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Procedures and Functions Chapter 11

 

Modular design

 

 is one of the cornerstones of structured programming

 

.

 

 A modular pro-
gram contains blocks of code with single entry and exit points. You can 

 

reuse 

 

well written
sections of code in other programs or in other sections of an existing program. If you reuse
an existing segment of code, you needn’t design, code, nor debug that section of code
since (presumably) you’ve already done so. Given the rising costs of software develop-
ment, modular design will become more important as time passes. 

The basic unit of a modular program is the module. Modules have different meanings
to different people, herein you can assume that the terms module, subprogram, subrou-
tine, program unit, procedure, and function are all synonymous. 

The procedure is the basis for a programming style. The procedural languages include
Pascal, BASIC, C++, FORTRAN, PL/I, and ALGOL. Examples of non-procedural lan-
guages include APL, LISP, SNOBOL4 ICON, FORTH, SETL, PROLOG, and others that are
based on other programming constructs such as functional abstraction or pattern match-
ing. Assembly language is capable of acting as a procedural or non-procedural language.
Since you’re probably much more familiar with the procedural programming paradigm
this text will stick to simulating procedural constructs in 80x86 assembly language.

 

11.0 Chapter Overview

 

This chapter presents an introduction to procedures and functions in assembly lan-
guage. It discusses basic principles, parameter passing, function results, local variables,
and recursion. You will use most of the techniques this chapter discusses in typical assem-
bly language programs. The discussion of procedures and functions continues in the next
chapter; that chapter discusses advanced techniques that you will not commonly use in
assembly language programs. The sections below that have a “•” prefix are essential.
Those sections with a “

 

o

 

” discuss advanced topics that you may want to put off for a
while.

• Procedures.

 

 o

 

Near and far procedures.
• Functions
• Saving the state of the machine
• Parameters
• Pass by value parameters.
• Pass by reference parameters.

 

 o

 

Pass by value-returned parameters.

 

 o

 

Pass by result parameters.

 

 o

 

Pass by name parameters.
• Passing parameters in registers.
• Passing parameters in global variables.
• Passing parameters on the stack.
• Passing parameters in the code stream.

 

 o

 

Passing parameters via a parameter block.
• Function results.
• Returning function results in a register.
• Returning function results on the stack.
• Returning function results in memory locations.
• Side effects.

 

 o

 

Local variable storage.

 

 o

 

Recursion.
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11.1 Procedures

 

In a procedural environment, the basic unit of code is the 

 

procedure

 

. A procedure is a
set of instructions that compute some value or take some action (such as printing or read-
ing a character value). The definition of a procedure is very similar to the definition of an

 

algorithm

 

. A procedure is a set of rules to follow which, if they conclude, produce some
result. An algorithm is also such a sequence, but an algorithm is guaranteed to terminate
whereas a procedure offers no such guarantee. 

Most procedural programming languages implement procedures using the
call/return mechanism. That is, some code calls a procedure, the procedure does its thing,
and then the procedure returns to the caller. The call and return instructions provide the
80x86’s 

 

procedure invocation mechanism

 

. The calling code calls a procedure with the 

 

call

 

instruction, the procedure returns to the caller with the 

 

ret

 

 instruction. For example, the
following 80x86 instruction calls the UCR Standard Library 

 

sl_putcr

 

 routine

 

1

 

:

 

call sl_putcr

 

sl_putcr

 

 prints a carriage return/line feed sequence to the video display and returns con-
trol to the instruction immediately following the 

 

  call sl_putcr

 

   instruction. 

Alas, the UCR Standard Library does not supply all the routines you will need. Most
of the time you’ll have to write your own procedures. A simple procedure may consist of
nothing more than a sequence of instructions ending with a 

 

ret

 

 instruction. For example,
the following “procedure” zeros out the 256 bytes starting at the address in the 

 

bx

 

 register:

 

ZeroBytes: xor ax, ax
mov cx, 128

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

 

By loading the 

 

bx

 

 register with the address of some block of 256 bytes and issuing a

 

call ZeroBytes 

 

instruction, you can zero out the specified block. 

As a general rule, you won’t define your own procedures in this manner. Instead, you
should use MASM’s 

 

proc

 

 and 

 

endp

 

 assembler directives. The 

 

ZeroBytes

 

 routine, using the

 

proc

 

 and 

 

endp

 

 directives, is

 

ZeroBytes proc
xor ax, ax
mov cx, 128

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

ZeroBytes endp

 

Keep in mind that 

 

proc

 

 and 

 

endp

 

 are assembler directives. They do not generate any
code. They’re simply a mechanism to help make your programs easier to read. To the
80x86, the last two examples are identical; however, to a human being, latter is clearly a
self-contained procedure, the other could simply be an arbitrary set of instructions within
some other procedure. Consider now the following code:

 

ZeroBytes: xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

DoFFs: mov cx, 128
mov ax, 0ffffh

 

1. Normally you would use the 

 

putcr

 

 macro to accomplish this, but this 

 

call

 

 instruction will accomplish the same
thing.
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FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

 

Are there two procedures here or just one? In other words, can a calling program enter
this code at labels 

 

ZeroBytes

 

 and 

 

DoFFs

 

 or just at 

 

ZeroBytes

 

? The use of the 

 

proc

 

 and 

 

endp

 

directives can help remove this ambiguity: 

Treated as a single subroutine:

 

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

DoFFs: mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

ZeroBytes endp

 

Treated as two separate routines:

 

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

ZeroBytes endp

DoFFs proc
mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

DoFFs endp

 

Always keep in mind that the 

 

proc

 

 and 

 

endp

 

 directives are 

 

logical

 

  procedure separa-
tors. The 80x86 microprocessor returns from a procedure by executing a 

 

ret

 

 instruction,
not by encountering an 

 

endp

 

 directive. The following is not equivalent to the code above:

 

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop

; Note missing RET instr.
ZeroBytes endp

DoFFs proc
mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop

; Note missing RET instr.
DoFFs endp

 

Without the 

 

ret

 

 instruction at the end of each procedure, the 80x86 will fall into the
next subroutine rather than return to the caller. After executing 

 

ZeroBytes

 

 above, the 80x86
will drop through to the 

 

DoFFs

 

 subroutine (beginning with the 

 

mov cx, 128

 

   instruction).
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Once 

 

DoFFs

 

 is through, the 80x86 will continue execution with the next executable instruc-
tion following 

 

DoFFs’ endp

 

 directive. 

An 80x86 procedure takes the form:

 

ProcName proc {near|far} ;Choose near, far, or neither.
<Procedure instructions>

ProcName endp

 

The 

 

near

 

 or 

 

far

 

 operand is optional, the next section will discuss its purpose. The pro-
cedure name must be on the both 

 

proc

 

 and 

 

endp

 

 lines. The procedure name must be unique
in the program. 

Every 

 

proc

 

 directive must have a matching 

 

endp

 

 directive. Failure to match the 

 

proc

 

and 

 

endp

 

 directives will produce a 

 

block nesting error

 

. 

 

11.2 Near and Far Procedures

 

The 80x86 supports near and far subroutines. Near calls and returns transfer control
between procedures in the same code segment. Far calls and returns pass control between
different segments. The two calling and return mechanisms push and pop different return
addresses. You generally do not use a near 

 

call

 

 instruction to call a far procedure or a far

 

call

 

 instruction to call a near procedure. Given this little rule, the next question is “how do
you control the emission of a near or far 

 

call

 

 or 

 

ret

 

?”

Most of the time, the 

 

call

 

 instruction uses the following syntax:

 

call ProcName

 

and the 

 

ret

 

 instruction is either

 

2

 

:

 

ret
or ret disp

 

Unfortunately, these instructions do not tell MASM if you are calling a near or far pro-
cedure or if you are returning from a near or far procedure. The 

 

proc

 

 directive handles that
chore. The 

 

proc

 

 directive has an optional operand that is either 

 

near

 

 or 

 

far

 

. 

 

Near

 

 is the
default if the operand field is empty

 

3

 

. The assembler assigns the procedure type (near or
far) to the symbol. Whenever MASM assembles a 

 

call

 

 instruction, it emits a near or far call
depending on operand. Therefore, declaring a symbol with 

 

proc

 

  or 

 

proc near

 

, forces a near
call. Likewise, using 

 

proc far

 

, forces a far call. 

Besides controlling the generation of a near or far call, 

 

proc

 

’s operand also controls 

 

ret

 

code generation. If a procedure has the near operand, then all return instructions inside
that procedure will be near. MASM emits far returns inside far procedures.

 

11.2.1 Forcing NEAR or FAR CALLs and Returns

 

Once in a while you might want to override the near/far declaration mechanism.
MASM provides a mechanism that allows you to force the use of near/far calls and
returns. 

Use the 

 

near

 

 

 

ptr 

 

and 

 

far

 

 

 

ptr 

 

operators to override the automatic assignment of a near or
far 

 

call

 

. If 

 

NearLbl

 

 is a near label and 

 

FarLbl

 

 is a far label, then the following 

 

call

 

 instructions
generate a near and far call, respectively: 

 

call NearLbl ;Generates a NEAR call.
call FarLbl ;Generates a FAR call.

 

Suppose you need to make a far call to 

 

NearLbl

 

 or a near call to 

 

FarLbl

 

. You can accom-
plish this using the following instructions:

 

2. There are also retn and retf instructions.
3. Unless you are using MASM’s 

 

simplified segment directives.

 

 See the appendices for details.
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call far ptr NearLbl ;Generates a FAR call.
call near ptr FarLbl ;Generates a NEAR call.

 

Calling a near procedure using a far 

 

call

 

, or calling a far procedure using a near 

 

call

 

isn’t something you’ll normally do. If you call a near procedure using a far 

 

call

 

 instruction,
the near return will leave the 

 

cs

 

 value on the stack. Generally, rather than:

 

call far ptr NearProc

 

 you should probably use the clearer code:

 

push cs
call NearProc

 

Calling a far procedure with a near 

 

call

 

 is a very dangerous operation. If you attempt
such a call, the current 

 

cs

 

 value must be on the stack. Remember, a far 

 

ret

 

 pops a seg-
mented return address off the stack. A near 

 

call

 

 instruction only pushes the offset, not the
segment portion of the return address.

Starting with MASM v5.0, there are explicit instructions you can use to force a near or
far 

 

ret

 

. If 

 

ret

 

 appears within a procedure declared via 

 

proc

 

 and 

 

end;

 

, MASM will automati-
cally generate the appropriate near or far return instruction. To accomplish this, use the

 

retn

 

 and 

 

retf

 

 instructions. These two instructions generate a near and far 

 

ret

 

, respectively.

 

11.2.2 Nested Procedures

 

MASM allows you to nest procedures. That is, one procedure definition may be
totally enclosed inside another. The following is an example of such a pair of procedures:

 

OutsideProc proc near
jmp EndofOutside

InsideProc proc near
mov ax, 0
ret

InsideProc endp

EndofOutside: call InsideProc
mov bx, 0
ret

OutsideProc endp

 

Unlike some high level languages, nesting procedures in 80x86 assembly language
doesn’t serve any useful purpose. If you nest a procedure (as with 

 

InsideProc

 

 above), you’ll
have to code an explicit 

 

jmp

 

 around the nested procedure. Placing the nested procedure
after all the code in the outside procedure (but still between the outside 

 

proc

 

/

 

endp

 

 direc-
tives) doesn’t accomplish anything. Therefore, there isn’t a good reason to nest procedures
in this manner. 

Whenever you nest one procedure within another, it must be totally contained within
the nesting procedure. That is, the 

 

proc

 

 and 

 

endp

 

 statements for the nested procedure must
lie between the 

 

proc

 

 and endp directives of the outside, nesting, procedure. The following
is 

 

not

 

  legal:

 

OutsideProc proc near

 

 .
 .
 .

 

InsideProc proc near

 

 .
 .
 .

 

OutsideProc endp

 

 .
 .
 .

 

InsideProc endp

 

The 

 

OutsideProc

 

 and 

 

InsideProc

 

 procedures overlap, they are not nested. If you attempt
to create a set of procedures like this, MASM would report a “block nesting error”.
Figure 11.1 demonstrates this graphically. 
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The only form acceptable to MASM appears in Figure 11.2. 

Besides fitting inside an enclosing procedure, 

 

proc/endp

 

 groups must fit entirely within
a segment. Therefore the following code is illegal:

 

cseg segment
MyProc proc near

ret
cseg ends
MyProc endp

 

The 

 

endp

 

 directive must appear before the 

 

cseg ends  

 

 statement since 

 

MyProc

 

 begins
inside 

 

cseg

 

. Therefore, procedures within segments must always take the form shown in
Figure 11.3. 

Not only can you nest procedures inside other procedures and segments, but you can
nest segments inside other procedures and segments as well. If you’re the type who likes
to simulate Pascal or C procedures in assembly language, you can create variable declara-
tion sections at the beginning of each procedure you create, just like Pascal:

 

cgroup group cseg1, cseg2

cseg1 segment para public ‘code’
cseg1 ends

cseg2 segment para public ‘code’
cseg2 ends

 

Figure 11.1 Illegal Procedure Nesting

OutsideProc Procedure

InsideProc Procedure

 

Figure 11.2 Legal Procedure Nesting

OutsideProc Procedure

InsideProc Procedure

 

Figure 11.3 Legal Procedure/Segment Nesting

Segment declared with SEGMENT/ENDS

Procedure declared with PROC/ENDP
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dseg segment para public ‘data’
dseg ends

cseg1 segment para public ‘code’
assume cs:cgroup, ds:dseg

MainPgm proc near

; Data declarations for main program:

dseg segment para public ‘data’
I word ?
J word ?
dseg ends

; Procedures that are local to the main program:

cseg2 segment para public ‘code’

ZeroWords proc  near

; Variables local to ZeroBytes:

dseg segment para public ‘data’
AXSave word ?
BXSave word ?
CXSave word ?
dseg ends

; Code for the ZeroBytes procedure:

mov AXSave, ax
mov CXSave, cx
mov BXSave, bx
xor ax, ax

ZeroLoop: mov [bx], ax
inc bx
inc bx
loop ZeroLoop
mov ax, AXSave
mov bx, BXSave
mov cx, CXSave
ret

ZeroWords endp

Cseg2 ends

; The actual main program begins here:

mov bx, offset Array
mov cx, 128
call  ZeroWords
ret

MainPgm endp
cseg1 ends

end

 

The system will load this code into memory as shown in Figure 11.4. 

 

ZeroWords

 

 

 

follows

 

  the main program because it belongs to a different segment (

 

cseg2

 

)
than 

 

MainPgm

 

 (

 

cseg1

 

). Remember, the assembler and linker combine segments with the

 

Figure 11.4 Example Memory Layout

Main  Program

Main Program Vars

ZeroWords Vars

ZeroWords
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same class name into a single segment before loading them into memory (see “Segment
Loading Order” on page 368 for more details). You can use this feature of the assembler to
“pseudo-Pascalize” your code in the fashion shown above. However, you’ll probably not
find your programs to be any more readable than using the straight forward non-nesting
approach. 

 

11.3 Functions

 

The difference between functions and procedures in assembly language is mainly a
matter of definition. The purpose for a function is to return some explicit value while the
purpose for a procedure is to execute some action. To declare a function in assembly lan-
guage, use the 

 

proc/endp

 

 directives. All the rules and techniques that apply to procedures
apply to functions. This text will take another look at functions later in this chapter in the
section on function results. From here on, procedure will mean procedure or function.

 

11.4 Saving the State of the Machine

 

Take a look at this code:

 

mov cx, 10
Loop0: call PrintSpaces

putcr
loop Loop0

 

 .
 .
 .

 

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

 

This section of code attempts to print ten lines of 40 spaces each. Unfortunately, there
is a subtle bug that causes it to print 40 spaces per line in an infinite loop. The main pro-
gram uses the 

 

loop

 

 instruction to call 

 

PrintSpaces

 

 10 times. 

 

PrintSpaces

 

 uses 

 

cx

 

 to count off
the 40 spaces it prints. 

 

PrintSpaces

 

 returns with 

 

cx

 

 containing zero. The main program then
prints a carriage return/line feed, decrements 

 

cx

 

, and then repeats because 

 

cx

 

 isn’t zero (it
will always contain 0FFFFh at this point). 

The problem here is that the 

 

PrintSpaces

 

 subroutine doesn’t preserve the 

 

cx

 

 register.
Preserving a register means you save it upon entry into the subroutine and restore it
before leaving. Had the 

 

PrintSpaces

 

 subroutine preserved the contents of the 

 

cx

 

 register,
the program above would have functioned properly. 

