2 Error! Style not defined.

chapter 1

Command-Line Options

2H2INC

ML
3

H2INC

The H2INC utility converts C header (.h) files into MASM-compatible include (.inc) files. It translates declarations and prototypes but does not translate code.

Syntax

H2INC [[options]] filename.H

Options

	Option*
	Action

	/C
	Passes comments in the .h file to the .inc file.

	/Fa[[filename]]
	Specifies that the output file contain only equivalent MASM statements. This is the default.

	/Fc[[filename]]
	Specifies that the output file contain equivalent MASM statements plus original C statements converted to comment lines.

	/HELP
	Calls QuickHelp for help on H2INC.

	/Ht
	Enables generation of text equates. By default, text items are not translated.

	/Mn
	Instructs H2INC to explicitly declare the distances for all pointers and functions.

	/Ni
	Suppresses the expansion of nested include files.

	/Zn string
	Adds string to all names generated by H2INC. Used to eliminate name conflicts with other H2INC-generated include files.

	/Zu
	Makes all structure and union tag names unique.

	/?
	Displays a summary of H2INC command-line syntax.

* H2INC also supports the following options from Microsoft C, version 6.0 and higher: /AC, /AH, /AL, /AM, /AS, /AT, /D, /F, /Fi, /G0, /G1, /G2, /G3, /G4, /Gc, /Gd, /Gr, /I, /J, /Tc, /U, /u, /W0, /W1, /W2, /W3, /W4, /X, /Za, /Zc, /Ze, /Zp1, /Zp2, /Zp4.

Environment Variables

	Variable
	Description

	CL
	Specifies default command-line options.

	H2INC
	Specifies default command-line options. Appended after
the CL environment variable.

	INCLUDE
	Specifies search path for include files.

ML

The ML program assembles and links one or more assembly-language source files. The command-line options are case sensitive.

Syntax

ML [[options]] filename [[[[options]] filename]]... [[/link linkoptions]]

Options

	Option
	Action

	/AT
	Enables tiny-memory-model support. Enables error messages for code constructs that violate the requirements for .com format files. Note that this is not equivalent to the .MODEL TINY directive.

	/Bl filename
	Selects an alternate linker.

	/c
	Assembles only. Does not link.

	/Cp
	Preserves case of all user identifiers.

	/Cu
	Maps all identifiers to uppercase (default).

	/Cx
	Preserves case in public and extern symbols.

	/Dsymbol[[=value]]
	Defines a text macro with the given name. If value is missing, it is blank. Multiple tokens separated by spaces must be enclosed in quotation marks.

	/EP
	Generates a preprocessed source listing (sent to STDOUT). See /Sf.

	/Fhexnum
	Sets stack size to hexnum bytes (this is the same as /link /STACK:number). The value must be expressed in hexadecimal notation. There must be a space between /F and hexnum.

	/Fefilename
	Names the executable file.

	/Fl[[filename]]
	Generates an assembled code listing. See /Sf.

	/Fm[[filename]]
	Creates a linker map file.

	/Fofilename
	Names an object file.

	/FPi
	Generates emulator fix-ups for floating-point arithmetic (mixed language only).

	/Fr[[filename]]
	Generates a source browser .SBR file.

	/FR[[filename]]
	Generates an extended form of a source browser .SBR file.

	/Gc
	Specifies use of FORTRAN- or Pascal-style function calling and naming conventions. Same as OPTION LANGUAGE:PASCAL.

	/Gd
	Specifies use of C-style function calling and naming conventions. Same as OPTION LANGUAGE:C.

	/H number
	Restricts external names to number significant characters. The default is 31 characters.

	/help
	Calls QuickHelp for help on ML.

	/I pathname
	Sets path for include file. A maximum of 10 /I options is allowed.

	/nologo
	Suppresses messages for successful assembly.

	/Sa
	Turns on listing of all available information.

	/Sc
	Adds instruction timings to listing file.

	/Sf
	Adds first-pass listing to listing file.

	/Sg
	Turns on listing of assembly-generated code.

	/Sl width
	Sets the line width of source listing in characters per line. Range is 60 to 255 or 0. Default is 0. Same as PAGE width.

	/Sn
	Turns off symbol table when producing a listing.

	/Sp length
	Sets the page length of source listing in lines per page. Range is 10 to 255 or 0. Default is 0. Same as PAGE length.

	/Ss text
	Specifies text for source listing. Same as SUBTITLE text.

	/St text
	Specifies title for source listing. Same as TITLE text.

	/Sx
	Turns on false conditionals in listing.

	/Ta filename
	Assembles source file whose name does not end with the .asm extension.

	/w
	Same as /W0.

	/Wlevel
	Sets the warning level, where level = 0, 1, 2, or 3.

	/WX
	Returns an error code if warnings are generated.

	/Zd
	Generates line-number information in object file.

	/Zf
	Makes all symbols public.

	/Zi
	Generates CodeView information in object file.

	/Zm
	Enables M510 option for maximum compatibility with MASM 5.1.

	/Zp[[alignment]]
	Packs structures on the specified byte boundary. The alignment can be 1, 2, or 4.

	/Zs
	Performs a syntax check only.

	/?
	Displays a summary of ML command-line syntax.

Environment Variables

	Variable
	Description

	INCLUDE
	Specifies search path for include files.

	ML
	Specifies default command-line options.

