 10 times. The outside loop
; repeats the number of times determined to waste
; 1/18.2 seconds. This loop accesses the hardware
; port “PPI_B” in order to introduce many wait states
; on the faster processors. This helps even out the
; timings on very fast machines by slowing them down.
; Note that accessing PPI_B is only done to introduce
; these wait states, the data read is of no interest
; to this code.
;
; Note the similarity of this code to the code in the
; main program which initializes the TimedValue variable.

mov cx, TimedValue
mov si, es:RTC2
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, es:RTC2
loope TimeRTC

pop si
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

Delay18 endp

cseg ends

sseg segment para stack ‘stack’
stk word 1024 dup (0)
sseg ends

end Main

Control Structures

Page 547

10.11 Sample Program

This chapter’s sample program is a simple moon lander game. While the simulation
isn’t terribly realistic, this program does demonstrate the use and optimization of several
different control structures including loops, if..then..else statements, and so on.

; Simple "Moon Lander" game.
;
; Randall Hyde
; 2/8/96
;
; This program is an example of a trivial little "moon lander"
; game that simulates a Lunar Module setting down on the Moon's
; surface. At time T=0 the spacecraft's velocity is 1000 ft/sec
; downward, the craft has 1000 units of fuel, and the craft is
; 10,000 ft above the moon's surface. The pilot (user) can
; specify how much fuel to burn at each second.
;
; Note that all calculations are approximate since everything is
; done with integer arithmetic.

; Some important constants

InitialVelocity = 1000
InitialDistance = 10000
InitialFuel = 250
MaxFuelBurn = 25

MoonsGravity = 5 ;Approx 5 ft/sec/sec
AccPerUnitFuel = -5 ;-5 ft/sec/sec for each fuel unit.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Current distance from the Moon's Surface:

CurDist word InitialDistance

; Current Velocity:

CurVel word InitialVelocity

; Total fuel left to burn:

FuelLeft word InitialFuel

; Amount of Fuel to use on current burn.

Fuel word ?

; Distance travelled in the last second.

Dist word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Chapter 10

Page 548

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register. If the user entered garbage,
; this code will make the user re-enter the value.

geti textequ <call _geti>
_geti proc

push es
push di
push bx

; Read a string of characters from the user.
;
; Note that there are two (nested) loops here. The outer loop
; (GetILp) repeats the getsm operation as long as the user
; keeps entering an invalid number. The innermost loop (ChkDigits)
; checks the individual characters in the input string to make
; sure they are all decimal digits.

GetILp: getsm

; Check to see if this string contains any non-digit characters:
;
; while (([bx] >= '0') and ([bx] <= '9') bx := bx + 1;
;
; Note the sneaky way of turning the while loop into a
; repeat..until loop.

mov bx, di ;Pointer to start of string.
dec bx

ChkDigits: inc bx
mov al, es:[bx] ;Fetch next character.
IsDigit ;See if it's a decimal digit.
je ChkDigits ;Repeat if it is.

cmp al, 0 ;At end of string?
je GotNumber

; Okay, we just ran into a non-digit character. Complain and make
; the user reenter the value.

free ;Free space malloc'd by getsm.
print
byte cr,lf
byte "Illegal unsigned integer value, "
byte "please reenter.",cr,lf
byte "(no spaces, non-digit chars, etc.):",0
jmp GetILp

; Okay, ES:DI is pointing at something resembling a number. Convert
; it to an integer.

GotNumber: atoi
free ;Free space malloc'd by getsm.

pop bx
pop di
pop es
ret

_geti endp

; InitGame- Initializes global variables this game uses.

InitGame proc
mov CurVel, InitialVelocity
mov CurDist, InitialDistance
mov FuelLeft, InitialFuel
mov Dist, 0
ret

Control Structures

Page 549

InitGame endp

; DispStatus- Displays important information for each
; cycle of the game (a cycle is one second).