Use the 80x86’s 

 

push

 

 and 

 

pop

 

 instructions to preserve register values while you need
to use them for something else. Consider the following code for 

 

PrintSpaces

 

:

 

PrintSpaces proc near
push ax
push cx
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
pop cx
pop ax
ret

PrintSpaces endp

 

Note that 

 

PrintSpaces

 

 saves and restores 

 

ax

 

 and 

 

cx

 

 (since this procedure modifies these
registers). Also, note that this code pops the registers off the stack in the reverse order that
it pushed them. The operation of the stack imposes this ordering. 
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Either the caller (the code containing the 

 

call

 

 instruction) or the callee (the subroutine)
can take responsibility for preserving the registers. In the example above, the callee pre-
served the registers. The following example shows what this code might look like if the
caller preserves the registers:

 

mov cx, 10
Loop0: push ax

push cx
call PrintSpaces
pop cx
pop ax
putcr
loop Loop0

 

 .
 .
 .

 

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

 

There are two advantages to callee preservation: space and maintainability. If the
callee preserves all affected registers, then there is only one copy of the push and pop
instructions, those the procedure contains. If the caller saves the values in the registers, the
program needs a set of push and pop instructions around every call. Not only does this
make your programs longer, it also makes them harder to maintain. Remembering which
registers to push and pop on each procedure call is not something easily done. 

On the other hand, a subroutine may unnecessarily preserve some registers if it pre-
serves all the registers it modifies. In the examples above, the code needn’t save 

 

ax

 

.
Although 

 

PrintSpaces

 

 changes the 

 

al

 

, this won’t affect the program’s operation. If the caller
is preserving the registers, it doesn’t have to save registers it doesn’t care about:

 

mov cx, 10
Loop0: push cx

call PrintSpaces
pop cx
putcr
loop Loop0
putcr
putcr
call PrintSpaces

mov al, ‘*’
mov cx, 100

Loop1: putc
push ax
push cx
call PrintSpaces
pop cx
pop ax
putc
putcr
loop Loop1

 

 .
 .
 .

 

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

 

This example provides three different cases. The first loop (

 

Loop0

 

) only preserves the

 

cx

 

 register. Modifying the 

 

al

 

 register won’t affect the operation of this program. Immedi-
ately after the first loop, this code calls 

 

PrintSpaces

 

 again. However, this code doesn’t save



 

Chapter 11

Page 574

 

ax

 

 or 

 

cx

 

 because it doesn’t care if 

 

PrintSpaces

 

 changes them. Since the final loop (

 

Loop1

 

)
uses 

 

ax

 

 and 

 

cx

 

, it saves them both. 

One big problem with having the caller preserve registers is that your program may
change. You may modify the calling code or the procedure so that they use additional reg-
isters. Such changes, of course, may change the set of registers that you must preserve.
Worse still, if the modification is in the subroutine itself, you will need to locate 

 

every

 

  call
to the routine and verify that the subroutine does not change any registers the calling code
uses.

Preserving registers isn’t all there is to preserving the environment. You can also push
and pop variables and other values that a subroutine might change. Since the 80x86
allows you to push and pop memory locations, you can easily preserve these values as
well. 

 

11.5 Parameters

 

Although there is a large class of procedures that are totally self-contained, most pro-
cedures require some input data and return some data to the caller. Parameters are values
that you pass to and from a procedure. There are many facets to parameters. Questions
concerning parameters include:

•

 

where

 

  is the data coming from?
•

 

how

 

  do you pass and return data?
•

 

what

 

  is the amount of data to pass? 

There are six major mechanisms for passing data to and from a procedure, they are 

• pass by value, 
• pass by reference, 
• pass by value/returned, 
• pass by result, and
• pass by name. 
• pass by lazy evaluation

You also have to worry about where you can pass parameters. Common places are 

• in registers, 
• in global memory locations, 
• on the stack, 
• in the code stream, or 
• in a parameter block referenced via a pointer.

Finally, the amount of data has a direct bearing on where and how to pass it. The fol-
lowing sections take up these issues.

 

11.5.1 Pass by Value

 

A parameter passed by value is just that – the caller passes a value to the procedure.
Pass by value parameters are input only parameters. That is, you can pass them to a pro-
cedure but the procedure cannot return them. In HLLs, like Pascal, the idea of a pass by
value parameter being an input only parameter makes a lot of sense. Given the Pascal pro-
cedure call:

 

CallProc(I);

 

If you pass 

 

I

 

 by value, the 

 

CallProc

 

 does not change the value of 

 

I

 

, regardless of what hap-
pens to the parameter inside 

 

CallProc

 

. 

Since you must pass a copy of the data to the procedure, you should only use this
method for passing small objects like bytes, words, and double words. Passing arrays and
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strings by value is very inefficient (since you must create and pass a copy of the structure
to the procedure).

 

11.5.2 Pass by Reference

 

To pass a parameter by reference, you must pass the address of a variable rather than
its value. In other words, you must pass a pointer to the data. The procedure must derefer-
ence this pointer to access the data. Passing parameters by reference is useful when you
must modify the actual parameter or when you pass large data structures between proce-
dures. 

Passing parameters by reference can produce some peculiar results. The following
Pascal procedure provides an example of one problem you might encounter:

 

program main(input,output);
var m:integer;

procedure bletch(var i,j:integer);
begin

i := i+2;
j := j-i;
writeln(i,’ ‘,j);

end;

 

 .
 .
 .

 

begin {main}

m := 5;
bletch(m,m);

end.

 

This particular code sequence will print “00” regardless of 

 

m

 

’s value. This is because
the parameters 

 

i

 

 and

 

 j

 

 are pointers to the actual data and they both point at the same
object. Therefore, the statement 

 

j:=j-i;   

 

always produces zero since 

 

i 

 

and

 

 j 

 

refer to the same
variable. 

Pass by reference is usually less efficient than pass by value. You must dereference all
pass by reference parameters on each access; this is slower than simply using a value.
However, when passing a large data structure, pass by reference is faster because you do
not have to copy a large data structure before calling the procedure.

 

11.5.3 Pass by Value-Returned

 

Pass by value-returned (also known as 

 

value-result

 

) combines features from both the
pass by value and pass by reference mechanisms. You pass a value-returned parameter by
address, just like pass by reference parameters. However, upon entry, the procedure
makes a temporary copy of this parameter and uses the copy while the procedure is exe-
cuting. When the procedure finishes, it copies the temporary copy back to the original
parameter. 

The Pascal code presented in the previous section would operate properly with pass
by value-returned parameters. Of course, when 

 

Bletch

 

 returns to the calling code, 

 

m

 

 could
only contain one of the two values, but while 

 

Bletch

 

 is executing,

 

 i

 

 and

 

 j 

 

would contain dis-
tinct values.

In some instances, pass by value-returned is more efficient than pass by reference, in
others it is less efficient. If a procedure only references the parameter a couple of times,
copying the parameter’s data is expensive. On the other hand, if the procedure uses this
parameter often, the procedure amortizes the fixed cost of copying the data over many
inexpensive accesses to the local copy. 
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11.5.4 Pass by Result

 

Pass by result is almost identical to pass by value-returned. You pass in a pointer to
the desired object and the procedure uses a local copy of the variable and then stores the
result through the pointer when returning. The only difference between pass by
value-returned and pass by result is that when passing parameters by result you do not
copy the data upon entering the procedure. Pass by result parameters are for returning
values, not passing data to the procedure. Therefore, pass by result is slightly more effi-
cient than pass by value-returned since you save the cost of copying the data into the local
variable.

 

11.5.5 Pass by Name

 

Pass by name is the parameter passing mechanism used by macros, text equates, and
the 

 

#define 

 

macro facility in the C programming language. This parameter passing mecha-
nism uses textual substitution on the parameters. Consider the following MASM macro:

 

PassByName macro Parameter1, Parameter2
mov ax, Parameter1
add ax, Parameter2
endm

 

If you have a macro invocation of the form:

 

PassByName bx, I

 

MASM emits the following code, substituting 

 

bx

 

 for 

 

Parameter1

 

 and

 

 I 

 

for 

 

Parameter2

 

:

 

mov ax, bx
add ax, I

 

Some high level languages, such as ALGOL-68 and Panacea, support pass by name
parameters. However, implementing pass by name using textual substitution in a com-
piled language (like ALGOL-68) is very difficult and inefficient. Basically, you would have
to recompile a function everytime you call it. So compiled languages that support pass by
name parameters generally use a different technique to pass those parameters. Consider
the following Panacea procedure:

 

PassByName: procedure(name item:integer; var index:integer);
begin PassByName;

foreach index in 0..10 do

item := 0;

endfor;

end PassByName;

 

Assume you call this routine with the statement

 

   PassByName(A[i], i);   

 

where 

 

A

 

 is an
array of integers having (at least) the elements A[0]..A[10]. Were you to substitute the pass
by name parameter 

 

item 

 

 you

 

 

 

would obtain the following code:

 

begin PassByName;

foreach index in 0..10 do

A[I] := 0; (* Note that index and I are aliases *)

endfor;

end PassByName;

 

This code zeros out elements 0..10 of array 

 

A

 

.

High level languages like ALGOL-68 and Panacea compile pass by name parameters
into 

 

functions

 

  that return the address of a given parameter. So in one respect, pass by
name parameters are similar to pass by reference parameters insofar as you pass the
address of an object. The major difference is that with pass by reference you compute the
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address of an object before calling a subroutine; with pass by name the subroutine itself
calls some function to compute the address of the parameter. 

So what difference does this make? Well, reconsider the code above. Had you passed

 

A[I] 

 

by reference rather than by name, the calling code would compute the address of 

 

A[I]

 

just before the call

 

  and passed in this address. Inside the 

 

PassByName

 

 procedure the vari-
able 

 

item

 

 would have always referred to a single address, not an address that changes
along with

 

 I

 

. With pass by name parameters, 

 

item

 

 is really a function that computes the
address of the parameter into which the procedure stores the value zero. Such a function
might look like the following:

 

ItemThunk proc near
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

ItemThunk endp

 

The compiled code inside the 

 

PassByName

 

 procedure might look something like the fol-
lowing:

 

; item := 0;

call ItemThunk
mov word ptr [bx], 0

 

Thunk

 

  is the historical term for these functions that compute the address of a pass by
name parameter. It is worth noting that most HLLs supporting pass by name parameters
do not call thunks directly (like the 

 

call

 

 above). Generally, the caller passes the address of a
thunk and the subroutine calls the thunk 

 

indirectly

 

. This allows the same sequence of
instructions to call several different thunks (corresponding to different calls to the subrou-
tine).

 

11.5.6 Pass by Lazy-Evaluation

 

Pass by name is similar to pass by reference insofar as the procedure accesses the
parameter using the address of the parameter. The primary difference between the two is
that a caller directly passes the address on the stack when passing by reference, it passes
the address of a function that computes the parameter’s address when passing a parame-
ter by name. The pass by lazy evaluation mechanism shares this same relationship with
pass by value parameters – the caller passes the address of a function that computes the
parameter’s value if the first access to that parameter is a read operation.

Pass by lazy evaluation is a useful parameter passing technique if the cost of comput-
ing the parameter value is very high and the procedure may not use the value. Consider
the following Panacea procedure header:

 

PassByEval: procedure(eval a:integer; eval b:integer; eval c:integer);

 

When you call the 

 

PassByEval

 

 function it does not evaluate the actual parameters and
pass their values to the procedure. Instead, the compiler generates thunks that will com-
pute the value of the parameter at most one time. If the first access to an 

 

eval

 

 parameter is
a read, the thunk will compute the parameter’s value and store that into a local variable. It
will also set a flag so that all future accesses will not call the thunk (since it has already
computed the parameter’s value). If the first access to an 

 

eval

 

 parameter is a write, then
the code sets the flag and future accesses within the same procedure activation will use
the written value and ignore the thunk.

Consider the 

 

PassByEval

 

 procedure above. Suppose it takes several minutes to com-
pute the values for the 

 

a, b,

 

 and 

 

c

 

 parameters (these could be, for example, three different
possible paths in a Chess game). Perhaps the 

 

PassByEval

 

 procedure only uses the value of
one of these parameters. Without pass by lazy evaluation, the calling code would have to
spend the time to compute all three parameters even though the procedure will only use
one of the values. With pass by lazy evaluation, however, the procedure will only spend
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the time computing the value of the one parameter it needs. Lazy evaluation is a common
technique artificial intelligence (AI) and operating systems use to improve performance.

 

11.5.7 Passing Parameters in Registers

 

Having touched on how to pass parameters to a procedure, the next thing to discuss is
where to pass parameters. Where you pass parameters depends, to a great extent, on the
size and number of those parameters. If you are passing a small number of bytes to a pro-
cedure, then the registers are an excellent place to pass parameters. The registers are an
ideal place to pass value parameters to a procedure. If you are passing a single parameter
to a procedure you should use the following registers for the accompanying data types: 

 

Data Size Pass in this Register
Byte:

 

al

 

 
Word:

 

ax

 

 
Double Word:

 

dx:ax

 

 or 

 

eax

 

 (if 80386 or better)

 

This is, by no means, a hard and fast rule. If you find it more convenient to pass 16 bit
values in the 

 

si

 

 or 

 

bx

 

 register, by all means do so. However, most programmers use the reg-
isters above to pass parameters. 

If you are passing several parameters to a procedure in the 80x86’s registers, you
should probably use up the registers in the following order: 

First Last

 

 

ax, dx, si, di, bx, cx 

 

In general, you should avoid using 

 

bp

 

 register. If you need more than six words, perhaps
you should pass your values elsewhere. 

The UCR Standard Library package provides several good examples of procedures
that pass parameters by value in the registers. 

 

Putc

 

, which outputs an ASCII character
code to the video display, expects an ASCII value in the 

 

al

 

 register. Likewise, 

 

puti

 

 expects
the value of a signed integer in the 

 

ax

 

 register. As another example, consider the following

 

putsi

 

 (put short integer) routine that outputs the value in 

 

al

 

 as a signed integer:

 

putsi proc
push ax ;Save AH’s value.
cbw ;Sign extend AL -> AX.
puti ;Let puti do the real work.
pop ax ;Restore AH.
ret

putsi endp

 

The other four parameter passing mechanisms (pass by reference, value-returned,
result, and name) generally require that you pass a pointer to the desired object (or to a
thunk in the case of pass by name). When passing such parameters in registers, you have
to consider whether you’re passing an offset or a full segmented address. Sixteen bit off-
sets can be passed in any of the 80x86’s general purpose 16 bit registers. 

 

si

 

, 

 

di

 

, and 

 

bx

 

 are
the best place to pass an offset since you’ll probably need to load it into one of these regis-
ters anyway

 

4

 

. You can pass 32 bit segmented addresses 

 

dx:ax

 

 like other double word
parameters. However, you can also pass them in 

 

ds:bx

 

, 

 

ds:si

 

, 

 

ds:di

 

, 

 

es:bx

 

, 

 

es:si

 

, or 

 

es:di

 

 and
be able to use them without copying into a segment register. 

The UCR Stdlib routine 

 

puts

 

, which prints a string to the video display, is a good
example of a subroutine that uses pass by reference. It wants the address of a string in the

 

es:di

 

 register pair. It passes the parameter in this fashion, not because it modifies the
parameter, but because strings are rather long and passing them some other way would
be inefficient. As another example, consider the following 

 

strfill(str,c)

 

   that copies the char-

 

4. This does not apply to thunks. You may pass the address of a thunk in any 16 bit register. Of course, on an 80386
or later processor, you can use any of the 80386’s 32-bit registers to hold an address.
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acter 

 

c

 

 (passed by value in 

 

al

 

) to each character position in 

 

str

 

 (passed by reference in 

 

es:di

 

)
up to a zero terminating byte:

 

; strfill- copies value in al to the string pointed at by es:di
; up to a zero terminating byte.

byp textequ <byte ptr>

strfill proc
pushf ;Save direction flag.
cld ;To increment D with STOS.
push di ;Save, because it’s changed.
jmp sfStart

sfLoop: stosb ;es:[di] := al, di := di + 1;
sfStart: cmp byp es:[di], 0 ;Done yet?

jne sfLoop

pop di ;Restore di.
popf ;Restore direction flag.
ret

strfill endp

 

When passing parameters by value-returned or by result to a subroutine, you could
pass in the address in a register. Inside the procedure you would copy the value pointed at
by this register to a local variable (value-returned only). Just before the procedure returns
to the caller, it could store the final result back to the address in the register. 

The following code requires two parameters. The first is a pass by value-returned
parameter and the subroutine expects the address of the actual parameter in 

 

bx

 

. The sec-
ond is a pass by result parameter whose address is in 

 

si

 

. This routine increments the pass
by value-result parameter and stores the previous result in the pass by result parameter:

 

; CopyAndInc- BX contains the address of a variable. This routine
; copies that variable to the location specified in SI
; and then increments the variable BX points at.
; Note: AX and CX hold the local copies of these
; parameters during execution.

