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Optimizing Your Programs Chapter 25

 

Since program optimization is generally one of the last steps in software development, it is only fitting
to discuss program optimization in the last chapter of this text. Scanning through other texts that cover this
subject, you will find a wide variety of opinions on this subject. Some texts and articles ignore instruction
sets altogether and concentrate on finding a better algorithm. Other documents assume you’ve already
found the best algorithm and discuss ways to select the “best” sequence of instructions to accomplish the
job. Others consider the CPU architecture and describe how to “count cycles” and pair instructions (espe-
cially on superscalar processors or processes with pipelines) to produce faster running code. Others, still,
consider the system architecture, not just the CPU architecture, when attempting to decide how to opti-
mize your program. Some authors spend a lot of time explaining that their method is the “one true way” to
faster programs. Others still get off on a software engineering tangent and start talking about how time
spent optmizing a program isn’t worthwhile for a variety of reasons. Well, this chapter is not going to
present the “one true way,” nor is it going to spend a lot of time bickering about certain optimization tech-
niques. It will simply present you with some examples, options, and suggestions. Since you’re on your
own after this chapter, it’s time for you to start making some of your own decisions. Hopefully, this chap-
ter can provide suitable information so you can make correct decisions.

 

25.0 Chapter Overview

 

25.1 When to Optimize, When Not to Optimize

 

The optimization process is not cheap. If you develop a program and then determine that it is too
slow, you may have to redesign and rewrite major portions of that program to get acceptable performance.
Based on this point alone, the world often divides itself into two camps – those who optimize early and
those who optimize late. Both groups have good arguements; both groups have some bad arguements.
Let’s take a look at both sides of this arguement.

The “optimize late” (OL) crowd uses the 90/10 arguement: 90% of a program’s execution time is spent
in 10% of the code

 

1

 

. If you try to optimize every piece of code you write (that is, optimize the code before
you know that it needs to be optimized), 90% of your effort will go to waste. On the other hand, if you
write the code in a normal fashion first and then go in an optimize, you can improve your program’s per-
formance with less work. After all, if you 

 

completely removed

 

  the 90% portion of your program, your code
would only run about 10% faster. On the other hand, if you completely remove that 10% portion, your pro-
gram will run about 10 times faster. The math is obviously in favor of attacking the 10%. The OL crowd
claims that you should write your code with only the normal attention to performance (i.e., given a choice
between an O(n

 

2

 

) and an O(n lg n) algorithm, you should choose the latter). Once the program is working
correctly you can go back and concentrate your efforts on that 10% of the code that takes all the time.

The OL arguements are persuasive. Optimization is a laborious and difficult process. More often that
not there is no clear-cut way to speed up a section of code. The only way to determine which of several
different options is better is to actually code them all up and compare them. Attempting to do this on the
entire program is impractical. However, if you can find that 10% of the code and optimize that, you’ve
reduced your workload by 90%, very inviting indeed. Another good arguement the OL group uses is that
few programmers are capable of anticipating where the time will be spent in a program. Therefore, the
only real way to determine where a program spends its time is to 

 

instrument it

 

  and measure which func-
tions consume the most time. Obviously, you must have a working program before you can do this. Once

 

1. Some people prefer to call this the 80/20 rule: 80% of the time is spent in 20% of the code, to be safer in their esitmates. The exact numbers don’t
matter. What is important is that most of a program’s execution time is spent in a small amount of the code.
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again, they argue that any time spent optimizing the code beforehand is bound to be wasted since you will
probably wind up optimizing that 90% that doesn’t need it.

There are, however, some very good counter arguments to the above. First, when most OL types start
talking about the 90/10 rule, there is this implicit suggestion that this 10% of the code appears as one big
chunk in the middle of the program. A good programmer, like a good surgeon, can locate this malignant
mass, cut it out, and replace with with something much faster, thus boosting the speed of your program
with only a little effort. Unfortunately, this is not often the case in the real world. In real programs, that 10%
of the code that takes up 90% of the execution time is often spread all over your program. You’ll get 1%
here, 0.5% over there, a “gigantic” 2.5% in one function, and so on. Worse still, optimizing 1% of the code
within one function often requires that you modify some of the other code as well. For example, rewriting
a function (the 1%) to speed it up quite a bit may require changing the way you pass parameters to that
function. This may require rewriting several sections of code outside that slow 10%. So often you wind up
rewriting much more than 10% of the code in order to speed up that 10% that takes 90% of the time.

Another problem with the 90/10 rule is that it works on percentages, and the percentages change dur-
ing optimization. For example, suppose you located a single function that was consuming 90% of the exe-
cution time. Let’s suppose you’re Mr. Super Programmer and you managed to speed this routine up by a
factor of two. Your program will now take about 55% of the time to run before it was optimized

 

2

 

. If you tri-
ple the speed of this routine, your program takes a total of 40% of the original time to execution. If you are
really great and you manage to get that function running nine times faster, your program now runs in 20%
of the original time, i.e., five times faster. 

Suppose you could get that function running nine times faster. Notice that the 90/10 rule no longer
applies to your program. 50% of the execution time is spent in 10% of your code, 50% is spent in the other
90% of your code. And if you’ve managed to speed up that one function by 900%, it is very unlikely you’re
going to squeeze much more out of it (unless it was 

 

really

 

  bad to begin with). Is it worthwhile messing
around with that other 90% of your code? You bet it is. After all, you can improve the performance of your
program by 25% if you double the speed of that other code. Note, however, that you only get a 25% per-
formance boost 

 

after

 

  you optimized the 10% as best you could. Had you optimized the 90% of your pro-
gram first, you would only have gotten a 5% performance improvement; hardly something you’d write
home about. Nonetheless, you can see some situations where the 90/10 rule obviously doesn’t apply and
you can see some cases where optimizing that 90% can produce a good boost in performance. The OL
group will smile and say “see, that’s the benefit of optimizing late, you can optimize in stages and get just
the right amount of optimization you need.” 

The optimize early (OE) group uses the flaw in percentage arithmetic to point out that you will prob-
ably wind up optimizing a large portion of your program anyway. So why not work all this into your
design in the first place? A big problem with the OL strategy is that you often wind up designing and writ-
ing the program twice – once just to get it functional, the second time to make it practical. After all, if
you’re going to have to rewrite that 90% anyway, why not write it fast in the first place? The OE people
also point out that although programmers are notoriously bad at determining where a program spends
most of its time, there are some obvious places where they know there will be performance problems.
Why wait to discover the obvious? Why not handle such problem areas early on so there is less time spent
measuring and optimizing that code?

Like so many other arguements in Software Engineering, the two camps become quite polarized and
swear by a totally pure approach in either direction (either all OE or all OL). Like so many other argue-
ments in Computer Science, the truth actually lies somewhere between these two extremes. Any project
where the programmer set out to design the perfect program without worry about performance until the
end is doomed. Most programmers in this scenario write 

 

terribly slow

 

  code. Why? Because it’s easier to do
so and they can always “solve the performance problem during the optimization phase.” As a result, the
90% portion of the program is often so slow that even if the time of the other 10% were reduced to zero,

 

2. 

 

 

 

Figure the 90% of the code originally took one unit of time to execute and the 10% of the code originally took nine units of time to exeute. If we
cut the execution time of the of the 10% in half, we now have 1 unit plus 4.5 units = 5.5 units out of 10 or 55%.
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the program would still be way too slow. On the other hand, the OE crowd gets so caught up in writing
the best possible code that they miss deadlines and the product may never ship.

There is one undeniable fact that favors the OL arguement – optimized code is difficult to understand
and maintain. Furthermore, it often contains bugs that are not present in the unoptimized code. Since
incorrect code is unacceptable, even if it does run faster, one very good arguement against optimizing
early is the fact that testing, debugging, and quality assurance represent a large portion of the program
development cycle. Optimizing early may create so many additional program errors that you lose any time
saved by not having to optimize the program later in the development cycle.

The correct time to optimize a program is, well, at the correct time. Unfortunately, the “correct time”
varies with the program. However, the first step is to develop program performance requirements along
with the other program specifications. The system analyst should develop target response times for all user
interactions and computations. During development and testing, programmers have a target to shoot for,
so they can’t get lazy and wait for the optimization phase before writing code that performs reasonably
well. On the other hand, they also have a target to shoot for and once the code is running fast enough,
they don’t have to waste time, or make their code less maintainable; they can go on and work on the rest
of the program. Of course, the system analyst could misjudge performance requirements, but this won’t
happen often with a good system design.

