

Lab 6-177

The 80x86 Instruction Set Lab Manual, Chapter Six

The Intel 80x86 processor family supports a wide variation of machine instructions. You can perform many opera-
tions with several different instruction sequences. While this variety makes it easier to develop an algorithm in assembly
language, it complicates determining the

optimal

 sequence of instructions necessary for the job. In this laboratory you
will study the operation of many instructions in the 80x86 instruction set and compare instruction timings for sequences
which perform the same operation.

6.1 The 80x86 Flags Register

The 80x86 microprocessors use several bits in the flags register to control the operation of the CPU and denote the
current machine state. The

condition code bits

 (overflow, sign, zero, carry, and parity) let you test the results of com-
pleted computations. The machine state bits (direction, interrupt, and trace) let you control the operation of the machine.
Finally the auxiliary carry flag holds important status information for BCD operations.

The 80x86 provides special instructions which let you test the settings of the five condition code bits. These instruc-
tions include the conditional jump (Jcc) instructions and the conditional set instructions (SETcc, available only on 80386
and later processors). Indeed, the whole reason these five flags have the name “condition codes” is because you can exe-
cute instructions which conditionally test them.

6.1 Which flags are the condition codes?

The machine state flags control the operation of the CPU. These flags include the direction flag, the trace flag, and
the interrupt disable flag. The trace flag gives debuggers such as CodeView the ability to

single-step

 through a section of
code. Application programs rarely change this flag. The direction flag controls the operation of the string instructions.
The interrupt disable flag controls whether hardware

interrupts

 are active. Usually, interrupts are always on. An applica-
tion can turn off interrupts for brief periods of time when executing certain critical code.

The auxiliary carry flag, set by certain arithmetic operations, denotes a carry while performing BCD arithmetic. You
cannot directly set or clear it, nor can you directly test it. Since the text does not consider BCD arithmetic, we will ignore
this flag.

The 80x86 provides several instructions which directly affect the flags. These include CLC (clear carry), STC (set
carry), CMC (complement carry), CLD (clear direction), STD (set direction), CLI (clear interrupt), STI (set interrupt),
POPF/POPFD (pop flags), and SAHF (store AH into flags).

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

= Unused

8086 Flags

Bit 15 Bit 0

This document was created with FrameMaker 4.0.2

Lab Ch06

Lab 6-178

Although the 80x86 does not provide specific instructions to set and clear other flags, you can use the LAHF/SAHF
and PUSHF/POPF instructions to accomplish this. For example, to set the parity flag use an instruction sequence like

lahf
or ah, 100b ;Parity is bit #2 in the flags register.
sahf

Keep in mind that the SAHF instruction does not affect the overflow flag and the OR instruction clears the overflow flag.
If you need to preserve or modify the overflow, interrupt, or trace flag in the above sequence, you will need to use code
like the following:

pushf
pop ax
or ax,

flag_bits

;Use AND to clear bits.
push ax
popf

6.2 Which flags do the SAHF and LAHF instructions deal with?

6.3 The SAHF/LAHF instructions will not let you modify which condition code?

6.2 Data Movement Instructions

Important data movement instructions include

mov, xchg, lea, lds, les, lfs, lgs, lss, push, pop, pusha,
popa, pushf, popf, lahf, and sahf.

 Keep in mind,

most

 instructions move data around (often manipulating it at the
same time). These instructions fall into this category because data movement is their primary goal

1

.

6.2.1 MOV dest, source

The

mov

instruction copies data from a source operand to a destination operand. Chapter Four covers this instruc-
tion in detail, there is no need to consider it here.

The

xchg

instruction swaps the data between its operands. One operand must be a register, the other may be a reg-
ister or a memory location. There is a special (one byte) version of this instruction that swaps AX with another register.
The

nop

instruction is really a synonym for

xchg ax, ax

.

6.4 Suppose you want to exchange the values in the AX and BX registers. Using only MOV
instructions and the AX, BX, and CX registers, write the code to do this:

6.5 Suppose you want to swap the 16-bit values in memory locations I & J. What three instruc-
tions will do this job (hint: only one is an XCHG):

1. ENTER and LEAVE are exceptions to this rule. We’ll consider them here because they mesh so well with the PUSH/POP instructions.

The 80x86 Instruction Set

Lab 6-179

6.2.2 LEA reg, memory

The

lea

(Load Effective Address) instruction computes the address of its memory operand
and stores this address in the 16-bit register operand. This instruction also computes an effective
address in addition to moving data around, so it is really an arithmetic statement, but most texts
classify it as a data movement instruction.

The

lea

instruction is useful for setting up a pointer to some data structure in memory. For
example, if you have a pointer to an array in

bx

and an index into that array in

si

, you can gen-
erate a pointer to the 3

rd

byte of that array element using the instruction

lea bx, [bx+si+3]

.
From that point forward you can access the specified element by using the

 [bx]

addressing
mode. On many members of the 80x86 family, the simpler addressing mode is also faster (and
it’s always shorter). This is particularly useful if you can set up a register outside a loop and use a
faster addressing mode inside the loop:

lea bx, [bx+si+3]
ThisLoop: mov [bx], al

loop ThisLoop

6.6 What will the “LEA AX, lbl[bx]” instruction do?

6.7 What is the difference between “LEA ax, [bx]” and “MOV ax, [bx]”?

6.8 Why isn’t “LEA ax, bx” legal? Explain

The

lds, les, lfs, lgs,

 and

lss

instructions let you load a 32-bit value into one of the
80x86’s segment registers and a 16-bit general purpose register. The primary use of this instruc-
tion is to load a far pointer into a segment register and a pointer register. Although the instruction
manipulates 32-bit quantities (even on eight and sixteen bit processors), you should not use this
instruction for purposes other than initializing a segment/base register pair. Keep in mind that

lfs, lgs,

and

lss

are available only on 80386 and later processors.

As an example, consider the UCR Standard Library

puts

routine (see Chapter Six). This
routine requires a pointer to a

zero terminated string

2

 in the

es:di

register pair. The following
code will do this job:

String byte “string to print”,0
StrPtr dword String

 .
 .
 .
les di, StrPtr
PUTS

2. A sequence of ASCII characters ending with a byte containing zero.

6.1 C, S, O, and Z

Lab Ch06

Lab 6-180

Note that the

les

instruction above

does not

 copy the address of

StrPtr

 into

es:di

.. Instead, it loads

es:di

with the 32
bits found at the source operand. The instruction

LES di, String

 generates an error (see Chapter Six). Even if it would
work, it would not load the address of

String

 into

es:di

, it will load the four bytes “stri” into

es:di

.

6.9 What L

x

S instructions are available on all 80x86 processors?

6.10 What will the LES DI, [BX+3] instruction do?

6.2.3 PUSH and POP

The

push

and

pop

instructions are the most complex in the data movement group. These instructions move data
between registers/memory and the 80x86

stack

. The stack is a region in memory contained within the

stack segment

, ref-
erenced by the 80x86

stack pointer

 register. The 80x86 CPUs automatically use the stack to store temporary data. You can
also use the stack for temporary data using the

push

and pop instructions.

The 80x86 stack is a

last in first out

 (LIFO) data structure. That is, the last thing you store onto the stack will be the
first thing you retrieve from the stack. This type of data structure is particularly useful for various operations, particularly
the subroutine call/return mechanism. The classic example of a stack is a dishwell at a local restaurant. The first plates
the bus boy places into the dishwell are the

last

 plates removed. Likewise, the last plates placed in the dishwell will be
the first plates removed:

As you can see in the diagram above, the very first plate placed on the stack winds up on the bottom. It will be the
very last plate removed from the dishwell. The 80x86 stack works in a similar fashion. The first values you push onto the
stack are the last values you pop off the stack; the last values you push onto the stack are the first popped from the stack.

6.11 What does “LIFO” stand for?

Pushing Plates onto the Stack

Popping Plates from the Stack

The 80x86 Instruction Set

Lab 6-181

6.12 If you were to push AX and BX on the stack (in that order), which value
would you pop off the stack first?

The

push

instructions operate on 16-bit (

push

) or 32-bit (

pushd

) operands. You cannot
push eight-bit values onto the 80x86 stack. The PUSH instructions subtract two from SP and then
store the operand’s value at memory location

ss:sp

. The

pushd

instructions (available only on
80386 and later processors) subtract four from

sp

and then store their operand at location

ss:sp

. Note that

ss:sp

always points at the last item pushed on the stack.

The

pop

and

popd

instructions operate in a similar fashion, undoing the

push

/

pushd

.
They copy the value from memory location

ss:sp

to their destination operand, then add two or
four to

sp

(two for

pop

, four for

popd

). Note that the 80x86 stack grows

down

 in memory. That
is, as you push things onto the stack, the stack uses lower and lower memory locations.

6.13 If SP contains 8010h and you push AX onto the stack, what will SP con-
tain after the push?

6.14 If SP contains 7FFCh and you push EAX onto the stack, what will SP
contain after the PUSHD?

6.15 If you pop the value on the stack into BX when SP contains 801Ch,
what will SP contain after the pop?

The

push

/

pushd

 instructions allow several different types of operands. You may push
any of the 80x86’s general purpose 16/32-bit registers, 16-bit segment registers, 16/32-bit mem-
ory locations, or 16/32-bit constants

3

. Except for constants,

pop

 and

popd

 support this same
operand set.

The

pushf and pushfd

instructions push the flags register. The

popf and popfd

instructions pop the flags register. These instructions do not require any operands.

The 80286 and later processors also support “push all” and “pop all” instructions (

pusha/
pushad

and

popa/popad

). These instructions push the set of general purpose registers onto
the stack or pop them off the stack.

6.16 The 80x86 CPUs do not let you load immediate constants into a seg-
ment register. Describe how you could use a push and pop instruction
on the 80286 and later processors to load a constant into DS:

6.17 If you push AX then BX onto the stack, and then pop AX and BX off the
stack (in that order), you will exchange the values in AX and BX.
Explain:

3. Pushing constants only works on 80286 and later processors, pushing 32-bit values only works on 80386 and later
processors.

5.2 Carry, Aux Carry, Par-
ity, Zero, and Sign.

5.3 Overflow

5.4 MOV CX, AX
MOV AX, BX
MOV BX, CX

5.5 MOV AX, I
XCHG AX, J
MOV I, AX

5.6 Loads the offset of
“Lbl” plus the current value
of BX into AX.

5.7 LEA AX, [BX] simply
copies the value of BX into
AX. MOV AX, [BX] loads the
memory location pointed at
by BX into AX

5.8 The second operand
of LEA must be a memory
addressing mode.

Lab Ch06

Lab 6-182

The PUSH and POP instructions are especially useful for temporarily saving the value in a register so you can use
that register for some other purpose. For example, suppose you want to add word variables I and J together, storing the
result into K, but all your general purpose registers contain important values. You could use the following code to
resolve this dilemma:

push ax
mov ax, i
add ax, j
mov k, ax
pop ax

There are a couple of very important rules you must always observe when using the stack to store temporary values.
(1) You must always pop values off the stack in the

reverse

 order that you push them onto the stack (see question 5.17
above). (2) If you push a value onto the stack, you must pop it off the stack. (3) Likewise, you shouldn’t be popping val-
ues off the stack that you haven’t pushed onto the stack.

A very common mistake in assembly language programs is to pop items from the stack in the same order they were
pushed. Remember, the stack is a

last in first out

 data structure. If you execute the instruction sequence:

push ax
push bx
push cx
push dx

followed by

pop ax
pop bx
pop cx
pop dx

the first pop instruction (pop ax) pops the

last

 value pushed on the stack. This happens to be the value in DX at the time
of the push sequence. Note that the sequence above effectively executes the instructions:

xchg ax, dx
xchg bx, cx

The push instructions always push the H.O. byte of their operand first. This guarantees that the pushed item appears
in memory with it’s L.O. byte at the lowest address (remember, the stack grows downward in memory). To match this,
the pop instructions always pop the L.O. bytes first and the H.O. bytes last.

6.18 If you push EAX on the stack and then pop BX followed by AX, describe the values in the
BX and AX registers after this sequence:

6.2.4 LAHF and SAHF

The

lahf

and

sahf

instructions copy the L.O. eight bits of the flags register into AH (

lahf

) or store AH into the L.O.
eight bits of the flags register (

sahf

). Intel originally included these instructions in the instruction set for compatibility
with their older 8080/8085 microprocessors. Today, no one cares about such compatibility so these instructions do not
see much use. Their primary use is with the floating point instruction set on the 80x87 (see the chapter on floating point
arithmetic) and as a means of directly manipulating many of the flags. One major drawback to these instructions is that
the 80x86 overflow flag does not appear in the L.O. eight bits of the flags register.

The 80x86 Instruction Set

Lab 6-183

6.3 Sign/Zero Extension and Conversion Instructions

The 80x86 family provides several instructions for performing various data conversions:

bswap, cbw, cwd, cwde, cdq, movsx, movzx,

 and

xlat

.

6.3.1 BSWAP

Bswap

(available only on 80486 and later processors) swaps bytes zero and three and
bytes one and two in the destination register operand. This operation is useful for converting
between 32-bit big and little endian values.

6.19 The BSWAP instruction only swaps the bytes in a 32-bit register. What
80x86 instruction can you use to swap the two halves of the AX regis-
ter?

Suppose that you’ve obtain a binary image of an array of 32-bit integers created on a Motor-
ola 68040 microprocessor (which uses big endian byte ordering). The following sequence of
80486 instructions will convert this array to the little endian data format the 80x86 processors
use:

mov cx, ArraySize ;Number of elements .
lea bx, Array ;Ptr to 1st element.

Big2Little: mov eax, [bx] ;Get next element.
bswap eax ;Make little endian.
mov [bx], eax ;Save result away.
add bx, 4 ;Move no to next guy.
loop Bit2Little

6.3.2 CBW, CWD, CWDE, CDQ, MOVSX, and MOVZX

The

cbw

(convert byte to word) and

cwd

(convert word to double) instructions are avail-
able on all 80x86 processors. They sign extend

al

into

ax

(

cbw

) and

ax

into

dx:ax

(

cwd

).

cwde

also sign extends the 16-bit value in

ax

to 32 bits, but it leaves its result in

eax

rather than

dx:ax

. The

Cdq

instruction sign extends the 32-bit value in

eax

to a 64-bit value in

edx:eax

.
The major drawback to these instructions is that they only operate on the accumulator. Further-
more, they leave their result in the accumulator and (possibly) the

dx

register. The

movsx

instruction eliminates these two restrictions by letting you move and sign extend any operands
acceptable to the

mov

instruction. The only difference is that the destination operand must be
larger than the source operand. The

movzx

instructions works in a similar fashion, but it zero
extends rather than sign extends its operand.

6.20 What is an easy way to zero extend AL into AX using only a MOV
instruction?

6.21 Given the solution to question 5.20, can you come up with an
example which demonstrates why one would want to use the MOVZX
instruction?