CopyAndInc proc
push ax ;Preserve AX across call.
push cx ;Preserve CX across call.
mov ax, [bx] ;Get local copy of 1st parameter.
mov cx, ax ;Store into 2nd parm’s local var.
inc ax ;Increment 1st parameter.
mov [si], cx ;Store away pass by result parm.
mov [bx], ax ;Store away pass by value/ret parm.
pop cx ;Restore CX’s value.
pop ax ;Restore AX’s value.
ret

CopyAndInc endp

 

To make the call 

 

CopyAndInc(I,J)

 

 you would use code like the following:

 

lea bx, I
lea si, J
call CopyAndInc

 

This is, of course, a trivial example whose implementation is very inefficient. Neverthe-
less, it shows how to pass value-returned and result parameters in the 80x86’s registers. If
you are willing to trade a little space for some speed, there is another way to achieve the
same results as pass by value-returned or pass by result when passing parameters in reg-
isters. Consider the following implementation of 

 

CopyAndInc

 

:

 

CopyAndInc proc
mov cx, ax ;Make a copy of the 1st parameter,
inc ax ; then increment it by one.
ret

CopyAndInc endp
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To make the 

 

CopyAndInc(I,J)

 

 call, as before, you would use the following 80x86 code:

 

mov ax, I
call CopyAndInc
mov I, ax
mov J, cx

 

Note that this code does not pass any addresses at all; yet it has the same semantics (that
is, performs the same operations) as the previous version. Both versions increment  

 

I

 

 and
store the pre-incremented version into 

 

J

 

. Clearly the latter version is faster, although your
program will be slightly larger if there are many calls to 

 

CopyAndInc

 

 in your program (six
or more).

You can pass a parameter by name or by lazy evaluation in a register by simply load-
ing that register with the address of the thunk to call. Consider the Panacea 

 

PassByName

 

procedure (see “Pass by Name” on page 576). One implementation of this procedure
could be the following:

 

;PassByName- Expects a pass by reference parameter 

 

index

 

; passed in si and a pass by name parameter, 

 

item

 

,
; passed in dx (the thunk returns the address in bx).

PassByName proc
push ax ;Preserve AX across call
mov word ptr [si], 0 ;Index := 0;

ForLoop: cmp word ptr [si], 10 ;For loop ends at ten.
jg ForDone
call dx ;Call thunk 

 

item

 

.
mov word ptr [bx], 0 ;Store zero into 

 

item

 

.
inc word ptr [si] ;Index := Index + 1;
jmp ForLoop

ForDone: pop ax ;Restore AX.
ret ;All Done!

PassByName endp

 

You might call this routine with code that looks like the following:

 

lea si, I
lea dx, Thunk_A
call PassByName

 

 .
 .
 .

 

Thunk_A proc
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

Thunk_A endp

 

The advantage to this scheme, over the one presented in the earlier section, is that you can
call different thunks, not just the 

 

ItemThunk

 

 routine appearing in the earlier example.

 

11.5.8 Passing Parameters in Global Variables

 

Once you run out of registers, the only other (reasonable) alternative you have is main
memory. One of the easiest places to pass parameters is in global variables in the data seg-
ment. The following code provides an example:

 

mov ax, xxxx ;Pass this parameter by value
mov Value1Proc1, ax
mov ax, offset yyyy ;Pass this parameter by ref
mov word ptr Ref1Proc1, ax
mov ax, seg yyyy
mov word ptr Ref1Proc1+2, ax
call ThisProc

 

 .
 .
 .
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ThisProc proc near
push es
push ax
push bx
les bx, Ref1Proc1 ;Get address of ref parm. 
mov ax, Value1Proc1 ;Get value parameter
mov es:[bx], ax ;Store into loc pointed at by
pop bx ; the ref parameter.
pop ax
pop es
ret

ThisProc endp

 

Passing parameters in global locations is inelegant and inefficient. Furthermore, if you
use global variables in this fashion to pass parameters, the subroutines you write cannot
use recursion (see “Recursion” on page 606). Fortunately, there are better parameter pass-
ing schemes for passing data in memory so you do not need to seriously consider this
scheme.

 

11.5.9 Passing Parameters on the Stack

 

Most HLLs use the stack to pass parameters because this method is fairly efficient. To
pass parameters on the stack, push them immediately before calling the subroutine. The
subroutine then reads this data from the stack memory and operates on it appropriately.
Consider the following Pascal procedure call:

 

CallProc(i,j,k+4);

 

Most Pascal compilers push their parameters onto the stack in the order that they
appear in the parameter list. Therefore, the 80x86 code typically emitted for this subrou-
tine call (assuming you’re passing the parameters by value) is

 

push i
push j
mov ax, k
add ax, 4
push ax
call CallProc

 

Upon entry into 

 

CallProc

 

, the 80x86’s stack looks like that shown in Figure 11.5 (for a
near procedure ) or Figure 11.6 (for a far procedure). 

You could gain access to the parameters passed on the stack by removing the data
from the stack (Assuming a near procedure call):

 

Figure 11.5 CallProc Stack Layout for a Near Procedure

Previous Stack Contents

i's current value

j's current value

The sum of  k+4

Return address
Stack Pointer

If CallProc is a
NEAR Procedure
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CallProc proc near
pop RtnAdrs
pop kParm
pop jParm
pop iParm
push RtnAdrs

 

 .
 .
 .

 

ret
CallProc endp

 

There is, however, a better way. The 80x86’s architecture allows you to use the 

 

bp

 

 (base
pointer) register to access parameters passed on the stack. This is one of the reasons the

 

disp[bp], [bp][di], [bp][si], disp[bp][si],

 

 and 

 

disp[bp][di] 

 

addressing modes use the stack segment
rather than the data segment. The following code segment gives the 

 

standard procedure
entry

 

 

 

and

 

 

 

exit

 

 code:

 

StdProc proc near
push bp
mov bp, sp

 

 .
 .
 .

 

pop bp
ret ParmSize

StdProc endp

 

ParmSize

 

 is the number of bytes of parameters pushed onto the stack before calling the
procedure. In the 

 

CallProc

 

 procedure there were six bytes of parameters pushed onto the
stack so 

 

ParmSize

 

 would be six. 

Take a look at the stack immediately after the execution of 

 

  mov

 

 

 

bp, sp   

 

in 

 

StdProc

 

.
Assuming you’ve pushed three parameter words onto the stack, it should look something
like shown in Figure 11.7. 

 

Figure 11.6 CallProc Stack Layout for a Far Procedure
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Figure 11.7 Accessing Parameters on the Stack
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Now the parameters can be fetched by indexing off the 

 

bp

 

 register:

 

mov ax, 8[bp] ;Accesses the first parameter
mov ax, 6[bp] ;Accesses the second parameter
mov ax, 4[bp] ;Accesses the third parameter

 

When returning to the calling code, the procedure must remove these parameters
from the stack. To accomplish this, pop the old 

 

bp

 

 value off the stack and execute a 

 

  ret 6

 

instruction. This pops the return address off the stack and adds six to the stack pointer,
effectively removing the parameters from the stack. 

The displacements given above are for 

 

near

 

  procedures only. When calling a far pro-
cedure,

• 0[BP] will point at the old BP value,
• 2[BP] will point at the offset portion of the return address, 
• 4[BP] will point at the segment portion of the return address, and
• 6[BP] will point at the last parameter pushed onto the stack.

The stack contents when calling a far procedure are shown in Figure 11.8. 

This collection of parameters, return address, registers saved on the stack, and other
items, is a 

 

stack frame

 

 or 

 

activation record

 

. 

When saving other registers onto the stack, always make sure that you save and set
up 

 

bp

 

 before pushing the other registers. If you push the other registers before setting up

 

bp

 

, the offsets into the stack frame will change. For example, the following code disturbs
the ordering presented above:

 

FunnyProc proc near
push ax
push bx
push bp
mov bp, sp

 

 .
 .
 .

 

pop bp
pop bx
pop ax
ret

FunnyProc endp

 

Since this code pushes 

 

ax

 

 and 

 

bx

 

 before pushing 

 

bp

 

 and copying 

 

sp

 

 to 

 

bp

 

, 

 

ax

 

 and 

 

bx

 

appear in the activation record before the return address (that would normally start at
location 

 

[bp+2]

 

). As a result, the value of 

 

bx

 

 appears at location

 

 [bp+2]

 

 and the value of 

 

ax

 

appears at location 

 

[bp+4]

 

. This pushes the return address and other parameters farther up
the stack as shown in Figure 11.9. 

 

Figure 11.8 Accessing Parameters on the Stack in a Far Procedure
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Although this is a near procedure, the parameters don’t begin until offset eight in the
activation record. Had you pushed the 

 

ax

 

 and 

 

bx

 

 registers after setting up 

 

bp

 

, the offset to
the parameters would have been four (see Figure 11.10). 

 

FunnyProc proc near
push bp
mov bp, sp
push ax
push bx

 

 .
 .
 .

 

pop bx
pop ax
pop bp
ret

FunnyProc endp

 

Therefore, the 

 

push bp

 

   and 

 

mov

 

 

 

bp, sp   

 

instructions should be the first two instructions
any subroutine executes when it has parameters on the stack. 

Accessing the parameters using expressions like

 

 [bp+6]

 

 can make your programs very
hard to read and maintain. If you would like to use meaningful names, there are several
ways to do so. One way to reference parameters by name is to use equates. Consider the
following Pascal procedure and its equivalent 80x86 assembly language code:

 

Figure 11.9 Messing up Offsets by Pushing Other Registers Before BP
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Figure 11.10 Keeping the Offsets Constant by Pushing BP First
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procedure xyz(var i:integer; j,k:integer);
begin

i := j+k;
end;

 

Calling sequence:

 

xyz(a,3,4);

 

Assembly language code:

 

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.
xyz proc near

push bp
mov bp, sp
push es
push ax
push bx
les bx, xyz_i ;Get address of I into ES:BX
mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov es:[bx], ax ;Store result into I parameter
pop bx
pop ax
pop es
pop bp
ret 8

xyz endp

 

Calling sequence:

 

mov ax, seg a ;This parameter is passed by
push ax ; reference, so pass its
mov ax, offset a ; address on the stack.
push ax
mov ax, 3 ;This is the second parameter
push ax
mov ax, 4 ;This is the third parameter.
push ax
call xyz

 

On an 80186 or later processor you could use the following code in place of the above:

 

push seg a ;Pass address of “a” on the
push offset a ; stack.
push 3 ;Pass second parm by val.
push 4 ;Pass third parm by val.
call xyz

 

Upon entry into the 

 

xyz

 

 procedure, before the execution of the 

 

les

 

 instruction, the stack
looks like shown in Figure 11.11. 

Since you’re passing I by reference, you must push its address onto the stack. This
code passes reference parameters using 32 bit segmented addresses. Note that this code
uses 

 

ret 8

 

.   Although there are three parameters on the stack, the reference parameter

 

 I

 

consumes four bytes since it is a far address. Therefore there are eight bytes of parameters
on the stack necessitating the 

 

ret 8

 

 instruction.

Were you to pass I by reference using a near pointer rather than a far pointer, the code
would look like the following:

 

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.
xyz proc near

push bp
mov bp, sp
push ax
push bx
mov bx, xyz_i ;Get address of I into BX



 

Chapter 11

Page 586

 

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov [bx], ax ;Store result into I parameter
pop bx
pop ax
pop bp
ret 6

xyz endp

 

Note that since

 

 I

 

’s address on the stack is only two bytes (rather than four), this routine
only pops six bytes when it returns.

Calling sequence:

 

mov ax, offset a ;Pass near address of a.
push ax
mov ax, 3 ;This is the second parameter
push ax
mov ax, 4 ;This is the third parameter.
push ax
call xyz

 

On an 80286 or later processor you could use the following code in place of the above:

 

push offset a ;Pass near address of a.
push 3 ;Pass second parm by val.
push 4 ;Pass third parm by val.
call xyz

 

The stack frame for the above code appears in Figure 11.12. 

When passing a parameter by value-returned or result, you pass an address to the
procedure, exactly like passing the parameter by reference. The only difference is that you
use a local copy of the variable within the procedure rather than accessing the variable
indirectly through the pointer. The following implementations for 

 

xyz

 

 show how to pass

 

 I

 

by value-returned and by result:

 

; xyz version using Pass by Value-Returned for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax
push bx

 

Figure 11.11 XYZ Stack Upon Procedure Entry
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push cx ;Keep local copy here.

mov bx, xyz_i ;Get address of I into BX
mov cx, [bx] ;Get local copy of I parameter.

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov cx, ax ;Store result into local copy

mov bx, xyz_i ;Get ptr to I, again
mov [bx], cx ;Store result away.

pop cx
pop bx
pop ax
pop bp
ret 6

xyz endp

 

There are a couple of unnecessary 

 

mov

 

 instructions in this code. They are present only
to precisely implement pass by value-returned parameters. It is easy to improve this code
using pass by result parameters. The modified code is

 

; xyz version using Pass by Result for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax
push bx
push cx ;Keep local copy here.

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov cx, ax ;Store result into local copy

mov bx, xyz_i ;Get ptr to I, again
mov [bx], cx ;Store result away.

pop cx
pop bx
pop ax
pop bp
ret 6

xyz endp

 

Figure 11.12 Passing Parameters by Reference Using Near Pointers Rather than Far Pointers
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As with passing value-returned and result parameters in registers, you can improve
the performance of this code using a modified form of pass by value. Consider the follow-
ing implementation of 

 

xyz

 

:

 

; xyz version using modified pass by value-result for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov xyz_i, ax ;Store result into local copy

pop ax
pop bp
ret 4 ;Note that we do not pop I parm.

xyz endp

 

The calling sequence for this code is

 

push a ;Pass a’s value to xyz.
push 3 ;Pass second parameter by val.
push 4 ;Pass third parameter by val.
call xyz
pop a

 

Note that a pass by result version wouldn’t be practical since you have to push 

 

something

 

on the stack to make room for the local copy of

 

 I 

 

inside 

 

xyz

 

. You may as well push the
value of 

 

 a

 

 on entry even though the 

 

xyz

 

 procedure ignores it. This procedure pops only

 

four

 

  bytes off the stack on exit. This leaves the value of the

 

 I

 

 parameter on the stack so that
the calling code can store it away to the proper destination.

To pass a parameter by name on the stack, you simply push the address of the thunk.
Consider the following pseudo-Pascal code:

 

procedure swap(name Item1, Item2:integer);
var temp:integer;
begin

temp := Item1;
Item1 := Item2;
Item2 := Temp;

end;

 

If 

 

swap

 

 is a near procedure, the 80x86 code for this procedure could look like the following
(note that this code has been slightly optimized and does not following the exact sequence
given above):

 

; swap- swaps two parameters passed by name on the stack.
; Item1 is passed at address [bp+6], Item2 is passed
; at address [bp+4]

wp textequ <word ptr>
swap_Item1 equ [bp+6]
swap_Item2 equ [bp+4]

swap proc near
push bp
mov bp, sp
push ax ;Preserve temp value.
push bx ;Preserve bx.
call wp swap_Item1 ;Get adrs of Item1.
mov ax, [bx] ;Save in temp (AX).
call wp swap_Item2 ;Get adrs of Item2.
xchg ax, [bx] ;Swap temp <-> Item2.
call wp swap_Item1 ;Get adrs of Item1.
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mov [bx], ax ;Save temp in Item1.
pop bx ;Restore bx.
pop ax ;Restore ax.
ret 4 ;Return and pop Item1/2.

swap endp

 

Some sample calls to swap follow:

 

; swap(A[i], i) -- 8086 version.

lea ax, thunk1
push ax
lea ax, thunk2
push ax
call swap

; swap(A[i],i) -- 80186 & later version.

push offset thunk1
push offset thunk2
call swap

 .
 .
 .

; Note: this code assumes A is an array of two byte integers.

thunk1 proc near
mov bx, i
shl bx, 1
lea bx, A[bx]
ret

thunk1 endp

thunk2 proc near
lea bx, i
ret

thunk2 endp

 

The code above assumes that the thunks are near procs that reside in the same seg-
ment as the 

 

swap

 

 routine. If the thunks are far procedures the caller must pass far
addresses on the stack and the swap routine must manipulate far addresses. The follow-
ing implementation of 

 

swap

 

, 

 

thunk1

 

, and 

 

thunk2

 

 demonstrate this.

