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Arithmetic and Logical Operations   Lab Manual, Chapter Seven

 

The primary contribution of the first high level languages (HLLs) was the automatic translation of algebraic formulae
into assembly language. Indeed, the name of the first popular HLL, FORTRAN, was derived from FORmula TRANslation.
Creating assembly language sequences that corresponding to some arithmetic computation is one of the first skills new
assembly language programmers must master.

Converting an algebraic expression into assembly language isn’t difficult. If you can compute the value of an arith-
metic expression manually, you will be able to convert to assembly language. After all, you are probably capable of com-
puting only one operation at a time, the 80x86 has the same limitation. By instructing the 80x86 CPU to perform the same
steps as you would, you can create an assembly language sequence that will to the job.

 

7.1 Arithmetic Operations

 

Converting a complex arithmetic expression to assembly language is a very straightforward process. First, you break
the complex operation into a sequence of simple operations, then you convert those simple operations into assembly
language. This is completely analogous to computing the value of an expression by hand. Consider the following arith-
metic expression:

 

(6 - 2) * (5 + 3) / 2 + 9 

 

You do not solve this entire problem at once in your head. The traditional rules instruct you to perform all operations
within the deepest parentheses first, then apply operator precedence, from left to right, when you are faced with a string
of operations not separated by parentheses. In the example above, most people would probably solve the problem as
follows:

 

(4) * (5+3)/2 + 9
4 * (8)/2 + 9
32 / 2 + 9
16 + 9
25

 

Had this expression contained variables rather than literal constants, you would have solved the problem in an identical
fashion, adding only variable/value replacement.

Converting code to assembly language proceeds in a similar fashion Substituting some arbitrary variables for the
above, we obtain:

 

(I-J) * (K+L)/2 + M

 

We can convert this to assembly language the same way we solved the former problem. The only difference is that we
write the code to compute the values rather than solving for the answer directly. For the expression above, we would
start by computing (I-J)

 

mov bx, I ;Compute I-J and leave
sub bx, J ; the result in BX.

 

Next, we write the code to compute (K+L):

 

mov ax, K ;Compute K+L and leave
sub ax, L ; the result in AX.

 

For the next step there are two possible options. We could divide the second result in 

 

ax 

 

by two then multiply 

 

ax 

 

by

 

bx

 

, or we could perform the multiplication first and then divide by two. Were we using real arithmetic, it wouldn’t matter
one bit. However, integer division may produce inexact results and integer multiplication can produce overflow. If using
the standard 8086 unsigned 

 

mul 

 

instruction, it is probably best to perform the multiplication first and the division sec-
ond.
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7.300 Suppose you were to multiply 25,001 by three and divide the result by two. Explain why
using the 8086 MUL instruction then a division operation is better than dividing 25,001 by
two and multiplying the result by three:

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

 

Since we should perform the multiplication first and the division second, the code to accomplish the next two steps is:

 

mul bx ;DX:AX := AX * BX
shr dx, 1 ;AX := DX:AX / 2
rcr ax, 1

 

Note the use of a 32 bit 

 

shr 

 

operation. Since the multiply instruction may produce a non-zero result in the 

 

dx 

 

register,
it’s a good idea to shift the L.O. bit of 

 

dx 

 

into 

 

ax 

 

when performing the division by two. This, by no means, guarantees a
correct result. The product of 

 

ax 

 

and 

 

bx 

 

could have been greater than 131,072. However, if the product happens to fall
between 65,536 and 131,072 the code above will produce a correct result where the single precision divide by two would
not. If you are absolutely sure that the product of 

 

ax 

 

and 

 

bx 

 

will not exceed 65,535 then you can get by with a single
precision 

 

shr 

 

operation.

The next step is to add nine to the result, and this completes the computation. This is easily accomplished with the
code:

 

add ax, 9

 

7.301 Suppose you have an 80386 chip and you’ve just executed the “MUL BX” instruction. You
must still perform the 32 bit SHR operation as an extended precision operation. Why?

___________________________________________________________________________

 

The 32 bit extended precision SHR operation does not prevent overflow from producing an incorrect answer. The
sequence of the multiply and divide operations, combined with the 32 bit SHR operation will help produce a correct
answer, that would otherwise be incorrect, in a small number of cases. If there is considerable chance of overflow at any
point in the computation, and subsequent computations cannot tolerate that overflow, then you must explicitly check for
overflow at several points in the computation. The following code sequence implements overflow checking for the
above code (again, assuming unsigned variables):

 

mov bx, I
sub bx, J
jc Overflow
mov ax, K
add ax, L
jc Overflow
mul bx
shr dx, 1
rcr ax, 1
test dx, dx ;Overflow if DX <> 0.
jnz Overflow
add ax, 9
jc Overflow
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7.302 Rewrite the above code to work with 

 

signed

 

 16 bit integers. 

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

When you compute the result of a complex expression like the above, you will probably
need compute 

 

temporary 

 

results needed at some other point in the computation. We shall define
a temporary result as a value that must be held in a register or other variable location that is not
involved in the current computation. In the example above, there was a single temporary result,

 

(I-J).

 

 A single register (or register pair in the case of the product 

 

dx:ax

 

) is all that is necessary
for the computation beyond this single temporary result (which the computation above holds in
the 

 

bx 

 

register).

Dealing with these temporary results is the key to efficient computations. As you’ve seen
already, the order of your computation can directly affect the correctness of the result. Another
important thing to consider is that the order of evaluation affects the efficiency of the computa-
tion. For example, by reorganizing your computations using algebraic transformations, you may
be able to cut down on the number of temporaries you use in a computation. If this frees up reg-
isters for other uses or, better yet, avoids the use of memory variables then you may possibly
increase the speed of the computation. 

Using fewer registers might 

 

not

 

 improve performance. On the 80486 and later processors
that provide pipelining or superscalar operation, a computation that uses a single register will
suffer from data hazards and pipeline stalls. By using two or more registers it might be possible
to parallelize the computation and avoid the stalls. Nevertheless, the key to optimizing such
computations is still to organize the computation and schedule the computations of temporary
results to avoid pipeline stalls.

Many of the most powerful compiler optimizations in modern compilers today involve
restructuring computations to improve system performance. Therefore, it is important that you
are capable of performing efficient transformations of expressions as well. If you are writing a
compiler, you will need to know how to perform these transformations yourself. After all, you
cannot write a program to perform the transformations (i.e., a compiler) if you cannot perform
the transformations manually. If you are writing an assembly language program, you had best be
able to perform the transformations manually or a compiler will produce better code than your
hand written assembly. Even if you never plan to write a compiler or write another assembly lan-
guage program, understanding this optimization will help you write better HLL code, since you
will be able to design arithmetic expressions that the compiler can more easily optimize.

 

7.303 Why would you actually want to use more registers than absolutely
necessary on a processor such as the 80486? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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A typical compiler, one that doesn’t employ lots of optimization, generally emits code for an expression evaluated
on a strictly left to right basis. Anytime precedence or parentheses would force some other evaluation order, the compiler
simply creates a temporary to hold the current results until need. Consider the following expression:

 

X+Y*(A-B*D)

 

A poor to mediocre compiler might compile this as follows:

 

Temp := X
Temp2 := Y
Temp3 := A
Temp4 := B*D
Temp3 := Temp3 - Temp4
Temp2 := Temp2 * Temp3
Temp := Temp + Temp2

 

Because of the two multiply operations that occur, mapping this in a top to bottom order directly to assembly language
creates a few minor problems since the 80x86 requires certain computations to take place in certain registers (e.g. 

 

mul

 

requires 

 

dx:ax

 

). Straight 8086 code could be:

 

mov bx, X
mov cx, Y
mov di, A
mov ax, B
mul D
sub di, ax
mov ax, cx
mul di
add bx, di ;Result is in bx.

 

Clearly this code could be improved. The point is, however, that this code evaluates the original expression in a left to
right fashion much like some low-end compilers.

If you have an 80386 or later processor, you can improve the above code somewhat since you are allowed to multi-
ply two arbitrary registers. However, there is absolutely no reason why you would want to force yourself to compute this
expression in a strictly left to right (top to bottom) fashion. By reorganizing the computation you can avoid the use of
gratuitous temporary values. Consider the following reorganization:

 

mov ax, B ;Start by computing the
mul D ; innermost multiplication.
mov bx, A ;Now finish off the inside
sub bx, ax ; computation.
mov ax, Y ;Perform the other multiply.
mul bx
add ax, X ;Result in AX.

 

Clearly this solution is a little better than the previous. Of course, if you are operating on an 80486 or other pipelined pro-
cessor, almost every instruction above suffers from a hazard (the “MOV bx, A” instruction in the single exception). If you
have a pipelined processor, you could reduce some of the hazards using code like the following:

 

mov ax, B
mov bx, A
mul D
mov cx, Y
sub bx, ax
mul cx, bx ;Still have a hazard here.
add cx, X ;Still have a hazard here.

 

Note that the first hazard above, on the multiply instruction, may be somewhat mitigated by the fact that the 

 

mul 

 

instruc-
tion takes far longer than one cycle to execute, even on a pipelined processor.

Reorganizing expressions is one of the key talents you must develop to produce efficient assembly language code.
The only way to develop this talent is through lots of experience, by converting lots of expressions to assembly language.
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To give you some reasonable amount of guidance while developing this experience, each of the
following examples is followed by a question that will give you the opportunity to test your
understanding of the current example. All of these examples assume the use of 16 bit unsigned
integers.

Example: X + Y + Z

Comment: There are two operations of equal precedence and both operators are commutative.
In general, a left to right evaluation is a reasonable way to solve this problem:

 

mov ax, X
add ax, Y
add ax, Z

 

7.304 Write code to compute the value of “X or Y or Z” (bitwise OR):

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Note that the exact order of the evaluation is of no consequence here. There are six permu-
tations of the above code sequence that will compute the same result. The other five are

 

mov ax, X mov ax, Y
add ax, Z add ax, X
add ax, Y add ax, Z

mov ax, Y mov ax, Z
add ax, Z add ax, Y
add ax, X add ax, X

mov ax, Z
add ax, X
add ax, Y

 

Not all operators are commutative. There are only four simple sequences, rather than six, that
perform the legal computation (X + Y - Z):

 

mov ax, X mov ax, Y
add ax, Y add ax, X
sub ax, Z sub ax, Z

mov ax, X mov ax, X
sub ax, Z sub ax, Z
add ax, Y add ax, Y

 

7.305 Write code to compute the value of “X - Y + Z”

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

 

Expressions involving multiplication and division present some special problems because
the 80x86 does not support fully general forms of these instructions. On pre-286 processors, for
example, you must use the 

 

ax 

 

and 

 

dx 

 

registers for 16x16 bit multiplications, so you must sched-
ule your computations so these registers are available (that is, do not contain any temporary
value) when you need to perform the multiply/divide. 

 

7.300 (25001*3)/2=37501.5
(25001 div 3) * 2 =37500
(25001 * 2) div 3 = 37501
Multiplying by two then
dividing by three produces
an answer that is closer to the
true result.

7.301 The MUL instruction 
leaves the result if a 16x16 
multiplication in DX:AX, not 
EAX.

7.302

 

mov bx, I
sub bx, J
jo Overflow
mov ax, K
add ax, L
jo Overflow
mul bx
sar dx, 1
rcr ax, 1

; DX=0?

test dx, dx
jz NoOvr

; DX = FFFF?

dec dx 
jnz Overflow
NoOvr:
add ax, 9
jo Overflow

 

7.303 To avoid hazards that 
would occur in many cases 
when two adjacent instruc-
tions use the same register.
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Since multiplication is commutative, you would typically code a sequence of multiplications just as you would an
addition:

 

; X * Y * Z
mov ax, X ;Note that this
mul Y ; sequence ignores
mul Z ; overflow.

 

Note that multiplication is associative and commutative, so the order of the multiplications is irrelevant. Any permu-
tation of the above instructions would produce identical results.

 

7.306 Convert the expression I * J * K to assembly language:

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Division creates some additional problems. Remember that the 80x86 DIV/IDIV instructions perform a 64/32, 32/16,
or 16/8 division operation. In particular, there is no 32/32, 16/16, or 8/8 division operation. You must remember to ini-
tialize the H.O. portion of the dividend prior to the division operation. Otherwise, as long as you observe the non-com-
mutative nature of division, you may perform the operation in several different ways, although there is generally a single
“best” way to do it.