Another consideration is when to perform 

 

what

 

. There are several types of optimizations you can
perform. For example, you can rearrange instructions to avoid hazards to double the speed of a piece of
code. Or you could choose a different algorithm that could run twice as fast. One big problem with optimi-
zation is that it is not a single process and many types of optimizations are best done later rather than ear-
lier, or vice versa. For example, choosing a good algorithm is something you should do early on. If you
decide to use a better algorithm 

 

after

 

  implementing a poor one, most of the work on the code implement-
ing the old algorithm is lost. Likewise, instruction scheduling is one of the last optimizations you should
do. Any changes to the code after rearranging instructions for performance may force you to spend time
rearranging them again later. Clearly, the lower level the optimization (i.e., relying upon CPU or system
parameters), the later the optimization should be. Conversely, the higher level the optimization (e.g.,
choice of algorithm), the sooner should be the optimization. In all cases, though, you should have target
performance values in mind while developing code.

 

25.2 How Do You Find the Slow Code in Your Programs?

 

Although there are problems with the 90/10 rule, the concept behind it is basically solid – programs
tend to spend a large amount of their time executing only a small percentage of the code. Clearly, you
should optimize the slowest portion of your code first. The only problem is how does one find the slowest
code in a program? 

There are four common techniques programmers use to find the “hot spots” (the places where pro-
grams spend most of their time). The first is by trial and error. The second is to optimize everything. The
third is to analyze the program. The fourth is to use a 

 

profiler

 

  or other software monitoring tool to mea-
sure the performance of various parts of a program. After locating a hot spot, the programmer can attempt
to analyze that section of the program.

The trial and error technique is, unfortunately, the most common strategy. A programmer will speed
up various parts of the program by making educated guesses about where it is spending most of its time. If
the programmer guesses right, the program will run much faster after optimization. Experienced program-
mers often use this technique successfully to quickly locate and optimize a program. When the program-
mer guesses correctly, this technique minimizes the amount of time spent looking for hot spots in a
program. Unfortunately, most programmers make fairly poor guesses and wind up optimizing the wrong
sections of code. Such effort often goes to waste since optimizing the 

 

wrong

 

  10% will not improve perfor-
mance significantly. One of the prime reasons this technique fails so often is that it is often the first choice
of inexperienced programmers who cannot easily recognize slow code. Unfotunately, they are probably
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unaware of other techniques, so rather than try a structured approach, they start making (often) unedu-
cated guesses.

Another way to locate and optimize the slow portion of a program is to optimize everything. Obvi-
ously, this technique does not work well for large programs, but for short sections of code it works reason-
ably well. Later, this text will provide a short example of an optimization problem and will use this
technique to optimize the program. Of course, for large programs or routines this may not be a cost effec-
tive approach. However, where appropriate it can save you time while optimizing your program (or at
least a portion of your program) since you will not need to carefully analyze and measure the performance
of your code. By optimizing everything, you are sure to optimize the slow code.

The analysis method is the most difficult of the four. With this method, you study your code and
determine where it will spend most of its time based on the data you expect it to process. In theory, this is
the best technique. In practice, human beings generally demonstrate a distaste for such analysis work. As
such, the analysis is often incorrect or takes too long to complete. Furthermore, few programmers have
much experience studying their code to determine where it is spending most of its time, so they are often
quite poor at locating hot spots by studying their listings when the need arises. 

Despite the problems with program analysis, this is the first technique you should always use when
attempting to optimize a program. Almost all programs spend most of their time executing the body of a
loop or recursive function calls. Therefore, you should try to locate all recursive function calls and loop
bodies (especially nested loops) in your program. Chances are very good that a program will be spending
most of its time in one of these two areas of your program. Such spots are the first to consider when opti-
mizing your programs.

Although the analytical method provides a good way to locate the slow code in a program, analyzing
program is a slow, tedious, and boring process. It is very easy to completely miss the most time consuming
portion of a program, especially in the presence of indirectly recursive function calls. Even locating time
consuming nested loops is often difficult. For example, you might not realize, when looking at a loop
within a procedure, that it is a nested loop by virtue of the fact that the calling code executes a loop when
calling the procedure. In theory, the analytical method should always work. In practice, it is only margin-
ally successful given that fallible humans are doing the analysis. Nevertheless, some hot spots are easy to
find through program analysis, so your first step when optimizing a program should be analysis.

Since programmers are notoriously bad at analyzing programs to find their hot spots, it would make
since to try an automate this process. This is precisely what a 

 

profiler

 

  can do for you. A profiler is a small
program that measures how long your code spends in any one portion of the program. A profiler typically
works by interrupting your code periodically and noting the return address. The profiler builds a histo-
gram of interrupt return addresses (generally rounded to some user specified value). By studying this his-
togram, you can determine where the program spends most of its time. This tells you which sections of the
code you need to optimize. Of course, to use this technique, you will need a profiler program. Borland,
Microsoft, and several other vendors provide profilers and other optimization tools.

 

25.3 Is Optimization Necessary?

 

Except for fun and education, you should never approach a project with the attitude that you are
going to get maximal performance out of your code. Years ago, this was an important attitude because
that’s what it took to get anything decent running on the slow machines of that era. Reducing the run time
of a program from ten minutes to ten seconds made many programs commercially viable. On the other
hand, speeding up a program that takes 0.1 seconds to the point where it runs in a millisecond is often
pointless. You will waste a lot of effort improving the performance, yet few people will notice the differ-
ence.

This is not to say that speeding up programs from 0.1 seconds to 0.001 seconds is never worthwhile.
If you are writing a data capture program that requires you to take a reading every millisecond, and it can
only handle ten readings per second as currently written, you’ve got your work cut out for you. Further-
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more, even if your program runs fast enough already, there are reasons why you would want to make it
run twice as fast. For example, suppose someone can use your program in a multitasking environment. If
you modify your program to run twice as fast, the user will be able to run another program along side
yours and not notice the performance degradation.

However, the thing to always keep in mind is that you need to write software that is 

 

fast enough

 

.
Once a program produces results instantaneously (or so close to instantaneous that the user can’t tell),
there is little need to make it run any faster. Since optimization is an expensive and error prone process,
you want to avoid it as much as possible. Writing programs that run faster than fast enough is a waste of
time. However, as is obvious from the set of bloated application programs you’ll find today, this really isn’t
a problem, most programming produce code that is way too slow, not way too fast.

A common reason stated for not producing optimal code is advancing hardware design. Many pro-
grammers and managers feel that the high-end machines they develop software on today will be the
mid-range machines two years from now when they finally release their software. So if they design their
software to run on today’s very high-end machines, it will perform okay on midrange machines when they
release their software.

There are two problems with the approach above. First, the operating system running on those
machines two years from now will gobble a large part of the machine’s resources (including CPU cycles).
It is interesting to note that today’s machines are hundreds of times faster than the original 8088 based PCs,
yet many applications actually run 

 

slower

 

  than those that ran on the original PC. True, today’s software
provides many more features beyond what the original PC provided, but that’s the whole point of this
arguement – customers will demand features like multiple windows, GUI, pull-down menus, etc., that all
consume CPU cycles. You cannot assume that newer machines will provide extra clock cycles so your
slow code will run faster. The OS or user interface to your program will wind up eating those extra avail-
able clock cycles.

So the first step is to realistically determine the performance requirements of your software. Then
write your software to meet that performance goal. If you fail to meet the performance requirements, then
it is time to optimize your program. However, you shouldn’t waste additional time optimizing your code
once your program meets or exceed the performance specifications.

 

25.4 The Three Types of Optimization

 

There are three forms of optimization you can use when improving the performance of a program.
They are choosing a better algorithm (high level optimization), implementing the algorithm better (a
medium level optmization), and “counting cycles” (a low level optimization). Each technique has its place
and, generally, you apply them at different points in the development process.

Choosing a better algorithm is the most highly touted optimization technique. Alas it is the technique
used least often. It is easy for someone to announce that you should always find a better algorithm if you
need more speed; but finding that algorithm is a little more difficult. First, let us define an algorithm
change as using a fundamentally different technique to solve the problem. For example, switching from a
“bubble sort” algorithm to a “quick sort” algorithm is a good example of an algorithm change. Generally,
though certainly not always, changing algorithms means you use a program with a better Big-Oh function

 

3

 

For example, when switching from the bubble sort to the quick sort, you are swapping an algorithm with
an O(n

 

2

 

) running time for one with an O(n lg n) expected running time.