	TMP
	Specifies path for temporary files.

chapter 2

Directives

Topical Cross-Reference for DirectivesEnterLink
8
DirectivesEnterLink
11

Topical Cross-Reference for Directives

Code Labels
	ALIGN
	EVEN

	LABEL
	ORG

Conditional Assembly
	ELSE
	ELSEIF
	ELSEIF2

	ENDIF
	IF
	IF2

	IFB/IFNB
	IFDEF/IFNDEF
	IFDIF/IFDIFI

	IFE
	IFIDN/IFIDNI
	

Conditional Control Flow
	.BREAK
	.CONTINUE
	.ELSE

	.ELSEIF
	.ENDIF
	.ENDW

	.IF
	.REPEAT
	.UNTIL

	.UNTILCXZ
	.WHILE
	

Conditional Error
	.ERR
	.ERR2
	.ERRB

	.ERRDEF
	.ERRDIF/.ERRDIFI
	.ERRE

	.ERRIDN/.ERRIDNI
	.ERRNB
	.ERRNDEF

	.ERRNZ
	
	

Data Allocation
	ALIGN
	BYTE/SBYTE
	DWORD/SDWORD

	EVEN
	FWORD
	LABEL

	ORG
	QWORD
	REAL4

	REAL8
	REAL10
	TBYTE

	WORD/SWORD
	
	

Equates
	=

	EQU

	TEXTEQU

Listing Control
	.CREF
	.LIST
	.LISTALL

	.LISTIF
	.LISTMACRO
	.LISTMACROALL

	.NOCREF
	.NOLIST
	.NOLISTIF

	.NOLISTMACRO
	PAGE
	SUBTITLE

	.TFCOND
	TITLE
	

Macros
	ENDM
	EXITM
	GOTO

	LOCAL
	MACRO
	PURGE

Miscellaneous
	ASSUME
	COMMENT
	ECHO

	END
	INCLUDE
	INCLUDELIB

	OPTION
	POPCONTEXT
	PUSHCONTEXT

	.RADIX
	
	

Procedures
	ENDP
	INVOKE
	PROC

	PROTO
	USES
	

Processor
	.186
	.286
	.286P

	.287
	.386
	.386P

	.387
	.486
	.486P

	.8086
	.8087
	.NO87

Repeat Blocks
	ENDM
	FOR
	FORC

	GOTO
	REPEAT
	WHILE

Scope
	COMM
	EXTERN
	EXTERNDEF

	INCLUDELIB
	PUBLIC
	

Segment
	.ALPHA
	ASSUME
	.DOSSEG

	END
	ENDS
	GROUP

	SEGMENT
	.SEQ
	

Simplified Segment
	.CODE
	.CONST
	.DATA

	.DATA?
	.DOSSEG
	.EXIT

	.FARDATA
	.FARDATA?
	.MODEL

	.STACK
	.STARTUP
	

String
	CATSTR
	INSTR

	SIZESTR
	SUBSTR

Structure and Record
	ENDS
	RECORD
	STRUCT

	TYPEDEF
	UNION
	

Directives

name = expression
Assigns the numeric value of expression to name. The symbol can be redefined later.

.186
Enables assembly of instructions for the 80186 processor; disables assembly of instructions introduced with later processors. Also enables 8087 instructions.

.286
Enables assembly of nonprivileged instructions for the 80286 processor; disables assembly of instructions introduced with later processors. Also enables 80287 instructions.

.286P
Enables assembly of all instructions (including privileged) for the 80286 processor; disables assembly of instructions introduced with later processors. Also enables 80287 instructions.

.287
Enables assembly of instructions for the 80287 coprocessor; disables assembly of instructions introduced with later coprocessors.

.386
Enables assembly of nonprivileged instructions for the 80386 processor; disables assembly of instructions introduced with later processors. Also enables 80387 instructions.

.386P
Enables assembly of all instructions (including privileged) for the 80386 processor; disables assembly of instructions introduced with later processors. Also enables 80387 instructions.

.387
Enables assembly of instructions for the 80387 coprocessor.

.486
Enables assembly of nonprivileged instructions for the 80486 processor.

.486P
Enables assembly of all instructions (including privileged) for the 80486 processor.

.586
Enables assembly of nonprivileged instructions for the Pentium processor.

.586P
Enables assembly of all instructions (including privileged) for the Pentium processor.

.686
Enables assembly of nonprivileged instructions for the Pentium Pro processor.

.686P
Enables assembly of all instructions (including privileged) for the Pentium Pro processor.

.8086
Enables assembly of 8086 instructions (and the identical 8088 instructions); disables assembly of instructions introduced with later processors. Also enables 8087 instructions. This is the default mode for processors.

.8087
Enables assembly of 8087 instructions; disables assembly of instructions introduced with later coprocessors. This is the default mode for coprocessors.

ALIGN [[number]]

Aligns the next variable or instruction on a byte that is a multiple of number.

.ALPHA
Orders segments alphabetically.

ASSUME segregister:name [[, segregister:name]]...
ASSUME dataregister:type [[, dataregister:type]]...
ASSUME register:ERROR [[, register:ERROR]]...
ASSUME [[register:]] NOTHING [[, register:NOTHING]]...

Enables error checking for register values. After an ASSUME is put into effect, the assembler watches for changes to the values of the given registers. ERROR generates an error if the register is used. NOTHING removes register error checking. You can combine different kinds of assumptions in one statement.

.BREAK [[.IF condition]]

Generates code to terminate a .WHILE or .REPEAT block if condition is true.

[[name]] BYTE initializer [[, initializer]] ...