 

; X div Y div Z

mov ax, X
cwd
div Y
cwd ;Required, MOD is in DX!
div Z

 

7.307 Convert the expression I div J div K to assembly language: 

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

7.308 Assume bitwise AND and OR have the same precedence and both are commutative. Provide
the most obvious translation of the expression “X and Y or Z” to assembly language: 

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

When you begin mixing operators with different properties, such as associativity, commutativity, or precedence, the
situation is a little different. There are some opportunities for optimization that arise. Consider the following example:

 

; X div Y * Z
;
; Straight-forward left to right conversion to assembly language:

mov ax, X
cwd
div Y
mul X
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Reorganizing this expression is possible if it does not rely on the effects of integer arith-
metic. If this were real arithmetic, the computation 

 

(Z * X / Y)

 

 would produce the same result
as 

 

(X/Y*Z)

 

1

 

.

 

 If the fact that these two integer expressions may not produce the same result is
okay, then there is an opportunity for optimization. In particular, the multiplication operation
sets up the 

 

dx 

 

register for the multiply, saving us from having to explicitly sign or zero extend
the dividend prior to the division:

 

mov ax, Z
mul X
div Y

 

7.309 Convert the expression “A * B div D” to assembly language

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

7.310 Assuming you 

 

do

 

 care about the effects of integer arithmetic, convert
the expression “I div J * K” to assembly language:

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

7.311 Repeat the above assuming you 

 

don’t

 

 care about the effects of integer
arithmetic on your computations.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Once you begin mixing operators with different precedences, the complexity increases. Of
course, the more complex some computation is, the more opportunity for optimization you will
have. Consider the hairy arithmetic expression:

 

(I + J * (M + N)) * (X * Y div (K + L) - 5) * Z

 

As usual, you should start with the innermost parentheses. However, there are two subexpres-
sions that could be construed to be “innermost” in the above expression. Which should you do
first? It is probably a good idea to compute the (K+L) subexpression and the surrounding opera-
tions for two reasons. First, the second big parenthetical expression above contains more multi-
plication and division operations. Second, if you’re on an 80386 or later processor, the 

 

div

 

instruction still requires the use of 

 

ax 

 

and 

 

dx 

 

but the multiply instruction does not. On an 80386
or later processor, you could use the following code for this expression:

 

; ( X * Y div (K + L) - 5) * Z:

mov bx, K
add bx, L
mov ax, X
mul Y ;Inits DX for div!

 

1. For integer arithmetic it does not always produce the same result. If X=3, Y = 2, and Z=3, (X div Y *Z) equals 3 while
(Z * X div Y) produces 4.

7.304 mov ax, x
or ax, Y
or ax, Z

7.305
mov ax, X
sub ax, Y
add ax, Z
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div bx
sub ax, 5
mul Z

; (I + J * (M + N)):

mov bx, M
add bx, N
mov cx, J
mul bx, cx
add bx, I

; Final result:

mul ax, bx

 

7.312 Rewrite the above code using 8086 instructions only.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

7.2 Boolean Operations

 

Boolean operations are those that produce the result true or false. Logical operations, on the other hand, return a bit
string as a result. One could think of a logical as a sequence of many boolean operations taking place in parallel,
although you rarely use a logical operation to perform several boolean operations at once. We shall consider these two
types of operations together since they tend to use the same machine instructions.

If you have an 80386 or later processor, the presence of the 

 

set

 

cc 

 

(conditional set) instructions simplifies the con-
version of boolean expressions. Since pre-80386 based systems are quickly becoming, if not already, obsolete we’ll begin
by discussing the generation of boolean results using these instructions.

The 

 

set

 

cc 

 

instructions set an eight bit register to zero or one depending on the condition codes. For example,

 

sete al 

 

sets 

 

al 

 

to zero if the zero flag is clear, it sets 

 

al 

 

to one if the zero flag is set. So if you have a simple Pascal bool-
ean expression such as

 

B := X = Y;

 

you could easily convert it to the assembly language sequence using 

 

sete 

 

thusly:

 

mov ax, X
cmp ax, Y
sete B ;B is a byte variable.

 

If you do not have the 80386 instructions available, a simple way to handle this is the following:

 

mov bl, 0 ;Assume it’s false
mov ax, X
cmp ax, Y
jne NotEql
mov bl, 1 ;It’s true

NotEql: mov B, bl

 

If you use zero and one for false and true, many of the 80x86 logical instructions (AND, OR, and XOR) perform the
corresponding boolean operations. NOT is the only logical operation that does not directly correspond to a boolean
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operation (NOT 1 = 0FEh, which is not zero). You can create a boolean NOT operation using the
two instruction sequence:

 

not value
and value, 1

 

With these four logical operations and the 

 

set

 

cc 

 

instruction, it is very easy to convert a
complex boolean expression into assembly language. The following example gives an example
of a relatively simple translation:

 

; B := (I = J) and (K <= L) or (M > N);

mov ax, I
cmp ax, J
sete bl
mov ax, K
cmp ax, L
setbe bh
and bl, bh ;Do AND operation.
mov ax, M
cmp ax, N
seta bh
or bl, bh
mov B, bl

 

7.313 Convert the following statement to assembly using 80386 instructions:
B := (I <> J) or B;

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

If you do not have the 

 

set

 

cc 

 

instruction available, the code is a little more complex. For the
previous example, some 8086 code to accomplish this is

 

; B := (I = J) and (K <= L) or (M > N);

mov bx, 0 ;Init BL/BH to zero.
mov ax, I
cmp ax, J
jne False1
mov bl, 1

False1: mov ax, K
cmp ax, L
jnbe False2
mov bh, 1

False2: and bl, bh ;AND the subexps.
mov bh, 0
mov ax, M
cmp ax, N
jna False3
mov bh, 1

False3: or bl, bh ;Final OR operation.
mov B, bl

 

You can optimize the code above by keeping temporary results in the 

 

program counter.

 

One way to do this is to quit using 

 

bl 

 

and 

 

bh 

 

as boolean variables and merge the computations
into the code stream as follows:

 

7.306
Unsigned, no check for over-
flow (for signed, change mul-
>imul).
mov ax, I
mul J
mul K

7.307 Signed:

 

mov ax, I
cwd
div J
cwd
div K

 

Unsigned:

 

mov ax, I
xor dx, dx
idiv J
xor dx, dx
idiv K

 

7.308

 

mov ax, x
and ax, y
or ax, z

 

7.309
(use imul/idiv for signed)
mov ax, A
mul B
div D

7.310 Signed version:

 

mov ax, I
cwd
idiv J
imul K

 

7.311 Unsigned version:

 

mov ax, I
mul K
div J
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mov bl, 0
mov ax, I
cmp ax, J
jne False1
mov bl, 1

False1: mov ax, K
cmp ax, L
jbe false2
mov bl, 0

False2: mov ax, M
cmp ax, N
jna False3
or bl, 1

False3: mov B,al

 

The slight improvements present in this code come from the fact that it does not create new temporary variables for
the various subexpressions. Instead, it updates a single variable as necessary.

 

7.314 Convert the statement “B := (I <> J) or (K <= L)” to assembly language using the technique
outlined above.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

We can take this idea of embedding the result of the expression and extend it using 

 

short circuit evaluation

 

. With
short circuit evaluation, once we determine that an expression is true or false and cannot be anything else, the code skips
any further computations. The former code can be rewritten to take advantage of this as follows:

 

; B := ((I = J) and (K <= L)) or (M > N);
; Extra parentheses added to explicitly show precedence of AND/OR.

mov bl, 1 ;Assume result is true.
mov ax, M
cmp ax, N
ja Done ;If this is true, we’re done.
mov ax, I
cmp ax, J
jne False
mov ax, K
cmp ax, L
jbe Done

False: mov bl, 0
Done: mov B, bl

 

7.315 Convert the statement in question 7.15 to assembly language using short circuit evaluation.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

The boolean NOT operation is the only one for which there is not a one to one correspondence between a high
level language construct and an 80x86 machine instruction. In general, it is often possible to perform a NOT operation
without any machine instructions at all! In other cases, it may take two machine instructions to accomplish the task at
hand.
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The first example to consider is NOTing a boolean variable. Using the standard values of
zero for false and one for true, you cannot compute “B:=NOT B;” by using the single instruction:

 

NOT B

 

If B is false, this produces 0FFh, which is not one. Likewise, if B is true, the instruction above
produces 0FEh which is not zero. Note that the L.O. bit of bit is correct (0 for false, 1 for true) but
the remaining bits are all one. We can easily convert the result of the 

 

not 

 

instruction to a bool-
ean value by setting bits one through seven to zero after executing the 

 

not

 

. This is easily accom-
plished with an 

 

and 

 

instruction as follows:

 

NOT B
AND B, 1

 

Unfortunately, this requires two instructions rather than one. What we would really like is to exe-
cute only a single instruction to compute the logical NOT of a boolean variable.

To determine a good solution, note what the boolean NOT operation does – it inverts the
L.O. bit of a byte without out affecting the remaining bits. There is an 80x86 instruction that lets
you invert specific bits within an operand – 

 

xor

 

. To invert the L.O. bit of a byte (that is, to take
the boolean NOT of a boolean variable), you could use the following (single) instruction:

 

xor B, 1

 

7.316 How would you compute the boolean operation “B1 := NOT B2”?

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Many times you can easily eliminate a 

 

not 

 

instruction from your program by using boolean
transformations. The following is an especially trivial example, but provides a good basis for
additional examples.

 

; B := NOT (A <= D)

mov ax, A ;A & D are 16 bit
cmp ax, D ; unsigned integers.
setnbe B ;B is 1 byte boolean.

 

This code implemented the NOT operation by using the 

 

opposite

 

 

 

set

 

cc 

 

instruction, that is,

 

setnbe 

 

rather than 

 

setbe

 

. Note that 

 

seta 

 

is also the opposite of 

 

setbe

 

, but 

 

setnbe 

 

more
effectively communicates that we want an opposite operation here. Furthermore, a common
mistake among assembly language programmers is to temporarily think that 

 

setae 

 

is the oppo-
site of 

 

setbe 

 

which, of course, it is not.

Most of the time you will not be able to eliminate the NOT so easily. Consider the following
boolean expression:

 

B := NOT ((A <= F) or (D > E))

 

You cannot simply swap the state of the 

 

set

 

cc 

 

or 

 

j

 

cc 

 

instructions as with the previous
example. The expression 

 

((A > F) or (D <= E))

 

 is not equivalent to the above. However,

 

Demorgan’s Theorems

 

 let us easily eliminate the NOT in this example. The applicable Demor-
gan’s theorems are

 

NOT (A and B) = (NOT A) or (NOT B)
NOT (A or B) = (NOT A) and (NOT B)

 

Given these theorems, we can rewrite the previous expression as

 

B := NOT (A <= F) and NOT (D > E)

 

7.312

 

mov bx, K
add bx, L
mov ax, X
mul Y
div bx
sub ax, 5
mul Z
mov bx, ax
mov ax, M
add ax, N
mul J
add ax, I
mul bx

 

7.313

 

mov ax, I
cmp ax, J
setne al
or al, B
mov B, al
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We’ve already explored how to eliminate the NOT operation applied to a comparison, the resulting assembly code for
the above is

 

mov ax, A ;BL := NOT(A <= F)
cmp ax, F
setnbe bl
mov ax, D ;BH := NOT (D > E)
cmp ax, E
setna bh
and bl, bh ;Logical AND of above
mov B, bl ;Save result away.

 

7.317 Provide the code to compute B := NOT ((A = F) and (D <> E))

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

In general, unless you are applying the boolean NOT operation to a variable and simply storing the result, you can
almost always eliminate instructions from your program to compute the result of the NOT. By rearranging your code and
using opposite 

 

set

 

cc 

 

or 

 

j

 

cc

 

 

 

instructions, you can remove instructions that compute the NOT of some subexpression. 

Short-circuit evaluation applies equally well to expressions you transform with Demorgan’s theorems. Consider the
previous example:

 

; B := NOT ((A <= F) or (D > E))
;
; Transformed to:
;
; B := NOT (A <= F) and NOT (D > E);

mov B, 1 ;Assume true result
mov ax, A
cmp ax, F
jnbe Done
mov ax, D
cmp ax, E
jna Done
mov B, 0 ;It’s a false result.

Done:

 

There are a couple of things to note about this code. First, it runs on any 80x86 CPU, not just the 80386 and later
CPUs (the examples using 

 

set

 

cc 

 

require an 80386). Second, this code is quite a bit shorter than the previous code and
looks like it should run faster. Keep in mind one major disadvantage of short-circuit evaluation, it often executes some
branches that flush the pipeline and prefetch queue. Therefore, a few more instructions without branches might actually
run 

 

faster

 

 than a shorter sequence with branches on an 80486 or later processor.