5.9 LDS and LES

5.10 Load DI from location
BX + 3 and load ES from
location BX + 5.

5.11 Last in first out

5.12 BX.

5.13 800Eh.

5.14 7FF8h.

5.15 801Eh.

5.16 PUSH constant
POP DS

5.17 Since you pushed AX
then BX, BX’s value is the
first popped off the stack.
Hence if you execute POP
AX followed by POP BX you
will pop BX’s old value into
AX and AX’s old value into
BX.

Lab Ch06

Lab 6-184

Although these instructions are generally applicable anytime you want to extend the size of a signed integer value, it
is especially crucial that you remember to zero or sign extend the accumulator operand when using the

div

and

idiv

instructions. Keep in mind that

div

and

idiv

divide the 16/32/64-bit values in

ax, dx:ax,

 or

edx:eax

by an 8/16/32-
bit operand. If you really want to perform an 8/8, 16/16, or 32/32 bit division, you can use the zero and sign extension
instructions to extend the dividend to the appropriate size before the division takes place.

6.22 Suppose you want to divide the (signed) value in AX by the value in BX using the IDIV
instruction. IDIV requires a 32-bit value in DX:AX prior to the division. Which instruction
would you use to do this?

The following code sequence computes the average of the elements in an array. The array contains 16-bit signed
integers and the number of elements in the array is given by the 16 bit variable

ArraySize

:

mov cx, ArraySize ;# of items to ave.
lea bx, Array ;Get ptr to array.
mov ax, 0 ;Init sum.

AveLoop: add ax, [bx] ;Add in next element.
add bx, 2 ;Point at next item.
loop AveLoop

; AX now contains the sum of all items in the array.
; Compute the average by dividing by ArraySize.

cwd ;Sign extend to dx:ax
idiv ArraySize

; Average is now in AX.

This code makes two important assumptions:

ArraySize

 cannot be zero and the sum of all the array elements must fit
into 16 bits.

6.3.3 XLAT

The

xlat

instruction performs a very simple, yet powerful, operation. It loads

al

with the value found in memory
location

ds:[bx+al]

. Now this might seem like a somewhat esoteric operation, but it turns out to be quite useful. As its
name implies, the

xlat

(translate) instruction lets you translate values from one form to another. For example, suppose
you want to convert the L.O. nibble of AL into the hexadecimal character which represents that value (i.e., you want to
convert 0..F to ‘0’..’F’). The following short section of code will do this:

HexTable byte “0123456789ABCDEF”
 .
 .
 .
and al, 0Fh ;Strip H.O. nibble
lea bx, HexTable ;Load BX with Hextable’s base address.
xlat

This code assumes that the DS register points at the segment containing the HexTable array.

6.23 Suppose you have a table of 256 bytes which contain the values 0, 1, 2, 3, ... 0FFh. If BX
points at the first byte of this table, what value will AL contain after the execution of the
XLAT instruction? Explain

The 80x86 Instruction Set

Lab 6-185

6.24 Suppose you have a table like the one above, except that it contains ‘a’
through ‘z’ at indices 41h through 5Ah (ASCII codes for ‘A’..’Z’). Explain
what the XLAT instruction will do when used with this table.

6.25 Suppose you want to create a function which returns a one in AL if the
character in AL is a punctuation character, a zero otherwise. Describe
the table you would need to implement this function with the XLAT
instruction:

6.26 Suppose SI contains the input value for the function in problem 5.25
above. What instruction could you use to perform the same operation
as the XLAT above?

6.27 What could happen if you do not have exactly 256 bytes in the table
pointed at by BX?

6.4 Arithmetic Instructions

‘The 80x86 arithmetic instructions include

add, adc, cmp, dec, div, idiv, imul, inc,
mul, neg, sub,

and

 sbb

. The are others, see the textbook for additional information.

The basic syntax these instructions is

add dest, src
adc dest, src
cmp dest, src

5.18 BX will contain the
original value in AX and AX
will contain the original
H.O. word of EAX.

5.19 XCHG AL, AH

5.20 MOV AH, 0

5.21 MOVZX BX, AL or any
other instruction whose des-
tination is not and eight bit
register or AX.

Lab Ch06

Lab 6-186

dec dest
div src
idiv src
imul src
imul dest, src, immediate
imul dest, immediate
imul dest, src
inc dest
mul src
neg dest
sub dest, src
sbb dest, src

Only the first version of the IMUL instruction above is available on all versions of the 80x86 family. The remaining ver-
sions require an 80286 or later processor (see the textbook). The other instructions are all available on every member of
the 80x86 family.

6.4.1 ADD, ADC, SUB, SBB, and CMP

The

add/adc, sub/sbb,

 and

cmp

instructions work for both signed and unsigned operands. Given the nature of
the two’s complement system, they perform

both

 operations simultaneously. The syntax for these instruction is

add dest, source
adc dest, source
sub dest, source
sbb dest, source
cmp dest, source

The

add

 instruction computes

dest := dest + source

 and sets the condition code flags depending on the result.
Likewise, the

sub

 instruction compute

dest := dest - source

 and sets the flags accordingly. The

adc

and

sbb

instructions work just like the

add

and

sub

instructions except they add in or subtract out the value of the carry flag
(zero or one) in addition to the source operand. This lets you take the overflow from one computation and add it into
another.

6.28 If the carry flag is set, what will the instruction “ADC AX, BX” do?

6.29 What will the above instruction do if the carry flag is clear?

Since the SHL instruction copies the H.O. bit of its operand into the carry flag and the ADC instruction can add the
current value of the carry flag into an operand, it is very easy to construct a short loop which will count the number of
one bits in an operand. Consider the following loop that provides one way to count the number of set bits in the

bx

reg-
ister:

mov cx, 16 ;Do 16 bits.
mov ax, 0 ;Initialize sum to zero.

CountBits: shl bx, 1 ;SHR would work, too.
adc ax, 0 ;Add this bit to the sum.
loop CountBits

The

cmp

instruction works like the SUB instruction except it does not store the difference into the destination oper-
and. Instead, it simply updates the 80x86’s flags register. You can use the conditional set and jump instructions after a

cmp

instruction to test the result of the comparison.

6.30 The CMP is a

non-destructive

operation because it does not modify the value of either oper-
and. Give an example of an instruction which performs the same operation as CMP but is a

destructive

 operation:

The 80x86 Instruction Set

Lab 6-187

The

cmp

instruction will set the carry flag if the first (unsigned) operand is less than the
second; that is, the

jb

and

jc

instructions are one and the same. The following example takes
advantage of this fact. It determines whether a given value is greater than or less than the median
in an array of values. It does this by counting the number of entries in the array which are smaller
than the value in

dx

, multiplies this result by two, and then compares this to the number of ele-
ments in the array:

lea bx, Array ;Init ptr to data.
mov cx, ArraySize ;# of items.
mov dx, TestValue ;Check this value.
mov ax, 0 ;Init sum.

MedianSum: cmp dx, [bx] ;C=1 if less than.
adc ax, 0 ;Bump less than cntr.
add bx, 2 ;On to next element.
loop MedianSum

; AX now contains the number of array elements which
; were less than the value of TestValue. If this value,
; multiplied by two, is greater than the number of
; elements in the array then TestValue is greater than
; the median value. Otherwise it is less than or
; equal to the median value.

shl ax, 1 ;Multiply by two.
cmp ax, ArraySize ;See if > median
ja AboveMedian ;Go elsewhere if >.

; If the code falls through to this point, then TestValue
; is less than or equal to the median value.

6.4.2 INC and DEC

The

inc

and dec instructions add one or subtract one from their single operand. They
behave just like the

add dest,1

 and

sub dest,1

 except that these instructions do not affect
the carry flag.

6.31 Besides the fact that the INC and DEC instructions do not affect the
carry flag, what is a good reason to use these instructions rather than
ADD or SUB?

6.4.3 NEG

The

neg

instruction takes the two’s complement of its operand, thereby negating it. Note
that this is the same thing as subtracting the destination operand from zero or (following the
standard definition of two’s complement) inverting all the bits and adding one. The

neg

instruc-
tions sets the flags in a manner identical to the

sub

instruction assuming the destination oper-
and was zero before the subtraction. Hence, the flags will be set as though you had compared
zero to the

neg

operand.

5.22 CWD

5.23 It will not affect AL at
all since you will be loading
AL with the value already
present in AL.

5.24 It will convert upper
case characters to lower case
since if AL contains ‘A’
through ‘Z’ prior to XLAT it
will load ‘a’ through ‘z’ from
the corresponding locations
in the table. All other values
are unchanged.

5.25 Put a zero into each
entry of the table whose
index is

not

 the ASCII code
of a punctuation character.
Put a one in the entries corre-
sponding to punctuation
chars.

5.26
MOV AL, [BX+SI]

5.27 If the value in AL is
greater than the maximum
number of bytes in the table
the XLAT instruction will
fetch a byte from beyond the
table.

Lab Ch06

Lab 6-188

6.32 Under what circumstance(s) will the NEG instruction set the zero flag?

Although the 80x86 does not have an instruction that computes the absolute value of an integer operand, building
one using the

neg

instruction is very easy. The following two code segments demonstrate how to take the absolute
value of the

ax

register:

; Straight-forward example: If AX is negative, negate
; it. This method works best if the number is usually
; negative since the code will not have to branch as
; often.

cmp ax, 0
jns NotNeg
neg ax

NotNeg:

; Second example. This one works best if the number is
; usually positive:

neg ax
jns NotPos
neg ax

NotPos:

6.4.4 MUL, IMUL, DIV, and IDIV

The multiplication and division instructions come in two basic flavors:

mul/div

and

imul/idiv

. These instruc-
tions handle unsigned operations (

mul/div

) and signed operations (

imul/idiv

). Although the two’s complement sys-
tem performs signed and unsigned addition/subtraction in an identical manner, signed and unsigned multiplication and
division are different operations requiring different instructions.

The

mul

instruction allows only a single memory or general purpose register operand. It is an extended precision
unsigned multiply operation that multiplies its operand with the accumulator (

al/ax/eax

) and produces a result that is
twice the size of the accumulator (the result goes into

ax

,

dx:ax

, or

edx:eax

, depending on the operand size). The

mul

instruction sets the carry and overflow flags if the result does not fit in the same number of bits as the source oper-
and. Note, however, that the result is still correct since

mul

produces a result twice as large as the source operand

4

.

The

imul

instruction performs signed arithmetic. This instruction takes several forms:

• IMUL operand ;extended acc := acc * operand
• IMUL reg, mem/reg, constant ;reg = mem/reg * constant
• IMUL reg, constant ;reg = reg * constant
• IMUL reg, reg/mem ;reg = reg * mem/reg

The single operand

imul

instruction works just like the

mul

instruction except it works with signed values. The
remaining of

imul

instructions

(those with two or three operands) compute a result that is the same size as the source
operands. Since the multiplication result may not fit in the destination operand, the result may not be exact. In the event
of overflow,

imul

sets the carry and overflow flags and throws away the high order bits of the result.

6.33 What will “

IMUL AX, BX, 10

” compute?

4. The product of two n-bit numbers will always fit in no more than 2*n bits.

The 80x86 Instruction Set

Lab 6-189

The versions of the

imul

instruction that allow immediate operands are especially useful
for computing offsets into a multi-dimensional array. For example, consider the following Pascal
array:

UseMul:array [0..5,0..74] of char;

To store a zero into “

UseMul[i,j]

” you could use the 80286 code:

imul bx, i, 75
add bx, j
mov UseMul[bx], 0

This version of the imul instruction is available only on 80286 and later processors, but it is very
convenient if you are using one of these processors.

6.34 Suppose you have the array “

ThreeD:array [0..4, 0..5, 0..6] of char;

”
What instructions could you use to load element “

ThreeD[i,j,k]

” into AL

The following short code segment produces the

cross product

 of two arrays. The cross
product is the sum of the products of corresponding array elements, e.g.,

sum := 0;
for i := 0 to ArraySize do

sum := sum + A[i] * B[i];

The assembly language code that computes this is

mov cx, ArraySize ;# of elements.
mov bx, 0 ;Init array index.
mov bp, 0 ;Hold result here.

CrossLp: mov ax, A[bx] ;Get A[i].
imul B[bx] ;Multiply by B[i].
add bp, ax ;Sum up products.
add bx, 2 ;On to next element.
loop CrossLp

; BP now contains the cross product.

Note that this code ignores the possibility of overflow. There are actually two places where over-
flow can occur. First, the

imul

instruction may produce a value in

dx

which is not 0 or 0FFFFh.
Second, the

add bp, ax

 instruction could overflow and this code does not check for that.

The

div

and

idiv

instructions require a single operand, like the extended precision ver-
sions of

mul

and

imul

. There are no special 80286/386 versions of these instructions like

imul

.

Div

is for unsigned operations,

idiv

is for signed operations. These instructions com-
pute the quotient and remainder at the same time. They divide a 64-bit value by a 32-bit value, a
32-bit value by a 16-bit value, or a 16-bit value by an eight-bit value. The operand is the smaller
value, the implied operand is either

edx:eax, dx:ax,

or

ax

. These instructions place the quo-
tient in the lower half of the implied operand and the remainder in the upper half of the implied
operand.

If the quotient does not fit into

eax

,

ax

, or

al

(as appropriate), the

div

/

idiv

instruc-
tions generate a divide error.

6.35 Suppose you have the value 20000h in DX:AX and you divide this by the
value in BX. What three values in BX will cause the divide instruction to
generate a divide error?

5.28 Compute AX := AX +
BX + 1

5.29 Compute AX := AX +
BX + 0

5.30 SUB.

5.31 They are shorter and
generally faster than the ADD
equivalent.

Lab Ch06

Lab 6-190

6.36 Besides not being able to fit the quotient in the destination register, what other error can
the divide instruction encounter?

Since division by zero will immediately bomb your program, you should always check your divisor when using the

div

and

idiv

instructions if you are not absolutely sure they are non-zero. The following code demonstrates how to
check for this when computing

K:=I div J

:

cmp J, 0 ;Divisor zero?
je DivideBy0 ;Error handler code.
mov ax, I
mov dx, 0 ;Remember to zero extend!
div J
mov K, ax

Handling the second major problem with division, producing a quotient which will not fit into the destination register, is
a little more difficult. The solution most people adopt is to perform an n-bit by n-bit division rather than a 2n-bit by n-bit
division. The example above demonstrates this. I, J, and K are all 16-bit variables. This code simply zero extended

ax

into

dx

before doing the division (presumably the variables are all unsigned).

6.5 Logical, Shift, Rotate, and Bit Instructions

This group of important instructions includes

and, or, xor, not, ror, rol, rcr, rcl, shl/sal, shr, sar,
shrd, shld, bt, bts, btr, btc, bsf, bsr, and set

cc

. Their syntax is

AND dest, source
 OR dest, source
 XOR dest, source
 NOT dest

SHL dest, count ;SAL is a synonym for SHL.
SHR dest, count
SAR dest, count
SHLD dest, source, count
SHRD dest, source, count
RCL dest, count
RCR dest, count
ROL dest, count
ROL dest, count
TEST dest, source
BT source, index
BTC source, index
BTR source, index
BTS source, index
BSF dest, source
BSR dest, source
SETcc dest ;See textbook for cc.