DispStatus proc
printf
byte cr,lf
byte "Distance from surface: %5d",cr,lf
byte "Current velocity: %5d",cr,lf
byte "Fuel left: %5d",cr,lf
byte lf
byte "Dist travelled in the last second: %d",cr,lf
byte lf,0
dword CurDist, CurVel, FuelLeft, Dist
ret

DispStatus endp

; GetFuel- Reads an integer value representing the amount of fuel
; to burn from the user and checks to see if this value
; is reasonable. A reasonable value must:
;
; * Be an actual number (GETI handles this).
; * Be greater than or equal to zero (no burning
; negative amounts of fuel, GETI handles this).
; * Be less than MaxFuelBurn (any more than this and
; you have an explosion, not a burn).
; * Be less than the fuel left in the Lunar Module.

GetFuel proc
push ax

; Loop..endloop structure that reads an integer input and terminates
; if the input is reasonable. It prints a message an repeats if
; the input is not reasonable.
;
; loop
; get fuel;
; if (fuel < MaxFuelBurn) then break;
; print error message.
; endloop
;
; if (fuel > FuelLeft) then
;
; fuel = fuelleft;
; print appropriate message.
;
; endif

GetFuelLp: print
byte "Enter amount of fuel to burn: ",0
geti
cmp ax, MaxFuelBurn
jbe GoodFuel

print
byte "The amount you've specified exceeds the "
byte "engine rating,", cr, lf
byte "please enter a smaller value",cr,lf,lf,0
jmp GetFuelLp

GoodFuel: mov Fuel, ax
cmp ax, FuelLeft
jbe HasEnough
printf
byte "There are only %d units of fuel left.",cr,lf
byte "The Lunar module will burn this rather than %d"
byte cr,lf,0
dword FuelLeft, Fuel

mov ax, FuelLeft

Chapter 10

Page 550

mov Fuel, ax

HasEnough: mov ax, FuelLeft
sub ax, Fuel
mov FuelLeft, ax
pop ax
ret

GetFuel endp

; ComputeStatus-
;
; This routine computes the new velocity and new distance based on the
; current distance, current velocity, fuel burnt, and the moon's
; gravity. This routine is called for every "second" of flight time.
; This simplifies the following equations since the value of T is
; always one.
;
; note:
;
; Distance Travelled = Acc*T*T/2 + Vel*T (note: T=1, so it goes away).
; Acc = MoonsGravity + Fuel * AccPerUnitFuel
;
; New Velocity = Acc*T + Prev Velocity
;
; This code should really average these values over the one second
; time period, but the simulation is so crude anyway, there's no
; need to really bother.

ComputeStatus proc
push ax
push bx
push dx

; First, compute the acceleration value based on the fuel burnt
; during this second (Acc = Moon's Gravity + Fuel * AccPerUnitFuel).

mov ax, Fuel ;Compute
mov dx, AccPerUnitFuel ; Fuel*AccPerUnitFuel
imul dx

add ax, MoonsGravity ;Add in Moon's gravity.
mov bx, ax ;Save Acc value.

; Now compute the new velocity (V=AT+V)

add ax, CurVel ;Compute new velocity
mov CurVel, ax

; Next, compute the distance travelled (D = 1/2 * A * T^2 + VT +D)

sar bx, 1 ;Acc/2
add ax, bx ;Acc/2 + V (T=1!)
mov Dist, ax ;Distance Travelled.
neg ax
add CurDist, ax ;New distance.

pop dx
pop bx
pop ax
ret

ComputeStatus endp

; GetYorN- Reads a yes or no answer from the user (Y, y, N, or n).
; Returns the character read in the al register (Y or N,
; converted to upper case if necessary).

GetYorN proc
getc
ToUpper
cmp al, 'Y'
je GotIt
cmp al, 'N'
jne GetYorN

GotIt: ret

Control Structures

Page 551

GetYorN endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

MoonLoop: print
byte cr,lf,lf
byte "Welcome to the moon lander game.",cr,lf,lf
byte "You must manuever your craft so that you touch"
byte "down at less than 10 ft/sec",cr,lf
byte "for a soft landing.",cr,lf,lf,0

call InitGame

; The following loop repeats while the distance to the surface is greater
; than zero.