You must remember the restrictions on Big-Oh functions when comparing algorithms. The value for

 

n

 

  must be sufficiently large to mask the effect of hidden constant. Furthermore, Big-Oh analysis is usually

 

worst-case

 

  and may not apply to your program. For example, if you wish to sort an array that is “nearly”
sorted to begin with, the bubble sort algorithm is usually much faster than the quicksort algorithm, regard-

 

3. Big-Oh function are approximations of the running time of a program. 
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less of the value for 

 

n

 

. For data that is almost sorted, the bubble sort runs in almost O(n) time whereas the
quicksort algorithm runs in O(n

 

2

 

) time

 

4

 

.

The second thing to keep in mind is the constant itself. If two algorithms have the same Big-Oh func-
tion, you cannot determine any difference between the two based on the Big-Oh analysis. This does not
mean that they will take the same amount of time to run. Don’t forget, in Big-Oh analysis we throw out all
the low order terms and multiplicative constants. The asymptotic notation is of little help in this case.

To get truly phenomenal performance improvements requires an algorithmic change to your pro-
gram. However, discovering an O(n lg n) algorithm to replace your O(n

 

2

 

) algorithm is often difficult if a
published solution does not already exist. Presumably, a well-designed program is not going to contain
many obvious algorithms you can dramatically improve (if they did, they wouldn’t be well-designed, now,
would they?). Therefore, attempting to find a better algorithm may not prove successful. Nevertheless, it is
always the first step you should take because the following steps operate on the algorithm you have. If
you perform the other steps on a bad algorithm and then discover a better algorithm later, you will have to
repeat these time-consumings steps all over again on the new algorithm.

There are two steps to discovering a new algorithms: research and development. The first step is to
see if you can find a better solution in the existing literature. Failing that, the second step is to see if you
can develop a better algorithm on your own. The key thing is to budget an appropriate amount of time to
these two activities. Research is an open-ended process. You can always read one more book or article. So
you’ve got to decide how much time you’re going to spend looking for an existing solution. This might be
a few hours, days, weeks, or months. Whatever you feel is cost-effective. You then head to the library (or
your bookshelf) and begin looking for a better solution. Once your time expires, it is time to abandon the
research approach unless you are sure you are on the right track in the material you are studying. If so,
budget a little more time and see how it goes. At some point, though, you’ve got to decide that you proba-
bly won’t be able to find a better solution and it is time to try to develop a new one on your own. 

While searching for a better solution, you should study the papers, texts, articles, etc., exactly as
though you were studying for an important test. While it’s true that much of what you study will not apply
to the problem at hand, you are learning things that will be useful in future projects. Furthermore, while
someone may not provide the solution you need, they may have done some work that is headed in the
same direction that you are and could provide some good ideas, if not the basis, for your own solution.
However, you must always remember that the job of an engineer is to provide a cost-effective solution to
a problem. If you waste too much time searching for a solution that may not appear anywhere in the liter-
ature, you will cause a cost overrun on your project. So know when it’s time to “hang it up” and get on
with the rest of the project.

Developing a new algorithm on your own is also open-ended. You could literally spend the rest of
your life trying to find an efficient solution to an intractible problem. So once again, you need to budget
some time for this process accordingly. Spend the time wisely trying to develop a better solution to your
problem, but once the time is exhausted, it’s time to try a different approach rather than waste any more
time chasing a “holy grail.” 

Be sure to use all resources at your disposal when trying to find a better algorithm. A local university’s
library can be a big help. Also, you should network yourself. Attend local computer club meetings, discuss
your problems with other engineers, or talk to interested friends, maybe they’re read about a solution that
you’ve missed. If you have access to the Internet, BIX, Compuserve, or other technically oriented on-line
services or computerized bulletin board systems, by all means post a message asking for help. With liter-
ally millions of users out there, if a better solution exists for your problem, someone has probabaly solved
it for you already. A few posts may turn up a solution you were unable to find or develop yourself.

At some point or another, you may have to admit failure. Actually, you may have to admit success –
you’ve already found as good an algorithm as you can. If this is still too slow for your requirements, it may
be time to try some other technique to improve the speed of your program. The next step is to see if you

 

4. Yes, O(n

 

2

 

). The O(n lg n) rating commonly given the quicksort algorithm is actually the 

 

expected  

 

(average case) analysis, not the worst case anal-
ysis.



 

Optimizing Your Programs

Page 1317

 

can provide a better implementation for the algorithm you are using. This optimization step, although
independent of language, is where most assembly language programmers produce dramatic performance
improvements in their code. A better implementation generally involves steps like unrolling loops, using
table lookups rather than computations, eliminating computations from a loop whose value does not
change within a loop, taking advantage of machine idioms (such as using a shift or shift and add rather
than a multiplication), trying to keep variables in registers as long as possible, and so on. It is surprising
how much faster a program can run by using simple techniques like those whose descriptions appear
thoughout this text.

As a last resort, you can resort to 

 

cycle counting

 

. At this level you are trying to ensure that an instruc-
tion sequence uses as few clock cycles as possible. This is a difficult optimization to perform because you
have to be aware of how many clock cycles each instruction consumes, and that depends on the instruc-
tion, the addressing mode in use, the instructions around the current instruction (i.e., pipelining and
superscalar effects), the speed of the memory system (wait states and cache), and so on. Needless to say,
such optimizations are very tedious and require a very careful analysis of the program and the system on
which it will run.

The OL crowd always claims you should put off optimization as long as possible. These people are
generally talking about this last form of optimization. The reason is simple: any changes you make to your
program after such optimizations may change the interaction of the instructions and, therefore, their exe-
cution time. If you spend considerable time scheduling a sequence of 50 instructions and then discover
you will need to rewrite that code for one reason or another, all the time you spent carefully scheduling
those instructions to avoid hazards is lost. On the other hand, if you wait until the last possible moment to
make such optimizations to you code, you will only optimize that code once.

Many HLL programmers will tell you that a good compiler can beat a human being at scheduling
instructions and optimizing code. This isn’t true. A good compiler will beat a mediocre assembly language
program a good part of the time. However, a good compiler won’t stand a chance against a good assembly
language programmer. After all, the worst that could happen is that the good assembly language program-
mer will look at the output of the compiler and improve on that. 

“Counting cycles” can improve the performance of your programs. On the average, you can speed up
your programs by a factor of 50% to 200% by making simple changes (like rearranging instructions). That’s
the difference between an 80486 and a Pentium! So you shouldn’t ignore the possibility of using such opti-
mizations in your programs. Just keep in mind, you should do such optimizations last so you don’t wind
up redoing them as your code changes.

The rest of this chapter will concentrate on the techniques for improving the implementation of an
algorithm, rather than designing a better algorithm or using cycle counting techniques. Designing better
algorithms is beyond the scope of this manual (see a good text on algorithm design). Cycle counting is one
of those processes that differs from processor to processor. That is, the optimization techniques that work
well for the 80386 fail on a 486 or Pentium chip, and vice versa. Since Intel is constantly producing new
chips, requring different optimization techniques, listing those techniques here would only make that
much more material in this book outdated. Intel publishes such optimization hints in their processor pro-
grammer reference manuals. Articles on optimizing assembly language programs often appear in technical
magazines like Dr. Dobb’s Journal, you should read such articles and learn all the current optimization
techniques.

 

25.5 Improving the Implementation of an Algorithm

 

One easy way to partially demonstrate how to optimize a piece of code is to provide an example of
some program and the optimization steps you can apply to that program. This section will present a short
program that 

 

blurs

 

  an eight-bit gray scale image. Then, this section will lead though through several opti-
mization steps and show you how to get that program running over 16 times faster.
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The following code assumes that you provide it with a file containing a 251x256 gray scale photo-
graphic image. The data structure for this file is as follows:

 

Image: array [0..250, 0..255] of byte;

 

Each byte contains a value in the range 0..255 with zero denoting black, 255 representing white, and the
other values representing even shades of gray between these two extremes. 