 

; swap- swaps two parameters passed by name on the stack.
; Item1 is passed at address [bp+10], Item2 is passed
; at address [bp+6]

swap_Item1 equ [bp+10]
swap_Item2 equ [bp+6]
dp textequ <dword ptr>

swap proc far
push bp
mov bp, sp
push ax ;Preserve temp value.
push bx ;Preserve bx.
push es ;Preserve es.
call dp swap_Item1 ;Get adrs of Item1.
mov ax, es:[bx] ;Save in temp (AX).
call dp swap_Item2 ;Get adrs of Item2.
xchg ax, es:[bx] ;Swap temp <-> Item2.
call dp swap_Item1 ;Get adrs of Item1.
mov es:[bx], ax ;Save temp in Item1.
pop es ;Restore es.
pop bx ;Restore bx.
pop ax ;Restore ax.
ret 8 ;Return and pop Item1, Item2.

swap endp

 

Some sample calls to swap follow:
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; swap(A[i], i) -- 8086 version.

mov ax, seg thunk1
push ax
lea ax, thunk1
push ax
mov ax, seg thunk2
push ax
lea ax, thunk2
push ax
call swap

; swap(A[i],i) -- 80186 & later version.

push seg thunk1
push offset thunk1
push seg thunk2
push offset thunk2
call swap

 

 .
 .
 .

 

; Note: this code assumes A is an array of two byte integers.
; Also note that we do not know which segment(s) contain
; A and I.

thunk1 proc far
mov bx, seg A ;Need to return seg A in ES.
push bx ;Save for later.
mov bx, seg i ;Need segment of I in order
mov es, bx ; to access it.
mov bx, es:i ;Get I’s value.
shl bx, 1
lea bx, A[bx]
pop es ;Return segment of A[I] in es.
ret

thunk1 endp

thunk2 proc near
mov bx, seg i ;Need to return I’s seg in es.
mov es, bx
lea bx, i
ret

thunk2 endp

 

Passing parameters by lazy evaluation is left for the programming projects.

Additional information on activation records and stack frames appears later in this
chapter in the section on local variables. 

 

11.5.10 Passing Parameters in the Code Stream

 

Another place where you can pass parameters is in the code stream immediately after
the 

 

call

 

 instruction. The 

 

print

 

 routine in the UCR Standard Library package provides an
excellent example:

 

print
byte “This parameter is in the code stream.”,0

 

Normally, a subroutine returns control to the first instruction immediately following
the 

 

call

 

 instruction. Were that to happen here, the 80x86 would attempt to interpret the
ASCII code for “This...” as an instruction. This would produce undesirable results. Fortu-
nately, you can skip over this string when returning from the subroutine. 

So how do you gain access to these parameters? Easy. The return address on the stack
points at them. Consider the following implementation of 

 

print

 

:
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MyPrint proc near
push bp
mov bp, sp
push bx
push ax
mov bx, 2[bp] ;Load return address into BX

PrintLp: mov al, cs:[bx] ;Get next character
cmp al, 0 ;Check for end of string
jz EndStr
putc ;If not end, print this char
inc bx ;Move on to the next character
jmp PrintLp

EndStr: inc bx ;Point at first byte beyond zero
mov 2[bp], bx ;Save as new return address
pop ax
pop bx
pop bp
ret

MyPrint endp

 

This procedure begins by pushing all the affected registers onto the stack. It then
fetches the return address, at offset 

 

2[BP]

 

, and prints each successive character until
encountering a zero byte. Note the presence of the 

 

cs: 

 

segment override prefix in the

 

mov al, cs:[bx]

 

   instruction. Since the data is coming from the code segment, this prefix
guarantees that 

 

MyPrint

 

 fetches the character data from the proper segment. Upon encoun-
tering the zero byte, 

 

MyPrint

 

 points 

 

bx

 

 at the first byte beyond the zero. This is the address
of the first instruction following the zero terminating byte. The CPU uses this value as the
new return address. Now the execution of the 

 

ret

 

 instruction returns control to the instruc-
tion following the string. 

The above code works great if 

 

MyPrint

 

 is a near procedure. If you need to call 

 

MyPrint

 

from a different segment you will need to create a far procedure. Of course, the major dif-
ference is that a far return address will be on the stack at that point – you will need to use
a far pointer rather than a near pointer. The following implementation of 

 

MyPrint

 

 handles
this case.

 

MyPrint proc far
push bp
mov bp, sp
push bx ;Preserve ES, AX, and BX
push ax
push es

les bx, 2[bp] ;Load return address into ES:BX
PrintLp: mov al, es:[bx] ;Get next character

cmp al, 0 ;Check for end of string
jz EndStr
putc ;If not end, print this char
inc bx ;Move on to the next character
jmp PrintLp

EndStr: inc bx ;Point at first byte beyond zero
mov 2[bp], bx ;Save as new return address
pop es
pop ax
pop bx
pop bp
ret

MyPrint endp

 

Note that this code does not store 

 

es

 

 back into location

 

 [bp+4]

 

. The reason is quite sim-
ple – 

 

es

 

 does not change during the execution of this procedure; storing 

 

es

 

 into location

 

[bp+4] 

 

would not change the value at that location. You will notice that this version of

 

MyPrint

 

 fetches each character from location 

 

es:[bx]

 

 rather than 

 

cs:[bx]

 

. This is because the
string you’re printing is in the caller’s segment, that might not be the same segment con-
taining 

 

MyPrint

 

.
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Besides showing how to pass parameters in the code stream, the 

 

MyPrint

 

 routine also
exhibits another concept: 

 

variable length parameters

 

. The string following the 

 

call

 

 can be any
practical length. The zero terminating byte marks the end of the parameter list. There are
two easy ways to handle variable length parameters. Either use some special terminating
value (like zero) or you can pass a special length value that tells the subroutine how many
parameters you are passing. Both methods have their advantages and disadvantages.
Using a special value to terminate a parameter list requires that you choose a value that
never appears in the list. For example, 

 

MyPrint

 

 uses zero as the terminating value, so it can-
not print the NULL character (whose ASCII code is zero). Sometimes this isn’t a limita-
tion. Specifying a special length parameter is another mechanism you can use to pass a
variable length parameter list. While this doesn’t require any special codes or limit the
range of possible values that can be passed to a subroutine, setting up the length parame-
ter and maintaining the resulting code can be a real nightmare

 

5

 

. 

Although passing parameters in the code stream is an ideal way to pass variable
length parameter lists, you can pass fixed length parameter lists as well. The code stream
is an excellent place to pass constants (like the string constants passed to 

 

MyPrint

 

) and ref-
erence parameters. Consider the following code that expects three parameters by refer-
ence:

Calling sequence:

 

call AddEm
word I,J,K

 

Procedure:

 

AddEm proc near
push bp
mov bp, sp
push si
push bx
push ax
mov si, [bp+2] ;Get return address
mov bx, cs:[si+2] ;Get address of J
mov ax, [bx] ;Get J’s value
mov bx, cs:[si+4] ;Get address of K
add ax, [bx] ;Add in K’s value
mov bx, cs:[si] ;Get address of I
mov [bx], ax ;Store result
add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

 

This subroutine adds 

 

J

 

 and 

 

K

 

 together and stores the result into 

 

I

 

. Note that this code uses
16 bit near pointers to pass the addresses of 

 

I

 

,

 

 J

 

, and 

 

K

 

 to 

 

AddEm

 

. Therefore, 

 

I

 

, 

 

J

 

, and 

 

K

 

 must
be in the current data segment. In the example above, 

 

AddEm

 

 is a near procedure. Had it
been a far procedure it would have needed to fetch a four byte pointer from the stack
rather than a two byte pointer. The following is a far version of 

 

AddEm

 

:

 

AddEm proc far
push bp
mov bp, sp
push si
push bx
push ax
push es
les si, [bp+2] ;Get far ret adrs into es:si
mov bx, es:[si+2] ;Get address of J
mov ax, [bx] ;Get J’s value

 

5. Especially if the parameter list changes frequently.
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mov bx, es:[si+4] ;Get address of K
add ax, [bx] ;Add in K’s value
mov bx, es:[si] ;Get address of I
mov [bx], ax ;Store result
add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop es
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

 

In both versions of 

 

AddEm

 

, the pointers to

 

 I

 

, 

 

J

 

, and 

 

K

 

 passed in the code stream are near
pointers. Both versions assume that 

 

I

 

, 

 

J

 

, and 

 

K

 

 are all in the current data segment. It is pos-
sible to pass far pointers to these variables, or even near pointers to some and far pointers
to others, in the code stream. The following example isn’t quite so ambitious, it is a near
procedure that expects far pointers, but it does show some of the major differences. For
additional examples, see the exercises.

Callling sequence:

 

call AddEm
dword I,J,K

 

Code:

 

AddEm proc near
push bp
mov bp, sp
push si
push bx
push ax
push es
mov si, [bp+2] ;Get near ret adrs into si
les bx, cs:[si+2] ;Get address of J into es:bx
mov ax, es:[bx] ;Get J’s value
les bx, cs:[si+4] ;Get address of K
add ax, es:[bx] ;Add in K’s value
les bx, cs:[si] ;Get address of I
mov es:[bx], ax ;Store result
add si, 12 ;Skip past parms
mov [bp+2], si ;Save return address
pop es
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

 

Note that there are 12 bytes of parameters in the code stream this time around. This is why
this code contains an 

 

add si, 12

 

  instruction rather than the 

 

 add si, 6

 

   appearing in the other
versions.

In the examples given to this point, 

 

MyPrint

 

 expects a pass by value parameter, it prints
the actual characters following the call, and 

 

AddEm

 

 expects three pass by reference param-
eters – their addresses follow in the code stream. Of course, you can also pass parameters
by value-returned, by result, by name, or by lazy evaluation in the code stream as well.
The next example is a modification of AddEm that uses pass by result for I, pass by
value-returned for J, and pass by name for K. This version is slightly differerent insofar as
it modifies J as well as I, in order to justify the use of the value-returned parameter.
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; AddEm(Result I:integer; ValueResult J:integer; Name K);
;
; Computes I:= J;
; J := J+K;
;
; Presumes all pointers in the code stream are near pointers.

AddEm proc near
push bp
mov bp, sp
push si ;Pointer to parameter block.
push bx ;General pointer.
push cx ;Temp value for I.
push ax ;Temp value for J.

mov si, [bp+2] ;Get near ret adrs into si

mov bx, cs:[si+2] ;Get address of J into bx
mov ax, es:[bx] ;Create local copy of J.
mov cx, ax ;Do I:=J;

call word ptr cs:[si+4] ;Call thunk to get K’s adrs
add ax, [bx] ;Compute J := J + K

mov bx, cs:[si] ;Get address of I and store
mov [bx], cx ; I away.

mov bx, cs:[si+2] ;Get J’s address and store
mov [bx], ax ; J’s value away.

add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop ax
pop cx
pop bx
pop si
pop bp
ret

AddEm endp

 

Example calling sequences:

 

; AddEm(I,J,K)

call AddEm
word I,J,KThunk

; AddEm(I,J,A[I])

call AddEm
word I,J,AThunk
 .
 .
 .

KThunk proc near
lea bx, K
ret

KThunk endp

AThunk proc near
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

AThunk endp

 

Note: had you passed 

 

I

 

 by reference, rather than by result, in this example, the call 

 

AddEm(I,J,A[i])

 

would have produced different results. Can you explain why?

Passing parameters in the code stream lets you perform some really clever tasks. The
following example is considerably more complex than the others in this section, but it
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demonstrates the power of passing parameters in the code stream and, despite the com-
plexity of this example, how they can simplify your programming tasks.

The following two routines implement a 

 

for/next

 

 statement, similar to that in BASIC, in
assembly language. The calling sequence for these routines is the following:

 

call ForStmt
word

 

«LoopControlVar

 

», 

 

«StartValue

 

», 

 

«EndValue»

 

 .
 .

 

« 

 

loop body statements

 

»

 

 .
 .

 

call Next

 

This code sets the loop control variable (whose near address you pass as the first
parameter, by reference) to the starting value (passed by value as the second parameter). It
then begins execution of the loop body. Upon executing the call to 

 

Next

 

, this program
would increment the loop control variable and then compare it to the ending value. If it is
less than or equal to the ending value, control would return to the beginning of the loop
body (the first statement following the 

 

word

 

 directive). Otherwise it would continue exe-
cution with the first statement past the call to 

 

Next

 

.

Now you’re probably wondering, “How on earth does control transfer to the begin-
ning of the loop body?” After all, there is no label at that statement and there is no control
transfer instruction instruction that jumps to the first statement after the 

 

word

 

 directive.
Well, it turns out you can do this with a little tricky stack manipulation. Consider what the
stack will look like upon entry into the 

 

ForStmt

 

 routine, after pushing 

 

bp

 

 onto the stack (see
Figure 11.13). 

Normally, the 

 

ForStmt

 

 routine would pop 

 

bp

 

 and return with a ret instruction, which
removes 

 

ForStmt

 

’s activation record from the stack. Suppose, instead, 

 

ForStmt

 

 executes the
following instructions:

 

add word ptr 2[b], 2 ;Skip the parameters.
push [bp+2] ;Make a copy of the rtn adrs.
mov bp, [bp] ;Restore bp’s value.
ret ;Return to caller.

 

Just before the 

 

ret

 

 instruction above, the stack has the entries shown in Figure 11.14. 

 

Figure 11.13 Stack Upon Entry into the ForStmt Procedure

 SP, BP

Offset from BP

4

Return Address2

0 Original BP Value

Previous Stack Contents

 

Figure 11.14 Stack Just Before Leaving the ForStmt Procedure

 BP

 SP

Previous Stack Contents

Offset from BP

4

Return Address2

0 Original BP Value

Return Address-2
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Upon executing the 

 

ret

 

 instruction, 

 

ForStmt

 

 will return to the proper return address 

 

but it
will leave its activation record on the stack!

 

After executing the statements in the loop body, the program calls the Next routine.
Upon initial entry into Next (and setting up bp), the stack contains the entries appearing
in Figure 11.15

 

6

 

. 

The important thing to see here is that 

 

ForStmt

 

’s return address, that points at the first
statement past the 

 

word

 

 directive, is still on the stack and available to 

 

Next

 

 at offset 

 

[bp+6]

 

.

 

Next

 

 can use this return address to gain access to the parameters and return to the appro-
priate spot, if necessary. 

 

Next

 

 increments the loop control variable and compares it to the
ending value. If the loop control variable’s value is less than the ending value, 

 

Next

 

 pops
its return address off the stack and returns through 

 

ForStmt

 

’s return address. If the loop
control variable is greater than the ending value, 

 

Next

 

 returns through its own return
address and removes 

 

ForStmt

 

’s activation record from the stack. The following is the code
for 

 

Next

 

 and 

 

ForStmt

 

:

 

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
I word ?
J word ?
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

wp textequ <word ptr>

ForStmt proc near
push bp
mov bp, sp
push ax
push bx
mov bx, [bp+2] ;Get return address
mov ax, cs:[bx+2];Get starting value
mov bx, cs:[bx] ;Get address of var
mov [bx], ax ;var := starting value
add wp [bp+2], 6 ;Skip over parameters
pop bx

 

6. Assuming the loop does not push anything onto the stack, or pop anything off the stack. Should either case
occur, the ForStmt/Next loop would not work properly.

 

Figure 11.15 The Stack upon Entering the Next Procedure

Previous Stack Contents

ForStmt's Return Address

 SP, BP

2

4

6

Offset from BP

ForStmt's BP Value

8

Next's Return Address

0 Next's BP Value
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pop ax
push [bp+2] ;Copy return address
mov bp, [bp] ;Restore bp
ret ;Leave Act Rec on stack

ForStmt endp

Next proc near
push bp
mov bp, sp
push ax
push bx
mov bx, [bp+6] ;ForStmt’s rtn adrs
mov ax, cs:[bx-2];Ending value
mov bx, cs:[bx-6];Ptr to loop ctrl var
inc wp [bx] ;Bump up loop ctrl
cmp ax, [bx] ;Is end val < loop ctrl?
jl QuitLoop

; If we get here, the loop control variable is less than or equal 
; to the ending value. So we need to repeat the loop one more time.
; Copy ForStmt’s return address over our own and then return, 
; leaving ForStmt’s activation record intact.

mov ax, [bp+6] ;ForStmt’s return address
mov [bp+2], ax ;Overwrite our return address
pop bx
pop ax
pop bp ;Return to start of loop body
ret

; If we get here, the loop control variable is greater than the 
; ending value, so we need to quit the loop (by returning to Next’s 
; return address) and remove ForStmt’s activation record.