WhileStillUp: mov ax, CurDist
cmp ax, 0
jle Landed

call DispStatus
call GetFuel
call ComputeStatus
jmp WhileStillUp

Landed: cmp CurVel, 10
jle SoftLanding

printf
byte "Your current velocity is %d.",cr,lf
byte "That was just a little too fast. However, as a "
byte "consolation prize,",cr,lf
byte "we will name the new crater you just created "
byte "after you.",cr,lf,0
dword CurVel

jmp TryAgain

SoftLanding: printf
byte "Congrats! You landed the Lunar Module safely at "
byte "%d ft/sec.",cr,lf
byte "You have %d units of fuel left.",cr,lf
byte "Good job!",cr,lf,0
dword CurVel, FuelLeft

TryAgain: print
byte "Do you want to try again (Y/N)? ",0
call GetYorN
cmp al, 'Y'
je MoonLoop

print
byte cr,lf
byte "Thanks for playing! Come back to the moon “
byte “again sometime"
byte cr,lf,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Chapter 10

Page 552

10.12 Laboratory Exercises

In this laboratory exercise you will program the timer chip on the PC to produce
musical tones. You will learn how the PC generates sound and how you can use this abil-
ity to encode and play music.

10.12.1The Physics of Sound

Sounds you hear are the result of vibrating air molecules. When air molecules quickly
vibrate back and forth between 20 and 20,000 times per second, we interpret this as some
sort of sound. A

speaker

 (see Figure 10.3) is a device which vibrates air in response to an
electrical signal. That is, it converts an electric signal which alternates between 20 and
20,000 times per second (Hz) to an audible tone. Alternating a signal is very easy on a
computer, all you have to do is apply a logic one to an output port for some period of time
and then write a logic zero to the output port for a short period. Then repeat this over and
over again. A plot of this activity over time appears in Figure 10.2.

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s
speaker is not capable of faithfully reproducing the tones in this range. It works pretty
good for sounds in the range 100-10Khz, but the volume drops off dramatically outside
this range. Fortunately, this lab only requires frequencies in the 110-2,000 hz range; well
within the capabilities of the PC speaker.

Figure 10.2 An Audible Sound Wave: The Relationship Between Period and Frequency

Voltage on
output port

Time

Logic 1

Logic 0

One Clock Period

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are between 20 and 20,000 Hz.

Figure 10.3 A Speaker

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.

Control Structures

Page 553

10.12.2 The Fundamentals of Music

In this laboratory you will use the timer chip and the PC’s built-in speaker to produce
musical tones. To produce true music, rather than annoying tones, requires a little knowl-
edge of music theory. This section provides a very brief introduction to the notation musi-
cians use. This will help you when you attempt to convert music in standard notation to a
form the computer can use.

Western music tends to use notation based on the alphabetic letters A…G. There are a
total of 12 notes designated A, A#, B, C, C#, D, D#, E, F, F#, G, and G#

10

. On a typical
musical instrument these 12 notes repeat over and over again. For example, a typical
piano might have six repetitions of these 12 notes. Each repetition is an

octave.

 An octave is
just a collection of 12 notes, it need not necessarily start with A, indeed, most pianos start
with C. Although there are, technically, about 12 octaves within the normal hearing range
of adults, very little music uses more than four or five octaves. In the laboratory, you will
implement four octaves.

Written music typically uses two

staffs

. A staff is a set of five parallel lines. The upper
staff is often called the

treble

 staff and the lower staff is often called the

bass

staff. An exam-
ples appears in Figure 10.4.

A musical note, as the notation to the side of the staffs above indicates, appears both
on the lines of the staffs and the spaces between the staffs. The position of the notes on the
staffs determine which note to play, the

shape

 of the note determines its duration. There
are

whole

 notes,

half

 notes,

quarter

 notes,

eighth

notes,

sixteenth

 notes, and

thirty-second

notes

11

. Note durations are specified relative to one another. So a half note plays for
one-half the time of a whole note, a quarter note plays for one-half the time of a half note
(one quarter the time of a whole note), etc. In most musical passages, the quarter note is
generally the basis for timing. If the

tempo

 of a particular piece is 100

beats

per second

 this
means that you play 100 quarter notes per second.

The duration of a note is determined by its shape as shown in Figure 10.5.

In addition to the notes themselves, there are often brief pauses in a musical passage
when there are no notes being played. These pauses are known as rests. Since there is
nothing audible about them, only their duration matters. The duration of the various rests
is the same as the normal notes; there are whole rests, half rests, quarter rests, etc. The
symbols for these rests appear in .