The blurring algorithm averages a pixel

 

5

 

 with its eight closest neighbors. A single blur operation
applies this average to all interior pixels of an image (that is, it does not apply to the pixels on the bound-
ary of the image because they do not have the same number of neighbors as the other pixels). The follow-
ing Pascal program implements the blurring algorithm and lets the user specify the amount of blurring (by
looping through the algorithm the number of times the user specifies)

 

6

 

:

 

program PhotoFilter(input,output);

(* Here is the raw file data type produced by the Photoshop program *)

type
 image = array [0..250] of array [0..255] of byte;

(* The variables we will use. Note that the “datain” and “dataout” *)
(* variables are pointers because Turbo Pascal will not allow us to *)
(* allocate more than 64K data in the one global data segment it *)
(* supports. *)

var
 h,i,j,k,l,sum,iterations:integer;
 datain, dataout: ^image;
 f,g:file of image;

begin

 (* Open the files and real the input data *)

 assign(f, ‘roller1.raw’);
 assign(g, ‘roller2.raw’);
 reset(f);
 rewrite(g);
 new(datain);
 new(dataout);
 read(f,datain^);

 (* Get the number of iterations from the user *)

 write(‘Enter number of iterations:’);
 readln(iterations);

 writeln(‘Computing result’);

 (* Copy the data from the input array to the output array. *)
 (* This is a really lame way to copy the border from the *)
 (* input array to the output array. *)

 for i := 0 to 250 do
 for j := 0 to 255 do
 dataout^ [i][j] := datain^ [i][j];

 (* Okay, here’s where all the work takes place. The outside *)
 (* loop repeats this blurring operation the number of *)
 (* iterations specified by the user. *)

 for h := 1 to iterations do begin

 (* For each row except the first and the last, compute *)
 (* a new value for each element. *)

 for i := 1 to 249 do

 

5. Pixel stands for “picture element.” A pixel is an element of the Image array defined above.
6. A comparable C program appears on the diskette accompanying the lab manual.
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 (* For each column except the first and the last, com- *)
 (* pute a new value for each element. *)

 for j := 1 to 254 do begin

 (* For each element in the array, compute a new
   blurred value by adding up the eight cells
   around an array element along with eight times
   the current cell’s value. Then divide this by

    sixteen to compute a weighted average of the
    nine cells forming a square around the current
    cell. The current cell has a 50% weighting,
    the other eight cells around the current cel
    provide the other 50% weighting (6.25% each). *)

 sum := 0;
 for k := -1 to 1 do

 for l := -1 to 1 do
 sum := sum + datain^ [i+k][j+l];

 (* Sum currently contains the sum of the nine     *)
 (* cells, add in seven times the current cell so  *)
 (* we get a total of eight times the current cell. *)

 dataout^ [i][j] := (sum + datain^ [i][j]*7) div 16;

 end;

 (* Copy the output cell values back to the input cells *)
 (* so we can perform the blurring on this new data on *)
 (* the next iteration. *)

 for i := 0 to 250 do
 for j := 0 to 255 do

 datain^ [i][j] := dataout^ [i][j];

 end;

 writeln(‘Writing result’);
 write(g,dataout^);
 close(f);
 close(g);

end.

 

The Pascal program above, compiled with Turbo Pascal v7.0, takes 45 seconds to compute 100 itera-
tions of the blurring algorithm. A comparable program written in C and compiled with Borland C++ v4.02
takes 29 seconds to run. The same source file compiled with Microsoft C++ v8.00 runs in 21 seconds.
Obviously the C compilers produce better code than Turbo Pascal. It took about three hours to get the
Pascal version running and tested. The C versions took about another hour to code and test. The following
two images provide a “before” and “after” example of this program’s function:

Before blurring:
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After blurring (10 iterations):

The following is a crude translation from Pascal directly into assembly language of the above pro-
gram. It requires 36 seconds to run. Yes, the C compilers did a better job, but once you see how bad this
code is, you’ll wonder what it is that Turbo Pascal is doing to run so slow. It took about an hour to trans-
late the Pascal version into this assembly code and debug it to the point it produced the same output as the
Pascal version.

 

; IMGPRCS.ASM
;
; An image processing program.
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
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;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 36 seconds.
; Borland Pascal v7.0- 45 seconds.
; Borland C++ v4.02- 29 seconds.
; Microsoft C++ v8.00- 21 seconds.

.xlist
include stdlib.a
includelib stdlib.lib
.list
.286

dseg segment para public ‘data’

; Loop control variables and other variables:

h word ?
i word ?
j word ?
k word ?
l word ?
sum word ?
iterations word ?

; File names:

InName byte “roller1.raw”,0
OutName byte “roller2.raw”,0

dseg ends

; Here is the input data that we operate on.

InSeg segment para public ‘indata’

DataIn byte 251 dup (256 dup (?))

InSeg ends

; Here is the output array that holds the result.

OutSeg segment para public ‘outdata’

DataOut byte 251 dup (256 dup (?))

OutSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
meminit

mov ax, 3d00h ;Open input file for reading.
lea dx, InName
int 21h
jnc GoodOpen
print
byte “Could not open input file.”,cr,lf,0
jmp Quit

GoodOpen: mov bx, ax ;File handle.
mov dx, InSeg ;Where to put the data.
mov ds, dx
lea dx, DataIn
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mov cx, 256*251 ;Size of data file to read.
mov ah, 3Fh
int 21h
cmp ax, 256*251 ;See if we read the data.
je GoodRead
print
byte “Did not read the file properly”,cr,lf,0
jmp Quit

GoodRead: mov ax, dseg
mov ds, ax
print
byte “Enter number of iterations: “,0
getsm
atoi
free
mov iterations, ax
print
byte “Computing Result”,cr,lf,0

; Copy the input data to the output buffer.

mov i, 0
iloop0: cmp i, 250

ja iDone0
mov j, 0

jloop0: cmp j, 255
ja jDone0

mov bx, i ;Compute index into both
shl bx, 8 ; arrays using the formula
add bx, j ; i*256+j (row major).

mov cx, InSeg ;Point at input segment.
mov es, cx
mov al, es:DataIn[bx] ;Get DataIn[i][j].

mov cx, OutSeg ;Point at output segment.
mov es, cx
mov es:DataOut[bx], al ;Store into DataOut[i][j]

inc j ;Next iteration of j loop.
jmp jloop0

jDone0: inc i ;Next iteration of i loop.
jmp iloop0

iDone0:

; for h := 1 to iterations-

mov h, 1
hloop: mov ax, h

cmp ax, iterations
ja hloopDone

; for i := 1 to 249 -

mov i, 1
iloop: cmp i, 249

ja iloopDone

; for j := 1 to 254 -
mov j, 1

jloop: cmp j, 254
ja jloopDone

; sum := 0;
; for k := -1 to 1 do for l := -1 to 1 do

mov ax, InSeg ;Gain access to InSeg.
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mov es, ax

mov sum, 0
mov k, -1

kloop: cmp k, 1
jg kloopDone

mov l, -1
lloop: cmp l, 1

jg lloopDone

; sum := sum + datain [i+k][j+l]

mov bx, i
add bx, k
shl bx, 8 ;Multiply by 256.
add bx, j
add bx, l

mov al, es:DataIn[bx]
mov ah, 0
add Sum, ax

inc l
jmp lloop

lloopDone: inc k
jmp kloop

; dataout [i][j] := (sum + datain[i][j]*7) div 16;

kloopDone: mov bx, i
shl bx, 8 ;*256
add bx, j
mov al, es:DataIn[bx]
mov ah, 0
imul ax, 7
add ax, sum
shr ax, 4  ;div 16

mov bx, OutSeg
mov es, bx

mov bx, i
shl bx, 8
add bx, j
mov es:DataOut[bx], al

inc j
jmp jloop

jloopDone: inc i
jmp iloop

iloopDone:
; Copy the output data to the input buffer.

mov i, 0
iloop1: cmp i, 250

ja iDone1
mov j, 0

jloop1: cmp j, 255
ja jDone1

mov bx, i ;Compute index into both
shl bx, 8 ; arrays using the formula
add bx, j ; i*256+j (row major).

mov cx, OutSeg ;Point at input segment.
mov es, cx
mov al, es:DataOut[bx] ;Get DataIn[i][j].

mov cx, InSeg ;Point at output segment.
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mov es, cx
mov es:DataIn[bx], al ;Store into DataOut[i][j]

inc j ;Next iteration of j loop.
jmp jloop1

jDone1: inc i ;Next iteration of i loop.
jmp iloop1

iDone1: inc h
jmp hloop

hloopDone: print
byte “Writing result”,cr,lf,0

; Okay, write the data to the output file:

mov ah, 3ch ;Create output file.
mov cx, 0 ;Normal file attributes.
lea dx, OutName
int 21h
jnc GoodCreate
print
byte “Could not create output file.”,cr,lf,0
jmp Quit

GoodCreate: mov bx, ax ;File handle.
push bx
mov dx, OutSeg ;Where the data can be found.
mov ds, dx
lea dx, DataOut
mov cx, 256*251 ;Size of data file to write.
mov ah, 40h ;Write operation.
int 21h
pop bx ;Retrieve handle for close.
cmp ax, 256*251 ;See if we wrote the data.
je GoodWrite
print
byte “Did not write the file properly”,cr,lf,0
jmp Quit

GoodWrite: mov ah, 3eh ;Close operation.
int 21h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

This assembly code is a very straight-forward, line by line translation of the previous Pascal code.
Even beginning programmers (who’ve read and understand Chapters Eight and Nine) should easily be
able to improve the performance of this code.