Allocates and optionally initializes a byte of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

name CATSTR [[textitem1 [[, textitem2]] ...]]

Concatenates text items. Each text item can be a literal string, a constant preceded by a %, or the string returned by a macro function.

.CODE [[name]]

When used with .MODEL, indicates the start of a code segment called name (the default segment name is _TEXT for tiny, small, compact, and flat models, or module_TEXT for other models).

COMM definition [[, definition]] ...

Creates a communal variable with the attributes specified in definition. Each definition has the following form:

[[langtype]] [[NEAR | FAR]] label:type[[:count]]

The label is the name of the variable. The type can be any type specifier (BYTE, WORD, and so on) or an integer specifying the number of bytes. The count specifies the number of data objects (one is the default).

COMMENT delimiter [[text]]

[[text]]

[[text]] delimiter [[text]]

Treats all text between or on the same line as the delimiters as a comment.

.CONST
When used with .MODEL, starts a constant data segment (with segment name CONST). This segment has the read-only attribute.

.CONTINUE [[.IF condition]]

Generates code to jump to the top of a .WHILE or .REPEAT block if condition is true.

.CREF
Enables listing of symbols in the symbol portion of the symbol table and browser file.

.DATA
When used with .MODEL, starts a near data segment for initialized data (segment name _DATA).

.DATA?
When used with .MODEL, starts a near data segment for uninitialized data (segment name _BSS).

.DOSSEG
Orders the segments according to the MS-DOS segment convention: CODE first, then segments not in DGROUP, and then segments in DGROUP. The segments in DGROUP follow this order: segments not in BSS or STACK, then BSS segments, and finally STACK segments. Primarily used for ensuring CodeView support in MASM stand-alone programs. Same as DOSSEG.

DOSSEG
Identical to .DOSSEG, which is the preferred form.

DB
Can be used to define data such as BYTE.

DD
Can be used to define data such as DWORD.

DF
Can be used to define data such as FWORD.

DQ
Can be used to define data such as QWORD.

DT
Can be used to define data such as TBYTE.

DW
Can be used to define data such as WORD.

[[name]] DWORD initializer [[, initializer]]...

Allocates and optionally initializes a doubleword (4 bytes) of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

ECHO message
Displays message to the standard output device (by default, the screen). Same as %OUT.

.ELSE
See .IF.

ELSE
Marks the beginning of an alternate block within a conditional block. See IF.

ELSEIF
Combines ELSE and IF into one statement. See IF.

ELSEIF2
ELSEIF block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.

END [[address]]

Marks the end of a module and, optionally, sets the program entry point to address.

.ENDIF
See .IF.

ENDIF
See IF.

ENDM
Terminates a macro or repeat block. See MACRO, FOR, FORC, REPEAT, or WHILE.

name ENDP
Marks the end of procedure name previously begun with PROC. See PROC.

name ENDS
Marks the end of segment, structure, or union name previously begun with SEGMENT, STRUCT, UNION, or a simplified segment directive.

.ENDW
See .WHILE.

name EQU expression
Assigns numeric value of expression to name. The name cannot be redefined later.

name EQU <text>
Assigns specified text to name. The name can be assigned a different text later. See TEXTEQU.

.ERR [[message]]

Generates an error.

.ERR2 [[message]]

.ERR block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.
.ERRB <textitem> [[, message]]

Generates an error if textitem is blank.

.ERRDEF name [[, message]]

Generates an error if name is a previously defined label, variable, or symbol.

.ERRDIF[[I]] <textitem1>, <textitem2> [[, message]]

Generates an error if the text items are different. If I is given, the comparison is case insensitive.

.ERRE expression [[, message]]

Generates an error if expression is false (0).

.ERRIDN[[I]] <textitem1>, <textitem2> [[, message]]

Generates an error if the text items are identical. If I is given, the comparison is case insensitive.

.ERRNB <textitem> [[, message]]

Generates an error if textitem is not blank.

.ERRNDEF name [[, message]]

Generates an error if name has not been defined.

.ERRNZ expression [[, message]]

Generates an error if expression is true (nonzero).

EVEN
Aligns the next variable or instruction on an even byte.

.EXIT [[expression]]

Generates termination code. Returns optional expression to shell.

EXITM [[textitem]]

Terminates expansion of the current repeat or macro block and begins assembly of the next statement outside the block. In a macro function, textitem is the value returned.

EXTERN [[langtype]] name [[(altid)]] :type [[, [[langtype]] name [[(altid)]] :type]]...

Defines one or more external variables, labels, or symbols called name whose type is type. The type can be ABS, which imports name as a constant. Same as EXTRN.

EXTERNDEF [[langtype]] name:type [[, [[langtype]] name:type]]...

Defines one or more external variables, labels, or symbols called name whose type is type. If name is defined in the module, it is treated as PUBLIC. If name is referenced in the module, it is treated as EXTERN. If name is not referenced, it is ignored. The type can be ABS, which imports name as a constant. Normally used in include files.

EXTRN
See EXTERN.

.FARDATA [[name]]

When used with .MODEL, starts a far data segment for initialized data (segment name FAR_DATA or name).

.FARDATA? [[name]]

When used with .MODEL, starts a far data segment for uninitialized data (segment name FAR_BSS or name).

FOR parameter [[:REQ | :=default]] , <argument [[, argument]]...>
 statements
 ENDM
Marks a block that will be repeated once for each argument, with the current argument replacing parameter on each repetition. Same as IRP.