This is but a brief introduction to music notation. Barely sufficient for those without
any music training to convert a piece of sheet music into a form suitable for a computer

10. The notes with the “#” (pronounced

sharp

) correspond to the black keys on the piano. The other notes correspond to the white keys on the
piano. Note that western music notation also describes

flats

 in addition to sharps. A# is equal to B

b

 (

b

 denotes flat), C# corresponds to D

b

, etc. Tech-
nically, B is equivalent to C

b

 and C is equivalent to B# but you will rarely see musicians refer to these notes this way.
11. The only reason their aren’t shorter notes is because it would be hard to play one note which is 1/64th the length of another.

Figure 10.4 A Musical Staff

F
D
B
G
E

E
C
A
F
D

B
G
E
C
A

A
F
D
B
G

Middle C

Chapter 10

Page 554

program. If you are interested in more information on music notation, the library is a good
source of information on music theory.

Figure 10.7 provides an adaptation of the hymn “Amazing Grace”. There are two
things to note here. First, there is no bass staff, just two treble staffs. Second, the sharp
symbol on the “F” line indicates that this song is played in “G-Major” and that all F notes
should be F#. There are no F notes in this song, so that hardly matters

12

.

10.12.3The Physics of Music

Each musical note corresponds to a unique frequency. The A above middle C is gener-
ally 440 Hz (this is known as concert pitch since this is the frequency orchestras tune to).
The A one octave below this is at 220 Hz, the A above this is 880Hz. In general, to get the
next higher A you double the current frequency, to get the previous A you halve the cur-
rent frequency. To obtain the remaining notes you multiply the frequency of A with a mul-
tiple of the twelfth root of two. For example, to get A# you would take the frequency for A

12. In the full version of the song there are F notes on the base clef.

Figure 10.5 Note Durations

Whole Half Quarter Eighth Sixteenth Thirty-Second
Note Note Note Note Note Note

Figure 10.6 Rest Durations

Whole
Rest

Half
Rest

Quarter
Rest

Eighth
Rest

Sixteenth
Rest

Thirty-Second
Rest

Figure 10.7 Amazing Grace

#

#

Amazing Grace. John Newton, John Rees, Edwin Excell

Control Structures

Page 555

and multiply it by the twelfth root of two. Repeating this operation yields the following
(truncated) frequencies for four separate octaves:

Notes: The number following each note denotes its octave. In the chart above, middle
C is C1.

You can generate additional notes by halving or doubling the notes above. For exam-
ple, if you really need A(-1) (the octave below A0 above), dividing the frequency of A0 by
two yields 55Hz. Likewise, if you want E4, you can obtain this by doubling E3 to produce
2638 Hz. Keep in mind that the frequencies above are not exact. They are rounded to the
nearest integer because we will need integer frequencies in this lab.

10.12.4 The 8253/8254 Timer Chip

PCs contain a special integrated circuit which produces a period signal. This chip (an
Intel compatible 8253 or 8254, depending on your particular computer

13

) contains three
different 16-bit counter/timer circuits. The PC uses one of these timers to generate the
1/18.2 second real time clock mentioned earlier. It uses the second of these timers to con-
trol the DMA refresh on main memory

14

. The third timer circuit on this chip is connected
to the PC’s speaker. The PC uses this timer to produces beeps, tones, and other sounds.
The RTC timer will be of interest to us in a later chapter. The DMA timer, if present on
your PC, isn’t something you should mess with. The third timer, connected to the speaker,
is the subject of this section.

10.12.5Programming the Timer Chip to Produce Musical Tones

As mentioned earlier, one of the channels on the PC programmable interval timer
(PIT) chip is connected to the PC’s speaker. To produce a musical tone we need to pro-
gram this timer chip to produce the frequency of some desired note and then activate the

13. Most modern computers don’t actually have an 8253 or 8254 chip. Instead, there is a compatible device built into some other VLSI chip on the
motherboard.
14. Many modern computer systems do not use this timer for this purpose and, therefore, do not include the second timer in their chipset.