While we could run a profiler on this program to determine where the “hot spots” are in this code, a
little analysis, particularly of the Pascal version, should make it obvious that there are a lot of nested loops
in this code. As Chapter Ten points out, when optimizing code you should always start with the innermost
loops. The major change between the code above and the following assembly language version is that
we’ve unrolled the innermost loops and we’ve replaced the array index computations with some constant
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computations. These minor changes speed up the execution by a factor of six! The assembly version now
runs in six seconds rather than 36. A Microsoft C++ version of the same program with comparable opti-
mzations runs in eight seconds. It required nearly four hours to develop, test, and debug this code. It
required an additional hour to apply these same modifications to the C version

 

7

 

.

 

; IMGPRCS2.ASM
;
; An image processing program (First optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
; Version #2: Three major optimizations. (1) used movsd instruction rather
;  than a loop to copy data from DataOut back to DataIn.
;  (2) Used repeat..until forms for all loops. (3) unrolled
;  the innermost two loops (which is responsible for most of
;  the performance improvement).
;
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code-  6 seconds.
; Original ASM code- 36 seconds.
; Borland Pascal v7.0- 45 seconds.
; Borland C++ v4.02- 29 seconds.
; Microsoft C++ v8.00- 21 seconds.

; « Lots of omitted code goes here, see the previous version»

print
byte “Computing Result”,cr,lf,0

; for h := 1 to iterations-

mov h, 1
hloop:

; Copy the input data to the output buffer.
; Optimization step #1: Replace with movs instruction.

push ds
mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax
lea si, DataOut
lea di, DataIn
mov cx, (251*256)/4

rep movsd
pop ds

; Optimization Step #1: Convert loops to repeat..until form.

; for i := 1 to 249 -

mov i, 1
iloop:

; for j := 1 to 254 -

 

7. This does not imply that coding this improved algorithm in C was easier. Most of the time on the assembly version was spent trying out several
different modifications to see if they actually improved performance. Many modifications did not, so they were removed from the code. The devel-
opment of the C version benefited from the past work on the assembly version. It was a straight-forward conversion from assembly to C.
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mov j, 1
jloop:

; Optimization. Unroll the innermost two loops:

mov bh, byte ptr i;i is always less than 256.
mov bl, byte ptr j;Computes i*256+j!

push ds
mov ax, InSeg ;Gain access to InSeg.
mov ds, ax

mov cx, 0 ;Compute sum here.
mov ah, ch
mov cl, ds:DataIn[bx-257];DataIn[i-1][j-1]
mov al, ds:DataIn[bx-256];DataIn[i-1][j]
add cx, ax
mov al, ds:DataIn[bx-255];DataIn[i-1][j+1]
add cx, ax
mov al, ds:DataIn[bx-1];DataIn[i][j-1]
add cx, ax
mov al, ds:DataIn[bx+1];DataIn[i][j+1]
add cx, ax
mov al, ds:DataIn[bx+255];DataIn[i+1][j-1]
add cx, ax
mov al, ds:DataIn[bx+256];DataIn[i+1][j]
add cx, ax
mov al, ds:DataIn[bx+257];DataIn[i+1][j+1]
add cx, ax

mov al, ds:DataIn[bx];DataIn[i][j]
shl ax, 3 ;DataIn[i][j]*8
add cx, ax
shr cx, 4 ;Divide by 16
mov ax, OutSeg
mov ds, ax
mov ds:DataOut[bx], cl
pop ds

inc j
cmp j, 254
jbe jloop

inc i
cmp i, 249
jbe iloop

inc h
mov ax, h
cmp ax, Iterations
jnbe Done
jmp hloop

Done: print
byte “Writing result”,cr,lf,0

; «More omitted code goes here, see the previous version»

 

The second version above still uses memory variables for most computations. The optimizations
applied to the original code were mainly language-independent optimizations. The next step was to begin
applying some assembly language specific optimizations to the code. The first optimization we need to do
is to move as many variables as possible into the 80x86’s register set. The following code provides this
optimization. Although this only improves the running time by 2 seconds, that is a 33% improvement (six
seconds down to four)!

 

; IMGPRCS.ASM
;
; An image processing program (Second optimization pass).
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;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
; Version #2: Three major optimizations. (1) used movsd instruction rather
;  than a loop to copy data from DataOut back to DataIn.
;  (2) Used repeat..until forms for all loops. (3) unrolled
;  the innermost two loops (which is responsible for most of
;  the performance improvement).
; Version #3: Used registers for all variables. Set up segment registers
;  once and for all through the execution of the main loop so
;  the code didn’t have to reload ds each time through. Computed
;  index into each row only once (outside the j loop).
;
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code-  4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of delete code goes here»

print
byte “Computing Result”,cr,lf,0

; Copy the input data to the output buffer.

hloop: mov ax, InSeg
mov es, ax
mov ax, OutSeg
mov ds, ax
lea si, DataOut
lea di, DataIn
mov cx, (251*256)/4

rep movsd

assume ds:InSeg, es:OutSeg
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254 ;# of times through loop.

jloop:
mov dx, 0 ;Compute sum here.
mov ah, dh
mov dl, DataIn[bx-257] ;DataIn[i-1][j-1]
mov al, DataIn[bx-256] ;DataIn[i-1][j]
add dx, ax
mov al, DataIn[bx-255] ;DataIn[i-1][j+1]
add dx, ax
mov al, DataIn[bx-1] ;DataIn[i][j-1]
add dx, ax
mov al, DataIn[bx+1] ;DataIn[i][j+1]
add dx, ax
mov al, DataIn[bx+255] ;DataIn[i+1][j-1]
add dx, ax
mov al, DataIn[bx+256] ;DataIn[i+1][j]
add dx, ax
mov al, DataIn[bx+257] ;DataIn[i+1][j+1]
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add dx, ax

mov al, DataIn[bx] ;DataIn[i][j]
shl ax, 3 ;DataIn[i][j]*8
add dx, ax
shr dx, 4 ;Divide by 16
mov DataOut[bx], dl

inc bx
dec ch
jne jloop

dec cl
jne iloop

dec bp
jne hloop

Done: print
byte “Writing result”,cr,lf,0

; «More deleted code goes here, see the original version»

 

Note that on each iteration, the code above still copies the output data back to the input data. That’s
almost six and a half megabytes of data movement for 100 iterations! The following version of the blurring
program unrolls the 

 

hloop

 

 twice. The first occurrence copies the data from DataIn to DataOut while com-
puting the blur, the second instance copies the data from DataOut back to DataIn while blurring the
image. By using these two code sequences, the program save copying the data from one point to another.
This version also maintains some common computations between two adjacent cells to save a few instruc-
tions in the innermost loop. This version arranges instructions in the innermost loop to help avoid data
hazards on 80486 and later processors. The end result is almost 40% faster than the previous version
(down to 2.5 seconds from four seconds).

 

; IMGPRCS.ASM
;
; An image processing program (Third optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
;  than a loop to copy data from DataOut back to DataIn.
;  (2) Used repeat..until forms for all loops. (3) unrolled
;  the innermost two loops (which is responsible for most of
;  the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
;  once and for all through the execution of the main loop so
;  the code didn’t have to reload ds each time through. Computed
;  index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
;  Removed hazards. Maintained common subexpressions. Did some
;  more loop unrolling.
;
;
; Performance comparisons (66 MHz 80486 DX/2 system, 100 iterations).
;
; This code-  2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of deleted code here, see the original version»
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print
byte “Computing Result”,cr,lf,0

assume ds:InSeg, es:OutSeg

mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; Copy the data once so we get the edges in both arrays.

mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut

rep movsd

; “hloop” repeats once for each iteration.

hloop:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; “iloop” processes the rows in the matrices.

