

Page 1247

The PC Video Display Chapter 23

The PC’s video display is a very complex system. First, there is not a single common device as exists
for the parallel and serial ports, or even a few devices (like the keyboard systems found on PCs). No, there
are literally dozens of different display adapter cards available for the PC. Furthermore, each adapter typi-
cally supports several different display modes. Given the large number of display modes and uses for the
display adapters, it would be very easy to write a book as large as this one on the PC’s display adapters
alone

1

 However, this is not that text. This book would hardly be complete without at least mentioning the
PC’s video display, but there are not enough pages remaining in this book to do justice to the subject.
Therefore, this chapter will discuss the 80 x 25

text display

mode

that nearly all display adapters support.

23.1 Memory Mapped Video

Most peripheral devices on the PC use

I/O mapped

 input/output. A program communicates with I/O
mapped devices using the 80x86

in

,

out

,

ins

, and

outs

 instructions, accessing devices in the PC’s I/O
address space. While the video controller chips that appear on PC video display adapters also map regis-
ters to the PC’s I/O space, these cards also employ a second form of I/O addressing:

memory mapped I/O

input/output. In particular, the 80 x 25 text display is nothing more than a two dimensional array of words
with each word in the array corresponding a character on the screen. This array appears just above the
640K point in the PC’s memory address space. If you store data into this array using standard memory
addressing instruction (e.g.,

mov

), you will affect the characters appearing on the display.

There are actually two different arrays you need to worry about. Monochrome system (remember
those?) locate their text display starting at location B000:0000 in memory. Color systems locate their text
displays at location B800:0000 in memory. These locations are the base addresses of a column major order
array declared as follows:

Display: array [0..79, 0..24] of word;

If you prefer to work with row major ordered arrays, no problem, the video display is equal to the follow-
ing array definition:

Display: array [0..24, 0..79] of word;

Note that location (0,0) is the upper left hand corner and location (79,24) is the lower right hand corner of
the display (the values in parentheses are the x and y coordinates, with the x/horizontal coordinate
appearing first).

The L.O. byte of each word contains the PC/ASCII code for the character you want to display (see
Appendix A for a listing of the PC/ASCII character set). The H.O. byte of each word is the

attribute byte

.
We will return to the attribute byte in the next section.

The display page consumes slightly less than 4 Kilobytes in the memory map. The color display
adapters actually provide 32K for text displays and let you select one of eight different displays. Each such
display begins on a 4K boundary, at address B800:0, B800:1000, B800:2000, B800:3000, ..., B800:7000.
Note that most modern color display adapters actually provide memory from address A000:0 through
B000:FFFF (and more), but the text display only uses the 32K from B800:0..B800:7FFF. In this chapter, we
will only concern ourselves with the first color display page at address B800:0. However, everything dis-
cussed in this chapter applies to the other display pages as well.

The monochrome adapter provides only a single display page. Indeed, the earliest monochrome dis-
play adapters included only 4K on-board memory (contrast this with modern high density color display
adapters that have up to four megabytes of on-board memory!).

1. In fact, several such books exist. See the bibliography.

This document was created with FrameMaker 4.0.2

Chapter 23

Page 1248

You can address the memory on the video display like ordinary RAM. You could even store program
variables, or even code, in this memory. However, it is never a good idea to do this. First of all, any time
you write to the display screen, you will wipe out any variables stored in the active display memory. Even
if you store such code or variables in an inactive display page (e.g., pages one through seven on a color
display adapter), using this memory in this manner is not a good idea because access to the display
adapter is very slow. Main memory runs two to ten times faster (depending on the machine).