The

and

,

or

,

xor

, and

not

instructions perform bitwise logical operations on their operands allowing you to clear
selected bits, set selected bits, invert selected bits, or invert all the bits in their destination operands.

If you only consider the value of a single bit in their operands, then you can treat these operations like the boolean
operators in Pascal or C.However, a common mistake is to “mix metaphors” when using these instructions. For example,
C programmers often treat zero as false and anything else as true. In particular, most programmers use one for true and
zero for false. One must be careful, however, because “

not

1” does not equal false, it equals 0FEh which is true! Like-
wise, 0AAh (true) logically ANDed with 55h (true) is equal to zero (false).

6.37 One way to convert these instructions to “boolean logical instructions” is to use only bit
zero for true and false and reset all other bits to zero after each operation. Which of the log-

The 80x86 Instruction Set

Lab 6-191

ical operations can you use to force all bits except bit zero to the value
zero? What operand would you use with this logical operation to
accomplish this?

6.38 Given that A, B, C, D, and E are all Pascal boolean variables (bytes),
what 80x86 code could you use to implement the following Pascal state-
ment:

A := (B and C) or not (D and E);

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

Despite their similarity to Pascal boolean operators, the

and

,

or

,

xor

, and

not

instructions
are quite useful for decidedly non-boolean operations. In particular, you can use these instruc-
tions to set, clear, and invert arbitrary bits in an register or memory location. Recall the DATE
data type from Chapter Two

Suppose

ax

contains a value in the range 1..31 which you wish to insert into the day field of this
date structure. The first thing you will need to do is shift the days value seven positions to the left
to align it with “DDDDD” field above. There are a couple of ways to do this. On 80286 and later
processors the best way is probably to use the

shl reg, 7

 instruction. Once you have shifted
the value into place, you will need to replace the existing DDDDD field with the new data. Prob-
ably the easiest way to do this is to force the existing bits to zero and then logically OR in the
new DDDDD data:

; Insert Day value in AX into the DDDDD field of the date structure
; in the BX register

shl ax, 7 ;Properly position day bits.
and bx, 0F07Fh ;Clear existing DDDDD bits.
or bx, ax ;Merge in the new day value.

The following code extracts the year and returns the current year if it is a leap year, other-
wise it returns the previous leap year in

ax

. Note that this code does

not

 work for the years
1900..1903 since 1900 was not a leap year. It does, however, work for 2000..2003.

; Return last leap year. Assume DATE value is in the AX
; register upon entering this section of code.

and ax, 7ch

Yes, that’s not a misprint. It only took one machine instruction. To bad the explanation of how it
works is considerably longer!

ANDing the date value with 7Fh, of course, strips out the year field and sets all other bits to
zero. To get the previous leap year (or the current year if it is a leap year) all we’ve got to do is
compute “Year - (Year MOD 4)”. If the current year is evenly divisible by four, “Year MOD 4” is
zero and the calculation above returns the current year. If last year was a leap year, then

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y

5.32 If you negate zero it
produces zero and sets the
zero flag.

5.33 AX := BX * 10

5.34
imul bx, i, 6
add bx, j
imul bx, bx, 7
add bx, k
mov al, ThreeD[bx]

5.35 Zero, one, or two.

Lab Ch06

Lab 6-192

“Year MOD 4” is one, which subtracted from this year’s date produces a leap year. Likewise for the other two possibili-
ties.

ANDing a value with 0FCh produces the same value. “AX MOD 4” always produces a value between zero and three,
which fits nicely into two bits. If you force the L.O. two bits of

ax

to zero you effectively reset its value back to the last
multiple of four, which is exactly what we want.

The

and AX, 7ch

 combines the two AND operations into one: it masks out everything except the year field and it
clears the two L.O. bits of the year field in a single operation.

One interesting use of the XOR operation is to exchange data between two operands. If you XOR anything with
itself, you get zero. The following sequence of operations will swap the values A and B without using a temporary mem-
ory location:

A := A xor B; B := A XOR B; A := A XOR B;

Of course, on the 80x86 you can use the

xchg

instruction to swap two operands, however, suppose you want to
swap the MONTH field in our data type with the value in the

ax

register. The following code will do this without using
any extra registers. Try it!

ror ax, 4 ;Assume month was 1..12.
xor ax, Date
xor Date, ax
xor ax, Date
rol ax, 4 ;Put month into range 1..12.

6.5.1 SHL, SHR, SAR, SHLD, SHRD, RCL, RCR, ROL, and ROR

The 80x86 shift instructions perform the following operations:

H.O Bit 4 3 2 1 0

0............C

Shift Left Operation

............
H.O Bit 5 4 3 2 1 0

Shift Right Operation

C0

............
H.O Bit 5 4 3 2 1 0

Arithmetic Shift Right Operation

C

The 80x86 Instruction Set

Lab 6-193

Operand 1
H.O Bit 4 3 2 1 0

............C

Double Precision Shift Left Operation

Temporary copy of Operand 2
H.O Bit 4 3 2 1 0

............

............

Operand 1
H.O Bit 5 4 3 2 1 0

Double Precision Shift Right Operation

C

............

Temporary Copy of Operand 2
H.O Bit 5 4 3 2 1 0

H.O Bit 5 4 3 2 1 0

C

............

Rotate Through Carry Left Operation

H.O. Bit 5 4 3 2 1 0

C

............

Rotate Through Carry Right Operation

5.36 Division by zero.

5.37 AND, 1

5.38
mov al, b
and al, c
mov ah, d
and ah, e
not ah
and ah, 1
or al, ah
and al, 1
mov a, al

Lab Ch06

Lab 6-194

The syntax for these instructions is

shl reg/mem, 1
shl reg/mem, cl
shl reg/mem,

integer

(2)

sal reg/mem, 1
sal reg/mem, cl
sal reg/mem,

integer

(2)

shr reg/mem, 1
shr reg/mem, cl
shr reg/mem,

integer

(2)

sar reg/mem, 1
sar reg/mem, cl
sar reg/mem,

integer

(2)

shld reg/mem, reg,

integer

(3)
shld reg/mem, reg, cl (3)

shrd reg/mem, reg,

integer

(3)
shrd reg/mem, reg, cl (3)

rcl reg/mem, 1
rcl reg/mem, cl
rcl reg/mem,

integer

(2)

rcr reg/mem, 1
rcr reg/mem, cl
rcr reg/mem,

integer

(2)

rol reg/mem, 1
rol reg/mem, cl
rol reg/mem,

integer

(2)

ror reg/mem, 1
ror reg/mem, cl
ror reg/mem,

integer

(2)

(2) Available only on 80286 and later processors.
(3) Available only on 80386 and later processors.

H.O Bit 5 4 3 2 1 0

C

............

Rotate Left Operation

H.O. Bit 5 4 3 2 1 0

C

............

Rotate Right Operation

The 80x86 Instruction Set

Lab 6-195

The

shl

and

sal

mnemonics are synonyms. Note that

shl

by one bit corresponds to a
multiplication by two.

Shr

and

sar

deal with unsigned and signed values, respectively. When
shifting one bit to the right, they correspond to a division by two.

6.39 What instruction(s) could you use to multiply the value in AX by four?
(Hint: don’t use ADD, MUL or IMUL)

6.40 When dividing an integer value by two, it’s quite possible that you will
end up with an inexact result (when dividing an odd number by two).
How can you test after SAR/SHR to see if you’ve obtained an inexact
result?

6.41 How can you use the AND instruction to convert AX to zero if it is even,
one if it is odd?

The rotate instructions come in handy when you need to pack several values into a single
byte, word, or double word. For example, suppose you have four bytes and merge bits two and
three from each of these four bytes into a single byte. You could use the following code to
accomplish this:

mov ah, Byte1
and ah, 00001100b ;Mask out our bits.
rol ah, 2 ;Move them over!
mov al, Byte2
and al, 00001100b ;Mask out other bits.
or ah, al ;Merge into value.
rol ah, 2
mov al, Byte3
and al, 00001100b
or ah, al
rol ah, 2
mov al, Byte4
and al, 00001100b
or ah, al

The code above shifts Byte1, Byte2, Byte3, and Byte4 into

ah

 as follows:

Byte1

Byte4

Byte3

Byte2

AH

Lab Ch06

Lab 6-196

6.5.2 TEST

The

test

instruction logically ANDs its two operands but does not store the result in the destination operand. It sim-
ply sets the flags according to the result of the logical AND operation.

test dest, source

6.42 What other instruction works in a non-destructive fashion like TEST? What is the operation
it performs?

6.43 Explain how you use the TEST instruction to see if the value in AX is even or odd. Why is
this method better than using the AND instruction?

You can use the

test

 instruction to check the value of an individual bit within some value. If one of the operands
contains a single set bit, then

test

 will set the zero flag if the corresponding bit in the other operand is zero; it will clear
the zero flag if that corresponding bit contains a one. Therefore, you can use the

test

instruction to see if an individual
bit is set or clear.

Another common use of the

test

 instruction is to see if a group of bits in some value are all zero. If one of the oper-
ands contains one bits in all the positions you require zeros in the second operand, the CPU will set the zero flag only if
all the corresponding bits are zero. For example,

and al, 0fh

 sets the zero flag only if bits zero through three of

al

 con-
tain zeros.

6.5.3 BT, BTS, BTR, and BTC

The Bit Test (

bt

), Bit Test and Set (

bts

), Bit Test and Reset (

btr

), and Bit Test and Complement (

btc

) instructions
also let you test individual bits. The second operand of these instructions specifies a bit number (0..31) in the first oper-
and. They copy that bit into the carry flag so you can test the carry flag afterwards. The

bts

,

btr

, and

btc

instructions
also set, clear, or complement the bit after copying it into the carry flag. These instructions are available only on 80386
and later processors. Their syntax is

bt reg/mem, reg
bt reg/mem,

integer

bts reg/mem, reg
bts reg/mem,

integer

btr reg/mem, reg
btr reg/mem,

integer

btr reg/mem, reg
btr reg/mem,

integer

The

bt

 instruction provides a convenient way to test an individual bit within some value. This is usually more
straight forward than using the

test

 instruction since you can specify the exact bit you want to test rather than a binary
mask. The

bts

,

btr

, and

btc

 instructions let you easily manipulate

flags

 (boolean variables). For example, suppose you
want to test a boolean variable to see if it is false and set it to true regardless of its current setting. You can easily accom-
plish this with a single

bts

 instruction:

bts flag, 0 ;Assume value is in bit zero.

The 80x86 Instruction Set

Lab 6-197

One use for the

btr

instruction is to perform an n-bit

rol

operation. Consider the following
code which rotates six bits to the right in AL:

btr al, 5 ;Bit #5->carry, set to zero.
rcl al, 1 ;Copy carry to bit zero, etc.
bt al, 0 ;Set carry to original value.

The

btr

instruction copies bit five into the carry flag and then clears bit five. The

rcl

instruction
rotates the data in

al

one position to the left and copies the carry flag into bit zero. The bt
instruction copies the rotated bit back into the carry flag, producing the desired result:

6.44 Explain how you could use the BT and ADC instructions to round all
odd numbers to the next higher even value:

AH

C

Six Bit ROL Operation

AH

C

BTR copies bit five to the carry and clears bit five

AH

C

RCL copies the carry into bit zero and
shifts the data to the left one position
(note that bit five contains zero before
the shift)

AH

C

BT copies bit zero back into the carry flag

5.39 SHL AX, 2 (on 80286 or
later) or the sequence:

SHL AX, 1
SHL AX, 1

5.40 Look at the carry flag. If
it’s set the result is inexact.

5.41 AND AX, 1

Lab Ch06

Lab 6-198

6.6 BSF and BSR

The

bsf

and

bsr

instructions look for the first set bit in an operand starting from bit zero (

bsf

) or the H.O. bit
(

bsr

). They return (in the destination operand) the bit count of the position of the first set bit in the source operand:

bsf reg, reg/mem
bsr reg, reg/mem

These instructions scan through the reg/mem operand looking for the first set bit. They store the bit position of that
bit in the reg operand. If the reg/mem operand is not zero (i.e., there is at least one set bit), then these instruction clear
the zero flag. If the reg/mem operand is zero, these instructions set the zero flag and the reg operand contains an indeter-
minate result.

6.45 BSF and BSR only look for the first set bit in a value. If you want to search for the first zero
bit in a value, you must perform some operation on the data to convert all the zeros to ones
and vice versa. What is this operation?

6.46 Suppose you want to clear the set bit detected by “BSR AX, Bits” immediately after execut-
ing the BSR instruction. What single instruction could you use to do this that uses the value
in AX?

6.6.1 SETcc

The

set

cc

(set on condition) instructions test one or two bits in the flags register and then store a byte containing
zero or one in the destination operand depending on the status of the flag bit(s). This instruction is quite useful for syn-
thesizing complex boolean operations.

set

cc

tests the following conditions:

setc

(carry set),

setnc

(carry clear),

setz

(zero flag set),

setnz

(zero flag clear),

sets

(sign flag set),

setns

(sign flag clear),

seto

(overflow flag set),

setno

(overflow flag clear),

setp

(parity flag set),

setnp

(parity flag clear),

seta

(unsigned greater than),

setae

(unsigned
greater or equal),

setb

(unsigned less than),

setbe

(unsigned less than or equal),

sete

(equal),

setne

(not equal),

setg

(signed greater than),

setge

(signed greater or equal),

setl

(signed less than), and

setle

(signed less than or
equal). There are some aliases for these instructions as well, see the textbook for details. These instructions are available
only on 80386 and later processors.

You can use the

set

cc

instructions to easily perform complex boolean computations. Consider the following Pascal
statement:

B := ((i = j) and (k <= l)) or (m <> n);

This Pascal code easily converts to the following 80386 code using the

set

cc

instructions:

mov ax, i ;BL := i = j
cmp ax, j
sete bl
mov al, k ;BH := k <= l
cmp ax, l
setle bh
and bl, bh ;BL := BL and BH
mov ax, m ;BH := m <> n
cmp ax, n
setne bh
or bl, bh ;BL := BL or BH
mov b, bl ;b := bh

The 80x86 Instruction Set

Lab 6-199

Since

set

cc

always produces zero or one, you can use the

and

,

or

, and

xor

instructions
to perform the corresponding boolean operations. Keep in mind, however, that if you want to
use the

not

operation to negate a boolean value, you will need to follow it up with an

and

to
remove the unnecessary bits.

6.47 To perform the boolean not operation on a multi-bit value, you really
only want to invert the L.O. bit, not all the bits like the NOT operation.
What instruction can you use to invert only the L.O. bit?