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254/2 ;# of times through loop.
mov si, bx
mov dh, 0 ;Compute sum here.
mov bh, 0
mov ah, 0

; “jloop” processes the individual elements of the array.
; This loop has been unrolled once to allow the two portions to share
; some common computations.

jloop:

; The sum of DataIn [i-1][j] + DataIn[i-1][j+1] + DataIn[i+1][j] +
; DataIn [i+1][j+1] will be used in the second half of this computation.
; So save its value in a register (di) until we need it again.

mov dl, DataIn[si-256] ;[i-1,j]
mov al, DataIn[si-255] ;[i-1,j+1]
mov bl, DataIn[si+257] ;[i+1,j+1]
add dx, ax
mov al, DataIn[si+256] ;[I+1,j]
add dx, bx
mov bl, DataIn[si+1] ;[i,j+1]
add dx, ax
mov al, DataIn[si+255] ;[i+1,j-1]

mov di, dx ;Save partial result.

add dx, bx
mov bl, DataIn[si-1] ;[i,j-1]
add dx, ax
mov al, DataIn[si] ;[i,j]
add dx, bx
mov bl, DataIn[si-257] ;[i-1,j-1]
shl ax, 3 ;DataIn[i,j] * 8.
add dx, bx
add dx, ax
shr ax, 3 ;Restore DataIn[i,j].
shr dx, 4 ;Divide by 16.
add di, ax
mov DataOut[si], dl
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; Okay, process the next cell over. Note that we’ve got a partial sum
; sitting in DI already. Don’t forget, we haven’t bumped SI at this point,
; so the offsets are off by one. (This is the second half of the unrolled
; loop.)

mov dx, di ;Partial sum.
mov bl, DataIn[si-254] ;[i-1,j+1]
mov al, DataIn[si+2] ;[i,j+1]
add dx, bx
mov bl, DataIn[si+258] ;[i+1,j+1];
add dx, ax
mov al, DataIn[si+1] ;[i,j]
add dx, bx
shl ax, 3 ;DataIn[i][j]*8
add si, 2 ;Bump array index.
add dx, ax
mov ah, 0 ;Clear for next iter.
shr dx, 4 ;Divide by 16
dec ch
mov DataOut[si-1], dl
jne jloop

dec cl
jne iloop

dec bp
je Done

; Special case so we don’t have to move the data between the two arrays.
; This is an unrolled version of the hloop that swaps the input and output
; arrays so we don’t have to move data around in memory.

mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax
assume es:InSeg, ds:OutSeg

hloop2:

mov cl, 249
iloop2: mov bh, cl

mov bl, 1
mov ch, 254/2
mov si, bx
mov dh, 0
mov bh, 0
mov ah, 0

jloop2:
mov dl, DataOut[si-256]
mov al, DataOut[si-255]
mov bl, DataOut[si+257]
add dx, ax
mov al, DataOut[si+256]
add dx, bx
mov bl, DataOut[si+1]
add dx, ax
mov al, DataOut[si+255]

mov di, dx

add dx, bx
mov bl, DataOut[si-1]
add dx, ax
mov al, DataOut[si]
add dx, bx
mov bl, DataOut[si-257]
shl ax, 3
add dx, bx
add dx, ax
shr ax, 3
shr dx, 4
mov DataIn[si], dl
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mov dx, di
mov bl, DataOut[si-254]
add dx, ax
mov al, DataOut[si+2]
add dx, bx
mov bl, DataOut[si+258]
add dx, ax
mov al, DataOut[si+1]
add dx, bx
shl ax, 3
add si, 2
add dx, ax
mov ah, 0
shr dx, 4
dec ch
mov DataIn[si-1], dl
jne jloop2

dec cl
jne iloop2

dec bp
je Done2
jmp hloop

; Kludge to guarantee that the data always resides in the output segment.

Done2:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax
mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut

rep movsd

Done: print
byte “Writing result”,cr,lf,0

; «Lots of deleted code here, see the original program»

 

This code provides a good example of the kind of optimization that scares a lot of people. There is a
lot of cycle counting, instruction scheduling, and other crazy stuff that makes program very difficult to
read and understand. This is the kind of optimization for which assembly language programmers are
famous; the stuff that spawned the phrase “never optimize early.” You should never try this type of optimi-
zation until you feel you’ve exhausted all other possibilities. Once you write your code in this fashion, it is
going to be very difficult to make further changes to it. By the way, the above code took about 15 hours to
develop and debug (debugging took the most time). That works out to a 0.1 second improvement (for 100
iterations) for each hour of work. Although this code certainly isn’t optimal yet, it is difficult to justify more
time attempting to improve this code by mechanical means (e.g., moving instructions around, etc.)
because the performance gains would be so little.

In the four steps above, we’ve reduced the running time of the assembly code from 36 seconds down
to 2.5 seconds. Quite an impressive feat. However, you shouldn’t get the idea that this was easy or even
that there were only four steps involved. During the actual development of this example, there were many
attempts that did not improve performance (in fact, some modifications wound up reducing performance)
and others did not improve performance enough to justify their inclusion. Just to demonstrate this last
point, the following code included a major change in the way the program organized data. The main loop
operates on 16 bit objects in memory rather than eight bit objects. On some machines with large external
caches (256K or better) this algorithm provides a slight improvement in performance (2.4 seconds, down
from 2.5). However, on other machines it runs slower. Therefore, this code was not chosen as the final
implementation:
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; IMGPRCS.ASM
;
; An image processing program (Fourth optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
;  than a loop to copy data from DataOut back to DataIn.
;  (2) Used repeat..until forms for all loops. (3) unrolled
;  the innermost two loops (which is responsible for most of
;  the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
;  once and for all through the execution of the main loop so
;  the code didn’t have to reload ds each time through. Computed
;  index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
;  Removed hazards. Maintained common subexpressions. Did some
;  more loop unrolling.
;
; Version #5: Converted data arrays to words rather than bytes and operated
;  on 16-bit values. Yielded minimal speedup.
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 2.4 seconds.
; 3rd optimization pass- 2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

.xlist
include stdlib.a
includelib stdlib.lib
.list
.386
option segment:use16

dseg segment para public ‘data’

ImgData byte 251 dup (256 dup (?))

InName byte “roller1.raw”,0
OutName byte “roller2.raw”,0
Iterations word 0

dseg ends

; This code makes the naughty assumption that the following
; segments are loaded contiguously in memory! Also, because these
; segments are paragraph aligned, this code assumes that these segments
; will contain a full 65,536 bytes. You cannot declare a segment with
; exactly 65,536 bytes in MASM. However, the paragraph alignment option
; ensures that the extra byte of padding is added to the end of each
; segment.

DataSeg1 segment para public ‘ds1’
Data1a byte 65535 dup (?)
DataSeg1 ends

DataSeg2 segment para public ‘ds2’
Data1b byte 65535 dup (?)
DataSeg2 ends
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DataSeg3 segment para public ‘ds3’
Data2a byte 65535 dup (?)
DataSeg3 ends

DataSeg4 segment para public ‘ds4’
Data2b byte 65535 dup (?)
DataSeg4 ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
meminit

mov ax, 3d00h ;Open input file for reading.
lea dx, InName
int 21h
jnc GoodOpen
print
byte “Could not open input file.”,cr,lf,0
jmp Quit

GoodOpen: mov bx, ax ;File handle.
lea dx, ImgData
mov cx, 256*251 ;Size of data file to read.
mov ah, 3Fh
int 21h
cmp ax, 256*251 ;See if we read the data.
je GoodRead
print
byte “Did not read the file properly”,cr,lf,0
jmp Quit

GoodRead: print
byte “Enter number of iterations: “,0
getsm
atoi
free
mov Iterations, ax
cmp ax, 0
jle Quit

printf
byte “Computing Result for %d iterations”,cr,lf,0
dword Iterations

; Copy the data and expand it from eight bits to sixteen bits.
; The first loop handles the first 32,768 bytes, the second loop
; handles the remaining bytes.

mov ax, DataSeg1
mov es, ax
mov ax, DataSeg3
mov fs, ax

mov ah, 0
mov cx, 32768
lea si, ImgData
xor di, di ;Output data is at ofs zero.