Note Frequency Note Frequency Note Frequency Note Frequency

A 0 110 A 1 220 A 2 440 A 3 880

A # 0 117 A # 1 233 A # 2 466 A # 3 932

B 0 123 B 1 247 B 2 494 B 3 988

C 0 131 C 1 262 C 2 523 C 3 1047

C # 0 139 C # 1 277 C # 2 554 C # 3 1109

D 0 147 D 1 294 D 2 587 D 3 1175

D # 0 156 D # 1 311 D # 2 622 D # 3 1245

E 0 165 E 1 330 E 2 659 E 3 1319

F 0 175 F 1 349 F 2 698 F 3 1397

F # 0 185 F # 1 370 F # 2 740 F # 3 1480

G 0 196 G 1 392 G 2 784 G 3 1568

G # 0 208 G # 1 415 G # 2 831 G # 3 1661

Chapter 10

Page 556

speaker. Once you initialize the timer and speaker in this fashion, the PC will continu-
ously produce the specified tone until you disable the speaker.

To activate the speaker you must set bits zero and one of the “B Port” on the PC’s 8255
Programmable Peripheral Interface (PPI) chip. Port B of the PPI is an eight-bit I/O device
located at I/O address 61h. You must use the

in

instruction to read this port and the

out

instruction to write data back to it. You must preserve all other bits at this I/O address. If
you modify any of the other bits, you will probably cause the PC to malfunction, perhaps
even reset. The following code shows how to set bits zero and one without affecting the
other bits on the port:

in al, PPI_B ;PPI_B is equated to 61h
or al, 3 ;Set bits zero and one.
out PPI_B, al

Since PPI_B’s port address is less than 100h we can access this port directly, we do not
have to load its port address into

dx

and access the port indirectly through

dx

.

To deactivate the speaker you must write zeros to bits zero and one of

PPI_B

. The code
is similar to the above except you force the bits to zero rather than to one.

Manipulating bits zero and one of the

PPI_B

 port let you turn on and off the speaker. It
does not let you adjust the frequency of the tone the speaker produces. To do this you
must program the PIT at I/O addresses 42h and 43h. To change the frequency applied to
the speaker you must first write the value 0B6h to I/O port 43h (the PIT

control word

) and
then you must write a 16-bit frequency divisor to port 42h (timer channel two). Since the
port is only an eight-bit port, you must write the data using two successive OUT instruc-
tions to the same I/O address. The first byte you write is the L.O. byte of the divisor, the
second byte you write is the H.O. byte.

To compute the divisor value, you must use the following formula:

For example, the divisor for the A above middle C (440 Hz) is 1,193,180/440 or 2,712
(rounded to the nearest integer). To program the PIT to play this note you would execute
the following code:

mov al, 0B6h ;Control word code.
out PIT_CW, al ;Write control word (port 43h).
mov al, 98h ;2712 is 0A98h.
out PIT_Ch2, al ;Write L.O. byte (port 42h).
mov al, 0ah
out PIT_Ch2, al ;Write H.O. byte (port 42h).

Assuming that you have activated the speaker, the code above will produce the A
note until you deactivate the speaker or reprogram the PIT with a different divisor.

10.12.6Putting it All Together

To create

music

 you will need to activate the speaker, program the PIT, and then delay
for some period of time while the note plays. At the end of that period, you need to repro-
gram the PIT and wait while the next note plays. If you encounter a rest, you need to deac-
tivate the speaker for the given time interval. The key point is this

time interval

. If you
simply reprogram the PPI and PIT chips at microprocessor speeds, your song will be over
and done with in just a few microseconds. Far to fast to hear anything. Therefore, we need
to use a delay, such as the software delay code presented earlier, to allow us to hear our
notes.

1193180

Frequency

Divisor

=

Control Structures

Page 557

A reasonable tempo is between 80 and 120 quarter notes per second. This means you
should be calling the Delay18 routine between 9 and 14 times for each quarter note. A rea-
sonable set of iterations is

• three times for sixteenth notes,
• six times for eighth notes,
• twelve times for quarter notes,
• twenty-four times for half notes, and
• forty-eight times for whole notes.

Of course, you may adjust these timings as you see fit to make your music sound bet-
ter. The important parameter is the ratio between the different notes and rests, not the
actual time.