QuitLoop: pop bx
pop ax
pop bp
ret 4

Next endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

call ForStmt
word I,1,5
call ForStmt
word J,2,4
printf
byte “I=%d, J=%d\n”,0
dword I,J

call Next ;End of J loop
call Next ;End of I loop
print
byte “All Done!”,cr,lf,0

Quit: ExitPgm
Main endp
cseg ends
sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends
zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

The example code in the main program shows that these for loops nest exactly as you
would expect in a high level language like BASIC, Pascal, or C. Of course, this is not a par-
ticularly good way to construct a for loop in assembly language. It is many times slower
than using the standard loop generation techniques (see “Loops” on page 531 for more
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details on that). Of course, if you don’t care about speed, this is a perfectly good way to
implement a loop. It is certainly easier to read and understand than the traditional meth-
ods for creating a 

 

for

 

 loop. For another (more efficient) implementation of the 

 

for

 

 loop,
check out the 

 

ForLp

 

 macros in Chapter Eight (see “A Sample Macro to Implement For
Loops” on page 409).

The code stream is a very convenient place to pass parameters. The UCR Standard
Library makes considerable use of this parameter passing mechanism to make it easy to
call certain routines. 

 

Printf

 

 is, perhaps, the most complex example, but other examples
(especially in the string library) abound. 

Despite the convenience, there are some disadvantages to passing parameters in the
code stream. First, if you fail to provide the exact number of parameters the procedure
requires, the subroutine will get very confused. Consider the UCR Standard Library 

 

print

 

routine. It prints a string of characters up to a zero terminating byte and then returns con-
trol to the first instruction following the zero terminating byte. If you leave off the zero ter-
minating byte, the 

 

print

 

 routine happily prints the following opcode bytes as ASCII
characters until it finds a zero byte. Since zero bytes often appear in the middle of an
instruction, the 

 

print

 

 routine might return control into the middle of some other instruc-
tion. This will probably crash the machine. Inserting an extra zero, which occurs more
often than you might think, is another problem programmers have with the 

 

print

 

 routine.
In such a case, the 

 

print

 

 routine would return upon encountering the first zero byte and
attempt to execute the following ASCII characters as machine code. Once again, this usu-
ally crashes the machine.

Another problem with passing parameters in the code stream is that it takes a little
longer to access such parameters. Passing parameters in the registers, in global variables,
or on the stack is slightly more efficient, especially in short routines. Nevertheless, access-
ing parameters in the code stream isn’t extremely slow, so the convenience of such param-
eters may outweigh the cost. Furthermore, many routines (

 

print

 

 is a good example) are so
slow anyway that a few extra microseconds won’t make any difference.

 

11.5.11 Passing Parameters via a Parameter Block

 

Another way to pass parameters in memory is through a 

 

parameter block

 

. A parameter
block is a set of contiguous memory locations containing the parameters. To access such
parameters, you would pass the subroutine a pointer to the parameter block. Consider the
subroutine from the previous section that adds J and K together, storing the result in I; the
code that passes these parameters through a parameter block might be

Calling sequence:

 

ParmBlock dword I
I word ? ;I, J, and K must appear in
J word ? ; this order.
K word ?

 

 .
 .
 .

 

les bx, ParmBlock
call AddEm

 

 .
 .
 .

 

AddEm proc near
push ax
mov ax, es:2[bx] ;Get J’s value
add ax, es:4[bx] ;Add in K’s value
mov es:[bx], ax ;Store result in I
pop ax
ret

AddEm endp

 

Note that you must allocate the three parameters in contiguous memory locations. 
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This form of parameter passing works well when passing several parameters by refer-
ence, because you can initialize pointers to the parameters directly within the assembler.
For example, suppose you wanted to create a subroutine 

 

rotate

 

 to which you pass four
parameters by reference. This routine would copy the second parameter to the first, the
third to the second, the fourth to the third, and the first to the fourth. Any easy way to
accomplish this in assembly is

 

; Rotate- On entry, BX points at a parameter block in the data
; segment that points at four far pointers. This code
; rotates the data referenced by these pointers.

Rotate proc near
push es ;Need to preserve these
push si ; registers
push ax

les si, [bx+4] ;Get ptr to 2nd var
mov ax, es:[si] ;Get its value
les si, [bx] ;Get ptr to 1st var
xchg ax, es:[si] ;2nd->1st, 1st->ax
les si, [bx+12] ;Get ptr to 4th var
xchg ax, es:[si] ;1st->4th, 4th->ax
les si, [bx+8] ;Get ptr to 3rd var
xchg ax, es:[si] ;4th->3rd, 3rd->ax
les si, [bx+4] ;Get ptr to 2nd var
mov es:[si], ax ;3rd -> 2nd

pop ax
pop si
pop es
ret

Rotate endp

 

To call this routine, you pass it a pointer to a group of four far pointers in the 

 

bx

 

 regis-
ter. For example, suppose you wanted to rotate the first elements of four different arrays,
the second elements of those four arrays, and the third elements of those four arrays. You
could do this with the following code:

 

lea bx, RotateGrp1
call Rotate
lea bx, RotateGrp2
call Rotate
lea bx, RotateGrp3
call Rotate

 

 .
 .
 .

 

RotateGrp1 dword ary1[0], ary2[0], ary3[0], ary4[0]
RotateGrp2 dword ary1[2], ary2[2], ary3[2], ary4[2]
RotateGrp3 dword ary1[4], ary2[4], ary3[4], ary4[4]

 

Note that the pointer to the parameter block is itself a parameter. The examples in this
section pass this pointer in the registers. However, you can pass this pointer anywhere
you would pass any other reference parameter – in registers, in global variables, on the
stack, in the code stream, even in another parameter block! Such variations on the theme,
however, will be left to your own imagination. As with any parameter, the best place to
pass a pointer to a parameter block is in the registers. This text will generally adopt that
policy.

Although beginning assembly language programmers rarely use parameter blocks,
they certainly have their place. Some of the IBM PC BIOS and MS-DOS functions use this
parameter passing mechanism. Parameter blocks, since you can initialize their values dur-
ing assembly (using 

 

byte

 

, 

 

word

 

, etc.), provide a fast, efficient way to pass parameters to a
procedure.

Of course, you can pass parameters by value, reference, value-returned, result, or by
name in a parameter block. The following piece of code is a modification of the 

 

Rotate

 

 pro-
cedure above where the first parameter is passed by value (its value appears inside the
parameter block), the second is passed by reference, the third by value-returned, and the
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fourth by name (there is no pass by result since 

 

Rotate

 

 needs to read and write all values).
For simplicity, this code uses near pointers and assumes all variables appear in the data
segment:

 

; Rotate- On entry, DI points at a parameter block in the data
; segment that points at four pointers. The first is
; a value parameter, the second is passed by reference,
; the third is passed by value/return, the fourth is
; passed by name.

Rotate proc near
push si ;Used to access ref parms
push ax ;Temporary
push bx ;Used by pass by name parm
push cx ;Local copy of val/ret parm

mov si, [di+4] ;Get a copy of val/ret parm
mov cx, [si]

mov ax, [di] ;Get 1st (value) parm
call word ptr [di+6] ;Get ptr to 4th var
xchg ax, [bx] ;1st->4th, 4th->ax
xchg ax, cx ;4th->3rd, 3rd->ax
mov bx, [di+2] ;Get adrs of 2nd (ref) parm
xchg ax, [bx] ;3rd->2nd, 2nd->ax
mov [di], ax ;2nd->1st

mov bx, [di+4] ;Get ptr to val/ret parm
mov [bx], cx ;Save val/ret parm away.

pop cx
pop bx
pop ax
pop si
ret

Rotate endp

 

A reasonable example of a call to this routine might be:

 

I word 10
J word 15
K word 20
RotateBlk word 25, I, J, KThunk

 

 .
 .
 .

 

lea di, RotateBlk
call Rotate

 

 .
 .
 .

 

KThunk proc near
lea bx, K
ret

KThunk endp

 

11.6 Function Results

 

Functions return a result, which is nothing more than a result parameter. In assembly
language, there are very few differences between a procedure and a function. That is prob-
ably why there aren’t any “

 

func

 

” or “

 

endf

 

” directives. Functions and procedures are usu-
ally different in HLLs, function calls appear only in expressions, subroutine calls as
statements

 

7

 

. Assembly language doesn’t distinguish between them. 

You can return function results in the same places you pass and return parameters.
Typically, however, a function returns only a single value (or single data structure) as the

 

7. “C” is an exception to this rule. C’s procedures and functions are all called functions. PL/I is another exception.
In PL/I, they’re all called procedures.
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function result. The methods and locations used to return function results is the subject of
the next three sections.

 

11.6.1 Returning Function Results in a Register

 

Like parameters, the 80x86’s registers are the best place to return function results. The

 

getc

 

 routine in the UCR Standard Library is a good example of a function that returns a
value in one of the CPU’s registers. It reads a character from the keyboard and returns the
ASCII code for that character in the 

 

al

 

 register. Generally, functions return their results in
the following registers:

 

Use First Last 
Bytes:

 

al, ah, dl, dh, cl, ch, bl, bh

 

 
Words:

 

ax, dx, cx, si, di, bx

 

 
Double words:

 

dx:ax

 

On pre-80386

 

eax, edx, ecx, esi, edi, ebx

 

On 80386 and later.
16-bitOffsets:

 

bx, si, di, dx

 

32-bit Offsets

 

ebx, esi , edi, eax, ecx, edx

 

Segmented Pointers:

 

es:di, es:bx, dx:ax, es:si 

 

Do not use DS.

 

Once again, this table represents general guidelines. If you’re so inclined, you could
return a double word value in (

 

cl, dh, al, bh

 

). If you’re returning a function result in some
registers, you shouldn’t save and restore those registers. Doing so would defeat the whole
purpose of the function.

 

11.6.2 Returning Function Results on the Stack

 

Another good place where you can return function results is on the stack. The idea
here is to push some dummy values onto the stack to create space for the function result.
The function, before leaving, stores its result into this location. When the function returns
to the caller, it pops everything off the stack except this function result. Many HLLs use
this technique (although most HLLs on the IBM PC return function results in the regis-
ters). The following code sequences show how values can be returned on the stack:

 

function PasFunc(i,j,k:integer):integer;
begin

PasFunc := i+j+k;
end;

m := PasFunc(2,n,l);

 

In assembly:

 

PasFunc_rtn equ 10[bp]
PasFunc_i equ 8[bp]
PasFunc_j equ 6[bp]
PasFunc_k equ 4[bp]

PasFunc proc near
push bp
mov bp, sp
push ax
mov ax, PasFunc_i
add ax, PasFunc_j
add ax, PasFunc_k
mov PasFunc_rtn, ax
pop ax
pop bp
ret 6

PasFunc endp
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Calling sequence:

 

push ax ;Space for function return result
mov ax, 2
push ax
push n
push l
call PasFunc
pop ax ;Get function return result

 

On an 80286 or later processor you could also use the code:

 

push ax ;Space for function return result
push 2
push n
push l
call PasFunc
pop ax ;Get function return result

 

Although the caller pushed eight bytes of data onto the stack, PasFunc only removes
six. The first “parameter” on the stack is the function result. The function must leave this
value on the stack when it returns.

 

11.6.3 Returning Function Results in Memory Locations

 

Another reasonable place to return function results is in a known memory location.
You can return function values in global variables or you can return a pointer (presumably
in a register or a register pair) to a parameter block. This process is virtually identical to
passing parameters to a procedure or function in global variables or via a parameter
block. 

Returning parameters via a pointer to a parameter block is an excellent way to return
large data structures as function results. If a function returns an entire array, the best way
to return this array is to allocate some storage, store the data into this area, and leave it up
to the calling routine to deallocate the storage. Most high level languages that allow you
to return large data structures as function results use this technique.

Of course, there is very little difference between returning a function result in memory
and the pass by result parameter passing mechanism. See “Pass by Result” on page 576
for more details.

 

11.7 Side Effects

 

A

 

 side effect 

 

is any computation or operation by a procedure that isn’t the primary pur-
pose of that procedure. For example, if you elect not to preserve all affected registers
within a procedure, the modification of those registers is a side effect of that procedure.
Side effect programming, that is, the practice of using a procedure’s side effects, is very
dangerous. All too often a programmer will rely on a side effect of a procedure. Later
modifications may change the side effect, invalidating all code relying on that side effect.
This can make your programs hard to debug and maintain. Therefore, you should avoid
side effect programming. 

Perhaps some examples of side effect programming will help enlighten you to the dif-
ficulties you may encounter. The following procedure zeros out an array. For efficiency
reasons, it makes the caller responsible for preserving necessary registers. As a result, one
side effect of this procedure is that the 

 

bx

 

 and 

 

cx

 

 registers are modified. In particular, the 

 

cx

 

register contains zero upon return.
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ClrArray proc near
lea bx, array
mov cx, 32

ClrLoop: mov word ptr [bx], 0
inc bx
inc bx
loop ClrLoop
ret

ClrArray endp

 

If your code expects 

 

cx

 

 to contain zero after the execution of this subroutine, you
would be relying on a side effect of the 

 

ClrArray

 

 procedure. The main purpose behind this
code is zeroing out an array, not setting the 

 

cx

 

 register to zero. Later, if you modify the

 

ClrArray

 

 procedure to the following, your code that depends upon 

 

cx

 

 containing zero
would no longer work properly:

 

ClrArray proc near
lea bx, array

ClrLoop: mov word ptr [bx], 0
inc bx
inc bx
cmp bx, offset array+32
jne ClrLoop
ret

ClrArray endp

 

So how can you avoid the pitfalls of side effect programming in your procedures? By
carefully structuring your code and paying close attention to exactly how your calling
code and the subservient procedures interface with one another. These rules can help you
avoid problems with side effect programming: 

• Always properly document the input and output conditions of a proce-
dure. Never rely on any other entry or exit conditions other than these
documented operations. 

• Partition your procedures so that they compute a single value or execute
a single operation. Subroutines that do two or more tasks are, by defini-
tion, producing side effects unless every invocation of that subroutine
requires all the computations and operations. 

• When updating the code in a procedure, make sure that it still obeys the
entry and exit conditions. If not, either modify the program so that it does
or update the documentation for that procedure to reflect the new entry
and exit conditions. 

• Avoid passing information between routines in the CPU’s flag register.
Passing an error status in the carry flag is about as far as you should ever
go. Too many instructions affect the flags and it’s too easy to foul up a
return sequence so that an important flag is modified on return. 

• Always save and restore all registers a procedure modifies. 
• Avoid passing parameters and function results in global variables. 
• Avoid passing parameters by reference (with the intent of modifying

them for use by the calling code).

These rules, like all other rules, were meant to be broken. Good programming prac-
tices are often sacrificed on the altar of efficiency. There is nothing wrong with breaking
these rules as often as you feel necessary. However, your code will be difficult to debug
and maintain if you violate these rules often. But such is the price of efficiency

 

8

 

. Until you
gain enough experience to make a judicious choice about the use of side effects in your
programs, you should avoid them. More often than not, the use of a side effect will cause
more problems than it solves.

 

8. This is not just a snide remark. Expert programmers who have to wring the last bit of performance out of a sec-
tion of code often resort to poor programming practices in order to achieve their goals. They are prepared, how-
ever, to deal with the problems that are often encountered in such situations and they are a lot more careful when
dealing with such code.
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11.8 Local Variable Storage

 

Sometimes a procedure will require temporary storage, that it no longer requires
when the procedure returns. You can easily allocate such local variable storage on the
stack. 

The 80x86 supports local variable storage with the same mechanism it uses for param-
eters – it uses the 

 

bp

 

 and 

 

sp

 

 registers to access and allocate such variables. Consider the
following Pascal program:

 

program LocalStorage;
var i,j,k:integer;

c: array [0..20000] of integer;

procedure Proc1;
var a:array [0..30000] of integer;

i:integer;
begin

{Code that manipulates a and i}

end;

procedure Proc2;
var b:array [0..20000] of integer;

i:integer;
begin

{Code that manipulates b and i}

end;

begin

{main program that manipulates i,j,k, and c}

end.

 

Pascal normally allocates global variables in the data segment and local variables in
the stack segment. Therefore, the program above allocates 50,002 words of local storage
(30,001 words in 

 

Proc1

 

 and 20,001 words in 

 

Proc2

 

). This is above and beyond the other
data on the stack (like return addresses). Since 50,002 words of storage consumes 100,004
bytes of storage you have a small problem – the 80x86 CPUs in real mode limit the stack
segment to 65,536 bytes. Pascal avoids this problem by dynamically allocating local stor-
age upon entering a procedure and deallocating local storage upon return. Unless 

 

Proc1

 

and 

 

Proc2

 

 are both active (which can only occur if 

 

Proc1

 

 calls 

 

Proc2

 

 or vice versa), there is
sufficient storage for this program. You don’t need the 30,001 words for 

 

Proc1

 

 and the
20,001 words for 

 

Proc2

 

 at the same time. So 

 

Proc1

 

 allocates and uses 60,002 bytes of stor-
age, then deallocates this storage and returns (freeing up the 60,002 bytes). Next, 

 

Proc2

 

allocates 40,002 bytes of storage, uses them, deallocates them, and returns to its caller.
Note that 

 

Proc1

 

 and 

 

Proc2

 

 share many of the same memory locations. However, they do so
at different times. As long as these variables are temporaries whose values you needn’t
save from one invocation of the procedure to another, this form of local storage allocation
works great. 