 

7.318 Repeat Question 7.18 using short-circuit evaluation.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

7.3 Logical Operations

 

The 80x86 logical instructions apply various operations to strings of bits. In addition to the familiar 

 

and, or, xor,

 

and 

 

not 

 

instructions, the logical operations also include several bit shift, rotate, and test instructions. Although the bool-
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ean and logical functions share some common operations, the type of results produced by these
two sets of functions are quite different. Whereas the boolean operations produce a single true
or false result, the logical operations manipulate bits in other values (e.g., integers).

Masking and merging operations are among the more popular logical operations within
assembly language programs. 

 

Masking out

 

 is the process of removing a bit field from an object
(generally by setting the corresponding bits to zero), 

 

merging in

 

 is the process of inserting some
bits into an object, replacing the previous contents.

To mask out a field, that is, set the corresponding bits to zero, you would use the AND oper-
ation, placing zeros in the second AND operand where you want zeros in the first operand, plac-
ing ones in the second operand where you want to pass the original values:

Note that there is no requirement that you clear a contiguous set of bits. Nor must you use
separate instructions to clear several different bit fields. The following example clears bits 0, 1, 3,
4, and 7:

 

and al, 01100100b

 

You can also mask a field to ones rather than zeros using the 

 

or 

 

instruction, but this is a rare
operation. Most people clear a field to zero prior to merging in some other fields.

 

7.319 Suppose you want to clear bit positions zero through four, six through
nine, and 12 through 15 in the AX register. What instruction would you
use to do this?

___________________________________________________________________________

 

Merging consists of extracting some bits from one operand and inserting those same bits
into and corresponding bit field of a second operand. To merge such values, you must create
two masks. The first mask clears all but the desired bits in the first operand and the second mask
clears out the bits sitting in the desired location of the second operand. Once you apply these
two masks to the corresponding values, you can merge them together with a single 

 

or 

 

instruc-
tion. For example, suppose you want to merge bits four through ten of the 

 

ax 

 

register into the
value in the 

 

bx 

 

register. You can accomplish this with the following code:

 

and bx, 1111110000000111b
and ax, 0000001111111000b
or ax, bx

 

7.320 Provide the assembly code to merge bits 0…4 and 10…12 in the AX reg-
ister into the corresponding bits of the BX register.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Merging and masking are two of the three tools you use to 

 

pack 

 

and 

 

unpack

 

 data.. The abil-
ity to shift data is the third tool you will need. So the 

 

and, or, 

 

and shift instructions

 

2

 

 let you
pack and unpack data.

x x x x x x x x

0 0 0 0 1 1 1 1

0 0 0 0 x x x x

 

7.314

 

mov al, 0
mov bx, I
cmp bx, J
je False1
mov al, 1
False1:
mov bx, K
cmp bx, L
jnle False2
or al, 1
False2:
mov B, al

 

7.315

 

mov al, 1
mov bx, I
cmp bx, J
jne Done
mov bx, K
cmp bx, L
jle Done
mov al, 0
Done:
mov B, al

 

7.316

 

mov al, B2
xor al, 1
mov B1, al
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Packing data generally consists of taking several different bit zero aligned objects, shifting them to their final posi-
tion in the resulting object, and merging the values together. For example, suppose you have two nibbles in AL and AH
that you wish to convert to a single byte value. Assuming both nibbles are in bits 0…3 and the values of bits 4…7 are
unknown, e the following code to pack the two values into AL:

 

shl ah, 4 ;Also zeros bits 0…3.
and al, 0Fh ;Zero bits 4…7.
or al, ah ;Merge the values into AL.

 

7.321 Suppose BX contains a five bit value in bits 0…4 and AX contains a ten bit value in bits
1..10. Provide code that merges these two values into AX with the ten bit field winding up
in bits 6..15 and the five bit field winding up in bits 1…5.

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Unpacking data simply reverses this process. You mask out the bits you don’t want and shift the remaining bits
down to bit zero (assuming you want a right justified value). For example, consider the DATE data type originally intro-
duced in Chapter Two:

To unpack the month field, you could use code like the following:

 

mov ax, TheDate
and ah, 11110000b ;Strip unneeded bits.
shr ah, 4 ;Put Day in L.O. bits
mov Month, ah

 

Unpacking the year value above is very easy. No shifts are necessary. All you must do is zero bit seven of the L.O.
byte and the resulting byte is the year value:

 

mov al, byte ptr TheDate
and al, 01111111b
mov Year, al

 

7.322 Write the assembly code to extract the day field from the above code and store this day
field in the “Day” variable:

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Now consider a somewhat more complex example. Suppose bits zero through two on output port 378h select two
of 16 bits from some external device. Also assume that you can read these bits at bit positions three and four on input

 

2. The rotate instructions are also useful on occasion when packing and unpacking data.

15  14 13  12  11  10 9    8   7    6    5    4    3    2    1    0

M   M   M   M D    D   D   D    D Y   Y   Y   Y    Y    Y   Y
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port 379h. Suppose you want to read all 16 bits from the input port and pack them into the 

 

bx

 

register. The following code will do this:

 

mov bx, 0 ;Initialize value
mov dx, 378h ;”Address” port adrs.
mov ah, 0 ;Bit address
mov cx, 8 ;8 pairs of bits.

NextBit: mov al, ah ;Output address zero.
out dx, al ;Output bit adrs.
inc dx ;Point at input port.
in al, dx ;Get input data.
and al, 11000b ;Mask unwanted bits.
or bl, al ;Merge in bits to
ror bx, 2 ; the destination.
inc ah ;Try next port.
dec dx ;Point at out port.
loop NextBit

 

7.323 The code above leaves input bits 0/1 at bit positions 5 & 6, input bits 2/
3 at bit positions 7 & 8, etc. What single ROR instruction do you use to
align all the bits at their proper position?

___________________________________________________________________________

 

For a second example, suppose that input port 379h contains four input bits at positions
three, four, six, and eight. Assume these bits represent the states of some switches connected to
the computer and reading a zero means that the switch is in the “on” position, reading a one
means that the switch is in the “off” position. Assume that port 378h is read/write. Reading port
378h returns the last value written to that port, writing to port 378h controls eight different LEDs,
one on each bit. A one written to a bit on the output port turns on an LED, a zero turns off the
corresponding LED. Suppose the four LEDs connected bits 0..4 are supposed to be controlled by
the four switches on the input port and the remaining LEDs are not to be changed. The code to
accomplish this is

 

mov dx, 379h ;Input port adrs.
in al, dx ;Read input switches.
not al ;Now, 1=on, 0=off.
and al, 11011000b;Mask unwanted bits.
rcl al, 1 ;Move bits to pos-
rcl al, 1 ; itions 0..4
rcl al, 1
rol al, 1
rol al, 1
mov ah, al ;Need to save this
and ah, 0Fh ; value for merging
dec dx ;DX = Output port.
in al, dx ;Get LED values.
and al, 0F0h ;Merge in new bits.
or al, ah
out dx, al

 

Note the sneaky way this code eliminates a single zero in the middle of the four bits by
using three RCL and two ROL instructions.

 

7.317

 

mov al, 1
mov bx, a
cmp bx, f
jne True1
mov al, 0
True1:
mov ah, 1
mov bx, d
cmp bx, e
je Done
mov ah, 0
Done:
or al, ah
mov b, al

 

7.318

 

mov al, 1
mov bx, a
cmp bx, f
jne Done
mov al, 0
mov bx, d
cmp bx, e
je Done
mov al, 0
Done:
mov b, al

 

7.319 and ax, 0C20h

7.320

 

and bx, 0E3E0h
and ax, 1C1Fh
or bx, ax
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7.324 Suppose you wanted the switches above to control the LEDs in bits 4…7 rather than 0…3.
Write he code to do this (Hint: there is another sneaky sequence similar to the above using
two ROR instructions that pack the data properly)

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Although packing and unpacking data are two very common operations that make use of the 80x86 logical instruc-
tions, by no means are they the only ones, nor do they even represent the majority of logical operations performed. You
can use these instructions to perform all kinds of arithmetic operations as well. 

 

7.4 Extended Precision Operations

 

One clear advantage of assembly language over many high level languages is the ability to perform efficient, arbi-
trary precision arithmetic operations. Knowing how to perform these operations is very important to assembly language
programmers.

One could attempt to argue that learning how to perform extended precision arithmetic is a waste of time. After all,
integers in existing programming languages are usually sufficient. Indeed, with the trend towards 64 bit processors the
need for multiprecision arithmetic seems dubious indeed. After all, who needs to deal with 128 bit integers?

Of course, it wasn’t that long ago that people felt 16 bit integers were sufficient. But even if 64 or even 32 bit integers
are big enough, there are at least two reasons to learn how to write code to perform extended precision arithmetic. First,
the world does not begin and with the 80x86 processor. That is not only to say there are better processors out there
(which there are), there are also 

 

worse

 

 processors out there. In pure unit shipments, four bit and eight bit microcontrol-
lers far outnumber all other processors combined. Since it might turn out that 

 

you

 

 will wind up working with one of
these processors at one point or another, understanding how to perform arithmetic beyond the bit size of the processor
is important. 

The second reason for learning multiprecision arithmetic is that you often have to compute some values whose
operands not the same size. Often, the same techniques you use to perform multiprecision arithmetic provide the most
efficient way to manipulate different sized objects.

The stock logic instructions, 

 

and, or, xor, 

 

and 

 

not 

 

are very simple to extend to any number of bits. Simply apply
the instruction to corresponding groups of bits between the two operands. For example, you could use the following set
of instructions to perform a 40 bit AND operation on an 80386 or later CPU:
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mov eax, dword ptr Value1
and eax, dword ptr Value2
mov dword ptr result, eax
mov al, byte ptr Value1+4
and al, byte ptr Value2+4
mov byte ptr result+4, al

 

7.325 Provide the code to perform a 48 bit logical OR operation on an 80386
or later:

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

Addition and subtraction are only slightly more complex, using the 

 

adc 

 

and 

 

sbb 

 

instruc-
tions to process all but the L.O. byte/word/dword of the operand. The following two examples
demonstrate 48 bit addition and subtraction on an 80386 processor:

 

mov eax, dword ptr I mov eax, dword ptr I
add eax, dword ptr J sub eax, dword ptr J
mov dword ptr K, eax mov dword ptr K, eax
mov ax, word ptr I+4 mov ax, word ptr I+4
adc ax, word ptr J+4 sbb ax, word ptr J+4
mov word ptr K+4, ax mov word ptr K+4, ax

 

7.326 Provide the code to perform a 40 bit subtraction on an 80386 or later:

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

 

7.5 Debugging Programs with CodeView

 

In past chapters of this lab manual you’ve had the opportunity to use CodeView to view the
machine state (register and memory values), enter simple assembly language programs, and per-
form other minor tasks. In this section we will explore one of CodeView’s most important capa-
bilities - helping you locate problems within your code. This section discusses three features of
CodeView we have ignored up to this point - Breakpoints, Watch operations, and code tracing.
These features provide some very important tools for figuring out what is wrong with your
assembly language programs.

 

Code tracing

 

 is a feature CodeView provides that lets you execute assembly language state-
ments one at a time and observe the results. Many programmers refer to this operation as 

 

single
stepping

 

 because it lets you step through the program one statement per operation. Ultimately,
though, the real purpose of single stepping is to let you observe the results of a sequence of
instructions, noting all side effects, so you can see why that sequence is not producing desired
results.

CodeView provides two easy to use trace/single step commands. Pressing 

 

•

 

 

 

traces

 

through one instruction. CodeView will update all affected registers and memory locations and

 

7.321

 

shl ax, 6
shl bx, 1
and bx, 3Fh
or ax, bx

 

7.322

 

mov ax, TheDate
and ax, 0F80h
shr ax, 7
mov Day, ax

 

7.323 ror   al, 5
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halt on the very next instruction. In the event the current instruction is a 

 

call, int, 

 

or other transfer of control instruc-
tion, CodeView transfers control to the target location and displays the instruction at that location.

 

7.327 Suppose the AX register currently contains 1FFh and the current instruction (at location
CS:IP) is “MOV AL, 0” What will AX contain after you press the 

 

•

 

 key?

___________________________________________________________________________

 

The second CodeView command for single stepping is the 

 

step

 

 command. You can execute the step command by
pressing 

 

º

 

. The step command executes the current statement and stops upon executing the statement immediately
following it in the program. For most instructions the step and trace commands do the same thing. However, for instruc-
tions that transfer control, the trace command follows the flow of control while the step command allows the CPU to run
at full speed until returning back to the next instruction. This, for example, lets you quickly execute a subroutine without
having to step through all the instructions in that subroutine. You should attempt to using the program trace command
(

 

•

 

) for most debugging purposes and only use the step command (

 

º

 

) on 

 

call 

 

and int instructions. The step instruc-
tion may have some unintended effects on other transfer of control instructions like 

 

loop

 

, and the conditional branches.