6.7 The I/O Instructions

The 80x86 provides four I/O instructions:

in, out, ins,

and

outs

. The

in

and

out

instructions read data from the I/O address space (

in

) and write data to the I/O address space
(

out

). We’ll consider

ins

and outs in the next section.

There are two forms of the

in

and

out

instructions:

in al, port
in al, dx
out port, al
out dx, al

The

port

 operand is an eight-bit constant in the range 0..255. The 80x86 CPU family sup-
ports up to 65,536 different I/O locations. The instructions utilizing the port address operand can
only address the first 256 locations in this 16-bit I/O address space. To access the other locations
you must load the address into the

dx

register and utilize the

in/out

instructions with the

dx

operand.

The IBM PC printer port typically appears at address 378h in the I/O address map. You can
output data to the LPT port by writing a byte to this I/O address. The following 80x86 code will
store the character ‘A’ on the printer port data lines:

mov dx, 378h
mov al, ‘A’
out dx, al

6.48 You can read the last byte written to the parallel port using the IN
instruction. What sequence of instructions would you use to read the
‘A’ written above from the parallel port?

Please note that the above instructions are not sufficient if you actually want to print a char-
acter to the printer on the parallel port. The

in

and

out

instructions simply set up the data for
the printer to print. Additional instructions (which we’ll discuss in a later chapter) are necessary
to actually print data to the printer.

6.8 The String Instructions

The 80x86 string instructions manipulate blocks of bytes in memory. Indeed, they are the
only instructions which allow you to directly move data from one memory location to another or
compare one memory location to another without going through any registers. However,

5.42 CMP, SUB

5.43 TEST AL, 1 (or TEST
AX, 1) sets the zero flag if the
number is even. This is better
than AND because it is non
destructive.

5.44 Assuming the value is
in AX:
BT AX, 0
ADC AX, 0

Lab Ch06

Lab 6-200

because of the setup involved when using these instructions, you would not normally use them to manipulate just a few
bytes. They are best utilized to manipulate large blocks of data.

The string instructions perform the following operations:

MOVS{b,w,d}: ES:[DI] := DS:[SI]
if direction_flag = 0 then

SI := SI +

size

;
DI := DI +

size

;
else

SI := SI -

size

;
DI := DI -

size

;
endif;

LODS{b,w,d}: EAX/AX/AL := DS:[SI]
if direction_flag = 0 then

SI := SI +

size

;
else

SI := SI -

size

;
endif;

STOS{b,w,d}: ES:[DI] := EAX/AX/AL
if direction_flag = 0 then

DI := DI +

size

;
else

DI := DI -

size

;
endif;

CMPS{b,w,d}: CMP DS:[SI], ES:[DI] ;Set appropriate flags.
if direction_flag = 0 then

SI := SI +

size

;
DI := DI +

size

;
else

SI := SI -

size

;
DI := DI -

size

;
endif;

SCAS{b,w,d}: CMP EAX/AX/AL, ES:[DI] ;Set appropriate flags.
if direction_flag = 0 then

DI := DI +

size

;
else

DI := DI -

size

;
endif;

INS{b,w,d}: ES:[DI] := port(DX)
if direction_flag = 0 then

DI := DI +

size

;
else

DI := DI -

size

;
endif;

OUTS{b,w,d}: port(DX) := DS:[SI]
if direction_flag = 0 then

SI := SI +

size

;
else

SI := SI -

size

;
endif;

size =

1, 2, or 4 for bytes, words, or double words.

The 80x86 Instruction Set

Lab 6-201

Although the term “string instructions” conjures up some magic operations you can use to
manipulate character strings, there is nothing about these instructions that limits them to manip-
ulating character strings. Indeed, you’ll use these instructions for other data types as often as you
use them to manipulate character strings.

Consider the

movs

instruction. Successively executing this instruction copies data from one
array to another. For example, if you have an array of 16 words, the following code will copy
data from one array to another:

Ary1Ptr dword Array1
Ary2Ptr dword Array2

 .
 .
 .
lds si, Ary1Ptr
les di, Ary2Ptr
mov cx, 16

CopyArray: movsw
loop CopyArray

Using a string instruction in a loop as above is so common that Intel created a special

prefix

instruction which merges the

loop

 instruction above into the

movs

instruction. If you place the

rep

 (repeat) prefix just before the

movsw

above, you do not need the

loop

 instruction:

lds si, Ary1Ptr
les di, Ary2Ptr
mov cx, 16

rep movsw

The

lods

and

stos

instructions, executed together, perform the same operation as the

movs

instruction

5

. That is, the following loop does the same work as the

rep movsb

instruc-
tion:

DoMOVS: lodsb
stosb
loop DoMOVS

Since the

lodsb/stosb

method is bigger and slower, you might be wondering why anyone
would want to use this sequence. Well, the main reason is because you can insert additional
instructions between the

lodsb

and

stosb

instructions. For example, you could place the

xlat

instruction between them to perform some data translation while copying one array of bytes to
another (e.g., convert all the characters in one string to uppercase while moving them).

mov cx, SizeOfString
ConvertLoop: lodsb

cmp al, ‘A’ ;convert upper case to
jb NotAlpha ; lower case letters.
cmp al, ‘Z’
ja NotAlpha
and al, 0Bfh ;Clear bit 6 (see chapter one).

NotAlpha: stosb
loop ConvertLoop

6.49 Although it is legal to use the REP prefix with the LODS instruction,
doing so doesn’t make much sense. Why? (Hint: what happens if you
execute two LODSB instructions in a row?)

5. Except, of course, the LODS/STOS instruction pair modify the AL/AX/EAX register while MOVS does not.

5.45 NOT

5.46 BTR Bits, AX

5.47 XOR. Assuming the
value is in AX you could use
the instruction
XOR AX, 1
to invert only the L.O. bit.

Another possibility is to use
the instruction:
btc ax, 0

5.48
mov dx, 378h
in al, dx

Lab Ch06

Lab 6-202

Though you wouldn’t ever want to use the REP prefix with the

lods

instruction, it makes perfect sense to use it with
the

stos

instruction. You can use

rep

to force

stos

to fill an array with a single value. For example, the following code
zeros out the 16-element integer array pointed at by

Ary1Ptr

:

les di, Ary1Ptr
mov cx, 16
mov ax, 0

rep stosw

You’ll get a chance to see how the other string instructions work with the REP/REPE/REPNE prefixes in the chapter
on string instructions.

6.9 Unconditional Jumps

The unconditional jump instructions transfer control to the instruction specified by the operand of the jump. Unlike
most HLLs, the 80x86

jmp

instruction provides many different types of jump operations. The reason is quite simple:
most HLLs want to discourage the programmer from using gotos, especially fancy ones. However, the compilers them-
selves need to generate fancy goto/jmp operations in order to convert high-level structures (like case/switch, while, etc.)
into machine code.

80x86

jmp

instructions come in two basic categories: near (intrasegment) and far (intersegment). The near

jmp

instructions can transfer control to any statement within the current code segment. These instructions simply copy their
operand into the

ip

register. They allow the following syntactical variations:

jmp disp
jmp reg
jmp mem

16

6.50 In many respects, the JMP instruction is really just another form of the MOV instruction.
Explain:

Near

jmp

operands can be an immediate value, a 16-bit general purpose register, or a 16-bit memory location
(addressed by any of the 80x86’s addressing modes). If an immediate operand is present, MASM converts it to an eight-
bit or 16-bit signed displacement that provides the distance from the

jmp

instruction to the target location. If you specify
a register operand, the

jmp

instruction simply copies the data from the specified register into

ip

. If you specify a mem-
ory location, using a memory addressing mode, the

jmp

instruction copies the 16 bits from the specified memory loca-
tion into

ip

.

6.51 What is the difference between the “

JMP BX

” and “

JMP [BX]

” instructions? Explain what
each of these do:

The far

jmp

copies its operand into the

cs:ip

register pair. It behaves like an “

lcs ip,

operand

” instruction If the
operand is an immediate value, it provides the full segment:offset address of the target location; this is not a displacement
to the target. If the operand of a far

jmp

is a memory location, then it is a double word value providing the segment (in
the H.O. word) and offset (in the L.O. word) of the target location. There is no far

jmp

instruction that uses register oper-
ands.

The 80x86 Instruction Set

Lab 6-203

Most

jmp

instructions are near jumps with an immediate operand. The chapter on control
structures in the textbook goes into the gory details of how you would use the other forms of the

jmp

instruction. In general, it’s best if you avoid the indirect jumps (those using memory or reg-
ister operands) since they can make your programs much harder to read and maintain.

6.10 The CALL and RET Instructions

The CALL and RET instructions provide the mechanism for implementing procedures, func-
tions, and other types of program units.

The

call

 instruction pushes a

return address

 onto the stack and then jumps to the address
given by its operand. Other than the fact that

call

 pushes the address of the instruction follow-
ing the

call

 onto the stack, it behaves exactly like the

jmp

 instruction.

One minor complication is that the near and far call instructions push different values on the
stack. The near

call

 pushes a 16-bit offset into the current code segment onto the stack before
doing a near jump. the far

call

 pushes a 32-bit return address,

cs

 followed by the offset, onto
the stack.

The ret instruction pops the return address off the stack and transfers control to that
address. There are two types of return instructions: near and far. The near return instruction sim-
ply pops a 16-bit value off the stack into the ip register. The far return instruction pops a 16-bit
value into

ip

 and a second 16-bit value into

cs

. There are two other forms of the return instruc-
tion, we will consider their operation in Chapter Nine.

6.11 The INT, INTO, BOUND, and IRET Instructions

The

into

,

bound

, and

iret

instructions are advanced instructions which require an
understanding of the 80x86 interrupt structure prior to using them. For that reason, we will not
consider these instructions again until the chapter on interrupts and concurrency. In general, the
same could be said for the

int

instruction except that the IBM PC system uses the

int

instruc-
tion to transfer control to DOS and other system related routines. One does not need to know
how the

int

instruction operates to use it to make calls to MS-DOS or the PC’s ROM BIOS rou-
tines.

The ROM BIOS (Basic Input/Output System) on the IBM PC provides a routine you can use
to test and read data from the keyboard. Although the exact entry point in the ROM is not guar-
anteed, you can call the routine wherever it sits in memory using the

int 16h

 instruction. Load-
ing

ah

with zero prior to executing

int 16h

 instructs the BIOS routine to read a key from the
keyboard (and not return from INT 16h until you press a key) and return the ASCII code for that
key in

al

. Likewise, BIOS uses the

int 10h

 instruction with

ah

=0Eh to print the character in

al

to the video display. So the following loop reads characters from the keyboard until the user
presses the

Â

 key (ASCII code is 0dh) and displays those characters on the video display:

ReadLoop: mov ah, 0
int 16h ;Read a key from keyboard.
mov ah, 0eh
int 10h ;Write char to display.
cmp al, 0dh ;See if ENTER key.
jne ReadLoop ;Repeat if not ENTER.

For more information about the interrupt routines that DOS and BIOS support, see the
chapter on BIOS and DOS in your textbook.

5.49 Doing so would load
each new value over the top
of the old value in AL/AX/
EAX. Hence you would lose
the results of all but the last
operation.

Lab Ch06

Lab 6-204

6.12 The Conditional Jump Instructions

The conditional jump instructions are some of the most important instructions in the 80x86 instruction set. These
instructions let your programs make decisions. These Jcc instructions (there is a corresponding

j

cc

instruction to every

Set

cc

instruction) test one or two bits in the flags register and transfer control to a target location if the condition is true.
If the condition is not true, control falls through to the next instruction after the conditional jump.

Valid Jcc instructions include

 jc, jnc, jz, jnz, js, jns, jo, jno, jp, jnp, ja, jae, jb, jbe, je, jne, jg, jge, jl,

and

jle

(there are some other aliases as well, see your textbook). These instructions test the same conditions as the

set

cc

 instructions. See that section for more details.

The

j

cc

instructions are particularly useful after the

cmp

instruction to check the result of the that operation.
Together, the

cmp

and

j

cc

instructions let you synthesize IF/THEN/ELSE instructions and loops like WHILE or REPEAT/
UNTIL. For example, the following code adds 5 to

ax

if

ax

is less than

bx

:

cmp ax, bx
jnb SkipAdd
add ax, 5

SkipAdd:

6.52 Write a short code segment which swaps the values in AX and BX if AX is less than BX:

The 8086-80286

j

cc

instructions will jump a maximum of

±

128 bytes around the current instruction. If the branch is
out of range the easiest resolution is to convert it to a pair of jumps, the opposite

j

cc

instruction jumping around a

jmp

to the actual target location. Generally, MASM versions 6.0 and later will automatically convert an out of range

j

cc

for
you. Once in a while it will fail on you, however. Furthermore, you may need to perform this conversion manually your-
self if you are not using an assembler which converts out of range jumps. The following code demonstrates how to trans-
late an out of range

jc

instruction to one which will work fine:

Original Code:

shl ax, 1
jc OutOfRange

Converted Code:

shl ax, 1
jnc SkipMe
jmp OutOfRange

SkipMe:

6.53 Suppose that the instruction “

JE RepeatLoop

” is out of range. What is the code that will cor-
rect this problem?

In general, most programmers use

je/jne

after a

cmp

instruction and they use

jz/jnz

after most other instructions
which affect the zero flag. Of course, you could use

je/jz

or

jne/jnz

interchangeably but good programming style
mandates that you use these instructions where appropriate. For example, the

cmp

and

sub

instructions set the zero

The 80x86 Instruction Set

Lab 6-205

flag in exactly the same way. However, it makes sense to talk about two operands being

equal

after a

cmp

or a subtraction producing a

zero

 result. Hence you’ll normally use

je/jne

after

cmp

and

jz/jnz

after

sub

. Here are some examples:

cmp ax, 1 ;See if AX = 1.
je AXisOne

test al, 1 ;See if bit zero is one.
jnz Bit0Is1

test ax, ax ;See if AX = 0.
jz AXisZero

inc ax ;See if AX overflows
jz Overflow

Jc

 and

jnc

, and their synonyms

jb

and

jnb

are also very common in assembly language
programs. Since many instructions affect the carry flag (e.g., arithmetic, shift, and rotate instruc-
tions) you’ll often use

jc

and

jnc

. Like

je/jnz

you will typically use

jb/jnb

after a compare
instruction.

cmp al, ‘A’ ;See if AL < ‘A’
jb NotAlpha

shr ax, 1 ;Move L.O. bit into carry
jc LOBitIsSet ; and branch if set.
shr ax, 1 ;Now move bit #1
jc Bit1IsSet ; into carry and branch
etc. ; if set.

The 80x86 conditional branch instructions are quite useful for synthesizing loops and
IF..THEN..ELSE statements. But that is a subject for another chapter.

6.13 The JCXZ and LOOPxx Instructions

The 80x86 provides four instructions which manipulate and test the CX register and then
conditionally branch to some target location:

jcxz/jecxz, loop, loope,

 and

loopne

.

Jcxz

checks the

cx

(

ecx

for

jecxz

) register to see if it is zero. If so,

jcxz

transfers control
to the target address, if

cx

is not zero, control transfers to the next instruction after

jcxz

.