The following comparison between a Pascal procedure and its corresponding assem-
bly language code will give you a good idea of how to allocate local storage on the stack:

 

procedure LocalStuff(i,j,k:integer);
var l,m,n:integer; {local variables}
begin

l := i+2;
j := l*k+j;
n := j-l;
m := l+j+n;

end;

 

 Calling sequence:
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LocalStuff(1,2,3);

 

 Assembly language code:

 

LStuff_i equ 8[bp]
LStuff_j equ 6[bp]
LStuff_k equ 4[bp]
LStuff_l equ -4[bp]
LStuff_m equ -6[bp]
LStuff_n equ -8[bp]

LocalStuff proc near
push bp
mov bp, sp
push ax
sub sp, 6 ;Allocate local variables.

L0: mov ax, LStuff_i
add ax, 2
mov LStuff_l, ax
mov ax, LStuff_l
mul LStuff_k
add ax, LStuff_j
mov LStuff_j, ax
sub ax, LStuff_l ;AX already contains j
mov LStuff_n, ax
add ax, LStuff_l ;AX already contains n
add ax, LStuff_j
mov LStuff_m, ax

add sp, 6 ;Deallocate local storage
pop ax
pop bp
ret 6

LocalStuff endp

 

The

 

   sub sp, 6   

 

instruction makes room for three words on the stack. You can allocate

 

l, m

 

, and 

 

n 

 

in these three words. You can reference these variables by indexing off the 

 

bp

 

register using negative offsets (see the code above). Upon reaching the statement at label

 

L0

 

, the stack looks something like Figure 11.15. 

This code uses the matching 

 

  add sp, 6  

 

instruction at the end of the procedure to deal-
locate the local storage. The value you add to the stack pointer must exactly match the
value you subtract when allocating this storage. If these two values don’t match, the stack
pointer upon entry to the routine will not match the stack pointer upon exit; this is like
pushing or popping too many items inside the procedure. 

Unlike parameters, that have a fixed offset in the activation record, you can allocate
local variables in any order. As long as you are consistent with your location assignments,
you can allocate them in any way you choose. Keep in mind, however, that the 80x86 sup-
ports two forms of the 

 

disp[bp] 

 

addressing mode. It uses a one byte displacement when it is
in the range -128..+127. It uses a two byte displacement for values in the range
-32,768..+32,767. Therefore, you should place all primitive data types and other small
structures close to the base pointer, so you can use single byte displacements. You should
place large arrays and other data structures below the smaller variables on the stack. 

Most of the time you don’t need to worry about allocating local variables on the stack.
Most programs don’t require more than 64K of storage. The CPU processes global vari-
ables faster than local variables. There are two situations where allocating local variables
as globals in the data segment is not practical: when interfacing assembly language to
HLLs like Pascal, and when writing recursive code. When interfacing to Pascal, your
assembly language code may not have a data segment it can use, recursion often requires
multiple instances of the same local variable.
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11.9 Recursion

 

Recursion occurs when a procedure calls itself. The following, for example, is a recur-
sive procedure:

 

Recursive proc
call Recursive
ret

Recursive endp

 

Of course, the CPU will never execute the 

 

ret

 

 instruction at the end of this procedure.
Upon entry into 

 

Recursive

 

, this procedure will immediately call itself again and control
will never pass to the 

 

ret

 

 instruction. In this particular case, run away recursion results in
an infinite loop.

In many respects, recursion is very similar to iteration (that is, the repetitive execution
of a loop). The following code also produces an infinite loop:

 

Recursive proc
jmp Recursive
ret

Recursive endp

 

There is, however, one major difference between these two implementations. The former
version of 

 

Recursive

 

 pushes a return address onto the stack with each invocation of the
subroutine. This does not happen in the example immediately above (since the 

 

jmp

 

instruction does not affect the stack). 

Like a looping structure, recursion requires a termination condition in order to stop
infinite recursion. Recursive could be rewritten with a termination condition as follows:

 

Figure 11.16 The Stack upon Entering the Next Procedure
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Recursive proc
dec ax
jz QuitRecurse
call Recursive

QuitRecurse: ret
Recursive endp

 

This modification to the routine causes 

 

Recursive

 

 to call itself the number of times
appearing in the 

 

ax

 

 register. On each call, 

 

Recursive

 

 decrements the 

 

ax

 

 register by one and
calls itself again. Eventually, 

 

Recursive

 

 decrements 

 

ax

 

 to zero and returns. Once this hap-
pens, the CPU executes a string of 

 

ret

 

 instructions until control returns to the original call
to 

 

Recursive

 

. 

So far, however, there hasn’t been a real need for recursion. After all, you could effi-
ciently code this procedure as follows:

 

Recursive proc
RepeatAgain: dec ax

jnz RepeatAgain
ret

Recursive endp

 

Both examples would repeat the body of the procedure the number of times passed in
the 

 

ax

 

 register

 

9

 

. As it turns out, there are only a few recursive algorithms that you cannot
implement in an iterative fashion. However, many recursively implemented algorithms
are more efficient than their iterative counterparts and most of the time the recursive form
of the algorithm is much easier to understand. 

The quicksort algorithm is probably the most famous algorithm that almost always
appears in recursive form. A Pascal implementation of this algorithm follows:

 

procedure quicksort(var a:ArrayToSort; Low,High: integer);

procedure sort(l,r: integer);
var i,j,Middle,Temp: integer;
begin

i:=l;
j:=r;
Middle:=a[(l+r) DIV 2];
repeat

while (a[i] < Middle) do i:=i+1;
while (Middle < a[j]) do j:=j-1;
if (i <= j) then begin

Temp:=a[i];
a[i]:=a[j];
a[j]:=Temp;
i:=i+1;
j:=j-1;

end;

until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);

end;

begin {quicksort};

sort(Low,High);

end;

 

The 

 

sort

 

 subroutine is the recursive routine in this package. Recursion occurs at the last
two 

 

if 

 

statements in the 

 

sort

 

 procedure. 

In assembly language, the sort routine looks something like this: 

 

9. Although the latter version will do it considerably faster since it doesn’t have the overhead of the CALL/RET
instructions.
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include stdlib.a
includelib stdlib.lib

cseg segment
assume cs:cseg, ds:cseg, ss:sseg, es:cseg

; Main program to test sorting routine

Main proc
mov ax, cs
mov ds, ax
mov es, ax

mov ax, 0
push ax
mov ax, 31
push ax
call sort

ExitPgm ;Return to DOS
Main endp

; Data to be sorted

a word 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16 
word 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

; procedure sort (l,r:integer)
; Sorts array A between indices l and r

l equ 6[bp]
r equ 4[bp]
i equ -2[bp]
j equ -4[bp]

sort proc near
push bp
mov bp, sp
sub sp, 4 ;Make room for i and j. 

mov ax, l ;i := l
mov i, ax
mov bx, r ;j := r

mov j, bx

; Note: This computation of the address of a[(l+r) div 2] is kind
; of strange. Rather than divide by two, then multiply by two
; (since A is a word array), this code simply clears the L.O. bit
; of BX.

add bx, l ;Middle := a[(l+r) div 2]
and bx, 0FFFEh
mov ax, a[bx] ;BX*2, because this is a word

; ; array,nullifies the “div 2”
; ; above.
;
; Repeat until i > j: Of course, I and J are in BX and SI.

lea bx, a ;Compute the address of a[i]
add bx, i ; and leave it in BX.
add bx, i

lea si, a ;Compute the address of a[j]
add si, j ; and leave it in SI.
add si, j

RptLp:

; While (a [i] < Middle) do i := i + 1;

sub bx, 2 ;We’ll increment it real 
soon.
WhlLp1: add bx, 2

cmp ax, [bx] ;AX still contains middle
jg WhlLp1

; While (Middle < a[j]) do j := j-1
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add si, 2 ;We’ll decrement it in loop
WhlLp2: add si, 2

cmp ax, [si] ;AX still contains middle
jl WhlLp2 ; value.
cmp bx, si
jnle SkipIf

; Swap, if necessary

mov dx, [bx]
xchg dx, [si]
xchg dx, [bx]

add bx, 2 ;Bump by two (integer values)
sub si, 2

SkipIf: cmp bx, si
jng RptLp

; Convert SI and BX back to I and J

lea ax, a
sub bx, ax
shr bx, 1
sub si, ax

shrsi, 1

; Now for the recursive part:

mov ax, l
cmp ax, si
jnl NoRec1
push ax
push si
call sort

NoRec1: cmp bx, r
jnl NoRec2
push bx
push r
call sort

NoRec2: mov sp, bp
pop bp
ret 4

Sort endp

cseg ends
sseg segment stack ‘stack’

word 256 dup (?)
sseg ends

end main

 

 Other than some basic optimizations (like keeping several variables in registers), this
code is almost a literal translation of the Pascal code. Note that the local variables 

 

i

 

 and 

 

j

 

aren’t necessary in this assembly language code (we could use registers to hold their val-
ues). Their use simply demonstrates the allocation of local variables on the stack. 

There is one thing you should keep in mind when using recursion – recursive routines
can eat up a considerable stack space. Therefore, when writing recursive subroutines,
always allocate sufficient memory in your stack segment. The example above has an
extremely anemic 512 byte stack space, however, it only sorts 32 numbers therefore a 512
byte stack is sufficient. In general, you won’t know the depth to which recursion will take
you, so allocating a large block of memory for the stack may be appropriate. 

There are several efficiency considerations that apply to recursive procedures. For
example, the second (recursive) call to 

 

sort

 

 in the assembly language code above need not
be a recursive call. By setting up a couple of variables and registers, a simple 

 

jmp

 

 instruc-
tion can can replace the pushes and the recursive call. This will improve the performance
of the quicksort routine (quite a bit, actually) and will reduce the amount of memory the
stack requires. A good book on algorithms, such as D.E. Knuth’s The Art of Computer
Programming, Volume 3, would be an excellent source of additional material on quick-
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sort. Other texts on algorithm complexity, recursion theory, and algorithms would be a
good place to look for ideas on efficiently implementing recursive algorithms.

 

11.10 Sample Program

 

The following sample program demonstrates several concepts appearing in this chap-
ter, most notably, passing parameters on the stack. This program (Pgm11_1.asm appearing
on the companion CD-ROM) manipulates the PC’s memory-mapped text video display
screen (at address B800:0 for color displays, B000:0 for monochrome displays). It provides
routines that “capture” all the data on the screen to an array, write the contents of an array
to the screen, clear the screen, scroll one line up or down, position the cursor at an (X,Y)
coordinate, and retrieve the current cursor position. 

Note that this code was written to demonstrate the use of parameters and local vari-
ables. Therefore, it is rather inefficient. As the comments point out, many of the functions
this package provides could be written to run much faster using the 80x86 string instruc-
tions. See the laboratory exercises for a different version of some of these functions that is
written in such a fashion. Also note that this code makes some calls to the PC’s BIOS to set
and obtain the cursor position as well as clear the screen. See the chapter on BIOS and
DOS for more details on these BIOS calls.

 

; Pgm11_1.asm
;
; Screen Aids.
;
; This program provides some useful screen manipulation routines
; that let you do things like position the cursor, save and restore
; the contents of the display screen, clear the screen, etc.
;
; This program is not very efficient.  It was written to demonstrate
; parameter passing, use of local variables, and direct conversion of
; loops to assembly language.  There are far better ways of doing
; what this program does (running about 5-10x faster) using the 80x86
; string instructions.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386  ;Comment out these two statements
option segment:use16 ; if you are not using an 80386.

; ScrSeg- This is the video screen's segment address.  It should be
; B000 for mono screens and B800 for color screens.

ScrSeg = 0B800h

dseg segment para public 'data'

XPosn word ? ;Cursor X-Coordinate (0..79)
YPosn word ? ;Cursor Y-Coordinate (0..24)

; The following array holds a copy of the initial screen data.

SaveScr word 25 dup (80 dup (?))

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg
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; Capture- Copies the data on the screen to the array passed
; by reference as a parameter.
;
; procedure Capture(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
;     for x := 0 to 79 do
; SCREEN[y,x] := ScrCopy[y,x];
; end;
;
;
; Activation record for Capture:
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  ScrCopy Seg Adrs     |
; --                     --
; | ScrCopy offset Adrs   |
; -------------------------
; | Return Adrs (near)    |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

ScrCopy_cap textequ <dword ptr [bp+4]>
X_cap textequ <word ptr [bp-2]>
Y_cap textequ <word ptr [bp-4]>

Capture proc
push bp
mov bp, sp
sub sp, 4 ;Allocate room for locals.

push es
push ds
push ax
push bx
push di

mov bx, ScrSeg ;Set up pointer to SCREEN
mov es, bx ; memory (ScrSeg:0).

lds di, ScrCopy_cap ;Get ptr to capture array.

mov Y_cap, 0
YLoop: mov X_cap, 0
XLoop: mov bx, Y_cap

imul bx, 80 ;Screen memory is a 25x80 array
add bx, X_cap ; stored in row major order
add bx, bx ; with two bytes per element.

mov ax, es:[bx] ;Read character code from screen.
mov [di][bx], ax ;Store away into capture array.

inc X_Cap ;Repeat for each character on this
cmp X_Cap, 80 ; row of characters (each character
jb XLoop ; in the row is two bytes).

inc Y_Cap ;Repeat for each row on the screen.
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cmp Y_Cap, 25
jb YLoop

pop di
pop bx
pop ax
pop ds
pop es
mov sp, bp
pop bp
ret 4

Capture endp

; Fill- Copies array passed by reference onto the screen.
;
; procedure Fill(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
;     for x := 0 to 79 do
; ScrCopy[y,x] := SCREEN[y,x];
; end;
;
;
; Activation record for Fill:
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  ScrCopy Seg Adrs     |
; --                     --
; | ScrCopy offset Adrs   |
; -------------------------
; | Return Adrs (near)    |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

ScrCopy_fill textequ <dword ptr [bp+4]>
X_fill textequ <word ptr [bp-2]>
Y_fill textequ <word ptr [bp-4]>

Fill proc
push bp
mov bp, sp
sub sp, 4

push es
push ds
push ax
push bx
push di

mov bx, ScrSeg ;Set up pointer to SCREEN
mov es, bx ; memory (ScrSeg:0).

lds di, ScrCopy_fill ;Get ptr to data array.

mov Y_Fill, 0
YLoop: mov X_Fill, 0



 

Procedures and Functions

Page 613

 

XLoop: mov bx, Y_Fill
imul bx, 80 ;Screen memory is a 25x80 array
add bx, X_Fill ; stored in row major order
add bx, bx ; with two bytes per element.

mov ax, [di][bx] ;Store away into capture array.
mov es:[bx], ax ;Read character code from screen.

inc X_Fill ;Repeat for each character on this
cmp X_Fill, 80 ; row of characters (each character
jb XLoop ; in the row is two bytes).

inc Y_Fill ;Repeat for each row on the screen.
cmp Y_Fill, 25
jb YLoop

pop di
pop bx
pop ax
pop ds
pop es
mov sp, bp
pop bp
ret 4

Fill endp

; Scroll_up- Scrolls the screen up on line.  It does this by copying the 
; second line to the first, the third line to the second, the 
; fourth line to the third, etc.
;
; procedure Scroll_up;
; var x,y:integer;
; begin
; for y := 1 to 24 do
;     for x := 0 to 79 do
; SCREEN[Y-1,X] := SCREEN[Y,X];
; end;
;
; Activation record for Scroll_up:
;
; |                       |
; | Previous stk contents |
; -------------------------
; | Return Adrs (near)    |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

X_su textequ <word ptr [bp-2]>
Y_su textequ <word ptr [bp-4]>

Scroll_up proc
push bp
mov bp, sp
sub sp, 4 ;Make room for X, Y.

push ds
push ax
push bx

mov ax, ScrSeg
mov ds, ax
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mov Y_su, 0
su_Loop1: mov X_su, 0

su_Loop2: mov bx, Y_su ;Compute index into screen
imul bx, 80 ; array.
add bx, X_su
add bx, bx ;Remember, this is a word array.

mov ax, [bx+160] ;Fetch word from source line.
mov [bx], ax ;Store into dest line.

inc X_su
cmp X_su, 80
jb su_Loop2

inc Y_su
cmp Y_su, 80
jb su_Loop1

pop bx
pop ax
pop ds
mov sp, bp
pop bp
ret

Scroll_up endp

; Scroll_dn- Scrolls the screen down one line.  It does this by copying the 
; 24th line to the 25th, the 23rd line to the 24th, the 22nd line 
; to the 23rd, etc.
;
; procedure Scroll_dn;
; var x,y:integer;
; begin
; for y := 23 downto 0 do
;     for x := 0 to 79 do
; SCREEN[Y+1,X] := SCREEN[Y,X];
; end;
;
; Activation record for Scroll_dn:
;
; |                       |
; | Previous stk contents |
; -------------------------
; | Return Adrs (near)    |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

X_sd textequ <word ptr [bp-2]>
Y_sd textequ <word ptr [bp-4]>

Scroll_dn proc
push bp
mov bp, sp
sub sp, 4 ;Make room for X, Y.

push ds
push ax
push bx

mov ax, ScrSeg
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mov ds, ax
mov Y_sd, 23

sd_Loop1: mov X_sd, 0

sd_Loop2: mov bx, Y_sd ;Compute index into screen
imul bx, 80 ; array.
add bx, X_sd
add bx, bx ;Remember, this is a word array.

mov ax, [bx] ;Fetch word from source line.
mov [bx+160], ax ;Store into dest line.

inc X_sd
cmp X_sd, 80
jb sd_Loop2

dec Y_sd
cmp Y_sd, 0
jge sd_Loop1

pop bx
pop ax
pop ds
mov sp, bp
pop bp
ret

Scroll_dn endp

; GotoXY- Positions the cursor at the specified X, Y coordinate.
;
; procedure gotoxy(x,y:integer);
; begin
; BIOS(posnCursor,x,y);
; end;
;
; Activation record for GotoXY
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Return Adrs (near)    |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; | Registers, etc.       |
; ------------------------- <- SP

X_gxy textequ <byte ptr [bp+6]>
Y_gxy textequ <byte ptr [bp+4]>

GotoXY proc
push bp
mov bp, sp
push ax
push bx
push dx

mov ah, 2 ;Magic BIOS value for gotoxy.
mov bh, 0 ;Display page zero.
mov dh, Y_gxy ;Set up BIOS (X,Y) parameters.
mov dl, X_gxy
int 10h ;Make the BIOS call.
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pop dx
pop bx
pop ax
mov sp, bp
pop bp
ret 4

GotoXY endp

; GetX- Returns cursor X-Coordinate in the AX register.