 

7.328 Which key do you press to 

 

trace 

 

through an instruction? To 

 

step 

 

through an instruction?

___________________________________________________________________________

 

The CodeView command window also provides two commands to trace or single step through an instruction. The “T”
command traces through an instruction, the “P” command steps over an instruction.

One major problem with tracing through your program is that it is very slow. Even if you hold the 

 

•

 

 key down and
let it autorepeat, you’d only be executing 10-20 instructions per second. This is a million (or more) times slower than a
typical high-end PC. If the program executes several thousand instructions before even getting to the point where you
suspect the bug will be, you would have to execute far too many trace operations to get to that point. 

A 

 

breakpoint

 

 is a point in your program where control returns to the debugger. This is the facility that lets you run a
program a full speed up to a specific point (the break point) in your program. Breakpoints are, perhaps, the most impor-
tant tool for locating errors in a machine language program. Since they are so useful, it is not surprising to find that Code-
View provides a very rich set of breakpoint manipulation commands.

There are three keystroke commands that let you run your program at full speed and set breakpoints. The 

 

∞

 

 com-
mand (run) begins full speed execution of your program at CS:IP. If you do not have any breakpoints set, your program
will run to completion. If you are interested in stopping your program at some point you should set a breakpoint before
executing this command. 

Pressing 

 

∞

 

 produces the same result as the “G

 

œ

 

” (go) command in the command window. The Go command
is a little more powerful, however, because it lets you specify a 

 

non-sticky breakpoint 

 

at the same time. The command
window Go commands take the following forms:

 

G 

 

œ

 

G 

 

breakpoint_address 

 

œ

 

Breakpoints are the subject of the next several paragraphs.

The 

 

¶

 

 keystrokes executes at full speed up to the instruction the cursor is on. This sets a 

 

non-sticky 

 

breakpoint. To
use this command you must first place the cursor on an instruction in the source window and then press the 

 

¶

 

 key.
CodeView will set a breakpoint at the specified instruction and start the program running at full speed until it hits a
breakpoint.

A 

 

non-sticky breakpoint

 

 is one that deactivates whenever control returns back to CodeView. Once CodeView
regains control it clears all non-sticky breakpoints. You will have to reset those breakpoints if you still need to stop at that
point in your program. Note that CodeView clears the non-sticky breakpoints even if the program stops for some reason
other than execution of those non-sticky breakpoints. 

One very important thing to keep in mind, especially when using the 

 

¶

 

 command to set non-sticky breakpoints, is
that you must execute the statement on which the breakpoint was set for the breakpoint to have any effect. If your pro-
gram skips over the instruction on which you’ve set the breakpoint, you might not return to CodeView except via pro-
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gram termination. When choosing a point for a breakpoint, you should always pick a 

 

sequence
point

 

. A sequence point is some spot in your program to which all execution paths converge. If
you cannot set a breakpoint at a sequence point, you should set several breakpoints in your pro-
gram if you are not sure the code will execute the statement with the single breakpoint.

The easiest way to set a sticky breakpoint is to move the cursor to the desired statement in
the CodeView source window and press 

 

ª

 

. This will 

 

brighten 

 

that statement to show that there
is a breakpoint set on that instruction. Note that the 

 

ª

 

 key only works on 80x86 machine
instructions. You cannot use it on blank lines, comments, assembler directives, or pseudo-
opcodes. 

CodeView’s command window also provides several commands to manipulate breakpoints
including BC (Breakpoint Clear), BD (Breakpoint Disable), BE (Breakpoint Enable), BL (Break-
point List), and BP (BreakPoint set). These commands are very powerful and let you set break-
points on memory modification, expression evaluation, apply counters to breakpoints, and
more. See the MASM “Environment and Tools” manual or the CodeView on-line help for more
information about these commands.

Another useful debugging tool in CodeView is the 

 

Watch Window

 

. The watch window dis-
plays the values of some specified expressions during program execution. One important use of
the watch window is to display the contents of selected variables while your program executes.
Upon encountering a breakpoint, CodeView automatically updates all watch expressions. You
can add a watch expression to the watch window using the DATA:Add Watch menu item (or

 

çw

 

). This opens up a dialog box that looks like the following:

By typing a variable name (like 

 

Counter

 

 above) you can add a watch item to the watch win-
dow. By opening the watch windows (from the Windows menu item) you can view the values of
any watch expressions you’ve created.

Watch expressions are quite useful because they let you observe how your program affects
the values of variables throughout your code. If you place several variable names in the watch
list you can execute a section of code up to a break point and observe how that code affected
certain variables.

 

7.324
mov dx, 379h
in al, dx
not al
and al, 11011000b
rcl al, 1
rcl al, 1
rcl al, 1
ror al, 1
ror al, 1
and al, 0F0h
mov ah, al
dec dx
in al, dx
and al, 0Fh
or al, ah
out dx, al

Note: you can use 
RCL AL, 3
and
ROR AL, 2
for the RCL / ROR instruction
sequences above.

7.325 0FFF0h

7.326
dp equ <dword ptr>
wp equ <word ptr>
byp equ <byte ptr>

mov eax, dp Val1
or eax, dp Val2
mov dp Result, eax
mov ax, wp Val1+4
or ax, wp Val2+4
mov wp Result+4,ax
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7.6 Debugging Strategies

 

Learning how to effectively use a debugger to locate problems in your machine language programs is not something
you can learn from a book. Alas, there is a bit of a learning curve to using a debugger like CodeView and learning the
necessary techniques to quickly locate the source of an error within a program. For this reason all too many students fall
back to debugging techniques they learned in their first or second quarter of programming, namely sticking a bunch of
print statements throughout their code. You should not make this mistake. The time you spend learning how to properly
use CodeView will pay off very quickly.

 

7.6.1 Locating Infinite Loops

 

Infinite loops are a very common problem in many programs. You start a program running and the whole machine
locks up on you. How do you deal with this? Well, the first thing to do is to load your program into CodeView. Once you
start your program running and it appears to be in an infinite loop, you can manually break the program by pressing the

 

Á

 

 or 

 

Ç

 

-Break key. This generally forces control back to CodeView. If you are currently executing in a small loop,
you can use the trace command to step through the loop and figure out why it does not terminate.

Another way to catch an infinite loop is to use a 

 

binary search

 

. To use this technique, place a breakpoint in the mid-
dle of your program (or in the middle of the code you wish to test). Start the program running. If it hangs up, the infinite
loop is 

 

before

 

 the breakpoint. If you execute the breakpoint, then the infinite loop occurs 

 

after

 

 the breakpoint

 

3

 

 Once you
determine which half of your program contains the infinite loop, the next step is to place another breakpoint half way
into that part of the program. If the infinite loop occurred before the breakpoint in the middle of the program, then you
should set a new breakpoint one quarter of the way into the program, that is, halfway between the beginning of the pro-
gram and the original breakpoint. If you got to the original breakpoint without encountering the infinite loop, then set a
new breakpoint at the three-quarters point in your program, i.e., halfway between the original breakpoint and the end of
your program. Run the program from the beginning again (you can use the CodeView command window command “L”
to restart the program from the beginning). If you do not hit any of the three breakpoints you know that the infinite loop
is in the first 25% of the program. Otherwise, the current breakpoints at the 25%, 50%, and 75% points in the program will
effectively limit the source of the infinite loop to a smaller section of your program. You can repeat this step over and
over again until you pinpoint the section of your program containing the infinite loop.

Of course, you should not place a breakpoint within a loop when searching for an infinite loop. Otherwise Code-
View will break on each iteration of the loop and it will take you much longer to find the error. Of course, if the infinite
loop occurs 

 

inside

 

 some other loop you will eventually need to place breakpoints inside a loop, but hopefully you will
find the infinite loop on the first execution of the outside loop. If you do need to place a breakpoint inside a loop that
must execute several times before you really want the break to occur, you can attach a 

 

counter

 

 to a breakpoint that
counts down from some value before actually breaking. See the MASM Environment and Tools manual, or use Code-
View’s on-line help facility, to get more details on breakpoint counters.

 

7.6.2 Incorrect Computations

 

Another common problem is that you get the wrong result after performing a sequence of arithmetic and logical
computations. You can look at a section of code all day long and still not see the problem, but if you trace through the
code, the incorrect code because quite obvious.

If you think that a particular computation is not producing a correct result you should set a breakpoint at the first
instruction of the computation and run the program at full speed up to that point. 

 

Be sure to check the values of all vari-
ables and registers used in the computation.

 

 All too often a bad computation is the result of bad input values, that means
the incorrect computation is elsewhere in your program. 

 

3. Of course, you must make sure that the instruction on which you set the break point is a sequence point. If the code can jump over your break-
point into the second half of the program, you have proven nothing.
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Once you have verified that the input values are correct, you can being tracing the instruc-
tions of the computation one at a time. After each instruction executes you should compare the
results you actually obtain against those you expected to obtain.

The main thing to keep in mind when trying to determine why your program is producing
incorrect results is that the source of the error could be somewhere else besides the point where
you first notice the error. This is why you should always check in input register and variable val-
ues before tracing through a section of code. If you find that the input values are 

 

no

 

 correct, then
the problem lies elsewhere in your program and you will have to search elsewhere.

 

7.6.3 Illegal Instructions/Infinite Loops Part II

 

Sometimes when your program hangs up it is not due to the execution of an infinite loop,
but rather you’ve executed an opcode that is not a valid machine instruction. Other times you
will press the 

 

Á

 

 key only to find you are executing code that is nowhere near your program,
perhaps out in the middle of RAM and executing some really weird instructions. Most of the time
this is due to a stack problem or executing some indirect jump. The best strategy here is to open
a memory window and dump some memory around the stack pointer (SS:SP). Try and locate a
reasonable return address on the top of stack (or shortly thereafter if there are many values
pushed on the stack) and disassemble that code. Somewhere before the return address is proba-
bly a call. You should set a breakpoint at that location and begin single stepping into the routine,
watching what happens on all indirect jumps and returns. Pay close attention to the stack during
all this.

 

7.7 Scanned I/O

 

Have you ever wondered how a keyboard works? A typical keyboard has in excess of 100
keys. Were the computer to read each key individually it would require one wire for each key on
the keyboard. Yet most keyboards today are connected to the computer with fewer than six
wires. Of course, most modern keyboards actually have a computer built into the keyboard unit
which reads the key switches and then transmits this information serially to the main computer
over the connecting cable. Still, there aren’t 100 lines inside the keyboard case leading up to the
microprocessor which processes keystrokes. That would require too much circuitry and cost far
too much.

A similar situation exists with output devices. A dot matrix printer, for example, does not
provide an impact wire for every dot that appears on the page. Multisegment displays rarely use
one output port line for each pixel or segment they display. Once again, the cost of the wiring
and the space it would require prohibits this.

To solve this problem, many I/O devices use 

 

scanning

 

. Scanning 

 

time multiplexes

 

 the I/O
lines between several devices. At one point in time an output line may control one LED or print
position on the page, at some other time it controls a different position. In this lab you will
experiment with I/O scanning.

 

7.7.1 Keyboard Scanning

 

Most modern keyboard units use 

 

keyboard scanning

 

 which allows them to read up to M*N
keys using as few as M+N I/O lines. For example, To process 100 keys you could use ten output
lines and ten input lines. The trick is to arrange the keys in a 

 

matrix

 

 and use the output lines to
control which of the columns of switches in the matrix you wish to read at any one given time. A
typical keyboard matrix looks like the following:

 

7.327
mov eax, dp Val1
sub eax, dp Val2
mov dp Ans, eax
mov al, byp Val1+4
sbb al, byp Val2+4
mov byp Ans, al

7.328 NOT, AND

7.329
AND3macro
and al, ah
and al, bl
endm
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This keyboard matrix requires eight I/O lines, four output lines (Col1..Col4 in this schematic) and four input lines.
The combination allows for up to 16 keys, the exact number for a given scanned keyboard is

 

NumInputs * NumOutputs. 

 

To understand how a scanned keyboard works, consider the schematic for the
scanned keyboard you will be building for this chapter’s laboratory exercises:

The rows in this matrix connect to bits three and four of the input port on the PC’s parallel printer port (at the printer
port’s base address plus one). Normally (with no switches in the closed position), the PC will read ones on these input
bits because there are 

 

pull-up resistors

 

 on these lines that apply a logic one to them. The columns on the matrix connect
to bits four and five on the parallel port’s output port; the computer can program a zero or one on these lines, although a
one is the normal value that appears on the columns. 
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As long as the two columns both contain a one, the inputs on the PC will always be a one even if a switch on the key
matrix is in the closed position. This is because the keypress above shorts the D4 column with the D4 row. Since the column
and row lines are already one, the value sent to bit four of the input port remains a one.