Since a typical piece of music contains many, many individual notes, it doesn’t make
sense to reprogram the PIT and PPI chips individually for each note. Instead, you should
write a procedure into which you pass a divisor and a count down value. That procedure
would then play that note for the specified time and then return. Assuming you call this
procedure

PlayNote

 and it expects the divisor in

ax

and the duration (number of times to
call Delay18) in

cx

, you could use the following macro to easily create songs in your pro-
grams:

Note macro divisor, duration
mov ax, divisor
mov cx, duration
call PlayNote
endm

The following macro lets you easily insert a rest into your music:

Rest macro Duration
local LoopLbl
mov cx, Duration

LoopLbl: call Delay18
loop LoopLbl
endm

Now you can play notes by simply stringing together a list of these macros with the
appropriate parameters.

The only problem with this approach is that it is different to create songs if you must
constantly supply divisor values. You’ll find music creation to be much simpler if you
could specify the note, octave, and duration rather than a divisor and duration. This is
very easy to do. Simply create a

lookup table

 using the following definition:

Divisors: array [Note, Sharp, Octave] of word;

Where Note is ‘A’;..”G”, Sharp is true or false (1 or 0), and Octave is 0..3. Each entry in
the table would contain the divisor for that particular note.

10.12.7 Amazing Grace Exercise

Program Ex10_1.asm on the companion CD-ROM is a complete working program
that plays the tune “Amazing Grace.” Load this program an execute it.

For your lab report:

 the Ex10_1.asm file uses a “

Note

” macro that is very similar to the
one appearing in the previous section. What is the difference between Ex10_1’s

Note

macro and the one in the previous section? What changes were made to

PlayNote

 in order
to accommodate this difference?

The Ex10_1.asm program uses

straight-line code

 (no loops or decisions) to play its tune.
Rewrite the main body of the loop to use a pair of tables to feed the data to the

Note

 and

Rest

 macros. One table should contain a list of frequency values (use -1 for a rest), the
other table should contain duration values. Put the two tables in the data segment and ini-

Chapter 10

Page 558

tialize them with the values for the Amazing Grace song. The loop should fetch a pair of
values, one from each of the tables and call the

Note

 or

Rest

 macro as appropriate. When
the loop encounters a frequency value of zero it should terminate.

Note:

 you must call the
rest macro at the end of the tune in order to shut the speaker off.

For your lab report:

 make the changes to the program, document them, and include
the print-out of the new program in your lab report.

10.13 Programming Projects

1) Write a program to transpose two 4x4 arrays. The algorithm to transpose the arrays is

for i := 0 to 3 do
for j := 0 to 3 do begin

temp := A [i,j];
A [i,j] := B [j,i];
B [j,i] := temp;

end;

Write a main program that calls a transpose procedure. The main program should
read the A array values from the user and print the A and B arrays after computing the
transpose of A and placing the result in B.

2) Create a program to play music which is supplied as a string to the program. The notes to
play should consist of a string of ASCII characters terminated with a byte containing the
value zero. Each note should take the following form:

(Note)(Octave)(Duration)

where “Note” is A..G (upper or lower case), “Octave” is 0..3, and “Duration” is 1..8. “1”
corresponds to an eighth note, “2” corresponds to a quarter note, “4” corresponds to a half
note, and “8” corresponds to a whole note.

Rests consist of an explanation point followed by a “Duration” value.

Your program should ignore any spaces appearing in the string.

The following sample piece is the song “Amazing Grace” presented earlier.

Music byte "d12 g14 b11 g11 b14 a12 g14 e12 d13 !1 d12 "
byte "g14 b11 g11 b14 a12 d28"
byte "b12 d23 b11 d21 b11 g14 d12 e13 g12 e11 "
byte "d13 !1 d12 g14 b11 g11 b14 a12 g18"
byte 0

Write a program to play any song appearing in string form like the above string. Using
music obtained from another source, submit your program playing that other song.

3) A

C character string

 is a sequence of characters that end with a byte containing zero. Some
common character string routines include computing the length of a character string (by
counting all the characters in a string up to, but not including, the zero byte), comparing
two strings for equality (by comparing corresponding characters in two strings, character
by character until you encounter a zero byte or two characters that are not the same), and
copying one string to another (by copying the characters from one string to the corre-
sponding positions in the other until you encounter the zero byte). Write a program that
reads two strings from the user, computes the length of the first of these, compares the two
strings, and then copies the first string over the top of the second. Allow for a maximum of
128 characters (including the zero byte) in your strings. Note: do not use the Standard
Library string routines for this project.