GetX proc
push bx
push cx
push dx

mov ah, 3 ;Read X, Y coordinates from
mov bh, 0 ; BIOS
int 10h

mov al, dl ;Return X coordinate in AX.
mov ah, 0

pop dx
pop cx
pop bx
ret

GetX endp

; GetY- Returns cursor Y-Coordinate in the AX register.

GetY proc
push bx
push cx
push dx

mov ah, 3
mov bh, 0
int 10h

mov al, dh ;Return Y Coordinate in AX.
mov ah, 0

pop dx
pop cx
pop bx
ret

GetY endp

; ClearScrn- Clears the screen and positions the cursor at (0,0).
;
; procedure ClearScrn;
; begin
; BIOS(Initialize)
; end;

ClearScrn proc
push ax
push bx
push cx
push dx

mov ah, 6 ;Magic BIOS number.
mov al, 0 ;Clear entire screen.
mov bh, 07 ;Clear with black spaces.
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mov cx, 0000;Upper left corner is (0,0)
mov dl, 79 ;Lower X-coordinate
mov dh, 24 ;Lower Y-coordinate
int 10h ;Make the BIOS call.

push 0 ;Position the cursor to (0,0)
push 0 ; after the call.
call GotoXY

pop dx
pop cx
pop bx
pop ax
ret

ClearScrn endp

; A short main program to test out the above:

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Save the screen as it looks when this program is run.

push seg SaveScr
push offset SaveScr
call Capture

call GetX
mov XPosn, ax

call GetY
mov YPosn, ax

; Clear the screen to prepare for our stuff.

call ClearScrn

; Position the cursor in the middle of the screen and print some stuff.

push 30 ;X value
push 10 ;Y value
call GotoXY

print
byte "Screen Manipulatation Demo",0

push 30
push 11
call GotoXY

print
byte "Press any key to continue",0

getc

; Scroll the screen up two lines

call Scroll_up
call Scroll_up
getc

;Scroll the screen down four lines:

call Scroll_dn
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call Scroll_dn
call Scroll_dn
call Scroll_dn
getc

; Restore the screen to what it looked like prior to this call.

push seg SaveScr
push offset SaveScr
call Fill

push XPosn
push YPosn
call GotoXY

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

11.11 Laboratory Exercises

 

This laboratory exercise demonstrates how a C/C++ program calls some assembly
language functions. This exercise consists of two program units: a Borland C++ program
(Ex11_1.cpp) and a MASM 6.11 program (Ex11_1a.asm). Since you may not have access to
a C++ compiler (and Borland C++ in particular)

 

10

 

, the EX11.EXE file contains a precom-
piled and linked version of these files. If you have a copy of Borland C++ then you can
compile/assemble these files using the makefile that also appears in the Chapter 11 subdi-
rectory.

The C++ program listing appears in Section 11.11.1. This program clears the screen
and then bounces a pound sign (“#”) around the screen until the user presses any key.
Then this program restores the screen to the previous display before running the program
and quits. All screen manipulation, as well as testing for a keypress, is taken care of by
functions written in assembly language. The “extern” statements at the beginning of the
program provide the linkage to these assembly language functions

 

11

 

. There are a few
important things to note about how C/C++ passes parameters to an assembly language
function:

• C++ pushes parameters on the stack in the 

 

reverse

 

 order that they appear
in a parameter list. For example, for the call “

 

f(a,b);

 

” C++ would push b
first and a second. This is opposite of most of the examples in this chapter.

• In C++, the caller is responsible for removing parameters from the stack.
In this chapter, the callee (the function itself) usually removed the param-
eters by specifying some value after the 

 

ret

 

 instruction. Assembly lan-
guage functions that C++ calls must 

 

not

 

 do this.
• C++ on the PC uses different memory models to control whether pointers

and functions are near or far. This particular program uses the 

 

compact

 

10. There is nothing Borland specific in this C++ program. Borland was chosen because it provides an option that
generates well annotated assembly output.
11. The 

 

extern “C” 

 

phrase instructs Borland C++ to generate standard C external names rather than C++ 

 

mangled

 

names. A C external name is the function name with an underscore in front of it (e.g., GotoXY becomes _GotoXY).
C++ completely changes the name to handle overloading and it is difficult to predict the actual name of the cor-
responding assembly language function.
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memory model. This provides for near procedures and far pointers.
Therefore, all calls will be near (with only a two-byte return address on
the stack) and all pointers to data objects will be far.

• Borland C++ requires a function to preserve the segment registers, BP, DI,
and SI. The function need not preserve any other registers. If an assembly
language function needs to return a 16-bit function result to C++, it must
return this value in the AX register.

• See the Borland C++ Programmer’s Guide (or corresponding manual for
your C++ compiler) for more details about the C/C++ and assembly lan-
guage interface.

Most C++ compilers give you the option of generating assembly language output
rather than binary machine code. Borland C++ is nice because it generates nicely anno-
tated assembly output with comments pointing out which C++ statments correspond to a
given sequence of assembly language instructions. The assembly language output of BCC
appears in Section 11.11.2 (This is a slightly edited version to remove some superfluous
information). Look over this code and note that, subject to the rules above, the C++ com-
piler emits code that is very similar to that described throughout this chapter.

The Ex11_1a.asm file (see section 11.11.3) is the actual assembly code the C++ program
calls. This contains the functions for the GotoXY, GetXY, ClrScrn, tstKbd, Capture, Put-
Scrn, PutChar, and PutStr routines that Ex11_1.cpp calls. To avoid legal software distribu-
tion problems, this particular C/C++ program does not include any calls to C/C++
Standard Library functions. Furthermore, it does not use the standard C0m.obj file from
Borland that calls the main program. Borland’s liberal license agreement does 

 

not

 

 allow
one to distribute their librarys and object modules unlinked with other code. The assem-
bly language code provides the necessary I/O routines and it also provides a startup rou-
tine (StartPgm) that call the C++ main program when DOS/Windows transfers control to
the program. By supplying the routines this way, you do not need the Borland libraries or
object code to link these programs together.

One side effect of linking the modules in this fashion is that the compiler, assembler,
and linker cannot store the correct source level debugging information in the .exe file.
Therefore, you will not be able to use CodeView to view the actual source code. Instead,
you will have to work with disassembled machine code. This is where the assembly out-
put from Borland C++ (Ex11_1.asm) comes in handy. As you single step through the main
C++ program you can trace the program flow by looking at the Ex11_1.asm file.

 

For your lab report:

 

 single step through the StartPgm code until it calls the C++ main
function. When this happens, locate the calls to the routines in Ex11_1a.asm. Set break-
points on each of these calls using the F9 key. Run up to each breakpoint and then single
step into the function using the F8 key. Once inside, display the memory locations starting
at SS:SP. Identify each parameter passed on the stack. For reference parameters, you may
want to look at the memory locations whose address appears on the stack. Report your
findings in your lab report.

Include a printout of the Ex11_1.asm file and identify those instructions that push
each parameter onto the stack. At run time, determine the values that each parameter
push sequence pushes onto the stack and include these values in your lab report.

Many of the functions in the assembly file take a considerable amount of time to exe-
cute. Therefore, you should not single step through each of the functions. Instead, make
sure you’ve set up the breakpoints on each of the call instructions in the C++ program and
use the F5 key to run (at full speed) up to the next function call.

 

11.11.1 Ex11_1.cpp

 

extern "C" void GotoXY(unsigned y, unsigned x);
extern "C" void GetXY(unsigned &x, unsigned &y);
extern "C" void ClrScrn();
extern "C" int tstKbd();
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extern "C" void Capture(unsigned ScrCopy[25][80]);
extern "C" void PutScr(unsigned ScrCopy[25][80]);
extern "C" void PutChar(char ch);
extern "C" void PutStr(char *ch);

int main()
{
    unsigned SaveScr[25][80];

    int         dx,
                x,
                dy,
                y;

    long        i;

    unsigned    savex,
                savey;

    GetXY(savex, savey);
    Capture(SaveScr);
    ClrScrn();

    GotoXY(24,0);
    PutStr("Press any key to quit");

    dx = 1;
    dy = 1;
    x = 1;
    y = 1;
    while (!tstKbd())
    {

GotoXY(y, x);
        PutChar('#');

        for (i=0; i<500000; ++i);

        GotoXY(y, x);
        PutChar(' ');

x += dx;
        y += dy;
        if (x >= 79)

{
            x = 78;
            dx = -1;

}
        else if (x <= 0)

{
            x = 1;
            dx = 1;

}

        if (y >= 24)
{

            y = 23;
            dy = -1;

}
        else if (y <= 0)

{
            y = 1;
            dy = 1;

}

    }

    PutScr(SaveScr);
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    GotoXY(savey, savex);
    return 0;
}

 

11.11.2 Ex11_1.asm

 

_TEXT segment byte public 'CODE'
_TEXT ends
DGROUP group _DATA,_BSS

assume cs:_TEXT,ds:DGROUP
_DATA segment word public 'DATA'
d@ label byte
d@w label word
_DATA ends
_BSS segment word public 'BSS'
b@ label byte
b@w label word
_BSS ends

_TEXT segment byte public 'CODE'
   ;
   ; int main()
   ;

assume cs:_TEXT
_main proc near

push bp
mov bp,sp
sub sp,4012
push si
push di

   ;
   ; {
   ;     unsigned SaveScr[25][80];
   ;
   ;     int         dx,
   ;                 x,
   ;                 dy,
   ;                 y;
   ;
   ;     long        i;
   ;
   ;     unsigned    savex,
   ;                 savey;
   ;
   ;
   ;
   ;     GetXY(savex, savey);
   ;

push ss
lea ax,word ptr [bp-12]
push ax
push ss
lea ax,word ptr [bp-10]
push ax
call near ptr _GetXY
add sp,8

   ;
   ;     Capture(SaveScr);
   ;

push ss
lea ax,word ptr [bp-4012]
push ax
call near ptr _Capture
pop cx
pop cx

   ;
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   ;     ClrScrn();
   ;

call near ptr _ClrScrn
   ;
   ;
   ;     GotoXY(24,0);
   ;

xor ax,ax
push ax
mov ax,24
push ax
call near ptr _GotoXY
pop cx
pop cx

   ;
   ;     PutStr("Press any key to quit");
   ;

push ds
mov ax,offset DGROUP:s@
push ax
call near ptr _PutStr
pop cx
pop cx

   ;
   ;
   ;     dx = 1;
   ;

mov word ptr [bp-2],1
   ;
   ;     dy = 1;
   ;

mov word ptr [bp-4],1
   ;
   ;     x = 1;
   ;

mov si,1
   ;
   ;     y = 1;
   ;

mov di,1
jmp @1@422

@1@58:
   ;
   ;     while (!tstKbd())
   ;     {
   ;
   ; GotoXY(y, x);
   ;

push si
push di
call near ptr _GotoXY
pop cx
pop cx

   ;
   ;         PutChar('#');
   ;

mov al,35
push ax
call near ptr _PutChar
pop cx

   ;
   ;
   ;         for (i=0; i<500000; ++i);
   ;

mov word ptr [bp-6],0
mov word ptr [bp-8],0
jmp short @1@114

@1@86:
add word ptr [bp-8],1
adc word ptr [bp-6],0
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@1@114:
cmp word ptr [bp-6],7
jl short @1@86
jne short @1@198
cmp word ptr [bp-8],-24288
jb short @1@86

@1@198:
   ;
   ;
   ;         GotoXY(y, x);
   ;

push si
push di
call near ptr _GotoXY
pop cx
pop cx

   ;
   ;         PutChar(' ');
   ;

mov al,32
push ax
call near ptr _PutChar
pop cx

   ;
   ;
   ;
   ;
   ; x += dx;
   ;

add si,word ptr [bp-2]
   ;
   ;         y += dy;
   ;

add di,word ptr [bp-4]
   ;
   ;         if (x >= 79)
   ;

cmp si,79
jl short @1@254

   ;
   ; {
   ;             x = 78;
   ;

mov si,78
   ;
   ;             dx = -1;
   ;

mov word ptr [bp-2],-1
   ;
   ; }
   ;

jmp short @1@310
@1@254:
   ;
   ;         else if (x <= 0)
   ;

or si,si
jg short @1@310

   ;
   ; {
   ;             x = 1;
   ;

mov si,1
   ;
   ;             dx = 1;
   ;

mov word ptr [bp-2],1
@1@310:
   ;
   ; }
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   ;
   ;         if (y >= 24)
   ;

cmp di,24
jl short @1@366

   ;
   ; {
   ;             y = 23;
   ;

mov di,23
   ;
   ;             dy = -1;
   ;

mov word ptr [bp-4],-1
   ;
   ; }
   ;

jmp short @1@422
@1@366:
   ;
   ;         else if (y <= 0)
   ;

or di,di
jg short @1@422

   ;
   ; {
   ;             y = 1;
   ;

mov di,1
   ;
   ;             dy = 1;
   ;

mov word ptr [bp-4],1
@1@422:

call near ptr _tstKbd
or ax,ax
jne @@0
jmp @1@58

@@0:
   ;
   ; }
   ;
   ;
   ;     }
   ;
   ;     PutScr(SaveScr);
   ;

push ss
lea ax,word ptr [bp-4012]
push ax
call near ptr _PutScr
pop cx
pop cx

   ;
   ;     GotoXY(savey, savex);
   ;

push word ptr [bp-10]
push word ptr [bp-12]
call near ptr _GotoXY
pop cx
pop cx

   ;
   ;     return 0;
   ;

xor ax,ax
jmp short @1@478

@1@478:
   ;
   ; }
   ;
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pop di
pop si
mov sp,bp
pop bp
ret

_main endp

_TEXT ends

_DATA segment word public 'DATA'
s@ label byte

db 'Press any key to quit'
db 0

_DATA ends
_TEXT segment byte public 'CODE'
_TEXT ends

public _main
extrn _PutStr:near
extrn _PutChar:near
extrn _PutScr:near
extrn _Capture:near
extrn _tstKbd:near
extrn _ClrScrn:near
extrn _GetXY:near
extrn _GotoXY:near

_s@ equ s@
end

 

11.11.3 EX11_1a.asm

 

; Assembly code to link with a C/C++ program.
; This code directly manipulates the screen giving C++
; direct access control of the screen.
;
; Note: Like PGM11_1.ASM, this code is relatively inefficient.
; It could be sped up quite a bit using the 80x86 string instructions.
; However, its inefficiency is actually a plus here since we don't
; want the C/C++ program (Ex11_1.cpp) running too fast anyway.
;
;
; This code assumes that Ex11_1.cpp is compiled using the LARGE
; memory model (far procs and far pointers).