Jcxz

is particularly useful in conjunction with the

loop

instruction (described next) to handle the case
when

cx

is zero.

The

loop

instruction decrements

cx

and then branches to the target location if

cx

is not
zero.

Note that the test for

CX

=0 occurs after the decrement operation.

 If

cx

is zero when you
first execute the

loop

instruction,

loop

decrements

cx

(producing 0FFFFh) which is not zero
so control transfers to the specified target location. E.g., the following loop will execute 65,536
times:

; Presumably CX contains zero at this point...

LoopToHere: mov [bx], ax
add bx, 7
loop LoopToHere

5.50 It moves its operand
into the IP register.

5.51 JMP BX jumps to the
memory location whose
address is in BX. The JMP
word ptr [bx] jumps to the
address specified by the
word at memory location
DS:[bx].

Lab Ch06

Lab 6-206

6.54 Fix the above loop so that it will not execute 65,536 times if CX turns out to be zero upon
entering the loop:

The

loop

and

loopne

instructions also decrement

cx

and fall through if

cx

is zero, but they also test the zero flag
to determine if the branch should be taken. The following code reads up to 80 characters unless a carriage return comes
along before then:

mov cx, 80
ReadTillCR: mov ah, 0 ;Read a character

int 16h ; from the keyboard
<do something with AL>
cmp al, 0dh ;See if return
loopne ReadTillCR

The printer port

busy

 flag is bit seven of input port 379h on many systems. A

printer spooler

 program under MS-DOS
will often check for some period of time to see if the printer is busy. If it remains busy for an extended period of time
DOS will continue other processing. However, if it clears the busy bit after a period, the printer spooler will send another
character to the printer. The following code demonstrates how to do this with the LOOPNE instruction:

TestBusy: mov cx, 4000h ;Time to wait for busy.
mov dx, 379h ;Printer status port.

BusyLoop: in al, dx ;Get printer port status.
test al, 80h ;Test the busy bit.
loopne BusyLoop ;Repeat while busy
jne StillBusy

<Output another char here>
jmp TestBusy ;Try again

StillBusy:

6.14 Miscellaneous Instructions

The 80x86 provides several additional instructions you can use to manipulate various flags and otherwise control
the operation of the CPU. These instructions include

clc

(clear carry)

stc

(set carry),

cmc

(complement carry),

cld

(clear direction flag),

std

(set direction flag),

cli

(clear interrupt flag),

sti

(set interrupt flag),

nop

(no operation), and

hlt

.

The

nop

instruction is really a synonym for the

xchg ax,ax

instruction. This is a one byte instruction which
doesn’t affect any registers or flags and consumes one to three clock cycles (depending on the processor). The main pur-
pose for this instruction is to “punch out” instructions in memory while using a debugger like CodeView. If you discover
that you’ve got an instruction you don’t want in the object code, you can replace each byte of the instruction with a

nop

byte (opcode = 90h) and the program will continue to function assuming it doesn’t have any real tight timing dependen-
cies.

The

hlt

instruction stops the CPU dead in its tracks. After executing

hlt

, only hardware interrupts and the reset
line are operational. For a typical PC system, if you execute

hlt

you will need to reboot the machine.

The 80x86 Instruction Set

Lab 6-207

6.15 Using MASM and LINK

In the laboratory exercises for this chapter you will need to use MASM and LINK to assem-
ble the output produced by the IBM/L (Instruction Bench Marking Language) system. This sec-
tion describes some of the steps you will need to follow to use MASM with the IBM/L system.

Assuming no special file dependencies, using MASM 6.x is very easy. Just type

ml

name.asm

and you’re in business. MASM will assemble and link your program producing an “.EXE” execut-
able file.

In the laboratory you will linking the output of the IBM/L compiler with some routines in
the UCR Standard Library. If you’ve installed the UCR Standard Library routines on your hard disk
(the Standard Library code appears on the disk accompanying this manual) then you need to
execute the following DOS commands to properly set MASM’s

include

 and

lib

 paths:

SET INCLUDE=C:\STDLIB\INCLUDE
SET LIB=C:\STDLIB\LIB

Of course, if you’ve placed the standard library “include” and “lib” files in directories other than
those listed above, you will need to make the appropriate changes to these DOS commands.
Furthermore, if you use another Microsoft language or some other system that needs include and
lib paths set up, you may need to adjust the above lines for those languages as well. Please see
the manual accompanying those other languages.

Another possibility is to copy all the include and lib files from the UCR Standard Library into
your working directory. However, this tends to clutter your working directory. You should only
use this approach if you cannot modify the include or lib path for one reason or another.

6.16 IBM/L (Instruction Benchmarking Language)

IBM/L lets you time sequences of instructions to see how much time they

really

 take to exe-
cute. The cycle timings in most 80x86 assembly language books are horribly inaccurate as they
assume the absolute best case. IBM/L lets you try out some instruction sequences and see how
much time they actually take. This is an invaluable tool to use when optimizing a program. You
can try several different instruction sequences that produce the same result and see which
sequence executes fastest.

IBM/L uses the system 1/18th second clock and measures most executions in terms of clock
ticks. Therefore, it would be totally useless for measuring the speed of a single instruction (since
all instructions execute in

much

 less than 1/18th second). IBM/L works by repeatedly executing
a code sequence thousands (or millions) of times and measuring that amount of time. IBM/L
automatically subtracts away the loop overhead time.

IBM/L is a compiler which translates a source language into an assembly language program.
Assembling and running the resulting program benchmarks the instructions specified in the
IBM/L source code and produces relative timings for different instruction sequences. An IBM/L
source program consists of some short assembly language sequences and some control state-
ments which describe how to measure the performance of the assembly sequences. An IBM/L
program takes the following form:

5.52
cmp ax, bx
jae NoSwap
xchg ax, bx

NoSwap:

5.53
je Skip
jmp RepeatLoop

Skip:

Lab Ch06

Lab 6-208

#data
<

variable declarations>

#enddata

#unravel

<integer constant>

#repetitions

<integer constant>

#code (“

title

”)
%init

<initial instructions whose time does not count>

%eachloop

<Instructions repeated once on each loop, ignoring time>

%discount

<instructions done for each sequence, ignoring time>

%do

<statements to time>

#endcode

<Additional #code..#endcode sections>

#end

Note: the

%init

,

%eachloop

, and

%discount

 sections are optional.

IBM/L programs begin with an optional data section. The data section begins with a line containing “#DATA” and
ends with a line containing “#ENDDATA”. All lines between these two lines are copied to an output assembly language
program inside the

dseg

 data segment. Typically you would put global variables into the program at this point.

Example of a data section:

#DATA
I word ?
J word ?
K dword ?
ch byte ?
ch2 byte ?
#ENDDATA

These lines would be copied to a data segment the program IBM/L creates. These names are available to

all

#code..#endcode sequences you place in the program.

 Following the data section are one or more code sections. A code section consists of optional

#repetition

 and

#unravel

 statements followed by the actual

#code..#endcode

sections.

The

#repetition

 statement takes the following form:

#repetition

integer_constant

(The “#” must be in column one). The integer constant is a 32-bit value, so you can specify values in the range zero
through two billion. Typical values are generally less than a few hundred thousand, even less on slower machines. The
larger this number is, the more accurate the timing will be; however, larger repetition values also cause the program
IBM/L generates to run much slower.

This statement instructs IBM/L to generate a loop which repeats the following code segment

integer_constant

times.
If you do not specify any repetitions at all, the default is 327,680. Once you set a repetitions value, that value remains in
effect for all following code sequences until you explicitly change it again. The #repetition statement must appear out-
side the #code..#endcode sequence and affects the #code section(s) following the #repetition statement.

If you are interested in the straight-line execution times for some instruction(s), placing those instructions in a tight
loop may dramatically affect IBM/L’s accuracy. Don’t forget, executing a control transfer instruction (necessary for a
loop) flushes the pre-fetch queue and has a big effect on execution times. The

#unravel

statement lets you copy a
block of code several times inside the timing loop, thereby reducing the overhead of the conditional jump and other loop
control instructions. The

#unravel

 statement takes the following form:

#unravel

count

(The “#” must be in column one).

Count

 is a 16-bit integer constant that specifies the number of times IBM/L copies the
code inside the repetition loop.

The 80x86 Instruction Set

Lab 6-209

Note that the specified code sequence in the

#code

 section will actually execute (

count *
integer_constant

) times, since the

#unravel

statement repeats the code sequence

count

 times
inside the loop.

In its most basic form, the

#code

section looks like the following:

#CODE (“Title”)
 %DO

<assembly statements>
#ENDCODE

The title can be any string you choose. IBM/L will display this title when printing the timing
results for this code section. IBM/L will take the specified assembly statements and output them
inside a loop (multiple times if the

#unravel

statement is present). At run time the assembly
language source file will time this code and print a time, in clock ticks, for one execution of this
sequence.

Example:

#unravel 16 16 copies of code inside the loop
#repetitions 960000 Do this 960,000 times
#code (“MOV AX, 0 Instruction”)
%do
 mov ax, 0
#endcode

The above code would generate an assembly language program which executes the

mov ax,0

instruction 16 * 960000 times and report the amount of time that it would take.

Most IBM/L programs have multiple code sections. New code sections can immediately fol-
low the previous ones, e.g.,

#unravel 16 16 copies of code inside loop
#repetitions 960000 Do the following code 960000 times
#code (“MOV AX, 0 Instruction”)
%do

mov ax, 0
#endcode

#code (“XOR AX, AX Instruction”)
%do

xor ax, ax
 #ENDCODE

The above sequence would execute the

mov ax, 0

and

xor ax, ax

instructions 16*960000
times and report the amount of time necessary to execute these instructions. By comparing the
results you can determine which instruction sequence is fastest.

Any statement that begins with a semicolon in column one is a comment which IBM/L
ignores. It does not write this comment to the assembly language output file.

All IBM/L programs must end with a

#end

statement. Therefore, the correct form of the
program above is

#unravel 16
#repetitions 960000
#code (“MOV AX, 0 Instruction”)
%do

mov ax, 0
#endcode
#code (“XOR AX, AX Instruction”)
%do

xor ax, ax
#ENDCODE
#END

5.54
jcxz skiploop

LoopToHere:
mov [bx], ax
add bx, 7
loop LoopToHere

skiploop:

Lab Ch06

Lab 6-210

An example of a complete IBM/L program using all of the techniques we’ve seen so far is

#data
even

i word ?
byte ?

j word ?
#enddata

#unravel 16
#repetitions 32, 30000
#code (“Aligned Word MOV”)
%do

mov ax, i
#endcode

#code (“Unaligned word MOV”)
%do

mov ax, j
#ENDCODE
#END

 There are a couple of optional sections which may appear between the

#code

and the

%do

 statements. The first
of these is

%init

which begins an initialization section. IBM/L emits initialization sections before the loop, executes this
code only once. It does not count their execution time when timing the loop. This lets you set up important values prior
to running a test which do not count towards the timing. E.g.,

#data
i dword ?
#enddata
#repetitions 100000
#unravel 1
#code
%init

mov word ptr i, 0
mov word ptr i+2, 0

%do
mov cx, 200

lbl: inc word ptr i
 jnz NotZero
 inc word ptr i+2
 NotZero: loop lbl
#endcode
#end

Sometimes you may want to use the

#repetitions

statement to repeat a section of code several times. However,
there may be some statements that you only want to execute once on each loop (that is, without copying the code sev-
eral times in the loop). The

%eachloop

 section allows this. Note that IBM/L does not count the time consumed by the
code executed in the

%eachloop

 section in the final timing.

Example:

#data
i word ?
j word ?
#enddata

#repetitions 40000
#unravel 128
#code
%init -- The following is executed only once

mov i, 0
mov j, 0

The 80x86 Instruction Set

Lab 6-211

%eachloop -- The following is executed 40000 times, not 128*40000 times

 inc j

%do -- The following is executed 128 * 40000 times

inc i

#endcode
#end

In the above code, IBM/L only counts the time required to increment i. It does not time the
instructions in the

%init

 or

%eachloop

 sections.

The code in the

%eachloop

 section only executes once per loop iteration. Even if you use
the

#unravel

statement (the

 inc i

instruction above, for example, executes 128 times per
loop iteration because of

#unravel

). Sometimes you may want some sequence of instructions
to execute like those in the

%do

 section, but not count their time. The

%discount

 section
allows for this. Here is the full form of an IBM/L source file:

#DATA
<data declarations>

#ENDDATA
#REPETITIONS value1, value2
#UNRAVEL count
#CODE
%INIT

<Initialization code, executed only once>
%EACHLOOP

<Loop initialization code, executed once on each pass>
%DISCOUNT

<Untimed statements, executed once per repetition>
%DO

<The statements you want to time>
#ENDCODE
<additional code sections>
#END

To use this package you need several files. IBML.EXE is the executable program. You run it
as follows:

c:> IBML filename.IBM

This reads an IBML source file (filename.IBM, above) and writes an assembly language pro-
gram to the standard output. Normally you would use I/O redirection to capture this program as
follows:

c:> IBML filename.IBM >filename.ASM

Once you create the assembly language source file, you can assemble and run it. The resulting
EXE file will display the timing results.

To properly run the IBML program, you must have the IBMLINC.A file in the current work-
ing directory. This is a skeleton assembly language source file into which IBM/L inserts your
assembly source code. Feel free to modify this file as you see fit. Keep in mind, however, that
IBM/L expects certain markers in the file (currently “;##”) where it will insert the code. Be careful
how you deal with these existing markers if you modify the IBMLINC.A file.

The output assembly language source file assumes the presence of the UCR Standard
Library for 80x86 Assembly Language Programmers. In particular, it needs the STDLIB include
files (stdlib.a) and the library file (stdlib.lib).

In Chapter One of this lab manual you should have learned how to set up the Standard
Library files on your hard disk. These must be present in the current directory (or in your

Lab Ch06

Lab 6-212

INCLUDE/LIB environment paths) or MASM will not be able to properly assemble the output assembly language file. For
more information on the UCR Standard Library, see the next chapter.

The following are some IBM/L source files to give you a flavor of the language.

; IBML Sample program: TESTMUL.IBM.
; This code compares the execution
; time of the MUL instruction vs.
; various shift and add equivalents.

#repetitions 480000
#unravel 1

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Multiply by 15 using IMUL”)
%do

.286
mov cx, 128
mov bx, 15

MulLoop1: mov ax, cx
imul bx
loop MulLoop1

#endcode

; Do the same test using the extended IMUL
; instruction on 80286 and later processors.

#code (“Multiplying by 15 using IMUL”)
%do

mov cx, 128
MulLoop2: mov ax, cx

imul ax, 15
loop MulLoop2

#endcode

; Now multiply by 15 using a shift by four
; bits and a subtract.