4) Modify the moon lander game appearing in the Sample Programs section of this chapter
(moon.asm on the companion CD-ROM, also see “Sample Program” on page 547) to allow
the user to specify the initial velocity, starting distance from the surface, and initial fuel
values. Verify that the values are reasonable before allowing the game to proceed.

Control Structures

Page 559

10.14 Summary

This chapter discussed the implementation of different control structures in an assem-
bly language programs including conditional statements (

if..then..else

and

case

state-
ments), state machines, and iterations (loops, including

while

,

repeat..until (do/while)

,

loop..endloop

, and

for

). While assembly language gives you the flexibility to create totally
custom control structures, doing so often produces programs that are difficult to read and
understand. Unless the situation absolutely requires something different, you should
attempt to model your assembly language control structures after those in high level lan-
guages as much as possible.

The most common control structure found in high level language programs is the
IF..THEN..ELSE statement. You can easily synthesize(

if..then

 and (

if..then..else

statements in
assembly language using the

cmp

instruction, the conditional jumps, and the

jmp

instruc-
tion. To see how to convert HLL

if..then..else

 statements into assembly language, check out

• “IF..THEN..ELSE Sequences” on page 522

A second popular HLL conditional statement is the

case

 (

switch

) statement. The

case

statement provides an efficient way to transfer control to one of many different statements
depending on the value of some expression. While there are many ways to implement the

case

 statement in assembly language, the most common way is to use a

jump table

. For

case

 statements with contiguous values, this is probably the best implementation. For

case

statements that have widely spaced, non-contiguous values, an

if..then..else

 implementa-
tion or some other technique is probably best. For details, see

• “CASE Statements” on page 525

State machines provide a useful paradigm for certain programming situations. A sec-
tion of code which implements a state machine maintains a history of prior execution
within a state variable. Subsequent execution of the code picks up in a possibly different
“state” depending on prior execution. Indirect jumps provide an efficient mechanism for
implementing state machines in assembly language. This chapter provided a brief intro-
duction to state machines. To see how to implement a state machine with an indirect
jump, see

• “State Machines and Indirect Jumps” on page 529

Assembly language provides some very powerful primitives for constructing a wide
variety of control structures. Although this chapter concentrates on simulating HLL con-
structs, you can build any convoluted control structure you care to from the 80x86’s

cmp

instruction and conditional branches. Unfortunately, the result may be very difficult to
understand, especially by someone other than the original author. Although assembly lan-
guage gives you the freedom to do anything you want, a mature programmer exercises
restraint and chooses only those control flows which are easy to read and understand;
never settling for convoluted code unless absolutely necessary. For a further description
and additional guidelines, see

• “Spaghetti Code” on page 531

Iteration is one of the three basic components to programming language built around
Von Neumann machines

15

. Loop control structures provide the basic iteration mechanism
in most HLLs. Assembly language does not provide any looping primitives. Even the
80x86

loop

instruction isn’t really a loop, it’s just a decrement, compare, and branch
instruction. Nonetheless, it is very easy to synthesize common loop control structures in
assembly language. The following sections describe how to construct HLL loop control
structures in assembly language:

• “Loops” on page 531
• “While Loops” on page 532
• “Repeat..Until Loops” on page 532

15. The other two being conditional execution and the sequence.

Chapter 10

Page 560

• “LOOP..ENDLOOP Loops” on page 533
• “FOR Loops” on page 533

Program loops often consume most of the CPU time in a typical program. Therefore, if
you want to improve the performance of your programs, the loops are the first place you
want to look. This chapter provides several suggestions to help improve the performance
of certain types of loops in assembly language programs. While they do not provide a
complete guide to optimization, the following sections provide common techniques used
by compilers and experienced assembly language programmers:

• “Register Usage and Loops” on page 534
• “Performance Improvements” on page 535
• “Moving the Termination Condition to the End of a Loop” on page 535
• “Executing the Loop Backwards” on page 537
• “Loop Invariant Computations” on page 538
• “Unraveling Loops” on page 539
• “Induction Variables” on page 540
• “Other Performance Improvements” on page 541