Now suppose the computer writes a zero to bit four of the output port rather than a one. If all switches are in the open
position, the inputs to the PC are still both ones since there is no connection between the zero on the D4 column and the one
on the D4 row:

However, suppose bit four on the output port contains a zero and one of the switches on column D4 is in the closed
position. This shorts a zero (the column value) with the one placed on the row by the pull up resistor. This creates a signal
conflict on the row since the zero and the one are fighting one another. The purpose of the pull up resistor is to weaken the
signal so it will “lose” when such a conflict occurs. In essence, pressing the switch shorts the signal from the pull up resistor to
ground leaving the input line at a logic zero:

While the D4 column is zero you can read two switches, the two switches connected to the D4 column. Pressing the
switches on the other column will not affect the input values. To read the other two switches, you need to program column
D4 with a one and column D5 with a zero. Then a zero appearing on the D3 and D4 input lines denote a keypress on the sec-
ond column of switches.

There is one problem with the circuit above. If two switches on the same row are in the closed position and one column
is logic one and the other is logic zero, you will get a dead short across the switches:

D4=0 D5=1

D3

D4

1

1

1 1
Output from PC

Input to PC

D4=0 D5=1

D3

D4

1

0

1 1
Output from PC

Input to PC

1 1D4=0 D5=1

D3

D4

1

0

Output from PC

Input to PC
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Without a pull up resistor, this dead short could damage the PC’s parallel port. By adding two diodes to this circuit,
we can protect the PC’s parallel port from damage. The revised schematic is

To read these four switches takes two input operations. First, you have to program column D4 with a zero (and D5
with a one) and read the two input bits. This returns the switch settings of the left two switches, above. Then you pro-
gram column D4 with a one and column D5 with a zero. Reading the input bits in this configuration provides the settings
for the right two switches. Regardless of how many columns your keyboard matrix has, only one column at a time should
contain a logic zero. Reading the keyboard in this manner is known as 

 

scanning

 

 the keyboard because a zero value
scans across the columns in the key matrix.

On a typical computer keyboard there are well over 100 keys and a typical key matrix is sixteen output bits and
eight input bits (supporting a maximum of 128 keys). The average person can carefully type bursts of keys at about 20-30
characters per second. To avoid missing any keystrokes and avoid transposing the keys (reading one key before another
even though the user pressed that other key first), you should 

 

scan

 

 the keyboard (read all the keys) at least once every
10-50 milliseconds.

Scanning the keyboard faster than once every 10 milliseconds or so may introduce the 

 

keybounce 

 

phenomenon.
Whenever you press a momentary contact switch, the input signal to the computer does not immediately go from one
logic state to another. Instead, there is a brief period during which the contacts on the switch bounce together, making
and breaking contact. An analog picture of this looks something like the following:

When you first press the switch there is a big burst of current through it. This raises the voltage to a logic one level. The
the switch contacts bounce and break the circuit, this cause the voltage to drop back to a logic zero level. The switch
contacts bounce several times, repeating this process.

A problem occurs with keybounce if you scan the key switches too frequently. Suppose you can the keyswitch at
the following points during the keybounce:

D4=0 D5=1

D3

D4

1

0

1 1Output from PC

Input to PC

Logic 1

Logic 0
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On the first, third, and fifth scans the input is a logic zero (the seventh and ninth readings might also be a logic zero, though
these readings are in an indeterminate area). On the second, fourth, sixth, eighth, ten, and beyond readings, the input is a
logic one. Therefore, it will appear to the computer that the user has pressed and released the key three times in quick succes-
sion. Had this been a computer keyboard, pressing that key once would have produced three keystrokes.

Key contacts on moderate quality keyswitches bounce for between one and five milliseconds. To avoid false readings
because of keybounce, you should scan the keyboard less often than once every five milliseconds. Therefore, the 10-50 milli-
second figure given earlier will avoid keybounce problems on all but the lowest quality keyboards.

 

7.7.2 Reading Momentary Key Switches

 

Reading the dip switches like those appearing in your laboratory components is quite easy, once you’ve positioned the
switches in their ultimate position you can read them at your leisure. Since the switches rarely change during normal opera-
tion, you don’t need to read the switches very often. Once every second, five seconds, or even once every ten seconds may
be sufficient, depending on the application. Consider, however, a momentary key switch like those found on a typical PC
keyboard. These switches only register a closure while the operator holds them down. On some keyboards, a typical typist
may only hold the key down for a tenth of a second or less. Therefore, the keyboard scanning software needs to scan the key-
board more often that this or it may miss some key presses.

Consider the case where your keyboard software scans a keyboard matrix once every 100 msec (one tenth of a second).
If a typist can type slight faster than ten characters per second, it’s quite possible for the typist to hit a key just after the soft-
ware scans the keyboard and release the key just before the software scans the keyboard again. As far as the software is con-
cerned, the key was never down. This, of course, will upset the typist because it will lose certain keystrokes introducing
typographical errors into the document.

One solution is to scan the keyboard a little faster than the fastest typist you expect to encounter. This will guarantee that
you see every down stroke on the keyboard and the scanning software will not miss any keystrokes. Unfortunately, there is
still a problem with this approach. Consider the following section of a keyboard matrix:, note that the user is holding down
the “A” and “S” keys at the same time:

Logic 1

Logic 0

1 2 3 4 5 6 7 8 9 10 11

1 1

A S

D F
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On an absolute time scale, one of these keys went down before the other. Therefore, the keyboard should return
the code for the first key the user held down. With a slow scanning rate, like one tenth of a second, this may not work
properly. For example, suppose the keyboard scans the left column first and the right column second. Also suppose that
the user is typing the word “SAND” so the “S” key goes down first and the “A” key goes down second. Finally, assume
that the user presses the “S” key immediately after the software scans the keyboard and presses “A” key before the next
scan of the keyboard

 

4

 

. On the previous scan the software did not see any keys down; on the current scan it sees two keys
down. The major question is “which key did the user press first?” The software cannot tell if two (or more) keys go down
between two keyboard scan operations. Most likely, it will emit the keycodes in the order it scans the columns. In the
example above this will produce the key sequence “AS” rather than “SA” thereby 

 

transposing 

 

the keystrokes.

Since average typists can type two keys in succession 

 

much

 

 faster than they can press and release a single key, it
stands to reason that the keyboard scanning routine needs to be faster than they can (reasonably) type two consecutive
keys. The only way to prevent possible key transposition is to make sure that you scan the keyboard fast enough to
ensure you detect only a single keystroke between keyboard scans (or users, in order to cause transposition, would have
to type the keys so fast they couldn’t be 

 

sure

 

 they didn’t really type them out of order). Generally, scanning the keyboard
every 20-40 milliseconds (or faster) should be sufficient. Of course, you don’t want to scan the keyboard 

 

too 

 

fast because
then your scanning routines will suffer from the effects of keybounce.

There is another major difference between scanning a keyboard matrix and scanning other types of switches. When
you non-momentary contact switches, you’re generally interested in determining whether the key is in the open or
closed position; that is, you only want to know if the switch is on or off. When scanning a keyboard matrix you don’t
really care if a switch is up or down, what you really want to know is if it just went down or just went up. Most keyboards
emit a keycode when you first press a key. Therefore, when scanning a keyboard you need to maintain the status of the
keyboard on the 

 

last

 

 scan of the keyboard so you can compare that scan against the current one. If the two readings are
different, then the user has just pressed or released a key. On a key down transition the system should emit a keystroke;
it should ignore the key up transition. The following code sample demonstrates one way to do this.

 

; This call to scan reads up to eight keys and returns their current
; settings in the AL register. If a bit is zero, that key is in the
; up position, if a bit is one then the corresponding key is in the
; down position

mov al, ThisScan ;Move previous scan
mov LastScan, al ; to LastScan variable
call Scan ;Scan the keyboard
mov ThisScan, al ;Save result of scan.

; Okay, let’s see if 

 

any

 

 of the keys have changed. The following
; xor instruction sets AL to zero if the current scan returned the
; same values as the previous scan.

xor al, LastScan
jz NoDifference

; Okay, AL now contains one bits where the keys have changed, zero
; bits where the keys are the same between the two scans. Lets
; determine which keys just went down. Since “ThisScan” contains
; ones where the keys are currently down, logically ANDing AL with
; “ThisScan” produces a bit map containing ones where the keys
; have just changed state and are in the down posotion. In other words,
; the key just went down.

and al, LastScan

; Okay, process each key individually:

shr al, 1
jnc TryKey1

< Do whatever you should do for key zero>

 

4. Most keyboards support 

 

rollover

 

 and do not require that you release a key before pressing the next key. 
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TryKey1: shr al, 1
jnc TryKey2

< Do whatever you should do for key one>

TryKey2: shr al, 1
jnc TryKey3

< Do whatever you should do for key two>

TryKey3: shr al, 1
jnc TryKey4

< Do whatever you should do for key three>

TryKey4: shr al, 1
jnc TryKey5

< Do whatever you should do for key four>

TryKey5: shr al, 1
jnc TryKey6

< Do whatever you should do for key five>

TryKey6: shr al, 1
jnc TryKey7

< Do whatever you should do for key six>

TryKey7: shr al, 1
jnc NoDifference

< Do whatever you should do for key seven>

NoDifference:

 

7.7.3 Scanning LEDs

 

You can use this same scanning technique to control output devices as well as read input devices. For example, with
eight output lines you can control up to sixteen LEDs rather than the eight LEDs you manipulated in earlier laboratory exper-
iments in this manual. The schematic to this is

To emit light, an LED requires a logic one on the anode (the rows above) and a logic zero on the cathode (the columns
above). Any other combination leaves the LED in the off state. Therefore, all the LEDs in the circuit above will be off. To turn
on the LED in the upper left hand corner of this matrix, program D0 with a one and D5, D6, and D7 with a logic one:

D4=0 D5=0 D6=0 D7=0

D0=0

D1=0

D2=0

D3=0
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Programming D5, D6, and D7 with a logic one prevents the other three LEDs on the top row from turning on.

As long as D0 is a logic one, you can turn on or off any LED on the top row by programming bits D4..D7 with a zero
(LED on) or a one (LED off). Unfortunately, you cannot control the LEDs on the other rows in an independent fashion at
the same time. If D0 and D1 are both a logic one, then setting D4 to zero will turn on both LEDs where D4 intersects with
D0 and D1. You cannot program one LED off and the other on while D0 and D1 are both one. The trick is to scan the
rows one at a time and turn on the LEDs in each row in succession.

Of course, if you scan through the rows quickly turning specific LEDs on and, conversely, disabling the LEDs in the
other rows, the LEDs themselves will only be on for a few brief microseconds, far too short a time to be visible to an
observer. Therefore, the program must continually 

 

refresh

 

 the LEDs by constantly scanning them with the appropriate
input values to ensure the LEDs are visible. Since the human eye’s persistence is about one fifteenth of a second, you
should refresh (relight) each LED about once every thirtieth of a second.

 

7.8 Time Dependent Code

 

Scanning a keyboard, and LED matrix, and many other operations requires you to introduce a short delay into your
software. The most common, although naive, way to create a short loop is to introduce a small delay loop into the pro-
gram, e.g., 

 

mov cx, 10000
DelayLp: loop DelayLp

 

The problem with a delay loop like this one is that it will produce inconsistent timings on different CPUs and systems. For
example, this loop would take half the time to execute on a 66 MHz 80486 system as it takes on a 33 MHz 80486 system.
Any software whose correct operation depends on a software delay loop like the one above will probably fail to run
properly on a faster or slower machine than the one you use for software development.

The correct solution is to use a 

 

hardware timer

 

 to measure off a fixed amount of time regardless of the CPU fre-
quency or system speed. Although the PC provides several hardware timer devices, you will not have to learn how to
control this hardware in order to do reasonably accurate software delays. This is because the PC’s BIOS (Basic Input/
Output System) already maintains a real-time clock for you. About every 55 msec one of the system’s timer chips gener-
ates a 

 

timer interrupt

 

. The BIOS’ timer interrupt handler responds to this interrupt and increments the double word at
location 40:6C. The trick to writing a software delay loop that consumes the same amount of time on 

 

any

 

 machine is to
count the number of loop iterations you execute between the moment the BIOS changes this memory location to the
next time it changes it. After computing the number of iterations necessary for the 55 msec delay, you can delay your
software for approximately the same amount of time by executing a similar loop using the computed number of itera-
tions. The following code will compute the number of iterations for a 55 msec delay:

D4=0 D5=1 D6=1 D7=1

D0=1

D1=0

D2=0

D3=0
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; Delay0 provides a short delay so the real delay routine doesn’t
; overflow during a 55 msec time period.