FORC
 parameter, <string> statements
 ENDM
Marks a block that will be repeated once for each character in string, with the current character replacing parameter on each repetition. Same as IRPC.

[[name]] FWORD initializer [[, initializer]]...

Allocates and optionally initializes 6 bytes of storage for each initializer. Also can be used as a type specifier anywhere a type is legal.

GOTO macrolabel
Transfers assembly to the line marked :macrolabel. GOTO is permitted only inside MACRO, FOR, FORC, REPEAT, and WHILE blocks. The label must be the only directive on the line and must be preceded by a leading colon.

 name GROUP segment [[, segment]]...

Add the specified segments to the group called name.

.IF condition1
 statements
 [[.ELSEIF condition2
 statements]]
 [[.ELSE
 statements]]
 .ENDIF
Generates code that tests condition1 (for example, AX > 7) and executes the statements if that condition is true. If an .ELSE follows, its statements are executed if the original condition was false. Note that the conditions are evaluated at run time.

IF expression1
 ifstatements
 [[ELSEIF expression2
 elseifstatements]]
 [[ELSE
 elsestatements]]
 ENDIF
Grants assembly of ifstatements if expression1 is true (nonzero) or elseifstatements if expression1 is false (0) and expression2 is true. The following directives may be substituted for ELSEIF: ELSEIFB, ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEF. Optionally, assembles elsestatements if the previous expression is false. Note that the expressions are evaluated at assembly time.

IF2 expression
IF block is evaluated on every assembly pass if OPTION:SETIF2 is TRUE. See IF for complete syntax.

IFB textitem
Grants assembly if textitem is blank. See IF for complete syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable, or symbol. See IF for complete syntax.

IFDIF[[I]] textitem1, textitem2
Grants assembly if the text items are different. If I is given, the comparison is case insensitive. See IF for complete syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete syntax.

IFIDN[[I]] textitem1, textitem2
Grants assembly if the text items are identical. If I is given, the comparison is case insensitive. See IF for complete syntax.

IFNB textitem
Grants assembly if textitem is not blank. See IF for complete syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for complete syntax.

INCLUDE filename
Inserts source code from the source file given by filename into the current source file during assembly. The filename must be enclosed in angle brackets if it includes a backslash, semicolon, greater-than symbol, less-than symbol, single quotation mark, or double quotation mark.

INCLUDELIB libraryname
Informs the linker that the current module should be linked with libraryname. The libraryname must be enclosed in angle brackets if it includes a backslash, semicolon, greater-than symbol, less-than symbol, single quotation mark, or double quotation mark.

name INSTR [[position,]] textitem1, textitem2
Finds the first occurrence of textitem2 in textitem1. The starting position is optional. Each text item can be a literal string, a constant preceded by a %, or the string returned by a macro function.

INVOKE expression [[, arguments]]

Calls the procedure at the address given by expression, passing the arguments on the stack or in registers according to the standard calling conventions of the language type. Each argument passed to the procedure may be an expression, a register pair, or an address expression (an expression preceded by ADDR).

IRP
See FOR.

IRPC
See FORC.

.K3D
Enables assembly of K3D instructions.

name LABEL type
Creates a new label by assigning the current location-counter value and the given type to name.

name LABEL [[NEAR | FAR | PROC]] PTR [[type]]

Creates a new label by assigning the current location-counter value and the given type to name.

.LALL
See .LISTMACROALL.

.LFCOND
See .LISTIF.

.LIST
Starts listing of statements. This is the default.

.LISTALL
Starts listing of all statements. Equivalent to the combination of .LIST, .LISTIF, and .LISTMACROALL.

.LISTIF
Starts listing of statements in false conditional blocks. Same as .LFCOND.

.LISTMACRO
Starts listing of macro expansion statements that generate code or data. This is the default. Same as .XALL.

.LISTMACROALL
Starts listing of all statements in macros. Same as .LALL.

LOCAL localname [[, localname]]...

Within a macro, LOCAL defines labels that are unique to each instance of the macro.

LOCAL label [[[count]]] [[:type]] [[, label [[[count]]] [[type]]]]...

Within a procedure definition (PROC), LOCAL creates stack-based variables that exist for the duration of the procedure. The label may be a simple variable or an array containing count elements.

name MACRO [[parameter [[:REQ | :=default | :VARARG]]]]...
 statements
 ENDM [[value]]

Marks a macro block called name and establishes parameter placeholders for arguments passed when the macro is called. A macro function returns value to the calling statement.

.MODEL memorymodel [[, langtype]] [[, stackoption]]

Initializes the program memory model. The memorymodel can be TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE, or FLAT. The langtype can be C, BASIC, FORTRAN, PASCAL, SYSCALL, or STDCALL. The stackoption can be NEARSTACK or FARSTACK.

.MMX
Enables assembly of MMX or single instruction, multiple data (SIMD) instructions.

NAME modulename
Ignored.

.NO87
Disallows assembly of all floating-point instructions.

.NOCREF [[name[[, name]]...]]

Suppresses listing of symbols in the symbol table and browser file. If names are specified, only the given names are suppressed. Same as .XCREF.

.NOLIST
Suppresses program listing. Same as .XLIST.

.NOLISTIF
Suppresses listing of conditional blocks whose condition evaluates to false (0). This is the default. Same as .SFCOND.

.NOLISTMACRO
Suppresses listing of macro expansions. Same as .SALL.