#code (“Multiplying by 15 using shifts and sub”)
%init
%do

mov cx, 128
MulLoop3: mov ax, cx

mov bx, ax
shl ax, 4
sub ax, bx
loop MulLoop3

#endcode
#end

Output from TESTMUL.IBM:

 IBM/L 2.0

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to

±

2.

CPU: 80486

Computing Overhead: Multiply by 15 using IMUL
Testing: Multiply by 15 using IMUL
Multiply by 15 using IMUL :370

The 80x86 Instruction Set

Lab 6-213

Computing Overhead: Multiplying by 15 using IMUL
Testing: Multiplying by 15 using IMUL
Multiplying by 15 using IMUL :370
Computing Overhead: Multiplying by 15 using shifts and sub
Testing: Multiplying by 15 using shifts and sub
Multiplying by 15 using shifts and sub :201

; IBML Sample program MOVs.
; A comparison of register-register
; moves with register-memory moves

#data
i word ?
j word ?
k word ?
l word ?
#enddata

#repetitions 30720000
#unravel 1

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Register-Register moves, no Hazards”)
%do

mov bx, ax
mov cx, ax
mov dx, ax
mov si, ax
mov di, ax
mov bp, ax

#endcode

#code (“Register-Register moves, with Hazards”)
%do

mov bx, ax
mov cx, bx
mov dx, cx
mov si, dx
mov di, si
mov bp, di

#endcode

#code (“Memory-Register moves, no Hazards”)
%do

mov ax, i
mov bx, j
mov cx, k
mov dx, l
mov ax, i
mov bx, j

#endcode

#code (“Register-Memory moves, no Hazards”)
%do

mov i, ax
mov j, bx
mov k, cx
mov l, dx
mov i, ax
mov j, bx

#endcode
#end

Lab Ch06

Lab 6-214

 IBM/L 2.0

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to Ò 2.

CPU: 80486

Computing Overhead: Register-Register moves, no Hazards
Testing: Register-Register moves, no Hazards
Register-Register moves, no Hazards :25
Computing Overhead: Register-Register moves, with Hazards
Testing: Register-Register moves, with Hazards
Register-Register moves, with Hazards :51
Computing Overhead: Memory-Register moves, no Hazards
Testing: Memory-Register moves, no Hazards
Memory-Register moves, no Hazards :67
Computing Overhead: Register-Memory moves, no Hazards
Testing: Register-Memory moves, no Hazards
Register-Memory moves, no Hazards :387

6.17 The CPUDYNO Program

The CPUDYNO program is another program you can use to test the timings of various instructions on your com-
puter. The main purpose of this program is to compute cycle timings for individual instructions and various addressing
modes on the CPU you’re using. Although your text book publishes Intel/Microsoft instruction timings in the appendices,
the published times are often

best case

 timings that are difficult to achieve in real programs. Running CPUDYNO allows
you to time a set of 80x86 instructions under less than ideal circumstances to get a more realistic instruction execution
time.

The timing differences between the Intel published timings and the results CPUDYNO reports are generally due to
wait states, prefetch queue loading, cache effects, hazards, instruction prefix bytes, and other timing retardants men-
tioned only in the fine print in Intel’s manuals.

To use CPUDYNO, simply run “CPUDYNO” from the DOS command line. It will display the timings for several 8086
instructions on the screen. You can use I/O redirection to save the output for comparison purposes.

6.18 The 80x86 Instruction Set Laboratory Exercises

In this laboratory you will study instruction encodings and timings for several common 8086 instructions. You will
use MASM, CodeView, and IBM/L to prepare and test short assembly language programs. You will also learn how to use
the linker to combine various object modules and how to set up pathnames for the UCR Standard Library routines.
Finally, you will run the CPUDYNO program to test the execution time of various instructions (in cycles) on your com-
puter system (and several different systems, if available).

6.18.1 Before Coming to the Laboratory

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A write-up on the IBM/L language explaining, in your own words, how the program works.
• A description of what the CPUDYNO program does.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab begins on the material cov-
ered in the laboratory. You will do quite well on that quiz if you’ve properly prepared for the lab and studied up on the

Lab Ch06

Lab 6-215

stuff prior to attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and
you will probably not finish the lab. Do not take this pre-lab exercise lightly.

Lab Ch06

Lab 6-216

Lab Ch06

Lab 6-217

6.18.2 Laboratory Exercises

In this laboratory you will perform the following activities:

• Assemble some instructions inside CodeView and inspect their binary encoding.
• Assemble some short assembly language programs using ML and load the result into CodeView.
• Observe how several instructions affect the 80x86 flags register.
• Generate several instruction sequences and compare their relative timings using the IBM/L language.
• Run the CPUDYNO program and compare the timings it reports against the official Intel timings.

o

Exercise 1: Assemble and link the “SHELL.ASM” file (supplied on the diskette accompanying this lab manual).
Be sure that the standard library include and lib files are in the MASM include and lib paths. Assemble
SHELL.ASM using the following command:

ml /Zi /Fl shell.asm

The “/Zi” option tells ML to specially prepare this file for use with CodeView. It instructs ML to include special infor-
mation in the .EXE file so CodeView can provide

symbolic source code

debugging facilities. You should use this
option whenever you plan to use CodeView to debug your program. You should

not

, however, use this option all
the time because it makes the “.EXE” file larger.

The “/Fl” command line item is optional. It instructs ML to create an

assembly listing

 of the source file. This listing
file includes your source code plus other information including the binary translation of each instruction in the pro-
gram. (displayed in hexadecimal).

Once you’ve assembled the file (without error), note that ML created

three

 new files (assuming they were not
present already): SHELL.OBJ, SHELL.EXE, and SHELL.LST. The SHELL.LST file is the one containing the assembly
listing. Load this file into your editor or print it out to the printer to see the format of an ML listing file.

For your lab report:

include the SHELL.LST listing file.

For additional credit:

Execute the DOS command “ML /?” and have MASM list out all the legal command line
options. Explain the purpose of several of these command line options.

o

Exercise 2: Load the “LAB5A.ASM” file into the editor and locate the comment which states “Put your main pro-
gram here.” At this point, insert the following 80x86 assembly language statements:

add ax, bx
sub ax, bx
and ax, bx
or ax, bx
xor ax, bx

add bx, ax
add bx, ds:[0]
add bx, [bx]
add bx, 200h[bx]

xor ax, ax
xor ax, 1
xor ax, 100h

xchg ax, ax
nop

mov al, 12h
mov ax, 1234h

Assemble this code using the ML command:

ml /Zi /Fl lab5a.asm

(Note: if the assembler reports an error in the above statements, correct the error in the source file and reissue the
ML command.)

Lab Ch06

Lab 6-218

For your lab report:

Edit or print the LAB5A.LST file and look at the binary encodings for each of these instruc-
tions. Explain each of the particular values produced by the assembler.

For additional credit:

 look up the instruction encodings for each of these instructions in Appendix D of your text-
book. Describe the meaning of each of the hexadecimal values the assembler emits to the object code file.

o

Exercise 3: Load the LAB5A.EXE file created by ML above into CodeView using the DOS command:

CV LAB5A

By default, CodeView will display the file in

source

mode. What you will see in the source window is the text from
the LAB5A.ASM file. While this is probably the best mode to use when actually debugging a program (since you see
the comments and symbolic names), it will actually interfere with this exercise. To switch from “source” to “assem-
bly” mode, select the “Source Window” item from the “Options” menu. This brings up a dialog box. One of the
options in this dialog box is “Display Mode.” Select “Assembly” as the display mode option. You will note that the
source display window changes from a nice source display to a disassembly listing. This is fine, the source display
hides a lot of important information we want to take a look at.

The first thing you should do is locate the instruction sequence you entered in Exercise 2 above. After finding this
sequence, compare the disassembled code against your assembly listing. Report and explain any differences
between the assembly listing and the CodeView disassembly.

Note: one difference you will find is the way MASM displays 16-bit (and 32-bit) values in the assembly listing. Nor-
mally, MASM displays bytes of object code emitted by the assembler from left to right with the leftmost byte corre-
sponding to the value at the lowest address. For example, MASM typically displays the instruction “MOV AL, 12h” as
follows:

BO 12 MOV AL, 12h

When MASM encounters a 16 (or 32) bit operand you would expect that it would display the object code bytes from
left to right corresponding to L.O. to H.O. However, for such constants MASM swaps the operand bytes so that they
read more naturally:

B8 1234 MOV AX, 1234h

rather than:

B8 34 12 MOV AX, 1234

Note that MASM does

not

 put a space between the values when it reverses the byte order. This is how you can tell
that it is displaying the bytes in the reverse order. CodeView does not reverse these bytes when it disassembles your
code in “assembly” mode.

For your lab report:

List or otherwise emphasize all instructions in the program that use this display form for 16 bit
values.

o

Exercise 4: While in CodeView, assemble the following instruction sequences into memory starting at location
8000:0 (using the command window assemble command).

mov al, 0ffh
add al, 1

mov al, 7fh
add al, 1

mov al, 80h
add al, 1

mov al, 0ffh
inc al

mov al, 80h
inc al

int 3

Single step through each of the instructions above and note the results in the AL register and the carry, sign, over-
flow, and zero flags after the execution of each instruction. Comment on the results. (Do not execute the “int 3”

Lab Ch06

Lab 6-219

instruction. It’s present in case you accidentally execute the “GO” command. It will stop program execution inside
CodeView.)

For your lab report:

 Describe the condition code settings (carry, overflow, zero, and sign) after the execution of
each instruction and discuss why the 80x86 produces each flag setting.

o

Exercise 5: Repeat exercise 4 for the following sequence of compare instructions. Be sure to describe what the
flag values mean with respect to the signed and unsigned comparisons being performed.

mov al, 0
cmp al, 0
cmp al, 1
cmp al, 0ffh ;-1 or +255

mov al, 1
cmp al, 0
cmp al, 1
cmp al, 2
cmp al, 0ffh ;-1 or +255

mov al, 0ffh
cmp al, 0feh ;-2/+254
cmp al, 0ffh
cmp al, 0
cmp al, 1

For your lab report:

 Discuss the condition code values after the execution of each of the above CMP instructions.

For additional credit:

 Try some other “boundary” values to when comparing values. Repeat the exercise above.

o

Exercise 6: Create an IBM/L program which times the following code sequences. Execute these code sequences
to determine which ones are the fastest. If you have access to several different CPUs (e.g., 80286, 80386, 80486)
try running the IBM/L output on each of them.. Note: if you are running a machine which emulates the 80x86
using a program such as SoftPC, the timing values you obtain will be meaningless. IBM/L timings are only
meaningful when run on a true 80x86 CPU.

For all sequences, place two word variables I and J in the data section. Initialize these variables to five and ten,
respectively.

; Sequence 1a:

#data
i word ?
j word ?
#enddata
#unravel 256
#repetitions 250000
#code (“Add one with ADD”)
%do

mov ax, i
add ax, 1
mov i, ax

#endcode
#end

Sequence 1b:

#data
i word ?
j word ?
#enddata
#unravel 256
#repetitions 250000
#code (“Add one with INC”)
%do

Lab Ch06

Lab 6-220

inc i
#endcode
#end

Sequence 2a:

#data
i word ?
j word ?
#enddata
#unravel 256
#repetitions 250000
#code (“*4 with MUL”)
%do

mov al, 4
mul i

#endcode
#end

Sequence 2b:

#data
i word ?
j word ?
#enddata
#unravel 256
#repetitions 250000
#code (“*4 with SHL”)
%do

mov ax, i
shl ax, 1
shl ax, 1

#endcode
#end

For your lab report:

 compile the code sequences above using IBM/L and include the results in your lab report.

For additional credit:

 Merge the four sequences above into a single IBM/L program. Create several additional sets
of sequences on your own and run these through IBM/L. Use IBM/L to demonstrate the cost of hazards on an 80486
or later processor. Compile and run the sample IBM/L files on the diskette accompanying this lab manual. Explain
the results.

o

Exercise 7: The IBM/L program is particularly useful to compare the timings of two or more different code frag-
ments that all achieve the same result. Consider the absolute value operation mentioned earlier in this chapter.
There were two possible sequences, one that works best for positive values, one that works best for negative
values. There are several other ways to implement the absolute value function. The following code sequence
achieves this without using any control transfer instructions:

cwd ;DX becomes 0FFFFh if AX is negative.
xor ax, dx ;Invert AX if it is negative.
and dx, 1 ;Convert DX to one (if FFFF) or zero.
add ax, dx ;Add one if AX was negative.

The only question is, “which sequence is better?” One way to answer this question is to write a short IBM/L pro-
gram and try these three segments out. The following code does just that:

#repetitions 2000000
#unravel 100

#code (“ABS” Sequence 1 w/positive value”)
%discount

mov ax, 1 ;Our positive value
%do

local ispos ;This is necessary if you have any
; ; labels in the %do section. See

Lab Ch06

Lab 6-221

; ; chapter six for an explanation.

cmp ax, 0
jge ispos
neg ax

ispos:
#endcode

#code (“ABS” Sequence 2 w/positive value”)
%discount

mov ax, 1 ;Our positive value
%do

local ispos

neg ax
jns ispos
neg ax

ispos:
#endcode

#code (“ABS” Sequence 3 w/positive value”)
%discount

mov ax, 1 ;Our positive value
%do

cwd
xor ax, dx
and dx, 1
add ax, dx

#endcode

#code (“ABS” Sequence 1 w/negative value”)
%discount

mov ax, -1 ;Our negative value
%do

local ispos

cmp ax, 0
jge ispos
neg ax

ispos:
#endcode

#code (“ABS” Sequence 2 w/negative value”)
%discount

mov ax, -1 ;Our negative value
%do

local ispos

neg ax
jns ispos
neg ax

ispos:
#endcode

#code (“ABS” Sequence 3 w/negative value”)
%discount

mov ax, -1 ;Our negative value
%do

cwd

Lab Ch06

Lab 6-222

xor ax, dx
and dx, 1
add ax, dx

#endcode
#end

For your lab report:

 Describe which instruction sequence is fastest on your machine. Try to explain the
results.

For additional credit:

Try this code on different 80x86 CPUs (if available) and compare the results.

o

Exercise 8: Run the sample IBM/L files found on the diskette accompanying this lab manual (LAB8a_5.IBM,
etc.)

For your lab report

: Explain the results. Describe which instruction sequences are most efficient in each
group.

For additional credit:

 Devise your own code sequences and run them under IBM/L to determine which of
several code sequences is the fastest.

o

Exercise 9: Run the CPUDYNO program on your system.

For your lab report:

 compare the results to the published timings for various 8086 instructions. Discuss what
could cause the differences.

For additional credit:

 run CPUDYNO on several different Intel CPUs. Compare their timings against each
other and the published results (note: there are several files containing results for various Intel CPUs on the dis-
kette).

o

Exercise 10: For this exercise, assemble the “LAB10_5.ASM” file on the diskette accompanying this lab manual
using the command “ml /Fi lab10_5.asm” to produce an .exe value you can load into CodeView. Connect the
circuit you built in the laboratory exercises for Chapter Two to the printer port (LPT1:). Then, following the
comments in the code below, single step through this program and observe the results.