CopyLoop: lodsb ;Read a byte
mov fs:[di], ax ;Store a word in DataSeg3
stosw ;Store a word in DataSeg1
dec cx
jne CopyLoop

mov di, DataSeg2
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mov es, di
mov di, DataSeg4
mov fs, di
mov cx, (251*256) - 32768
xor di, di

CopyLoop1: lodsb ;Read a byte
mov fs:[di], ax ;Store a word in DataSeg4
stosw ;Store a word in DataSeg2
dec cx
jne CopyLoop1

; hloop completes one iteration on the data moving it from Data1a/Data1b
; to Data2a/Data2b

hloop: mov ax, DataSeg1
mov ds, ax
mov ax, DataSeg3
mov es, ax

; Process the first 127 rows (65,024 bytes) of the array):

mov cl, 127
lea si, Data1a+202h ;Start at [1,1]

iloop0: mov ch, 254/2 ;# of times through loop.
jloop0: mov dx, [si] ;[i,j]

mov bx, [si-200h] ;[i-1,j]
mov ax, dx
shl dx, 3 ;[i,j] * 8
add bx, [si-1feh] ;[i-1,j+1]
mov bp, [si+2] ;[i,j+1]
add bx, [si+200h] ;[i+1,j]
add dx, bp
add bx, [si+202h] ;[i+1,j+1]
add dx, [si-202h] ;[i-1,j-1]
mov di, [si-1fch] ;[i-1,j+2]
add dx, [si-2] ;[i,j-1]
add di, [si+4] ;[i,j+2]
add dx, [si+1feh] ;[i+1,j-1]
add di, [si+204h] ;[i+1,j+2]
shl bp, 3 ;[i,j+1] * 8
add dx, bx
add bp, ax
shr dx, 4 ;Divide by 16.
add bp, bx
mov es:[si], dx ;Store [i,j] entry.
add bp, di
add si, 4 ;Affects next store operation!
shr bp, 4 ;Divide by 16.
dec ch
mov es:[si-2], bp ;Store [i,j+1] entry.
jne jloop0

add si, 4 ;Skip to start of next row.

dec cl
jne iloop0

; Process the last 124 rows of the array). This requires that we switch from
; one segment to the next. Note that the segments overlap.

mov ax, DataSeg2
sub ax, 40h ;Back up to last 2 rows in DS2
mov ds, ax
mov ax, DataSeg4
sub ax, 40h ;Back up to last 2 rows in DS4
mov es, ax

mov cl, 251-127-1 ;Remaining rows to process.
mov si, 202h ;Continue with next row.

iloop1: mov ch, 254/2 ;# of times through loop.
jloop1: mov dx, [si] ;[i,j]

mov bx, [si-200h] ;[i-1,j]
mov ax, dx
shl dx, 3 ;[i,j] * 8
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add bx, [si-1feh] ;[i-1,j+1]
mov bp, [si+2] ;[i,j+1]
add bx, [si+200h] ;[i+1,j]
add dx, bp
add bx, [si+202h] ;[i+1,j+1]
add dx, [si-202h] ;[i-1,j-1]
mov di, [si-1fch] ;[i-1,j+2]
add dx, [si-2] ;[i,j-1]
add di, [si+4] ;[i,j+2]
add dx, [si+1feh] ;[i+1,j-1]
add di, [si+204h] ;[i+1,j+2]
shl bp, 3 ;[i,j+1] * 8
add dx, bx
add bp, ax
shr dx, 4 ;Divide by 16
add bp, bx
mov es:[si], dx ;Store [i,j] entry.
add bp, di
add si, 4 ;Affects next store operation!
shr bp, 4
dec ch
mov es:[si-2], bp ;Store [i,j+1] entry.
jne jloop1

add si, 4 ;Skip to start of next row.

dec cl
jne iloop1

mov ax, dseg
mov ds, ax
assume ds:dseg

dec Iterations
je Done0

; Unroll the iterations loop so we can move the data from DataSeg2/4 back
; to DataSeg1/3 without wasting extra time. Other than the direction of the
; data movement, this code is virtually identical to the above.

mov ax, DataSeg3
mov ds, ax
mov ax, DataSeg1
mov es, ax

mov cl, 127
lea si, Data1a+202h

iloop2: mov ch, 254/2
jloop2: mov dx, [si]

mov bx, [si-200h]
mov ax, dx
shl dx, 3
add bx, [si-1feh]
mov bp, [si+2]
add bx, [si+200h]
add dx, bp
add bx, [si+202h]
add dx, [si-202h]
mov di, [si-1fch]
add dx, [si-2]
add di, [si+4]
add dx, [si+1feh]
add di, [si+204h]
shl bp, 3
add dx, bx
add bp, ax
shr dx, 4
add bp, bx
mov es:[si], dx
add bp, di
add si, 4
shr bp, 4
dec ch
mov es:[si-2], bp
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jne jloop2

add si, 4

dec cl
jne iloop2

mov ax, DataSeg4
sub ax, 40h
mov ds, ax
mov ax, DataSeg2
sub ax, 40h
mov es, ax

mov cl, 251-127-1
mov si, 202h

iloop3: mov ch, 254/2
jloop3: mov dx, [si]

mov bx, [si-200h]
mov ax, dx
shl dx, 3
add bx, [si-1feh]
mov bp, [si+2]
add bx, [si+200h]
add dx, bp
add bx, [si+202h]
add dx, [si-202h]
mov di, [si-1fch]
add dx, [si-2]
add di, [si+4]
add dx, [si+1feh]
add di, [si+204h]
shl bp, 3
add dx, bx
add bp, ax
shr dx, 4
add bp, bx
mov es:[si], dx
add bp, di
add si, 4
shr bp, 4
dec ch
mov es:[si-2], bp
jne jloop3

add si, 4

dec cl
jne iloop3

mov ax, dseg
mov ds, ax
assume ds:dseg

dec Iterations
je Done2
jmp hloop

Done2: mov ax, DataSeg1
mov bx, DataSeg2
jmp Finish

Done0: mov ax, DataSeg3
mov bx, DataSeg4

Finish: mov ds, ax
print
byte “Writing result”,cr,lf,0

; Convert data back to byte form and write to the output file:

mov ax, dseg
mov es, ax
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mov cx, 32768
lea di, ImgData
xor si, si ;Output data is at offset zero.

CopyLoop3: lodsw ;Read a word from final array.
stosb ;Write a byte to output array.
dec cx
jne CopyLoop3

mov ds, bx
mov cx, (251*256) - 32768
xor si, si

CopyLoop4: lodsw ;Read final data word.
stosb ;Write data byte to output array.
dec cx
jne CopyLoop4

; Okay, write the data to the output file:

mov ah, 3ch ;Create output file.
mov cx, 0 ;Normal file attributes.
mov dx, dseg
mov ds, dx
lea dx, OutName
int 21h
jnc GoodCreate
print
byte “Could not create output file.”,cr,lf,0
jmp Quit

GoodCreate: mov bx, ax ;File handle.
push bx
mov dx, dseg ;Where the data can be found.
mov ds, dx
lea dx, ImgData
mov cx, 256*251 ;Size of data file to write.
mov ah, 40h ;Write operation.
int 21h
pop bx ;Retrieve handle for close.
cmp ax, 256*251 ;See if we wrote the data.
je GoodWrite
print
byte “Did not write the file properly”,cr,lf,0
jmp Quit

GoodWrite: mov ah, 3eh ;Close operation.
int 21h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

Of course, the absolute best way to improve the performance of any piece of code is with a better
algorithm. All of the above assembly language versions were limited by a single requirement – they all
must produce the same output file as the original Pascal program. Often, programmers lose sight of what it
is that they are trying to accomplish and get so caught up in the computations they are performing that
they fail to see other possibilities. The optimization example above is a perfect example. The assembly
code faithfully preserves the semantics of the original Pascal program; it computes the weighted average
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of all interior pixels as the sum of the eight neighbors around a pixel plus eight times the current pixel’s
value, with the entire sum divided by 16. Now this is a 