OPTION optionlist
Enables and disables features of the assembler. Available options include CASEMAP, DOTNAME, NODOTNAME, EMULATOR, NOEMULATOR, EPILOGUE, EXPR16, EXPR32, LANGUAGE, LJMP, NOLJMP, M510, NOM510, NOKEYWORD, NOSIGNEXTEND, OFFSET, OLDMACROS, NOOLDMACROS, OLDSTRUCTS, NOOLDSTRUCTS, PROC, PROLOGUE, READONLY, NOREADONLY, SCOPED, NOSCOPED, SEGMENT, and SETIF2.

ORG expression
Sets the location counter to expression.

%OUT
See ECHO.

OWORD
Used as a type specifier when an 8-byte data type is required, for example:

wordarray dw 1,2,3,4
movq mm0, OWORD PTR wordarray
PAGE [[[[length]], width]]

Sets line length and character width of the program listing. If no arguments are given, generates a page break.

PAGE +
Increments the section number and resets the page number to 1.

POPCONTEXT context
Restores part or all of the current context (saved by the PUSHCONTEXT directive). The context can be ASSUMES, RADIX, LISTING, CPU, or ALL.

label PROC [[distance]] [[langtype]] [[visibility]] [[<prologuearg>]]
 [[USES reglist]] [[, parameter [[:tag]]]]...
 statements
 label ENDP
Marks start and end of a procedure block called label. The statements in the block can be called with the CALL instruction or INVOKE directive.

label PROTO [[distance]] [[langtype]] [[, [[parameter]]:tag]]...

Prototypes a function.

PUBLIC [[langtype]] name [[, [[langtype]] name]]...

Makes each variable, label, or absolute symbol specified as name available to all other modules in the program.

PURGE macroname [[, macroname]]...

Deletes the specified macros from memory.

PUSHCONTEXT context
Saves part or all of the current context: segment register assumes, radix value, listing and cref flags, or processor/coprocessor values. The context can be ASSUMES, RADIX, LISTING, CPU, or ALL.

[[name]] QWORD initializer [[, initializer]]...

Allocates and optionally initializes 8 bytes of storage for each initializer. Also can be used as a type specifier anywhere a type is legal.

.RADIX expression
Sets the default radix, in the range 2 to 16, to the value of expression.

name REAL4 initializer [[, initializer]]...

Allocates and optionally initializes a single-precision (4-byte) floating-point number for each initializer.

name REAL8 initializer [[, initializer]]...

Allocates and optionally initializes a double-precision (8-byte) floating-point number for each initializer.

name REAL10 initializer [[, initializer]]...

Allocates and optionally initializes a 10-byte floating-point number for each initializer.

recordname RECORD fieldname:width [[= expression]]
 [[, fieldname:width [[= expression]]]]...

Declares a record type consisting of the specified fields. The fieldname names the field, width specifies the number of bits, and expression gives its initial value.

.REPEAT
 statements
 .UNTIL condition
Generates code that repeats execution of the block of statements until condition becomes true. .UNTILCXZ, which becomes true when CX is zero, may be substituted for .UNTIL. The condition is optional with .UNTILCXZ.

REPEAT expression
 statements
 ENDM
Marks a block that is to be repeated expression times. Same as REPT.

REPT
See REPEAT.

.SALL
See .NOLISTMACRO.

name SBYTE initializer [[, initializer]]...

Allocates and optionally initializes a signed byte of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

name SDWORD initializer [[, initializer]]...

Allocates and optionally initializes a signed doubleword (4 bytes) of storage for each initializer. Also can be used as a type specifier anywhere a type is legal.

name SEGMENT [[READONLY]] [[align]] [[combine]] [[use]] [['class']]
 statements
 name ENDS
Defines a program segment called name having segment attributes align (BYTE, WORD, DWORD, PARA, PAGE), combine (PUBLIC, STACK, COMMON, MEMORY, AT address, PRIVATE), use (USE16, USE32, FLAT), and class.
.SEQ
Orders segments sequentially (the default order).

.SFCOND
See .NOLISTIF.

name SIZESTR textitem
Finds the size of a text item.

.STACK [[size]]

When used with .MODEL, defines a stack segment (with segment name STACK). The optional size specifies the number of bytes for the stack (default 1,024). The .STACK directive automatically closes the stack statement.

.STARTUP
Generates program start-up code.

STRUC
See STRUCT.

name STRUCT [[alignment]] [[, NONUNIQUE]]
 fielddeclarations
 name ENDS
Declares a structure type having the specified fielddeclarations. Each field must be a valid data definition. Same as STRUC.

STRUC
See STRUCT.
name SUBSTR textitem, position [[, length]]

Returns a substring of textitem, starting at position. The textitem can be a literal string, a constant preceded by a %, or the string returned by a macro function.

SUBTITLE text
Defines the listing subtitle. Same as SUBTTL.

SUBTTL
See SUBTITLE.

name SWORD initializer [[, initializer]]...

Allocates and optionally initializes a signed word (2 bytes) of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

[[name]] TBYTE initializer [[, initializer]]...

Allocates and optionally initializes 10 bytes of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

name TEXTEQU [[textitem]]

Assigns textitem to name. The textitem can be a literal string, a constant preceded by a %, or the string returned by a macro function.

.TFCOND
Toggles listing of false conditional blocks.

TITLE text
Defines the program listing title.

name TYPEDEF type
Defines a new type called name, which is equivalent to type.

name UNION [[alignment]] [[, NONUNIQUE]]
 fielddeclarations
[[name]] ENDS

Declares a union of one or more data types. The fielddeclarations must be valid data definitions. Omit the ENDS name label on nested UNION definitions.