; LAB10_5.asm
; Sample program that demonstrates the use of the IN & OUT instructions.

dseg segmentpara public ‘data’

; The port variable holds the base address of the LPT1: parallel printer
; port. This is the address of the output port that controls the LEDs
; on the lab circuitry.

Port word ?

; InPort is the address of the LPT1: input port. You can read the switches
; on the lab circuitry from this port.

InPort word ?

dseg ends

cseg segmentpara public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax

; The base address of the LPT1: port is stored at address 40:8 in memory.
; Fetch that value and initialize our Port and InPort variables with that
; value. (Note: if you want to use LPT2: or LPT3: rather than LPT1:, their
; base addresses appear at locations 40:A and 40:C, respectively.)

mov ax, 40h ;Point ES at the BIOS data segment.
mov es, ax

; Change the following value from 8 to 0ah or 0ch for LPT2: or LPT3:

Lab Ch06

Lab 6-223

mov ax, es:[8];Fetch base address of LPT1: port.
mov Port, ax
inc ax ;Point at input port.
mov InPort, ax

; The switches on your lab circuitry come in on bits 3, 4, 5, and 6 of
; the input port. These bits contain a one if the switch is in the *OFF*
; position. They contain a zero if the switch is in the *ON* position.
; Intuitively, this is backwards. Be aware of this.
;
; Using CodeView, single step through the following instructions.
; After the execution of each IN instruction, change the switch settings
; on your circuitry and observe the value read into AL with the execution
; of each successive IN statement.

mov dx, InPort
in al, dx
in al, dx
in al, dx
in al, dx
in al, dx
in al, dx
in al, dx
in al, dx

; The LEDs on your lab circuitry are connected to bits zero through eight
; of the output port (Port). Writing a one to a particular bit turns that
; LED *ON*. Writing a zero to a particular bit turns that LED off. Note
; that address “Port” is an I/O address. You can read and write the data
; at that address (reading this port reads the last value written to it).
; The following code reads the switches, inverts their values, and then
; initializes LEDs zero through three with these switch values. The code
; then rotates these bit settings through the LEDs several times. Use
; CodeView to single step through these instructions.

in al, dx ;DX still contains InPort’s value.
mov cl, 3 ;Move the switches down to bit 0.
shr al, cl
and al, 0Fh ;Mask out the other bits.
xor al, 0Fh ;Invert switch readings.

mov dx, Port;Point DX out the output port.
out dx, al ;Write switch settings to the LEDs.

in al, dx ;Read previous value.
rol al, 1 ;Rotate bits.
out dx, al ;Write back to LEDs.

in al, dx
rol al, 1
out dx, al

in al, dx
rol al, 1
out dx, al

in al, dx
rol al, 1
out dx, al

in al, dx
rol al, 1
out dx, al

in al, dx
rol al, 1
out dx, al

Lab Ch06

Lab 6-224

in al, dx
rol al, 1
out dx, al

in al, dx
rol al, 1
out dx, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp
cseg ends

sseg segmentpara stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segmentpara public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

For your lab report:

 Describe what happens to AX, DX and the LEDs after the execution of each instruction
above.

Lab Ch06

Lab 6-225

6.19 Sample Programs

Most real programs only use a small subset of the entire 80x86 instruction set. Therefore you do not have to learn
the complete operation and usage of

every

 80x86 instruction in order to write typical assembly language programs. How-
ever, if you are comfortable with the entire instruction set, you will probably write better assembly language programs
because you’ll often use an appropriate instruction sequence rather than synthesize the operation with a longer
sequence of instructions.

This section presents several short sample programs that demonstrate the use of several 80x86 assembly language
instructions. It shows the syntax of many instructions and how one would typically use them.

6.19.1 Sample Program #1: Simple Arithmetic

This program demonstrates how to use the 80x86 add, sub, neg, inc, and dec instructions to perform simple calcula-
tions.

; Simple Arithmetic
; This program demonstrates some simple arithmetic instructions.

.386
option segment:use16

dseg segment para public ‘data’

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Compute L := j+k and u3 := u1+u2

Lab Ch06

Lab 6-226

mov ax, J
add ax, K
mov L, ax

mov ax, u1 ;Note that we use the “ADD”
add ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := j-k and u3 := u1-u2

mov ax, J
sub ax, K
mov L, ax

mov ax, u1 ;Note that we use the “SUB”
sub ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := -L

neg L

; Compute L := -J

mov ax, J ;Of course, you would only use the
neg ax ; NEG instruction on signed values.
mov L, ax

; Compute K := K + 1 using the INC instruction.

inc K

; Compute u2 := u2 + 1 using the INC instruction.
; Note that you can use INC for signed and unsigned values.

inc u2

; Compute J := J - 1 using the DEC instruction.

dec J

; Compute u2 := u2 - 1 using the DEC instruction.
; Note that you can use DEC for signed and unsigned values.

dec u2

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Lab Ch06

Lab 6-227

6.19.2 Sample Program #2: Multiplication and Division

Unfortunately, multiplication and division work a little differently on the 80x86 than the other arithmetic instructions
like add and subtract. This section demonstrates the use the

mul

,

imul

,

div

, and

idiv

 instructions in an assembly lan-
guage program. Don’t forget that the division operation can crash your program if you attempt to divide by zero or if the
operands are otherwise out of range.

; Simple Arithmetic: multiplication and division
; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public ‘data’

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Extended multiplication using 8086 instructions.
;
; Note that there are separate multiply instructions for signed and
; unsigned operands.
;
; L := J * K (ignoring overflow)

mov ax, J
imul K ;Computes DX:AX := AX * K
mov L, ax ;Ignore overflow into DX.

Lab Ch06

Lab 6-228

; u3 := u1 * u2

mov ax, u1
mul u2 ;Computes DX:AX := AX * U2
mov u3, ax ;Ignore overflow in DX.

; Extended division using 8086 instructions.
;
; Like multiplication, there are separate instructions for signed
; and unsigned operands.
;
; It is absolutely imperative that these instruction sequences sign
; extend or zero extend their operands to 32 bits before dividing.
; Failure to do so will may produce a divide error and crash the
; program.
;
; L := J div K

mov ax, J
cwd ;*MUST* sign extend AX to DX:AX!
idiv K ;AX := DX:AX/K, DX := DX:AX mod K
mov L, ax

; u3 := u1/u2

mov ax, u1
mov dx, 0 ;Must zero extend AX to DX:AX!
div u2 ;AX := DX:AX/u2, DX := DX:AX mod u2
mov u3, ax

; Special forms of the IMUL instruction available on 80286, 80386, and
; later processors. Technically, these instructions operate on signed
; operands only, however, they do work fine for unsigned operands as well.
; Note that these instructions produce a 16-bit result and set the overflow
; flag if overflow occurs.
;
; L := J * 10 (80286 and later only)

imul ax, J, 10 ;AX := J*10
mov L, ax

; L := J * K (80386 and later only)

mov ax, J
imul ax, K
mov L, ax

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

Lab Ch06

Lab 6-229

end Main

6.19.3 Sample Program #3: Logical Operations

The following short assembly language program demonstrates the use of the

and

,

or

,

xor

, and

not

 instructions.

; Logical Operations
; This program demonstrates the AND, OR, XOR, and NOT instructions

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public ‘data’

; Some variables we can use:

j word 0FF00h
k word 0FFF0h
l word ?

c1 byte ‘A’
c2 byte ‘a’

LowerMask byte 20h

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Compute L := J and K (bitwise AND operation):

mov ax, J
and ax, K
mov L, ax

; Compute L := J or K (bitwise OR operation):

mov ax, J
or ax, K
mov L, ax

; Compute L := J xor K (bitwise XOR operation):

mov ax, J
xor ax, K
mov L, ax

; Compute L := not L (bitwise NOT operation):

not L

Lab Ch06

Lab 6-230

; Compute L := not J (bitwise NOT operation):

mov ax, J
not ax
mov L, ax

; Clear bits 0..3 in J:

and J, 0FFF0h

; Set bits 0..3 in K:

or K, 0Fh

; Invert bits 4..11 in L:

xor L, 0FF0h

; Convert the character in C1 to lower case:

mov al, c1
or al, LowerMask
mov c1, al

; Convert the character in C2 to upper case:

mov al, c2
and al, 5Fh ;Clears bit 5.
mov c2, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.19.4 Sample Program #4: Shift and Rotate Instructions

The following sample program shows how to use some of the 80x86’s shift and rotate instructions. It also demon-
strates how to pack data using these instructions.

; Shift and Rotate Instructions

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public ‘data’

Lab Ch06

Lab 6-231

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?
rm byte ?
mode ends

Adrs1 mode {11b, 100b, 111b}
modregrm byte ?

var1 word 1
var2 word 8000h
var3 word 0FFFFh
var4 word ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Shifts and rotates directly on memory locations:
;
; var1 := var1 shl 1

shl var1, 1

; var1 := var1 shr 1

shr var1, 1

; On 80286 and later processors, you can shift by more than one bit at
; at time:

shl var1, 4
shr var1, 4

; The arithmetic shift right instruction retains the H.O. bit after each
; shift. The following SAR instruction sets var2 to 0FFFFh

sar var2, 15

; On all processors, you can specify a shift count in the CL register.
; The following instruction restores var2 to 8000h:

mov cl, 15
shl var2, cl

; You can use the shift and rotate instructions, along with the logical
; instructions, to pack and unpack data. For example, the following
; instruction sequence extracts bits 10..13 of var3 and leaves
; this value in var4:

mov ax, var3
shr ax, 10 ;Move bits 10..13 to 0..3.
and ax, 0Fh ;Keep only bits 0..3.
mov var4, ax

; You can use the rotate instructions to compute this value somewhat faster

Lab Ch06

Lab 6-232

; on older processors like the 80286.

mov ax, var3
rol ax, 6 ;Six rotates rather than 10 shifts.
and ax, 0Fh
mov var4, ax

; You can use the shift and OR instructions to easily merge separate fields
; into a single value. For example, the following code merges the mod, reg,
; and r/m fields (maintained in separate bytes) into a single mod-reg-r/m
; byte:

mov al, Adrs1.modbits
shl al, 3
or al, Adrs1.reg
shl al, 3
or al, Adrs1.rm
mov modregrm, al

; If you’ve only got and 8086 or 8088 chip, you’d have to use code like the
; following:

mov al, Adrs1.modbits ;Get mod field
shl al, 1
shl al, 1
or al, Adrs1.reg ;Get reg field
mov cl, 3
shl al, cl ;Make room for r/m field.
or al, Adrs1.rm ;Merge in r/m field.
mov modregrm, al ;Save result away.

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.19.5 Sample Program #5: Bit Operations and the SETcc Instruction

The following program shows how to test to see if certain bits are set or clear. It also demonstrates the use of the

set

cc

 instructions to set a boolean variable true or false depending upon some condition.

; Bit Operations and SETcc Instructions

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public ‘data’

Lab Ch06

Lab 6-233

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
u1 uint 2
u2 uint 2
Result byte ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize some variables

mov j, -2
mov k, 2

; The SETcc instructions store a one or zero into their operand if the
; specified condition is true or false, respectively. The TEST instruction
; logically ANDs its operands and sets the flags accordingly (in particular,
; TEST sets/clears the zero flag if there is/isn’t a zero result). We can
; use these two facts to copy a single bit (zero extended) to a byte operand.

test j, 11000b ;Test bits 4 and 5.
setne Result ;Result=1 if bits 4 or 5 of J are 1.

test k, 10b ;Test bit #1.
sete Result ;Result=1 if bit #1 = 0.

; The SETcc instructions are particularly useful after a CMP instruction.
; You can set a boolean value according to the result of the comparison.
;
; Result := j <= k

mov ax, j
cmp ax, k
setle Result ;Note that “setle” is for signed values.

; Result := u1 <= u2

mov ax, u1
cmp ax, u2
setbe Result ;Note that “setbe” is for unsigned values.

; One thing nice about the boolean results that the SETcc instructions
; produce is that we can AND, OR, and XOR them and get the same results
; one would expect in a HLL like C, Pascal, or BASIC.
;
; Result := (j < k) and (u1 > u2)

Lab Ch06

Lab 6-234

mov ax, j
cmp ax, k
setl bl ;Use “setl” for signed comparisons.

mov ax, u1
cmp ax, u2
seta al ;Use “seta” for unsigned comparisons.

and al, bl ;Logically AND the two boolean results
mov Result, al ; and store the result away.

; Sometimes you can use the shift and rotate instructions to test to see
; if a specific bit is set. For example, SHR copies bit #0 into the carry
; flag and SHL copies the H.O. bit into the carry flag. We can easily test
; these bits as follows:
;
; Result := bit #15 of J.

mov ax, j
shl ax, 1
setc Result

; Result := bit #0 of u1:

mov ax, u1
shr ax, 1
setc Result

; If you don’t have an 80386 or later processor and cannot use the SETcc
; instructions, you can often simulate them. Consider the above two
; sequences rewritten for the 8086:

;
; Result := bit #15 of J.

mov ax, j
rol ax, 1 ;Copy bit #15 to bit #0.
and al, 1 ;Strip other bits.
mov Result, al

; Result := bit #0 of u1:

mov ax, u1
and al, 1 ;Strip unnecessary bits.
mov Result, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Lab Ch06

Lab 6-235

6.19.6 Sample Program #6: String Instructions

This program demonstrates simple uses of some string instructions. It shows how you can easily manipulate array
elements using these instructions.

; String Instructions

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public ‘data’

String1 byte “String”,0
String2 byte 7 dup (?)

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; The string instructions let you easily copy data from one array to
; another. If the direction flag is clear, the movsb instruction
; does the equivalent of the following:
;
; mov es:[di], ds:[si]
; inc si
; inc di
;
; The following code copies the seven bytes from String1 to String2:

cld ;Required if you want to INC SI/DI

lea si, String1
lea di, String2

movsb ;String2[0] := String1[0]
movsb ;String2[1] := String1[1]
movsb ;String2[2] := String1[2]
movsb ;String2[3] := String1[3]
movsb ;String2[4] := String1[4]
movsb ;String2[5] := String1[5]
movsb ;String2[6] := String1[6]

; The following code sequence demonstrates how you can use the LODSW and
; STOWS instructions to manipulate array elements during the transfer.
; The following code computes
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.
;

Lab Ch06

Lab 6-236

; Of course, it would be far more efficient to put the following code
; into a loop, but that will come later.

lea si, Array1
lea di, Array2

lodsw
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Lab Ch06

Lab 6-237

6.19.7 Sample Program #7: Unconditional JMP Instructions

This program demonstrates various forms of the unconditional jump instruction. To fully appreciate the differences,
you will need to look at the object code produced by this program. You can do this by assembling the program and pro-
ducing an assembly listing. The MASM command to do this is

6

ml /Fl ex7_5.asm

This produces a file named “ex7_5.lst” that contains the assembled listing. The assembly listing contains the offsets and
opcodes for each instruction. By studying these opcodes you can see the differences between these instructions. See
Appendix D for details on

jmp

 instruction encoding.