23.2 The Video Attribute Byte

The video attribute associated with each character on the screen controls underlining, intensity,
inverse video, and blinking video on monochrome adapters. It controls blinking and character fore-
ground/background colors on color displays. The following diagrams provide the possible attribute val-
ues:

Display Mode
 000 000 = Invisible
 000 001 = Underlined
 000 111 = Normal
 111 000 = Inverse video

Intensity: high = 1, low = 0

Blinking = 1, static = 0

Monochrome Display Adapter Attribute Byte Format

7 6 5 4 3 2 1 0

Foreground color:
 0000 = Black 1000 = Dark Gray
 0001 = Blue 1001 = Light Blue
 0010 = Green 1010 = Light Green
 0011 = Cyan 1011 = Light Cyan
 0100 = Red 1100 = Light Red
 0101 = Magenta 1101 = Light Magenta
 0110 = Brown 1110 = Yellow
 0111 = Light Gray 1111 = White

Background color (see values 0000..0111 above)

Blinking = 1, static = 0

Color Display Adapter Attribute Byte Format

7 6 5 4 3 2 1 0

The PC Video Display

Page 1249

To get reverse video on the color display, simply swap the foreground and background colors. Note
that a foreground color of zero with a background color of seven produces black characters on a white
background, the standard reverse video colors and the same attribute values you’d use on the mono-
chrome display adapter.

You need to be careful when choosing foreground and background colors for text on a color display
adapters. Some combinations are impossible to read (e.g., white characters on a white background). Other
colors go together so poorly the text will be extremely difficult to read, if not impossible (how about light
green letters on a green background?). You must choose your colors with care!

Blinking characters are great for drawing attention to some important text on the screen (like a warn-
ing). However, it is easy to overdo blinking text on the screen. You should never have more than one
word or phrase blinking on the screen at one time. Furthermore, you should never leave blinking charac-
ters on the screen for any length of time. After a few seconds, replace blinking characters with normal
characters to avoid annoying the user of your software.

Keep in mind, you can easily change the attributes of various characters on the screen without affect-
ing the actual text. Remember, the attribute bytes appear at odd addresses in the memory space for the
video display. You can easily go in and change these bytes while leaving the character code data alone.

23.3 Programming the Text Display

You might ask why anyone would want to bother working directly with the memory mapped display
on the PC. After all, DOS, BIOS, and the UCR Standard Library provide

much

 more convenient ways to
display text on the screen. Handling new lines (carriage return and line feed) at the end of each line or,
worse yet, scrolling the screen when the display is full, is a lot of work. Work that is taken care of for you
automatically by the aforementioned routines. Work you have to do yourself if you access screen memory
directly. So why bother?

There are two reasons: performance and flexibility. The BIOS video display routines

2

 are

dreadfully

slow. You can easily get a 10 to 100 times performance boost by writing directly to screen memory. For a
typical computer science class project, this may not be important, especially if you’re running on a fast
machine like a 150 MHz Pentium. On the other hand, if you are developing a program that displays and
removes several windows or pop-up menus on the screen, the BIOS routines won’t cut it.

Although the BIOS int 10h functions provide a large set of video I/O routines, there will be lots of
functions you might want to have that the BIOS just doesn’t provide. In such cases, going directly to screen
memory is one way to solve the problem.

Another difficulty with BIOS routine is that they are not reentrant. You cannot call a BIOS display
function from an interrupt service routine, nor can you freely call BIOS from concurrently executing pro-
cesses. However, by writing your own video service routines, you can easily create a window for each
concurrent thread you application is executing. Then each thread can call your routines to display its out-
put independent of the other threads executing on the system.

The AMAZE.ASM program (see “Processes, Coroutines, and Concurrency” on page 1065) is a good
example of a program that directly access the text display by directly storing data into the video display’s
memory mapped display array. This program access display memory directly because it is more conve-
nient to do so (the screen’s display array maps quite nicely to the internal maze array). Simple video games
like a space invaders game or a “remove the bricks” game also map nicely to a memory mapped video dis-
play.

The following program provides an excellent example of an application that needs to access video
memory directly. This program is a

screen capture

 TSR. When you press the left shift key and then the
right shift key, this program copies the current screen contents to an internal buffer. When you press the

2. The Standard Library calls DOS and DOS calls BIOS for all display I/O, hence they all become BIOS calls at one level or another.