Delay0 proc
push cx
mov cx, 1000

DelayLp0: loop DelayLp0
pop cx
ret

Delay0 endp

; InitDelay returns a rough iteration value in the CX register.
; It waits until the BIOS changes the real time clock variable and then
; it counts the number of loop iterations until that value changes
; again.

RTC textequ <word ptr es:[6ch]>
DelayConst word ?

InitDelay proc
push es ;Preserve ES, AX, and CX in this procedure
push ax
push cx

mov ax, 40h ;Point ES at BIOS variables
mov es, ax

; Wait until the BIOS real time clock variable changes

mov ax, RTC
Wait4RTC: cmp ax, RTC ;The BIOS will change this value

je Wait4RTC ; within 55 msec

; Now that BIOS has just changed the RTC variable, it’s time to start counting
; loop iterations until BIOS changes it again, 55 msec later.

mov cx, 0 ;Assume up to 65,536 iterations
mov ax, RTC ;Get new RTC value

TimeRTC: call Delay0 ;Short delay to eat up some time
cmp ax, RTC ;Was there a change?
loope TimeRTC ; If not, repeat

; The loop above counted CX from 65,536 down to the termination point.
; We need to negate and decrement this value to compute the number of
; loop iterations this system requires for a 55 msec delay. Then save
; this away for use by the real delay routine later.

neg cx
dec cx
mov cs:DelayConst, cx

pop cx
pop ax
pop es
ret

InitDelay endp

; After calling the InitDelay routine above to initialize the DelayConst
; variable, call this routine to delay approximately 55 msec (about 1/18th
; of a second).

Delay proc
push es
push ax
push cx

; The following loop must be nearly identical to the TimeRTC loop in the
; InitDelay procedure. The only difference is that the loop must terminate
; because it counted CX down to zero rather than having the RTC variable
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; change. This is easy to arrange by comparing AX against a value that
; never changes.

mov ax, cs ;Point ES at the segment 
mov es, ax ; containing DelayConst.

mov cx, cs:DelayConst ;DelayConst never changes,
mov ax, es:DelayConst ; so use it as our loop

Delay55ms: call Delay0 ; test variable.
cmp ax, es:DelayConst
loope Delay55ms ;Repeats until CX=0.

pop cx
pop ax
pop es
ret

Delay endp

 

To use this code, your program needs to call the InitDelay procedure at least once before ever calling the Delay pro-
cedure. This will initialize the DelayConst variable with the number of loop iterations Delay must execute for a 55 msec
delay. After calling InitDelay, calls to Delay should consume approximately 1/18th seconds. 

This technique provides a delay that is approximately 1/18th second on almost any system, assuming the clock
speed does not change after you call the InitDelay routine. It is not exactly 1/18th second, but it should be close enough
for most purposes. It will certainly be sufficiently close to 55 msec for scanning purposes.

One slight drawback to this scheme is that it only provides a delay of 55 msec. To obtain a longer delay is easy  just
make successive calls to the Delay routine. For example, to delay for about one second you would use the following pro-
cedure:

 

; SecDelay- Delays for about one second. It accomplishes this by calling the
; 55 msec delay routine 18 times (55 msec is approx 1/18 sec).

SecDelay proc
push cx
mov cx, 18

SecLp: call Delay
loop SecLp
pop cx
ret

SecDelay endp

 

To delay an amount of time less than 55 msec, you will need to divide the DelayConst variable by an appropriate
value after calling the InitDelay routine. For example, to delay 10 msec, you need to divide DelayConst by 5.5. You can
easily accomplish that by multiplying DelayConst by two and dividing by 11. The following code does this:

 

call InitDelay
mov ax, DelayConst
mov dx, 0
shl ax, 1 ;32 bit shl operation multiplies
rcl dx, 1 ; dx:ax by two.
mov bx, 11
div bx ;Divide dx:ax by 11.
mov DelayConst, ax ;Save away (DelayConst/5.5)

 

After the above sequence, calls to DelayConst will take approximately 10 msec rather than 55 msec. Please note that the
Delay routine will produce increasingly inaccurate delay times as you reduce the value of DelayConst. This is due to the
loop inside Delay0. If you have an 80386 or later processor, you can alleviate this problem by eliminating the Delay0 rou-
tine and using 

 

ecx

 

 to control the number of iterations in the InitDelay and Delay subroutines. This, however, makes the
InitDelay and Delay routines a bit more complex since the 

 

loop

 

 instruction does not work properly with the 

 

ecx

 

 regis-
ter.
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7.9 Constructing the Hardware for the Laboratory

 

This chapter’s laboratory exercises demonstrate keyboard scanning, key bounce, and LED scanning. This will require
constructing a new circuit for the exercises. This circuit will allow you to scan four switches and four LEDs using six of your
LEDs and the four position DIP switch from your first circuit

 

5

 

. You will also use a momentary contact switch to measure key-
bounce on your system. The schematics for these three experiments are quite simple, they are

Scanned LED Schematic: 

Scanned Keyboard Schematic: 

Keybounce Circuit Schematic: 

Key to compoents in circuit layout: 

 

5. You will use two of the LEDs as diodes to produce the PC hardware from a short circuit when two switches on the same row are in the “on” position.
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For those whose prototyping boards do not have the power and ground tie-point busses, use this layout: 

.
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7.10 Before Coming to the Laboratory

 

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A write-up on the CodeView debugger explaining in your own words out breakpoints and the watch window

work. You should also explain how to run a program from inside CodeView and locate certain types of bugs
using CodeView.

• A brief write-up explaining how keyswitch and LED scanning works.
• A brief description of each program you will be using in this laboratory (explain what it does and how to use

it).
• You must also assemble the circuitry for this lab.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab begins on the material covered in
the laboratory. You will do quite well on that quiz if you’ve properly prepared for the lab and studied up on the stuff prior to
attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and you will probably
not finish the lab. Do not take this pre-lab exercise lightly.

 

7.11 Laboratory Exercises

 

In this laboratory you will perform the following activities:

• Use CodeView to set breakpoints within a program and locate some errors.
• Use CodeView to trace through sections of a program to discover problems with that program.
• Use CodeView to trace through some code you write to verify correctness and observe the calculation one step

at a time.
• Write code to control LEDs on an external device and read switches from that device using a 

 

scanning

 

 tech-
nique.

• Explore keybounce and visual persistence, two physical real-world constraints on your software.

 

o

 

Exercise 1: Running CodeView. The following program contains several bugs (noted in the comments). Enter this
program into the system (note, this code is available as the file “Lab1_7a.asm” on the accompanying diskette):

 

dseg segment para public ‘data’

I word 0
J word 0
K word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; This program is useful for debugging purposes only!
; The intent is to execute this code from inside CodeView.
;
; This program is riddled with bugs. The bugs are very 
; obvious in this short code sequence, within a larger 
; program these bugs might not be quite so obvious.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
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; The following loop increments I until it reaches 10

ForILoop: inc I
cmp I, 10
jb ForILoop

; This loop is supposed to do the same thing as the loop 
; above, but we forgot to reinitialize I back to zero. 
; What happens?

ForILoop2: inc I
cmp I, 10
jb ForILoop2

; The following loop, once again, attempts to do the same 
; thing as the first for loop above. However, this time we 
; remembered to reinitialize I. Alas, there is another 
; problem with this code, a typo that the assembler cannot
; catch.

mov I, 0
ForILoop3: inc I

cmp I, 10
jb ForILoop ;<<<-- Whoops! Typo.

; The following loop adds I to J until J reaches 100. 
; Unfortunately, the author of this code must have been 
; confused and thought that AX contained the sum 
; accumulating in J. It compares AX against 100 when
; it should really be comparing J against 100.

WhileJLoop: mov ax, I
add J, ax
cmp ax, 100 ;This is a bug!
jb WhileJLoop

mov ah, 4ch ;Quit to DOS.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Assemble this program with the command:

 

ML /Zi lab1_7.asm

 

The “/Zi” option instructions MASM to include debugging information for CodeView in the .EXE file. Note that
the “Z” must be uppercase and the “i” must be lower case.
Load this into CodeView using the command:

 

CV lab1_7

 

Your display should now look something like the following:
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Note that CodeView highlights the instruction it will execute next (

 

mov ax, dseg 

 

in the above code). Try out the
trace command by pressing the 

 

º

 

 key three times.This should leave the 

 

inc I 

 

instruction highlighted. Step
through the loop and note all the major changes that take place on each iteration (note: remember 

 

jb=jc 

 

so be sure
to note the value of the carry flag on each iteration as well). 

 

For your lab report: 

 

Discuss the results in your lab manual. Also note the final value of

 

 I

 

 after completing the
loop.

 

o

 

Exercise 2: Locating a bug. The second loop in the program contains a major bug. The programmer forgot to reset I
back to zero before executing the code starting at label ForILoop2. Trace through this loop until it falls through to
the statement at label ForILoop3. 

 

For your lab report: 

 

Describe what went wrong and how pressing the 

 

•

 

 key would help you locate this prob-
lem.

 

o

 

Exercise 3: Locating another bug. The third loop contains a typo that causes it to restart at label ForILoop. Trace
through this code using the 

 

•

 

 key.

 

For your lab report: 

 

Describe the process of tracking this problem down and provide

 

 

 

a description of how you
could use the trace command to catch this sort of problem.

 

o

 

Exercise 4: Verifying correctness. Program Lab4_7.asm is a corrected version of the above program. Single step
through that code and verify that it works correctly. 

 

For your lab report: 

 

Describe the differences between the two debugging sessions in your lab manual.

 

o

 

Exercise 5: Using Lab4_7, open a watch window and add the watch expression “I” to that window. Set sticky break-
points on the three 

 

jb 

 

instructions in the program. Run the program using the Go command and comment on what
happens in the Watch window at each breakpoint.

 

For your lab report: 

 

Describe how you could use the watch window to help you locate a problem in your pro-
grams.

 

o

 

Exercise 6: Software Delay Loops. The lab6_7.asm file contains a short software-based delay loop. Run this program
and determine the value for the loop control variable that will cause a delay of 11 seconds. Note: the current value
was chosen for a 66 MHz 80486 system; if you have a slower system you may want to reduce this value, if you have
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a faster system, you will want to increase this value. Adjust the value to get the delay as close to 11 seconds as
you can on your PC.

 

For your lab report:

 

 Provide the constant for you particular system that produces a delay of 11 seconds. Dis-
cuss how to create a delay of 1, 10, 20, 30, or 60 seconds using this code.

 

For additional credit:

 

 After getting the delay loop to run for 11 seconds on your PC, take the executable
around to different systems with different CPUs and different clock speeds. Run the program and measure the
delay. Describe the differences in your lab report.

 

o

 

Exercise 7: Hardware determined software delay loop. The lab7_7.asm file contains a software delay loop that
automatically determines the number of loop iterations by observing the BIOS real time clock variable. Run this
software and observe the results.

 

For your lab report: 

 

Determine the loop iteration count and include this value in your lab manual. If your PC
has a turbo switch on it, set it to “non-turbo” mode when requested by the program. Measure the actual delay
as accurately as you can with the turbo switch in turbo and in non-turbo mode. Include these timings in your
lab report.

 

For additional credit:

 

 Take the executable file around to different systems with different CPUs and different
clock speeds. Run the program and measure the delays. Describe the differences in your lab report.

 

o

 

Exercise 8: Keyboard and LED scanning. Program lab8_7.asm on the diskette continually scans the switches,
stores their values into a byte, then scans the LEDs writing the switch values to the LEDs. Run this program with
your circuitry and observe the results. Note that you should never have more than two switches on at the same
time. Try turning on three or four switches and observe the results.

 

For your lab report

 

: When you run the program you will notice that the LEDs are much dimmer than usual.
Explain why in your lab report. Include a listing of this program with your lab report. Explain how it scans the
keyboard and LEDs. Describe what happens if you turn on three or more switches.

 

For additional credit:

 

 Write two logic functions of two variables. Modify program lab8_7.asm to read the
inputs from two of the switches, compute the two results, and write these results back to the LEDs. Demon-
strate the program and explain its operation in your lab report.