Control Structures

Page 561

10.15 Questions

1) Convert the following Pascal statements to assembly language: (assume all variables are
two byte signed integers)

a) IF (X=Y) then A := B;

b) IF (X <= Y) then X := X + 1 ELSE Y := Y - 1;

c) IF NOT ((X=Y) and (Z <> T)) then Z := T else X := T;

d) IF (X=0) and ((Y-2) > 1) then Y := Y - 1;

2) Convert the following CASE statement to assembly language:

CASE I OF
0: I := 5;

 1: J := J+1;
 2: K := I+J;
 3: K := I-J;
 Otherwise I := 0;
END;

3) Which implementation method for the CASE statement (jump table or IF form) produces
the least amount of code (including the jump table, if used) for the following CASE state-
ments?

 a)

CASE I OF
0:stmt;
100:stmt;
1000:stmt;

 END;

b)

CASE I OF
0:stmt;
1:stmt;
2:stmt;
3:stmt;
4:stmt;

END;

4) For question three, which form produces the fastest code?

5) Implement the CASE statements in problem three using 80x86 assembly language.

6) What three components compose a loop?

7) What is the major difference between the WHILE, REPEAT..UNTIL, and LOOP..END-
LOOP loops?

8) What is a loop control variable?

9) Convert the following WHILE loops to assembly language: (Note: don’t optimize these
loops, stick exactly to the WHILE loop format)

a) I := 0;

WHILE (I < 100) DO I := I + 1;

b) CH := ‘ ‘;

WHILE (CH <> ‘.’) DO BEGIN

CH := GETC;

PUTC(CH);

END;

10) Convert the following REPEAT..UNTIL loops into assembly language: (Stick exactly to the
REPEAT..UNTIL loop format)

Chapter 10

Page 562

a) I := 0;

REPEAT

I := I + 1;

UNTIL I >= 100;

b) REPEAT

CH := GETC;

PUTC(CH);

UNTIL CH = ‘.’;

11) Convert the following LOOP..ENDLOOP loops into assembly language: (Stick exactly to
the LOOP..ENDLOOP format)

a) I := 0; LOOP

I := I + 1; IF I >= 100 THEN BREAK;

ENDLOOP;

b) LOOP

CH := GETC; IF CH = ‘.’ THEN BREAK; PUTC(CH);

ENDLOOP;

12) What are the differences, if any, between the loops in problems 4, 5, and 6? Do they per-
form the same operations? Which versions are most efficient?

13) Rewrite the two loops presented in the previous examples, in assembly language, as effi-
ciently as you can.

14) By simply adding a JMP instruction, convert the two loops in problem four into
REPEAT..UNTIL loops.

15) By simply adding a JMP instruction, convert the two loops in problem five to WHILE
loops.

16) Convert the following FOR loops into assembly language (Note: feel free to use any of the
routines provided in the UCR Standard Library package):

a) FOR I := 0 to 100 do WriteLn(I);

b) FOR I := 0 to 7 do

FOR J := 0 to 7 do

K := K*(I-J);

c) FOR I := 255 to 16 do

A [I] := A[240-I]-I;

17) The DOWNTO reserved word, when used in conjunction with the Pascal FOR loop, runs a
loop counter from a higher number down to a lower number. A FOR loop with the
DOWNTO reserved word is equivalent to the following WHILE loop:

loopvar := initial;
while (loopvar >= final) do begin

stmt;
loopvar := loopvar-1;

end;

Implement the following Pascal FOR loops in assembly language:

 a) FOR I := start downto stop do WriteLn(I);

b) FOR I := 7 downto 0 do

FOR J := 0 to 7 do

Control Structures

Page 563

K := K*(I-J);

c) FOR I := 255 downto 16 do

A [I] := A[240-I]-I;

18) Rewrite the loop in problem 11b maintaining I in BX, J in CX, and K in AX.

19) How does moving the loop termination test to the end of the loop improve the perfor-
mance of that loop?

20) What is a loop invariant computation?

21) How does executing a loop backwards improve the performance of the loop?

22) What does unraveling a loop mean?

23) How does unraveling a loop improve the loop’s performance?

24) Give an example of a loop that cannot be unraveled.

25) Give an example of a loop that can be but shouldn’t be unraveled.

Chapter 10

Page 564