Chapter 23

Page 1250

right shift key followed by the left shift key, this program copies its internal buffer to the display screen.
Originally, this program was written to capture CodeView screens for the lab manual accompanying this
text. There are commercial screen capture programs (e.g., HiJak) that would normally do the job, but are
incompatible with CodeView. This short TSR allows one to capture screens in CodeView, quit CodeView,
put the CodeView screen back onto the display, and the use a program like HiJak to capture the output.

; GRABSCRN.ASM
;
; A short TSR to capture the current display screen and display it later.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
ScreenSave byte 4096 dup (?)
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

RShiftScan equ 36h
LShiftScan equ 2ah

; Bits for the shift/modifier keys

RShfBit equ 1
LShfBit equ 2

KbdFlags equ <byte ptr ds:[17h]>

byp equ <byte ptr>

; Screen segment address. This value is for color displays only.
; Change to B000h if you want to use this program on a mono display.

ScreenSeg equ 0B800h

cseg segment para public ‘code’
assume ds:nothing

; MyInt9- INT 9 ISR. This routine reads the keyboard port to see
; if a shift key scan code just came along. If the right
; shift bit is set in KbdFlags the a left shift key scan
; code comes along, we want to copy the data from our
; internal buffer to the screen’s memory. If the left shift
; bit is set and a right shift key scan code comes along,
; we want to copy the screen memory into our local array.
; In any case (including none of the above), we always transfer
; control to the original INT 9 handler.

MyInt9 proc far
push ds
push ax

The PC Video Display

Page 1251

mov ax, 40h
mov ds, ax

in al, 60h ;Read the keyboard port.
cmp al, RShiftScan ;Right shift just go down?
je DoRight
cmp al, LShiftScan ;How about the left shift?
jne QuitMyInt9

; If this is the left scan code, see if the right shift key is already
; down.

test KbdFlags, RShfBit
je QuitMyInt9 ;Branch if no

; Okay, right shift was down and we just saw left shift, copy our local
; data back to screen memory:

pushf
push es
push cx
push di
push si
mov cx, 2048
mov si, cs
mov ds, si
lea si, ScreenSave
mov di, ScreenSeg
mov es, di
xor di, di
jmp DoMove

; Okay, we just saw the right shift key scan code, see if the left shift
; key is already down. If so, save the current screen data to our local
; array.

DoRight: test KbdFlags, LShfBit
je QuitMyInt9

pushf
push es
push cx
push di
push si
mov cx, 2048
mov ax, cs
mov es, ax
lea di, ScreenSave
mov si, ScreenSeg
mov ds, si
xor si, si

DoMove: cld
rep movsw

pop si
pop di
pop cx
pop es
popf

QuitMyInt9:
pop ax
pop ds
jmp OldInt9

MyInt9 endp

Main proc
assume ds:cseg

mov ax, cseg
mov ds, ax

print

Chapter 23

Page 1252

byte “Screen capture TSR”,cr,lf
byte “Pressing left shift, then right shift, captures “
byte “the current screen.”,cr,lf
byte “Pressing right shift, then left shift, displays “
byte “the last captured screen.”,cr,lf
byte 0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

23.4 Summary

The PC’s video system uses a memory mapped array for the screen data. This is an 80 x 25 column
major organized array of words. Each word in the array corresponds to a single character on the screen.
This array begins at location B000:0 for monochrome displays and B800:0 for color displays. For additional
information, see:

• “Memory Mapped Video” on page 1247

The L.O. byte is the PC/ASCII character code for that particular screen position, the H.O. byte con-
tains the attributes for that character. The attribute selects blinking, intensity, and background/foreground
colors (on a color display). For more information on the attribute byte, see:

• “The Video Attribute Byte” on page 1248

There are a few reasons why you would want to bother accessing display memory directly. Speed
and flexibility are the two primary reasons people go directly to screen memory. You can create your own

The PC Video Display

Page 1253

screen functions that the BIOS doesn’t support and do it one or two orders of magnitude faster than the
BIOS by writing directly to screen memory. To find out about this, and to see a simple example, check out

• “Programming the Text Display” on page 1249

Chapter 23

Page 1254