 

o

 

Exercise 9: Keybounce measurement. Program lab9_7.asm on the diskette is a program that reads the momen-
tary contact switch to see when it changes state. Once it changes state, this program reads the parallel port
50,000 consecutive times and stores away the readings into a memory array. After reading the switch 50,000
times is a row, this program scans through the array to see how many times the values in consecutive array ele-
ments are different. This number, divided by two, is the number of times that the key bounced. 
This program reads the momentary contact switch on bit seven of the parallel printer input port. The PC’s cir-
cuitry contains an inverter circuit, so this bit will contain a one when you press the switch, a zero when the
switch is in the up position. Keep in mind that this switch reading will be opposite that of the other switches
you scan in this laboratory.
There are some very high quality momentary contact switches available. Combined with the fact that fast PCs
(e.g., 486s and Pentiums) take a tremendous amount of time to read the parallel port (because of added wait
states for I/O devices), it is quite possible that your particular momentary contact switch will not produce any
keybounce. If you run the lab9_7 program and it reports zero key bounces, try slamming your finger on the
momentary contact switch. Rough treatment generally produces keybounce. If this still doesn’t work, use a
piece of wire to simulate the momentary contact switch. Connect one end of the wire to ground and poke the
other wire in the hole on the other side of the momentary contact switch. This will certainly produce a lot of
keybounce, even on fast systems.

 

For your lab report:

 

 Describe how lab9_7.asm works. Explain why the number of value changes in the key-
board values array is twice the number of key bounces. After running lab9_7 several times, compute the mini-
mum, average, and maximum number of key bounces you detect for the series.

 

For additional credit: 

 

Modify the lab9_7.asm program to read one of the dip switches rather than the
momentary contact switch. Determine the number of key bounces when you switch the dip switch from one
position to another.
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o

 

Exercise 10: Processing keyswitches. Program lab10_7 on the disk reads the momentary contact switch and displays
a brief message whenever you press it. Run this program and press the momentary contact switch several times and
observe the results.

 

For your lab report:

 

 Describe what happens when you press the momentary contact switch. Study the source
code for this program and explain how it works. Discover how this code debounces the momentary contact switch
and describe this process in your lab report.

 

For additional credit:

 

 Modify this program to scan the dip switches 

 

as well as

 

 the momentary contact switch. Put
together a short 

 

scan

 

 routine that returns a bit map containing zeros if a switch is up and ones if a switch is down.
Process the bitmap the scan routine returns to determine when a switch transitions from an open position to a
closed position. Include the commented printout of this program with your lab report and explain how this program
works in your lab report.

 

7.12 Sample Programs

 

This chapter’s sample programs demonstrate several important concepts including extended precision arithmetic and
logical operations, arithmetic expression evaluation, boolean expression evaluation, and packing/unpacking data.

 

7.12.1 Sample Program #1: 64-Bit Integer I/O

 

This first sample program reads and writes 64-bit unsigned integers. It demonstrates several extended precision opera-
tions. Note that this program requires an 80386 or later CPU.

 

; EX1_7.ASM
;
; This sample program provides two procedures that read and write
; 64-bit unsigned integer values on an 80386 or later processor.

.xlist
include stdlib.a
includelibstdlib.lib
.list

.386
option segment:use16

dp textequ <dword ptr>
byp textequ <byte ptr>

dseg segment para public ‘data’

; Acc64 is a 64 bit value that the ATOU64 routine uses to input
; a 64-bit value.

Acc64 qword 0

; Quotient holds the result of dividing the current PUTU value by
; ten.

Quotient qword 0

; NumOut holds the string of digits created by the PUTU64 routine.

NumOut byte 32 dup (0)

; A sample test string for the ATOI64 routine:

LongNumber byte “123456789012345678”,0
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dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; ATOU64- On entry, ES:DI point at a string containing a
; sequence of digits.  This routine converts that
; string to a 64-bit integer and returns that
; unsigned integer value in EDX:EAX.
;
; This routine uses the algorithm:
;
; Acc := 0
; while digits left
;
; Acc := (Acc * 10) + (Current Digit - ‘0’)
; Move on to next digit
;
; endwhile

ATOU64 proc near
push di ;Save because we modify it.
mov dp Acc64, 0 ;Initialize our accumulator.
mov dp Acc64+4, 0

; While we’ve got some decimal digits, process the input string:

sub eax, eax ;Zero out eax’s H.O. 3 bytes.
WhileDigits: mov al, es:[di]

xor al, ‘0’ ;Translates ‘0’..’9’ -> 0..9
cmp al, 10 ; and everything else is > 9.
ja NotADigit

; Multiply Acc64 by ten.  Use shifts and adds to accomplish this:

shl dp Acc64, 1 ;Compute Acc64*2
rcl dp Acc64+4, 1

push dp Acc64+4 ;Save Acc64*2
push dp Acc64

shl dp Acc64, 1 ;Compute Acc64*4
rcl dp Acc64+4, 1
shl dp Acc64, 1 ;Compute Acc64*8
rcl dp Acc64+4, 1

pop edx ;Compute Acc64*10 as
add dp Acc64, edx ; Acc64*2 + Acc64*8
pop edx
adc dp Acc64+4, edx

; Add in the numeric equivalent of the current digit.
; Remember, the H.O. three words of eax contain zero.

add dp Acc64, eax ;Add in this digit

inc di ;Move on to next char.
jmp WhileDigits ;Repeat for all digits.

; Okay, return the 64-bit integer value in eax.
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NotADigit: mov eax, dp Acc64
mov edx, dp Acc64+4
pop di
ret

ATOU64 endp

; PUTU64- On entry, EDX:EAX contain a 64-bit unsigned value.
; Output a string of decimal digits providing the
; decimal representation of that value.
;
; This code uses the following algorithm:
;
;     di := 30;
;     while edx:eax <> 0 do
;
;                       OutputNumber[di] := digit;
; edx:eax := edx:eax div 10
; di := di - 1;
;
;     endwhile
;     Output digits from OutNumber[di+1]
; through OutputNumber[30]

PUTU64 proc
push es
push eax
push ecx
push edx
push di
pushf

mov di, dseg ;This is where the output
mov es, di ; string will go.
lea di, NumOut+30 ;Store characters in string
std ; backwards.
mov byp es:[di+1],0 ;Output zero terminating byte.

; Save the value to print so we can divide it by ten using an
; extended precision division operation.

mov dp Quotient, eax
mov dp Quotient+4, edx

; Okay, begin converting the number into a string of digits.

mov ecx, 10 ;Value to divide by.
DivideLoop: mov eax, dp Quotient+4 ;Do a 64-bit by

sub edx, edx ; 32-bit division
div ecx                     ; (see the text
mov dp Quotient+4, eax ;  for details).

mov eax, dp Quotient
div ecx
mov dp Quotient, eax
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; At this time edx (dl, actually) contains the remainder of the
; above division by ten, so dl is in the range 0..9.  Convert
; this to an ASCII character and save it away.

mov al, dl
or al, ‘0’
stosb

; Now check to see if the result is zero.  When it is, we can
; quit.

mov eax, dp Quotient
or eax, dp Quotient+4
jnz DivideLoop

OutputNumber: inc di
puts
popf
pop di
pop edx
pop ecx
pop eax
pop es
ret

PUTU64 endp

; The main program provides a simple test of the two routines
; above.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi LongNumber
call ATOU64
call PutU64
printf
byte cr,lf
byte “%x %x %x %x”,cr,lf,0
dword Acc64+6, Acc64+4, Acc64+2, Acc64

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main
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7.12.2 Sample Program #2: Stopwatch Application

 

This sample program uses the circuity you constructed for this chapter’s laboratory exercises. It reads the momentary
contact switch to trigger a stopwatch. After you press the momentary contact switch, the computer starts timing until you
press the switch a second time. It then displays the number of elapsed seconds.

 

; EX2_7.ASM
;
; This program is a “stopwatch” application.  It uses
; circuitry you build for the lab exercises in lab #7
; to turn the stopwatch on and off.  Whenever you press
; the momentary contact switch, the stopwatch begins
; running.  When you press it a second time, the
; stopwatch terminates execution and display the
; elapsed time.

.xlist
include stdlib.a
includelibstdlib.lib
.list

; Location of BIOS variables:

LPT1 textequ <es:[0ah]> ;LPT1 port base address.
; Change to 0Ah for LPT2
; or 0Ch for LPT3.

RTC textequ <es:[6ch]> ;Real Time Clock variable.

wp textequ <word ptr>

dseg segment para public ‘data’

; Parallel Port addresses:

InPort word ?

; Dummy is a variable the timing loop compares against itself to match
; the timing in the InitDelay routine.

Dummy word 0

; Timed value is an empirically determined constant which provides a
; suitable delay on whatever machine we are running on.  The program
; computes a reasonable value for this variable.

TimerValue dword 0

; TimerSave contains a copy of the BIOS timer variable that we read
; when the user first presses the momentary contact switch.
; TimerResult holds the difference in time between the first and
; second press of the momentary contact switch.

TimerSave dword 0
TimerResult dword 0

; TimeStr is an array of characters that hold the output string.

TimeStr byte 16 dup (0)



 

Lab Ch09

Lab 7-338

 

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Initialize the TimerValue variable that contains the number of loop
; interations for a 1/18th second delay.

InitDelay proc
push es
push ax

; Okay, let’s see how long it takes to count down 1/18th of a second.
; RTC is a magic location in the BIOS variables (segment 40h) which
; the Real Time Clock code increments every 55 ms (about 1/18.2 secs).
; This code waits for this location to change, then it counts off how
; long it takes to change again.  By executing that same loop again
; we can get (roughly) equivalent time delays on two separate machines.

mov ax, 40h ;Segment address of BIOS vars.
mov es, ax
mov ax, RTC ;Wait for timer to change.

RTCMustChange:cmp ax, RTC
je RTCMustChange

; Okay, begin timing the number of iterations it takes for an 18th of a
; second to pass.  The align directive ensures that this loop and Delay’s
; corresponding loop both fall on the same cache line boundary.

mov wp TimerValue, 0
mov wp TimerValue+2, 0
mov ax, RTC

align 16

TimeRTC: cmp ax, RTC
jne TimerDone

sub wp TimerValue, 1
sbb wp TimerValue+2, 0
jne TimeRTC
cmp wp TimerValue, 0
jne TimeRTC

; Negate the count down value and decrement it to compute the number
; of times the delay loop must repeat the loop above.

TimerDone: neg wp TimerValue+2 ;32-bit negate of
neg wp TimerValue ; TimerValue.
sbb wp TimerValue+2, 0

pop ax
pop es
ret

InitDelay endp

; Delay- This routine delays for roughly a fixed time period on
; any machine, regardless of CPU or clock rate (May vary by
; a factor of two or so, but it not as sensitive to CPU
; speed as a simple LOOP instr).
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Delay proc
push es
push ax

mov ax, dseg
mov es, ax

push wp TimerValue+2 ;Save these values
push wp TimerValue ; so we can modify them
mov ax, Dummy ;Compare this with itself.

align 16

TimeRTC: cmp ax, es:Dummy
jne DelayDone ;Never taken.

sub wp TimerValue, 1
sbb wp TimerValue+2, 0
jne TimeRTC
cmp wp TimerValue, 0
jne TimeRTC

DelayDone:
pop wp TimerValue
pop wp TimerValue+2
pop ax
pop es
ret

Delay endp

Main proc
mov ax, dseg
mov ds, ax

; First, get the base address of the printer port:

mov dx, 40h
mov es, dx

mov dx, LPT1 ;Get printer port base address.
inc dx ;Add one to get the address
mov InPort, dx ; of the input port.
inc dx ;Point DX at prtr control port.
mov al, 0 ;Turn on power to circuitry.
out dx, al

print
byte cr,lf
byte “Stopwatch Application”,cr,lf
byte “---------------------”,cr,lf
byte cr,lf
byte “Press the momentary contact switch to begin “
byte “timing an event.”,cr,lf
byte “Press it again to stop timing the event.”
byte cr,lf
byte lf
byte 0

; Initialize the software delay routine and adjust the TimerDelay
; variable (by dividing it by four) to produce a 14 msec delay rather
; than a 55 ms delay.
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call InitDelay

shr wp TimerValue+2, 1 ;32-bit shr two bits
rcr wp TimerValue, 1  ; operation.
shr wp TimerValue+2, 1
rcr wp TimerValue, 1

; Okay, continually process the momentary contact switch until the
; user presses it.

StartLoop:
mov dx, InPort ;Read the switch.
in al, dx
test al, 80h ;See if it’s down.
jz StartLoop
call Delay ;Debounce switch.

; Okay, the user just pressed the momentary contact switch.
; Read the time (in clock ticks) from the DOS BIOS variable
; and save this for later use.  Note: the CLI instruction below
; disables interrupts while reading the timer value from memory.
; This prevents a timer interrupt from changing the value while
; we’re in the middle of reading it.  The STI instruction turns
; the interrupt back on, which is necessary if you want BIOS
; to continue updating the timer value.

mov dx, 40h ;Point ES at BIOS variables.
mov es, dx
cli
mov ax, RTC ;Get current timer reading
mov wp TimerSave,ax ; and save away.
mov ax, RTC+2
mov wp TimerSave+2, ax
sti

; Wait for the user to release the switch:

Wait4Release: mov dx, InPort
in al, dx
test al, 80h
jnz Wait4Release
call Delay ;Debounce switch.