.UNTIL
See .REPEAT.

.UNTILCXZ
See .REPEAT.

.WHILE condition
 statements
 .ENDW
Generates code that executes the block of statements while condition remains true.

WHILE expression
 statements
 ENDM
Repeats assembly of block statements as long as expression remains true.

[[name]] WORD initializer [[, initializer]]...

Allocates and optionally initializes a word (2 bytes) of storage for each initializer. Can also be used as a type specifier anywhere a type is legal.

.XALL
See .LISTMACRO.

.XCREF
See .NOCREF.

.XLIST
See .NOLIST.

.XMM
Enables assembly of Internet Streaming SIMD Extension instructions.

chapter 3

Symbols and Operators

Topical Cross-Reference for SymbolsEnterLink
26
Topical Cross-Reference for OperatorsEnterLink
27

Topical Cross-Reference for Symbols

Date and Time Information
	@Date

	@Time

Environment Information
	@Cpu

	@Environ

	@Interface

	@Version

File Information
	@FileCur

	@FileName

	@Line

Macro Functions
	@CatStr

	@InStr

	@SizeStr

	@SubStr

Miscellaneous
	$
	?
	@@:

	@B
	@F
	

Segment Information
	@code
	@CodeSize
	@CurSeg

	@data
	@DataSize
	@fardata

	@fardata?
	@Model
	@stack

	@WordSize
	
	

Topical Cross-Reference for Operators

Arithmetic
	*
	+
	-

	.
	/
	[]

	MOD
	
	

Control Flow
	!
	!=
	&

	&&
	<
	< =

	= =
	>
	> =

	||
	
	

Logical and Shift
	AND
	NOT
	OR

	SHL
	SHR
	XOR

Macro
	!
	%
	&

	;;
	<>
	

Miscellaneous
	''
	" "
	:

	::
	;
	CARRY?

	DUP
	OVERFLOW?
	PARITY?

	SIGN?
	ZERO?
	

Record
	MASK

	WIDTH

Relational
	EQ
	GE
	GT

	LE
	LT
	NE

Segment
	:

	LROFFSET

	OFFSET

	SEG

Type
	HIGH
	HIGHWORD
	LENGTH

	LENGTHOF
	LOW
	LOWWORD

	OPATTR
	PTR
	SHORT

	SIZE
	SIZEOF
	THIS

	TYPE
	
	

Predefined Symbols

$
The current value of the location counter.

?
In data declarations, a value that the assembler allocates but does not initialize.

@@:
Defines a code label recognizable only between label1 and label2, where label1 is either start of code or the previous @@: label, and label2 is either end of code or the next @@: label. See @B and @F.

@B
The location of the previous @@: label.

@CatStr(string1 [[, string2...]])
Macro function that concatenates one or more strings. Returns a string.

@code
The name of the code segment (text macro).

@CodeSize
0 for TINY, SMALL, COMPACT, and FLAT models, and 1 for MEDIUM, LARGE, and HUGE models (numeric equate).

@Cpu
A bit mask specifying the processor mode (numeric equate).

@CurSeg
The name of the current segment (text macro).

@data
The name of the default data group. Evaluates to DGROUP for all models except FLAT. Evaluates to FLAT under the FLAT memory model (text macro).

@DataSize
0 for TINY, SMALL, MEDIUM, and FLAT models, 1 for COMPACT and LARGE models, and 2 for HUGE model (numeric equate).

@Date
The system date in the format mm/dd/yy (text macro).

@Environ(envvar)
Value of environment variable envvar (macro function).

@F
The location of the next @@: label.

@fardata
The name of the segment defined by the .FARDATA directive (text macro).

@fardata?
The name of the segment defined by the .FARDATA? directive (text macro).

@FileCur
The name of the current file (text macro).

@FileName
The base name of the main file being assembled (text macro).

@InStr([[position]], string1, string2)
Macro function that finds the first occurrence of string2 in string1, beginning at position within string1. If position does not appear, search begins at start of string1. Returns a position integer or 0 if string2 is not found.

@Interface
Information about the language parameters (numeric equate).

@Line
The source line number in the current file (numeric equate).

@Model
1 for TINY model, 2 for SMALL model, 3 for COMPACT model, 4 for MEDIUM model, 5 for LARGE model, 6 for HUGE model, and 7 for FLAT model (numeric equate).

@SizeStr(string)
Macro function that returns the length of the given string. Returns an integer.

@SubStr(string, position [[, length]])
Macro function that returns a substring starting at position.

@stack
DGROUP for near stacks or STACK for far stacks (text macro).

@Time
The system time in 24-hour hh:mm:ss format (text macro).

@Version
615 in MASM 6.15 (text macro).

@WordSize
Two for a 16-bit segment or 4 for a 32-bit segment (numeric equate).

Operators
expression1 + expression2
Returns expression1 plus expression2.

expression1 – expression2
Returns expression1 minus expression2.

expression1 * expression2
Returns expression1 times expression2.

expression1 / expression2
Returns expression1 divided by expression2.

–expression
Reverses the sign of expression.

expression1 [expression2]
Returns expression1 plus [expression2].

segment: expression
Overrides the default segment of expression with segment. The segment can be a segment register, group name, segment name, or segment expression. The expression must be a constant.

expression. field [[. field]]...

Returns expression plus the offset of field within its structure or union.

[register]. field [[. field]]...