 

good

 

  blurring function, but it is not the 

 

only

 

  blur-
ring function. A Photoshop (or other image processing program) user doesn’t care about algorithms or
such. When that user selects “blur image” they want it to go out of focus. Exactly how much out of focus is
generally immaterial. In fact, the less the better because the user can always run the blur algorithm again
(or specify some number of iterations). The following assembly language program shows how to get bet-
ter performance by modifying the blurring algorithm to reduce the number of instructions it needs to exe-
cute in the innermost loops. It computes blurring by averaging a pixel with the four neighbors above,
below, to the left, and to the right of the current pixel. This modification yields a program that runs 100
iterations in 2.2 seconds, a 12% improvement over the previous version:

 

; IMGPRCS.ASM
;
; An image processing program (Fifth optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
;  than a loop to copy data from DataOut back to DataIn.
;  (2) Used repeat..until forms for all loops. (3) unrolled
;  the innermost two loops (which is responsible for most of
;  the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
;  once and for all through the execution of the main loop so
;  the code didn’t have to reload ds each time through. Computed
;  index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
;  Removed hazards. Maintained common subexpressions. Did some
;  more loop unrolling.
;
; Version #6: Changed the blurring algorithm to use fewer computations.
;  This version does *NOT* produce the same data as the other
;  programs.
;
;
; Performance comparisons (66 MHz 80486 DX/2 system, 100 iterations).
;
; This code- 2.2 seconds.
; 3rd optmization pass- 2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of deleted code here, see the original program»

print
byte “Computing Result”,cr,lf,0

assume ds:InSeg, es:OutSeg

mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; Copy the data once so we get the edges in both arrays.

mov cx, (251*256)/4
lea si, DataIn
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lea di, DataOut
rep movsd

; “hloop” repeats once for each iteration.

hloop:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; “iloop” processes the rows in the matrices.

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254/2 ;# of times through loop.
mov si, bx
mov dh, 0 ;Compute sum here.
mov bh, 0
mov ah, 0

; “jloop” processes the individual elements of the array.
; This loop has been unrolled once to allow the two portions to share
; some common computations.

jloop:

; The sum of DataIn [i-1][j] + DataIn[i-1][j+1] + DataIn[i+1][j] +
; DataIn [i+1][j+1] will be used in the second half of this computation.
; So save its value in a register (di) until we need it again.

mov dl, DataIn[si] ;[i,j]
mov al, DataIn[si-256] ;[I-1,j]
shl dx, 2 ;[i,j]*4
mov bl, DataIn[si-1] ;[i,j-1]
add dx, ax
mov al, DataIn[si+1] ;[i,j+1]
add dx, bx
mov bl, DataIn[si+256] ;[i+1,j]
add dx, ax
shl ax, 2 ;[i,j+1]*4
add dx, bx
mov bl, DataIn[si-255] ;[i-1,j+1]
shr dx, 3 ;Divide by 8.
add ax, bx
mov DataOut[si], dl
mov bl, DataIn[si+2] ;[i,j+2]
mov dl, DataIn[si+257] ;[i+1,j+1]
add ax, bx
mov bl, DataIn[si] ;[i,j]
add ax, dx
add ax, bx
shr ax, 3
dec ch
mov DataOut[si+1], al
jne jloop

dec cl
jne iloop

dec bp
je Done

; Special case so we don’t have to move the data between the two arrays.
; This is an unrolled version of the hloop that swaps the input and output
; arrays so we don’t have to move data around in memory.

mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax
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assume es:InSeg, ds:OutSeg

hloop2:

mov cl, 249
iloop2: mov bh, cl

mov bl, 1
mov ch, 254/2
mov si, bx
mov dh, 0
mov bh, 0
mov ah, 0

jloop2:
mov dl, DataOut[si-256]
mov al, DataOut[si-255]
mov bl, DataOut[si+257]
add dx, ax
mov al, DataOut[si+256]
add dx, bx
mov bl, DataOut[si+1]
add dx, ax
mov al, DataOut[si+255]

mov di, dx

add dx, bx
mov bl, DataOut[si-1]
add dx, ax
mov al, DataOut[si]
add dx, bx
mov bl, DataOut[si-257]
shl ax, 3
add dx, bx
add dx, ax
shr ax, 3
shr dx, 4
mov DataIn[si], dl

mov dx, di
mov bl, DataOut[si-254]
add dx, ax
mov al, DataOut[si+2]
add dx, bx
mov bl, DataOut[si+258]
add dx, ax
mov al, DataOut[si+1]
add dx, bx
shl ax, 3
add si, 2
add dx, ax
mov ah, 0
shr dx, 4
dec ch
mov DataIn[si-1], dl
jne jloop2

dec cl
jne iloop2

dec bp
je Done2
jmp hloop

; Kludge to guarantee that the data always resides in the output segment.

Done2:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax
mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut
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rep movsd

Done: print
byte “Writing result”,cr,lf,0

; «Lots of delete code here, see the original program»

 

One very important thing to keep in mind about the codein this section is that we’ve optimized it for
100 iterations. While it turns out that these optimizations apply equally well to more iterations, this isn’t
necessarily true for fewer iterations. In particular, if we run only one iteration, any copying of data at the
end of the operation will easily consume a large part of the time we save by the optimizations. Since it is
very rare for a user to blur an image 100 times in a row, our optimizations may not be as good as we could
make them. However, this section does provide a good example of the steps you must go through in order
to optimize a given program. One hundred iterations was a good choice for this example because it was
easy to measure the running time of all versions of the program. However, you must keep in mind that
you should optimize your programs for the expected case, not an arbitrary case.

 

25.6 Summary

 

Computer software often runs significantly slower than the task requires. The process of increasing
the speed of a program is known as 

 

optimization

 

. Unfortunately, optimization is a difficult and time-con-
suming task, something not to be taken lightly. Many programmers often optimize their programs before
they’ve determined that there is a need to do so, or (worse yet) they optimize a portion of a program only
to find that they have to rewrite that code after they’ve optimized it. Others, out of ignorance, often wind
up optimizing the wrong sections of their programs. Since optimization is a slow and difficult process, you
want to try and make sure you only optimize your code 

 

once

 

. This suggests that optimization should be
your last task when writing a program. 

One school of thought that completely embraces this philosophy is the 

 

Optimize Late

 

  group. Their
arguement is that program optimization often destroys the readability and maintanability of a program.
Therefore, one should only take this step when absolutely necessary and only at the end of the program
development stage.

The 

 

Optimize Early

 

  crowd knows, from experience, that programs that are not written to be fast
often need to be completely rewritten to make them fast. Therefore, they often take the attitude that opti-
mization should take place along with normal program development. Generally, the optimize early
group’s view of optimization is typically far different from the optimize late group. The optimize early
group claims that the extra time spent optimizing a program during development requires less time than
developing a program and then optimizing it. For all the details on this 

 

religious

 

  battle, see

• “When to Optimize, When Not to Optimize” on page 1311

After you’ve written a program and determine that it runs too slowly, the next step is to locate the
code that runs too slow. After identifying the slow sections of your program, you can work on speeding up
your programs. Locating that 10% of the code that requires 90% of the execution time is not always an easy
task. The four common techniques people use are trial and error, optimize everything, program analysis,
and experimental analysis (i.e., use a profiler). Finding the “hot spots” in a program is the first optimization
step. To learn about these four techniques, see

• “How Do You Find the Slow Code in Your Programs?” on page 1313

A convincing arguement the optimize late folks use is that machines are so fast that optimization is
rarely necessary. While this arguement is often overstated, it is often true that many unoptimized programs
run fast enough and do not require any optimization for satisfactory performance. On the other hand, pro-
grams that run fine by themselves may be too slow when running concurrently with other software. To see
the strengths and weaknesses of this arguement, see
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• “Is Optimization Necessary?” on page 1314

There are three forms of optimization you can use to improve the performance of a program: choose
a better algorithm, choose a better implementation of an algorithm, or “count cycles.” Many people (espe-
cially the optimize late crowd) only consider this last case “optimization.” This is a shame, because the last
case often produces the smallest incremental improvement in performance. To understand these three
forms of optimization, see

• “The Three Types of Optimization” on page 1315

Optimization is not something you can learn from a book. It takes lots of experience and practice.
Unfortunately, those with little practical experience find that their efforts rarely pay off well and generally
assume that optimization is not worth the trouble. The truth is, they do not have sufficient experience to
write truly optimal code and their frustration prevents them from gaining such experience. The latter part
of this chapter devotes itself to demonstrating what one can achieve when optimizing a program. Always
keep this example in mind when you feel frustrated and are beginning to believe you cannot improve the
performance of your program. For details on this example, see

• “Improving the Implementation of an Algorithm” on page 1317