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386  ;Comment out these two statements
option segment:use16 ; if you are not using an 80386.

; ScrSeg- This is the video screen's segment address.  It should be
; B000 for mono screens and B800 for color screens.

ScrSeg = 0B800h

_TEXT           segment para public 'CODE'
                assume  cs:_TEXT

; _Capture-      Copies the data on the screen to the array passed
; by reference as a parameter.
;
; procedure Capture(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
;     for x := 0 to 79 do
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; SCREEN[y,x] := ScrCopy[y,x];
; end;
;
;
; Activation record for Capture:
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  ScrCopy Seg Adrs     |
; --                     --
; | ScrCopy offset Adrs   |
; -------------------------
; | Return Adrs (offset)  |
; -------------------------
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

ScrCopy_cap textequ <dword ptr [bp+4]>
X_cap textequ <word ptr [bp-2]>
Y_cap textequ <word ptr [bp-4]>

public _Capture
_Capture proc near

push bp
mov bp, sp

push es
push ds
push si
push di
pushf
cld

mov si, ScrSeg ;Set up pointer to SCREEN
mov ds, si ; memory (ScrSeg:0).
sub si, si

les di, ScrCopy_cap ;Get ptr to capture array.

mov cx, 1000 ;4000 dwords on the screen
rep movsd

popf
pop di
pop si
pop ds
pop es
mov sp, bp
pop bp
ret

_Capture endp

; _PutScr-      Copies array passed by reference onto the screen.
;
; procedure PutScr(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
;     for x := 0 to 79 do
; ScrCopy[y,x] := SCREEN[y,x];
; end;
;
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;
; Activation record for PutScr:
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  ScrCopy Seg Adrs     |
; --                     --
; | ScrCopy offset Adrs   |
; -------------------------
; | Return Adrs (offset)  |
; -------------------------
; |     BP Value          | <- BP
; -------------------------
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; | Registers, etc.       |
; ------------------------- <- SP

ScrCopy_fill textequ <dword ptr [bp+4]>
X_fill textequ <word ptr [bp-2]>
Y_fill textequ <word ptr [bp-4]>

public  _PutScr
_PutScr proc    near

push bp
mov bp, sp

push es
push ds
push si
push di
pushf
cld

mov di, ScrSeg ;Set up pointer to SCREEN
mov es, di ; memory (ScrSeg:0).
sub di, di

lds si, ScrCopy_cap ;Get ptr to capture array.

mov cx, 1000 ;1000 dwords on the screen
rep movsd

popf
pop di
pop si
pop ds
pop es
mov sp, bp
pop bp
ret

_PutScr endp

; GotoXY-Positions the cursor at the specified X, Y coordinate.
;
; procedure gotoxy(y,x:integer);
; begin
; BIOS(posnCursor,x,y);
; end;
;
; Activation record for GotoXY
;
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; |                       |
; | Previous stk contents |
; -------------------------
; |  X coordinate value   |
; -------------------------
; |  Y coordinate value   |
; -------------------------
; |  Return Adrs (offset) |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; | Registers, etc.       |
; ------------------------- <- SP

X_gxy textequ <byte ptr [bp+6]>
Y_gxy textequ <byte ptr [bp+4]>

public _GotoXY
_GotoXY proc near

push bp
mov bp, sp

mov ah, 2 ;Magic BIOS value for gotoxy.
mov bh, 0 ;Display page zero.
mov dh, Y_gxy ;Set up BIOS (X,Y) parameters.
mov dl, X_gxy
int 10h ;Make the BIOS call.

mov sp, bp
pop bp
ret

_GotoXY         endp

; ClrScrn-    Clears the screen and positions the cursor at (0,0).
;
; procedure ClrScrn;
; begin
; BIOS(Initialize)
; end;
;
; Activation record for ClrScrn
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  Return Adrs (offset) |
; ------------------------- <- SP

public  _ClrScrn
_ClrScrn proc near

mov ah, 6 ;Magic BIOS number.
mov al, 0 ;Clear entire screen.
mov bh, 07 ;Clear with black spaces.
mov cx, 0000 ;Upper left corner is (0,0)
mov dl, 79 ;Lower X-coordinate
mov dh, 24 ;Lower Y-coordinate
int 10h ;Make the BIOS call.

push 0 ;Position the cursor to (0,0)
push 0 ; after the call.
call _GotoXY
add sp, 4 ;Remove parameters from stack.

ret
_ClrScrn endp
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; tstKbd-       Checks to see if a key is available at the keyboard.
;
; function tstKbd:boolean;
; begin
;       if BIOSKeyAvail then eat key and return true
;       else return false;
; end;
;
; Activation record for tstKbd
;
; |                       |
; | Previous stk contents |
; -------------------------
; |  Return Adrs (offset) |
; ------------------------- <- SP

public _tstKbd
_tstKbd proc near

mov ah, 1 ;Check to see if key avail.
int 16h
je NoKey
mov ah, 0 ;Eat the key if there is one.
int 16h
mov ax, 1 ;Return true.
ret

NoKey: mov ax, 0 ;No key, so return false.
ret

_tstKbd endp

; GetXY- Returns the cursor's current X and Y coordinates.
;
; procedure GetXY(var x:integer; var y:integer);
;
; Activation record for GetXY
;
; |                       |
; | Previous stk contents |
; -------------------------
; |    Y Coordinate       |
; ---    Address        ---
; |                       |
; -------------------------
; |    X coordinate       |
; ---    Address        ---
; |                       |
; -------------------------
; |  Return Adrs (offset) |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; | Registers, etc.       |
; ------------------------- <- SP

GXY_X textequ <[bp+4]>
GXY_Y textequ <[bp+8]>

public _GetXY
_GetXY proc near

push bp
mov bp, sp
push es

mov ah, 3 ;Read X, Y coordinates from
mov bh, 0 ; BIOS
int 10h
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les bx, GXY_X
mov es:[bx], dl
mov byte ptr es:[bx+1], 0

les bx, GXY_Y
mov es:[bx], dh
mov byte ptr es:[bx+1], 0

pop es
pop bp
ret

_GetXY endp

; PutChar- Outputs a single character to the screen at the current
;          cursor position.
;
; procedure PutChar(ch:char);
;
; Activation record for PutChar
;
; |                       |
; | Previous stk contents |
; -------------------------
; | char (in L.O. byte    |
; -------------------------
; |  Return Adrs (offset) |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; | Registers, etc.       |
; ------------------------- <- SP

ch_pc textequ <[bp+4]>

public  _PutChar
_PutChar proc near

push bp
mov bp, sp

mov al, ch_pc
mov ah, 0eh
int 10h

pop bp
ret

_PutChar endp

; PutStr-  Outputs a string to the display at the current cursor position.
;          Note that a string is a sequence of characters that ends with
;          a zero byte.
;
; procedure PutStr(var str:string);
;
; Activation record for PutStr
;
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; |                       |
; | Previous stk contents |
; -------------------------
; |      String           |
; ---    Address        ---
; |                       |
; -------------------------
; |  Return Adrs (offset) |
; -------------------------
; |      Old BP           |
; ------------------------- <- BP
; | Registers, etc.       |
; ------------------------- <- SP

Str_ps textequ <[bp+4]>

public _PutStr
_PutStr proc near

push bp
mov bp, sp
push es

les bx, Str_ps
PS_Loop: mov al, es:[bx]

cmp al, 0
je PC_Done

push ax
call _PutChar
pop ax
inc bx
jmp PS_Loop

PC_Done: pop es
pop bp
ret

_PutStr endp

; StartPgm-     This is where DOS starts running the program.  This is
;               a substitute for the C0L.OBJ file normally linked in by
;               the Borland C++ compiler.  This code provides this
;               routine to avoid legal problems (i.e., distributing
;               unlinked Borland libraries).  You can safely ignore
;               this code.  Note that the C++ main program is a near
;               procedure, so this code needs to be in the _TEXT segment.

extern _main:near
StartPgm proc near

mov ax, _DATA
mov ds, ax
mov es, ax
mov ss, ax
lea sp, EndStk

call near ptr _main
mov ah, 4ch
int 21h

StartPgm endp

_TEXT ends

_DATA segment word public "DATA"
stack word 1000h dup (?)
EndStk word ?
_DATA ends
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sseg segment para stack 'STACK'
word 1000h dup (?)

sseg ends
end StartPgm

 

11.12 Programming Projects

 

1) Write a version of the matrix multiply program inputs two 4x4 integer matrices from the
user and compute their matrix product (see Chapter Eight question set). The matrix multi-
ply algorithm (computing C := A * B) is

 

for i := 0 to 3 do
for j := 0 to 3 do begin

c[i,j] := 0;
for k := 0 to 3 do
    c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

 

The program should have three procedures: InputMatrix, PrintMatrix, and MatrixMul.
They have the following prototypes:

 

Procedure InputMatrix(var m:matrix);
procedure PrintMatrix(var m:matrix);
procedure MatrixMul(var result, A, B:matrix);

 

In particular note that these routines all pass their parameters by reference. Pass these
parameters by reference on the stack. 
Maintain all variables (e.g., i, j, k, etc.) on the stack using the techniques outlined in “Local
Variable Storage” on page 604. In particular, do not keep the loop control variables in reg-
ister.
Write a main program that makes appropriate calls to these routines to test them.

2) A pass by lazy evaluation parameter is generally a structure with three fields: a pointer to
the thunk to call to the function that computes the value, a field to hold the value of the
parameter, and a boolean field that contains false if the value field is uninitialized (the
value field becomes initialized if the procedure writes to the value field or calls the thunk
to obtain the value). Whenever the procedure writes a value to a pass by lazy evaluation
parameter, it stores the value in the value field and sets the boolean field to true. When-
ever a procedure wants to read the value, it first checks this boolean field. If it contains a
true value, it simply reads the value from the value field; if the boolean field contains
false, the procedure calls the thunk to compute the initial value. On return, the procedure
stores the thunk result in the value field and sets the boolean field to true. Note that dur-
ing any single activation of a procedure, the thunk for a parameter will be called, at most,
one time. Consider the following Panacea procedure:

 

SampleEval: procedure(select:boolean; eval a:integer; eval b:integer);
var

result:integer;
endvar;
begin SimpleEval;

if (select) then

result := a;

else
result := b;

endif;
writeln(result+2);

end SampleEval;

 

Write an assembly language program that implements 

 

SampleEval

 

. From your main pro-
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gram call 

 

SampleEval

 

 a couple of times passing it different thunks for the

 

 a

 

 and

 

 b

 

 parame-
ters. Your thunks can simply return a single value when called.

3) Write a shuffle routine to which you pass an array of 52 integers by reference. The routine
should fill the array with the values 1..52 and then randomly shuffle the items in the array.
Use the Standard Library 

 

random

 

 and 

 

randomize

 

 routines to select an index in the array to
swap. See Chapter Seven, “Random Number Generation: Random, Randomize” on
page 343 for more details about the 

 

random

 

 function. Write a main program that passes an
array to this procedure and prints out the result.

 

11.13 Summary

 

In an assembly language program, all you need is a 

 

call

 

 and 

 

ret

 

 instruction to imple-
ment procedures and functions. Chapter Seven covers the basic use of procedures in an
80x86 assembly language program; this chapter describes how to organize program units
like procedures and functions, how to pass parameters, allocate and access local variables,
and related topics.

This chapter begins with a review of what a procedure is, how to implement proce-
dures with MASM, and the difference between near and far procedures on the 80x86. For
details, see the following sections:

• “Procedures” on page 566
• “Near and Far Procedures” on page 568
• “Forcing NEAR or FAR CALLs and Returns” on page 568
• “Nested Procedures” on page 569

Functions are a very important construct in high level languages like Pascal. How-
ever, there really isn’t a difference between a function and a procedure in an assembly lan-
guage program. Logically, a function returns a result and a procedure does not; but you
declare and call procedures and functions identically in an assembly language program.
See

• “Functions” on page 572

Procedures and functions often produce 

 

side effects

 

. That is, they modify the values of
registers and non-local variables. Often, these side effects are undesirable. For example, a
procedure may modify a register that the caller needs preserved. There are two basic
mechanisms for preserving such values: callee preservation and caller preservation. For
details on these preservation schemes and other important issues see

• “Saving the State of the Machine” on page 572
• “Side Effects” on page 602

One of the major benefits to using a procedural language like Pascal or C++ is that
you can easily pass parameters to and from procedures and functions. Although it is a lit-
tle more work, you can pass parameters to your assembly language functions and proce-
dures as well. This chapter discusses how and where to pass parameters. It also discusses
how to access the parameters inside a procedure or function. To read about this, see sec-
tions

• “Parameters” on page 574
• “Pass by Value” on page 574
• “Pass by Reference” on page 575
• “Pass by Value-Returned” on page 575
• “Pass by Name” on page 576
• “Pass by Lazy-Evaluation” on page 577
• “Passing Parameters in Registers” on page 578
• “Passing Parameters in Global Variables” on page 580
• “Passing Parameters on the Stack” on page 581
• “Passing Parameters in the Code Stream” on page 590
• “Passing Parameters via a Parameter Block” on page 598
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Since assembly language doesn’t really support the notion of a function, per se, imple-
menting a function consists of writing a procedure with a return parameter. As such, func-
tion results are quite similar to parameters in many respects. To see the similarities, check
out the following sections:

• “Function Results” on page 600
• “Returning Function Results in a Register” on page 601
• “Returning Function Results on the Stack” on page 601
• “Returning Function Results in Memory Locations” on page 602

Most high level languages provide 

 

local variable storage

 

 associated with the activation
and deactivation of a procedure or function. Although few assembly language programs
use local variables in an identical fashion, it’s very easy to implement dynamic allocation
of local variables on the stack. For details, see section

• “Local Variable Storage” on page 604

Recursion is another HLL facility that is very easy to implement in an assembly lan-
guage program. This chapter discusses the technique of recursion and then presents a
simple example using the Quicksort algorithm. See

• “Recursion” on page 606
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11.14 Questions

 

1) Explain how the CALL and RET instructions operate. 

2) What are the operands for the PROC assembler directive? What is their function? 

3) Rewrite the following code using PROC and ENDP:

 

FillMem: moval, 0FFh
FillLoop: mov[bx], al

incbx
loop FillLoop
ret 

 

4) Modify your answer to problem (3) so that all affected registers are preserved by the Fill-
Mem procedure. 

5) What happens if you fail to put a transfer of control instruction (such as a JMP or RET)
immediately before the ENDP directive in a procedure? 

6) How does the assembler determine if a CALL is near or far? How does it determine if a
RET instruction is near or far? 

7) How can you override the assembler’s default decision whether to use a near or far CALL
or RET? 

8) Is there ever a need for nested procedures in an assembly language program? If so, give an
example.

 9) Give an example of why you might want to nest a segment inside a procedure.

10) What is the difference between a function, and a procedure? 

11) Why should subroutines preserve the registers that they modify? 

12) What are the advantages and disadvantages of caller-preserved values and callee-pre-
served values? 

13) What are parameters? 

14) How do the following parameter passing mechanisms work?

a) Pass by value 

b) Pass by reference 

c) Pass by value-returned 

d) Pass by name 

15) Where is the best place to pass parameters to a procedure? 

16) List five different locations/methods for passing parameters to or from a procedure.

17) How are parameters that are passed on the stack accessed within a procedure? 

18) What’s the best way to deallocate parameters passed on the stack when the procedure ter-
minates execution? 

19) Given the following Pascal procedure definition:

 

procedure PascalProc(i,j,k:integer);

 

Explain how you would access the parameters of an equivalent assembly language pro-
gram, assuming that the procedure is a near procedure. 

20) Repeat problem (19) assuming that the procedure is a far procedure. 

21) What does the stack look like during the execution of the procedure in problem (19)?
Problem (20)? 

22) How does an assembly language procedure gain access to parameters passed in the code
stream? 
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23) How does the 80x86 skip over parameters passed in the code stream and continue pro-
gram execution beyond them when the procedure returns to the caller? 

24) What is the advantage to passing parameters via a parameter block? 

25) Where are function results typically returned? 

26) What is a side effect? 

27) Where are local (temporary) variables typically allocated? 

28) How do you allocate local (temporary) variables within a procedure? 

29) Assuming you have three parameters passed by value on the stack and 4 different local
variables, what does the activation record look like after the local variables have been allo-
cated (assume a near procedure and no registers other than BP have been pushed onto the
stack). 

30) What is recursion?