; Unconditional Jumps

.386
option segment:use16

dseg segment para public ‘data’

; Pointers to statements in the code segment

IndPtr1 word IndTarget2
IndPtr2 dword IndTarget3

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; JMP instructions transfer control to the
; location specified in the operand field.
; This is typically a label that appears
; in the program.
;
; There are many variants of the JMP
; instruction. The first is a two-byte
; opcode that transfers control to +/-128
; bytes around the current instruction:

jmp CloseLoc
nop

CloseLoc:

; The next form is a three-byte instruction
; that allows you to jump anywhere within
; the current code segment. Normally, the
; assembler would pick the shortest version
; of a given JMP instruction, the “near ptr”

6. The file for this program, ex7_5.asm, is on the diskette accompanying this laboratory manual.

Lab Ch06

Lab 6-238

; operand on the following instruction
; forces a near (three byte) JMP:

jmp near ptr NearLoc
nop

NearLoc:

; The third form to consider is a five-byte
; instruction that provides a full segmented
; address operand. This form of the JMP
; instruction lets you transfer control any-
; where in the program, even to another
; segment. The “far ptr” operand forces
; this form of the JMP instruction:

jmp far ptr FarLoc
nop

FarLoc:

; You can also load the target address of a
; near JMP into a register and jump indirectly
; to the target location. Note that you can
; use any 80x86 general purpose register to
; hold this address; you are not limited to
; the BX, SI, DI, or BP registers.

lea dx, IndTarget
jmp dx
nop

IndTarget:

; You can even jump indirect through a memory
; variable. That is, you can jump though a
; pointer variable directly without having to
; first load the pointer variable into a reg-
; ister (Chapter Six describes why the following
; labels need two colons).

jmp IndPtr1
nop

IndTarget2::

; You can even execute a far jump indirect
; through memory. Just specify a dword
; variable in the operand field of a JMP
; instruction:

jmp IndPtr2
nop

IndTarget3::

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

Lab Ch06

Lab 6-239

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.19.8 Sample Program #8: CALL and Interrupt Instructions

This program demonstrates various forms of the

call

,

ret

, and

int

 instructions. Like the previous program, you
will need to look at the object code and Appendix D to truly appreciate the differences in these instructions. To produce
an assembly listing, use the following command on the ex8_5.asm file:

ml /Fl ex8_5.asm

This produces the file “ex8_5.lst” that contains a listing of the bytes each instruction emits.

Chapter Six discusses the use of the

proc

 and

endp

 statements. This program uses them to create near and far pro-
cedures that this code can invoke using the

call

 instruction.

; CALL and INT Instructions

.386
option segment:use16

dseg segment para public ‘data’

; Some pointers to our subroutines:

SPtr1 word Subroutine1
SPtr2 dword Subroutine2

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Subroutine1 proc near
ret

Subroutine1 endp

Subroutine2 proc far
ret

Subroutine2 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Near call:

call Subroutine1

; Far call:

Lab Ch06

Lab 6-240

call Subroutine2

; Near register-indirect call:

lea cx, Subroutine1
call cx

; Near memory-indirect call:

call SPtr1

; Far memory-indirect call:

call SPtr2

; INT transfers control to a routine whose
; address appears in the interrupt vector
; table (see Chapter 15 for details on
; the interrupt vector table). The following
; call tells the PC’s BIOS to print the
; ASCII character in AL to the display.

mov ah, 0eh
mov al, ‘A’
int 10h

; INTO generates an INT 4 if the 80x86
; overflow flag is set. It becomes a
; NOP if the overflow flag is clear.
; You can use this instruction after
; an arithmetic operation to quickly
; test for a fatal overflow. Note:
; the following sequence does *not*
; generate an overflow. Do not modify
; it so that it does unless you add an
; INT 4 interrupt service routine to
; the interrupt vector table (see Chapter
; 15 for details)

mov ax, 2
add ax, 4
into

Quit: mov ah, 4ch
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Lab Ch06

Lab 6-241

6.19.9 Sample Program #9: Conditional Jump Instructions

The conditional jump instructions are some of the most important instructions in the 80x86 instruction set. An
assembly language programmer uses these instructions to make decisions and create loops in a program. The following
program demonstrates some of the capabilities of these instructions.

On the 80286 and earlier processors, the conditional instructions only allow you to branch to an instruction

±

128
bytes around the current instruction. With MASM 5.1 and earlier, you had to manually convert out of range branches.
MASM 6.x and later will do this for you automatically. The 80386 and later processor provide special forms of the condi-
tional jump instructions that allow you to jump anywhere within the current code segment. If you specify the use of an
80386 or later processor, MASM will automatically use this form of the instruction if the shorter form is out of range. The
following program demonstrates how MASM 6.x automatically extends out of range jumps. Once again, you will need to
produce an assembly listing to see the actual opcodes MASM emits. To do this, use the DOS command:

ml /Fl ex9_5.asm

This produces the file “ex9_5.lst” that contains the assembly listing.

Do not run this program. It’s only purpose is to demonstrate how MASM emits opcodes for various conditional jump
instructions. It may hang the machine if you attempt to run it from DOS.

; Conditional JMP Instructions, Part I

.386
option segment:use16

dseg segment para public ‘data’
J sword ?
K sword ?
L sword ?
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; 8086 conditional jumps are limited to
; +/- 128 bytes because they are only
; two bytes long (one byte opcode, one
; byte displacement).

.8086
ja lbl
nop

lbl:

; MASM 6.x will automatically extend out of
; range jumps. The following are both
; equivalent:

ja lbl2
byte 150 dup (0) ;Make target greater than 128 bytes away.

lbl2:

Lab Ch06

Lab 6-242

jna Temp
jmp lbl3

Temp:
byte 150 dup (0) ;Make target greater than 128 bytes away.

lbl3:

; The 80386 and later processors support a
; special form of the conditional jump
; instructions that allow a two-byte displace-
; ment, so MASM 6.x will assemble the code
; to use this form if you’ve specified an
; 80386 processor.

.386
ja lbl4
byte 150 dup (0) ;Make target more than 128 bytes away.

lbl4:

; The conditional jump instructions work
; well with the CMP instruction to let you
; execute certain instruction sequences
; only if a condition is true or false.
;
; if (J <= K) then
; L := L + 1
; else L := L - 1

mov ax, J
cmp ax, K
jnle DoElse
inc L
jmp ifDone

DoElse: dec L
ifDone:

; You can also use a conditional jump to
; create a loop in an assembly language
; program:
;
; while (j >= k) do begin
;
; j := j - 1;
; k := k + 1;
; L := j * k;
; end;

WhlLoop: mov ax, j
cmp ax, k
jnge QuitLoop

dec j
inc k
mov ax, j
imul ax, k
mov L, ax
jmp WhlLoop

QuitLoop:

Quit: mov ah, 4ch ;DOS opcode to quit program.

Lab Ch06

Lab 6-243

int 21h ;Call DOS.
Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.19.10Sample Program #10: More Conditional Jump Instructions

This short sample program demonstrates how to use the

loop

 and

loopne

 instructions to create simple loops
within your programs. It also demonstrates how to use the conditional jump instructions to simulate the operation of the

set

cc

 instructions on 80286 and earlier processors.

; Conditional JMP Instructions, Part II

.386
option segment:use16

dseg segment para public ‘data’

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

String1 byte “This string contains lower case characters”,0
String2 byte 128 dup (0)

j sword 5
k sword 6

Result byte ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; You can use the LOOP instruction to repeat a sequence of statements
; some specified number of times in an assembly language program.
; Consider the code taken from EX6_5.ASM that used the string
; instructions to produce a running product:
;
; The following code uses a loop instruction to compute:
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.

cld

Lab Ch06

Lab 6-244

lea si, Array1
lea di, Array2
mov dx, 1 ;Initialize for 1st time.
mov cx, 8 ;Eight elements in the arrays.

LoopHere: lodsw
imul ax, dx
mov dx, ax
stosw
loop LoopHere

; The LOOPNE instruction is quite useful for controlling loops that
; stop on some condition or when the loop exceeds some number of
; iterations. For example, suppose string1 contains a sequence of
; characters that end with a byte containing zero. If you wanted to
; convert those characters to upper case and copy them to string2,
; you could use the following code. Note how this code ensures that
; it does not copy more than 127 characters from string1 to string2
; since string2 only has enough storage for 127 characters (plus a
; zero terminating byte).

lea si, String1
lea di, String2
mov cx, 127 ;Max 127 chars to string2.

CopyStrLoop: lodsb ;Get char from string1.
cmp al, ‘a’ ;See if lower case
jb NotLower ;Characters are unsigned.
cmp al, ‘z’
ja NotLower
and al, 5Fh ;Convert lower->upper case.

NotLower:
stosb
cmp al, 0 ;See if zero terminator.
loopne CopyStrLoop ;Quit if al or cx = 0.

; If you do not have an 80386 (or later) CPU and you would like the
; functionality of the SETcc instructions, you can easily achieve
; the same results using code like the following:
;
; Result := J <= K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K
jnle Skip1
mov Result, 1 ;Set to 1 if J <= K.

Skip1:

; Result := J = K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K
jne Skip2
mov Result, 1

Skip2:

Lab Ch06

Lab 6-245

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Lab Ch06

Lab 6-246

6.20 Programming Projects

o

Program #1: Write a short “GetLine” routine which reads up to 80 characters from the user and places these
characters in successive locations in a buffer in your data segment. Use the INT 16h and INT 10h system BIOS
calls described in this chapter to input and output the characters typed by the user. Terminate input upon
encountering a carriage return (ASCII code 0Dh) or after the user types the 80

th

 character. Be sure to count the
number of characters actually typed by the user for later use. There is a “shell” program specifically designed
for this project on the diskette accompanying this manual (proj1_5.asm).

o

Program #2: Modify the above routine so that it properly handles the backspace character (ASCII code 08h).
Whenever the user presses a backspace key, you should remove the previous keystroke from the input buffer
(unless there are no previous characters in the input buffer, in which case you ignore the backspace).

o

Program #3: You can use the XOR operation to

encrypt

 and

decrypt

 data. If you XOR all the characters in a mes-
sage with some value you will effectively

scramble

 that message. You can retrieve the original message by
XOR’ing the characters in the message with the same value again. Modify the code in Program #2 so that it
encrypts each byte in the message with the value 0Fh and displays the encrypted message to the screen. After
displaying the message, decrypt it by XOR’ing with 0Fh again and display the decrypted message. Note that
you should use the count value computed by the “GetLine” code to determine how many characters to process.

o

Program #4: Write a “PutString” routine that prints the characters pointed at by the es:di register pair. This rou-
tine should print all characters up to (but not including) a zero terminating byte. This routine should preserve
all registers it modifies. There is a “shell” program specifically designed for this project on the diskette accom-
panying this manual (proj4_5.asm).

o

Program #5: To output a 16-bit integer value as the corresponding string of decimal digits, you can use the fol-
lowing algorithm:

if value = 0 then write(‘0’)
else begin

DivVal := 10000;
while (Value mod DivVal) = 0 do begin

Value := Value mod DivVal;
DivVal := DivVal div 10;

end;

while (DivVal > 1) do begin

write (chr(Value div DivVal + 48)); (* 48 = ‘0’ *)
Value := Value mod DivVal;
DivVal := DivVal div 10;

end;
end;

Provide a short routine that takes an arbitrary value in

ax

and outputs it as the corresponding decimal string.
Use the int 10h instruction to output the characters to the display. You can use the “shell” program provided on
the diskette to begin this project (proj5_5.asm).

o

Program #6: To input a 16-bit integer from the keyboard, you need to use code that uses the following algo-
rithm:

Value := 0
repeat

getchar(ch);
if (ch >= ‘0’) and (ch <= ‘9’) then begin

Lab Ch06

Lab 6-247

Value := Value * 10 + ord(ch) - ord(‘0’);
end;

until (ch < ‘0’) or (ch > ‘9’);

Use the INT 16h instruction (described in this chapter) to read characters from the keyboard. Use the output
routine in program #4 to display the input result. You can use the “shell” file proj6_5.asm to start this project.

o

Program #7: Write a program that reads the switches from your circuitry from this lab. It should read the
switches on the input port and write the switch values to four separate byte variables: sw1, sw2, sw3, and sw4.
The variables should contain a one if the switch is in the on position, they should contain a zero if the switch is
in the off position. Next, write a short routine that merges bit #0 in the four byte variables out1, out2, out3, and
out4 together and writes them to LEDs zero through four. In your main program, write some code that reads
the switches, computes the following boolean functions, stores the function results in out1..out4, and then out-
puts these values to the LEDs.
Boolean Functions to support:

out1 = sw1•sw2 + sw3•sw4
out2 = sw1•sw2’•sw3•sw4’ + sw1•sw2•sw3
out3 = sw1’•sw2’•sw3’•sw4’ + sw1•sw2•sw3•sw4 + sw1’•sw2•sw3•sw4’ + sw1•sw2’•sw3’•sw4
out4 = sw1 + sw2 + sw3’•sw4’

You can use the proj7_5.asm file as a “shell” for this project.

o

Program #8: The file “proj8_5.asm” on the diskette accompanying this lab manual is a short program that cre-
ates a “light show” on the circuit you constructed in the Chapter Two laboratory. Modify this file to produce a
light show of your own. Some suggestions: by calling the delay routine several times in a row you can lengthen
the time that one pattern appears on your LEDs. If you adjust the logic of the program a little, you can use dif-
ferent delays between different patterns to improve your light show.

Lab Ch06

Lab 6-248

6.21 Solutions to Selected Exercises

1) One possible example (there are many) FF+FF =1FE. FF is the largest possible eight bit value. The sum of these two
large values requires only nine bits to hold the result.

4) Possible ways:
add bx, 2

inc bx
inc bx

lea bx, 2[bx]

sub bx, -2

clc
adc bx, 2

stc
adc bx, 1

lea bx, 1[bx]
inc bx

inc bx
add bx, 1

etc.

5a) jns TempL1
jmp Label1

TempL1:

15) The sign never changes with SAR, so arithmetic overflow does not occur.
17) IMUL is necessary for operations like array subscript computations. IDIV isn’t used as often as IMUL.
21a) Zero.
21d) Carry and zero.
22c) Sign and overflow.
22d) Sign, overflow, and zero.
24) One way to do it (most ways involve using several registers):

mov ax, I
mov bx, J
mov I, bx
mov J, ax

25) One way to do it:
mov ax, I
xchg ax, J
mov I, ax

30) Copying the floating point status register bits into the 80x86 flags register.
34) Point BX at a table whose entries are equal to their index into the table except for indices ‘a’..’z’. In these entries put

the upper case characters.
46) pop mem

32

jmp mem

32

Lab Ch06

Lab 6-249

Lab Ch06

Lab 6-250