Returns value at the location pointed to by register plus the offset of field within its structure or union.

<text>
Treats text as a single literal element.

"text"

Treats "text" as a string.

'text'

Treats 'text' as a string.

!character
Treats character as a literal character rather than as an operator or symbol.

;text
Treats text as a comment.

;;text
Treats text as a comment in a macro that appears only in the macro definition. The listing does not show text where the macro is expanded.

%expression
Treats the value of expression in a macro argument as text.

¶meter&
Replaces parameter with its corresponding argument value.

ABS
See the EXTERNDEF directive.

ADDR
See the INVOKE directive.

expression1 AND expression2
Returns the result of a bitwise AND operation for expression1 and expression2.

count DUP (initialvalue [[, initialvalue]]...)

Specifies count number of declarations of initialvalue.

expression1 EQ expression2
Returns true (–1) if expression1 equals expression2, or returns false (0) if it does not.

expression1 GE expression2
Returns true (–1) if expression1 is greater than or equal to expression2, or returns false (0) if it is not.

expression1 GT expression2
Returns true (–1) if expression1 is greater than expression2, or returns false (0) if it is not.

HIGH expression
Returns the high byte of expression.

HIGHWORD expression
Returns the high word of expression.

expression1 LE expression2
Returns true (–1) if expression1 is less than or equal to expression2, or returns false (0) if it is not.

LENGTH variable
Returns the number of data items in variable created by the first initializer.

LENGTHOF variable
Returns the number of data objects in variable.

LOW expression
Returns the low byte of expression.

LOWWORD expression
Returns the low word of expression.

LROFFSET expression
Returns the offset of expression. Same as OFFSET, but it generates a loader resolved offset, which allows Windows to relocate code segments.

expression1 LT expression2
Returns true (–1) if expression1 is less than expression2, or returns false (0) if it is not.

MASK {recordfieldname | record}
Returns a bit mask in which the bits in recordfieldname or record are set and all other bits are cleared.

expression1 MOD expression2
Returns the integer value of the remainder (modulo) when dividing expression1 by expression2.

expression1 NE expression2
Returns true (–1) if expression1 does not equal expression2, or returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET expression
Returns the offset of expression.

OPATTR expression
Returns a word defining the mode and scope of expression. The low byte is identical to the byte returned by .TYPE. The high byte contains additional information.

expression1 OR expression2
Returns the result of a bitwise OR operation for expression1 and expression2.

type PTR expression
Forces the expression to be treated as having the specified type.
[[distance]] PTR type
Specifies a pointer to type.

SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count number of bits.

SHORT label
Sets the type of label to short. All jumps to label must be short (within the range –128 to +127 bytes from the jump instruction to label).

expression SHR count
Returns the result of shifting the bits of expression right count number of bits.

SIZE variable
Returns the number of bytes in variable allocated by the first initializer.

SIZEOF {variable | type}

Returns the number of bytes in variable or type.

THIS type
Returns an operand of specified type whose offset and segment values are equal to the current location counter value.

.TYPE expression
See OPATTR.

TYPE expression
Returns the type of expression.

WIDTH {recordfieldname | record}

Returns the width in bits of the current recordfieldname or record.

expression1 XOR expression2
Returns the result of a bitwise XOR operation for expression1 and expression2.

Run-Time Operators

The following operators are used only within .IF, .WHILE, or .REPEAT blocks and are evaluated at run time, not at assembly time:

expression1 == expression2
Is equal to.

expression1 != expression2
Is not equal to.

expression1 > expression2
Is greater than.

expression1 >= expression2
Is greater than or equal to.

expression1 < expression2
Is less than.

expression1 <= expression2
Is less than or equal to.

expression1 || expression2
Logical OR.

expression1 && expression2
Logical AND.

expression1 & expression2
Bitwise AND.

!expression
Logical negation.

CARRY?
Status of carry flag.

OVERFLOW?
Status of overflow flag.

PARITY?
Status of parity flag.

SIGN?
Status of sign flag.

ZERO?
Status of zero flag.

Chapter 4

Error Messages

Error Messages Generated by MASM ComponentsEnterLink
36
Error Message ListsEnterLink
36
H2INC Error MessagesEnterLink
37
ML Error MessagesEnterLink
76

Error Messages Generated by MASM Components

The error messages generated by MASM components fall into three categories:

· Fatal errors. These indicate a severe problem that prevents the utility from completing its normal process.

· Nonfatal errors. The utility may complete its process. If it does, its result is not likely to be the one you want.

· Warnings. These messages indicate conditions that may prevent you from getting the results you want.

All error messages take the form:

Utility: Filename (Line) : [Error type} (Code): Message text

Utility is the program that sent the error message.

Filename is the file that contains the error-generating condition.

Line is the approximate line where the error condition exists.

Error type is Fatal Error, Error, or Warning.

Code is the unique 5- or 6-digit error code.

Message text is a short and general description of the error condition.

Error Message Lists

Messages for each utility are listed below in numerical order, with a brief explanation of each error. The following two tables list the messages by utility and error code, respectively.

H2INC Error Messages

H2INC Fatal Errors

	HI1003
	error count exceeds n; stopping compilation

Errors in the program were too numerous or too severe to allow recovery, and the compiler must terminate.

	HI1004
	unexpected end-of-file found

The default disk drive did not contain sufficient space for the compiler to create temporary files. The space required is approximately two times the size of the source file.

This message also appears when the #if directive occurs without a corresponding closing #endif directive while the #if test directs the compiler to skip the section.