; Okay, wait for the user to press the switch again.

Wait4Press: mov dx, InPort
in al, dx
test al, 80h
jz Wait4Press

; The user just pressed the momentary contact switch.  Read the
; BIOS timer variable so we can compute the elapsed time.
; Once again, the interrupts should be off while we read this
; variable so BIOS doesn’t update the timer value inbetween our
; reading the two words of this variable.

cli
mov ax, RTC
sub ax, wp TimerSave
mov wp TimerResult, ax
mov ax, RTC+2
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sbb ax, wp TimerSave+2
mov wp TimerResult+2, ax
sti

; Now it’s time to output the elapsed time (in hh:mm:ss form)
;
; There are approximately 65455 clock ticks in one hour.  The
; following division computes the number of elapsed hours.

mov cx, 65455
mov dx, wp TimerResult+2
mov ax, wp TimerResult
div cx
mov ch, al ;Save # of hours in CH

; There are approximately 1091 clock ticks in a minute, compute
; the minute value here.

mov ax, dx ;Remainder easily fits ax
sub dx, dx
mov bx, 1091 ;1091 ticks in a minute
div bx
mov cl, al ;Save # of minutes in CL

; There are approximately 18 clock ticks per second.  Compute
; the seconds value here.

mov ax, dx
sub dx, dx
mov bx, 18
div bx
push ax ;Save seconds.

; Okay, we’re down to fractions of a second.  Multiply the
; remainder by 100 and divide by 18 to get 1/100s of a second.

mov ax, dx
mov dx, 100
mul dx
mov bx, 18
div bx
mov dl, al ;Store away 1/100s.
pop ax
mov dh, al ;Store away seconds.

; Okay, all the STDLIB TTOAM routine to convert this time
; to an ASCII string.  Then print the string and free up
; the memory allocated by TTOAM.

print
byte “Time: “,0

lesi TimeStr
ttoa
puts
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends
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sseg segment para stack ‘stack’
stk db 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

7.12.3 Sample Program #3: Arithmetic Expressions

 

This program demonstrates how to convert a few arithmetic expressions into assembly language.

 

; EX3_7.ASM
;
; Several examples demonstrating how to convert various
; arithmetic expressions into assembly language.

.xlist
include stdlib.a
includelibstdlib.lib
.list

dseg segment para public ‘data’

; Arbitrary variables this program uses.

u word ?
v word ?
w word ?
x word ?
y word ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.

geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp

Main proc
mov ax, dseg
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mov ds, ax
mov es, ax
meminit

print
byte “Abitrary expression program”,cr,lf
byte “---------------------------”,cr,lf
byte lf
byte “Enter a value for u: “,0

geti
mov u, ax

print
byte “Enter a value for v: “,0
geti
mov v, ax

print
byte “Enter a value for w: “,0
geti
mov w, ax

print
byte “Enter a non-zero value for x: “,0
geti
mov x, ax

print
byte “Enter a non-zero value for y: “,0
geti
mov y, ax

; Okay, compute Z := (X+Y)*(U+V*W)/X and print the result.

print
byte cr,lf
byte “(X+Y) * (U+V*W)/X is “,0

mov ax, v ;Compute V*W
imul w ; and then add in
add ax, u       ; U.
mov bx, ax ;Save in a temp location for now.

mov ax, x ;Compute X+Y, multiply this
add ax, y ; sum by the result above,
imul bx ; and then divide the whole
idiv x ; thing by X.

puti
putcr

; Compute ((X-Y*U) + (U*V) - W)/(X*Y)

print
byte “((X-Y*U) + (U*V) - W)/(X*Y) = “,0

mov ax, y ;Compute y*u first
imul u
mov dx, X ;Now compute X-Y*U
sub dx, ax
mov cx, dx ;Save in temp
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mov ax, u ;Compute U*V
imul V
add cx, ax ;Compute (X-Y*U) + (U*V)

sub cx, w ;Compute ((X-Y*U) + (U*V) - W)

mov ax, x ;Compute (X*Y)
imul y

xchg ax, cx
cwd ;Compute NUMERATOR/(X*Y)
idiv cx

puti
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

7.12.4 Sample Program #4:DeMorgan’s Theorems

 

This sample program executes several different boolean expressions. Pairs of these expressions always compute
identical results since DeMorgan’s theorems claim they are equivalent. Executing this program demonstrates that equiva-
lency.

 

; EX4_7.ASM
;
; This program demonstrates DeMorgan’s theorems and
; various other logical computations.

.xlist
include stdlib.a
includelibstdlib.lib
.list

dseg segment para public ‘data’

; Boolean input variables for the various functions
; we are going to test.

a byte 0
b byte 0

dseg ends
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cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Get0or1- Reads a “0” or “1” from the user and returns its
; its value in the AX register.

get0or1 textequ <call _get0or1>
_get0or1 proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_get0or1 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte “Demorgan’s Theorems”,cr,lf
byte “-------------------”,cr,lf
byte lf
byte “According to Demorgan’s theorems, all results “
byte “between the dashed lines”,cr,lf
byte “should be equal.”,cr,lf
byte lf
byte “Enter a value for a: “,0

get0or1
mov a, al

print
byte “Enter a value for b: “,0
get0or1
mov b, al

print
byte “---------------------------------”,cr,lf
byte “Computing not (A and B): “,0

mov ah, 0
mov al, a
and al, b
xor al, 1 ;Logical NOT operation.

puti
putcr
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print
byte “Computing (not A) OR (not B): “,0
mov al, a
xor al, 1
mov bl, b
xor bl, 1
or al, bl
puti

print
byte cr,lf
byte “---------------------------------”,cr,lf
byte “Computing (not A) OR B: “,0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte “Computing not (A AND (not B)): “,0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte “---------------------------------”,cr,lf
byte “Computing (not A) OR B: “,0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte “Computing not (A AND (not B)): “,0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte “---------------------------------”,cr,lf
byte “Computing not (A OR B): “,0
mov al, a
or al, b
xor al, 1
puti

print
byte cr,lf
byte “Computing (not A) AND (not B): “,0
mov al, a
xor al, 1
and bl, b
xor bl, 1
and al, bl
puti
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print
byte cr,lf
byte “---------------------------------”,cr,lf
byte 0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

7.12.5 Sample Program #5: Packing and Unpacking Data

 

This program demonstrates how to work with packed data. It reads a date from the user, checks the consistency of that
date, and then packs it into the date format described in Chapter One of the textbook. This program then unpacks that date
and uses the STDLIB 

 

dtoam

 

 routine to convert it to a string for printing.

 

; EX5_7.ASM
;
; This program demonstrates how to pack and unpack
; data types.  It reads in a month, day, and year value.
; It then packs these values into the format the textbook
; presents in chapter two.  Finally, it unpacks this data
; and calls the stdlib DTOA routine to print it as text.

.xlist
include stdlib.a
includelibstdlib.lib
.list

dseg segment para public ‘data’

Month byte ? ;Holds month value (1-12)
Day byte ? ;Holds day value (1-31)
Year byte ? ;Holds year value (80-99)

Date word ? ;Packed data goes in here.

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.
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geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte “Date Conversion Program”,cr,lf
byte “-----------------------”,cr,lf
byte lf,0

; Get the month value from the user.
; Do a simple check to make sure this value is in the range
; 1-12.  Make the user reenter the month if it is not.

GetMonth: print
byte “Enter the month (1-12): “,0

geti
mov Month, al
cmp ax, 0
je BadMonth
cmp ax, 12
jbe GoodMonth

BadMonth: print
byte “Illegal month value, please re-enter”,cr,lf,0
jmp GetMonth

GoodMonth:

; Okay, read the day from the user.  Again, do a simple
; check to see if the date is valid.  Note that this code
; only checks to see if the day value is in the range 1-31.
; It does not check those months that have 28, 29, or 30
; day months.

GetDay: print
byte “Enter the day (1-31): “,0
geti
mov Day, al
cmp ax, 0
je BadDay
cmp ax, 31
jbe GoodDay

BadDay: print
byte “Illegal day value, please re-enter”,cr,lf,0
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jmp GetDay

GoodDay:

; Okay, get the year from the user.
; This check is slightly more sophisticated.  If the user
; enters a year in the range 1980-1999, it will automatically
; convert it to 80-99.  All other dates outside the range
; 80-99 are illegal.

GetYear: print
byte “Enter the year (80-99): “,0
geti
cmp ax, 1980
jb TestYear
cmp ax, 1999
ja BadYear

sub dx, dx ;Zero extend year to 32 bits.
mov bx, 100
div bx ;Compute year mod 100.
mov ax, dx
jmp GoodYear

TestYear: cmp ax, 80
jb BadYear
cmp ax, 99
jbe GoodYear

BadYear: print
byte “Illegal year value.  Please re-enter”,cr,lf,0
jmp GetYear

GoodYear: mov Year, al

; Okay, take these input values and pack them into the following
; 16-bit format:
;
;      bit 15     8 7      0
;    |      | |      |
;    MMMMDDDD DYYYYYYY

mov ah, 0
mov bh, ah
mov al, Month ;Put Month into bit positions
mov cl, 4 ; 12..15
ror ax, cl

mov bl, Day ;Put Day into bit positions
mov cl, 7 ; 7..11.
shl bx, cl

or ax, bx ;Create MMMMDDDD D0000000
or al, Year ;Create MMMMDDDD DYYYYYYY
mov Date, ax ;Save away packed date.

; Print out the packed date (in hex):

print
byte “Packed date = “,0
putw
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putcr

; Okay, the following code demonstrates how to unpack this date
; and put it in a form the standard library’s LDTOAM routine can
; use.

mov ax, Date ;First, extract Month
mov cl, 4
shr ah, cl
mov dh, ah ;LDTOAM needs month in DH.

mov ax, Date ;Next get the day.
shl ax, 1
and ah, 11111b
mov dl, ah ;Day needs to be in DL.

mov cx, Date ;Now process the year.
and cx, 7fh ;Strip all but year bits.

print
byte “Date: “,0
ldtoam ;Convert to a string
puts
free
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

7.13 Programming Projects

 

o

 

Program #1: Write a program that inputs four integer variables from the user, I, J, K, and L, and prints the results
of the following computations. Be sure to check for division by zero and possible arithmetic overflow in each
computation.

 

a) ((I*J)/(I-J) + (I-K) * (L-K)* (K-J)) / 2
b) (-I)/2 * (J+K-(L*J))/J
c) (J/(L-2) - 5)*(I-K)

 

o

 

Program #2: Write a program that reads two 32 bit hexadecimal values from the user and performs the follow-
ing extended precision operations these two values:
Addition, Subtraction, AND, OR, XOR
Also perform the following monadic (single operand) operations on both of the operands:
NOT, NEG, SHL, SHR, RCL, RCR, SAR (Shift or rotate values by one bit).
Do 

 

not

 

 use the 80386 32 bit registers. Use only the 16 bit registers available on all processors. Be sure to print
the input operands, the operation performed, and the results obtained. Print all values in hex.

 

o

 

Program #3: Write two routines that perform an extended precision (32 bit) ROL and ROR operation on DX:AX.
These two routines must leave DX:AX and the carry flag with appropriate values
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o

 

Program #4: Write a program that reads a 32 bit hexadecimal value from the user and counts the number of one bits
in the input value (e.g., an input of 8888FFFF would produce 20) and prints them to the display. The program
should repeat this operation over and over again until the user enters zero.

 

o

 

Program #5: Modify the stopwatch sample application to print the time in the form HH:MM:SS.DD where DD is time
given in hundredths of a second. Of course, the system clock isn’t accurate to 1/100 second, but you can still convert
the time to this format and display it that way.

 

o

 

Program #6: Modify sample program #1 in this chapter (the 64-bit integer I/O application) so that it will work on any
processor, not just 80386 and later processors.

 

o

 

Program #7: Modify sample program #5 in this chapter (the date program) so that it :
a) Properly verifies legal day values (e.g., 28 vs. 29 vs. 30 vs. 31) give the month and year values. Note that a leap
year is any year divisible by four unless it is also divisible by 100 and not divisible by 400 (e.g., 1900 is not a leap
year but 2000 is a leap year). Hint: You can use the 

 

and

 

 instruction to easily compute modulo 4
b) Allows the user to enter any year.
c) Provides its own conversion from DATE format to a string of the form MMM DD YYYY where MMM is a string of
the form JAN, FEB, MAR, etc.

 

7.14 Answers to Selected Exercises
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