	HI1007
	unrecognized flag string in option
The string in the command-line option was not a valid option.

	HI1008
	no input file specified

The compiler was not given a file to compile.

	HI1009
	compiler limit : macros nested too deeply

Too many macros were being expanded at the same time.

This error occurs when a macro definition contains macros to be expanded and those macros contain other macros.

Try to split the nested macros into simpler macros.

	HI1011
	compiler limit : identifier : macro definition too big

The macro definition was longer than allowed.

Split the definition into shorter definitions.

	HI1012
	unmatched parenthesis nesting - missing character
The parentheses in a preprocessor directive were not matched. The missing character is either a left, (, or right,), parenthesis.

	HI1016
	#if[n]def expected an identifier

An identifier must be specified with the #ifdef and #ifndef directives.

	HI1017
	invalid integer constant expression

The expression in an #if directive either did not exist or did not evaluate to a constant.

	HI1018
	unexpected '#elif'

The #elif directive is legal only when it appears within an #if, #ifdef, or #ifndef construct.

	HI1019
	unexpected '#else'

The #else directive is legal only when it appears within an #if, #ifdef, or #ifndef construct.

	HI1020
	unexpected '#endif'

An #endif directive appeared without a matching #if, #ifdef, or #ifndef directive.

	HI1021
	invalid preprocessor command string
The characters following the number sign (#) did not form a valid preprocessor directive.

	HI1022
	expected '#endif'

An #if, #ifdef, or #ifndef directive was not terminated with an #endif directive.

	HI1023
	cannot open source file filename
The given file either did not exist, could not be opened, or was not found.

Make sure the environment settings are valid and that the correct path name for the file is specified.

If this error appears without an error message, the compiler has run out of file handles. If in MS-DOS, increase the number of file handles by changing the FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=20 is the recommended setting.

	HI1024
	cannot open include file filename
The specified file in an #include preprocessor directive could not be found.

Make sure settings for the INCLUDE and TMP environment variables are valid and that the correct path name for the file is specified.

If this error appears without an error message, the compiler has run out of file handles. If in MS-DOS, increase the number of file handles by changing the FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=20 is the recommended setting.

	HI1026
	parser stack overflow, please simplify your program

The program cannot be processed because the space required to parse the program causes a stack overflow in the compiler.

Simplify the program by decreasing the complexity of expressions. Decrease the level of nesting in for and switch statements by putting some of the more deeply nested statements in separate functions. Break up very long expressions involving ',' operators or function calls.

	HI1033
	cannot open assembly language output file filename
There are several possible causes for this error:

· The given name is not valid

· The file cannot be opened for lack of space.

· A read-only file with the given name already exists.

	HI1036
	cannot open source listing file filename
There are several possible causes for this error:

· The given name is not valid.

· The file cannot be opened for lack of space.

· A read-only file with the given name already exists.

	HI1039
	unrecoverable heap overflow in Pass 3

The postoptimizer compiler pass overflowed the heap and could not continue.

One of the following may be a solution:

· Break up the function containing the line that caused the error.

· Recompile with the /Od option, removing optimization.

· In MS-DOS, remove other programs or drivers running in the system which could be consuming significant amounts of memory.

· In MS-DOS, if using NMAKE, compile without using NMAKE.

	HI1040
	unexpected end-of-file in source file filename
The compiler detected an unexpected end-of-file condition while creating a source listing or mingled source/object listing.

	HI1047
	limit of option exceeded at string
The given option was specified too many times. The given string is the argument to the option that caused the error.

If the CL or H2INC environment variables have been set, options in these variables are read before options specified on the command line. The CL environment variable is read before the H2INC environment variable.

	HI1048
	This error existed in previous versions of H2INC as "unknown option character in option." This condition now generates warning HI4799.

	HI1049
	This error existed in previous versions of H2INC as "invalid numerical argument string." This condition now generates warning HI4052.

	HI1050
	segment : code segment too large

A code segment grew to within 36 bytes of 64K during compilation.

A 36-byte pad is used because of a bug in some 80286 chips that can cause programs to exhibit strange behavior when, among other conditions, the size of a code segment is within 36 bytes of 64K.

	HI1052
	compiler limit : #if/#ifdef nested too deeply

The program exceeded the maximum of 32 nesting levels for #if and #ifdef directives.

	HI1053
	compiler limit : struct/union nested too deeply

A structure or union definition was nested to more than 15 levels.

Break the structure or union into two parts by defining one or more of the nested structures using typedef.

	HI1090
	segment data allocation exceeds 64K

The size of the named segment exceeds 64K.

This error occurs with _based allocation.

	HI1800
	This error existed in previous versions of H2INC as "option: unrecognized option." This condition now generates warning HI4799.

	HI1801
	incomplete model specification

Only part of a custom memory-model specification was specified on the command line.

When you specify a custom memory model with the /A command-line option, you must specify code pointer distance, data pointer distance, and DS register setup. This error is equivalent to the D2013 error message for CL.

H2INC Nonfatal Errors

	HI2000
	UNKNOWN ERROR Contact Microsoft Product Support Services

The compiler detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation at http://support.microsoft.com/directory/.

	HI2001
	newline in constant

A string constant was continued onto a second line without either a backslash or closing and opening quotes.

To break a string constant onto two lines in the source file, do one of the following:

· End the first line with the line-continuation character, a backslash, \.

· Close the string on the first line with a double quotation mark, and open the string on the next line with another quotation mark.

It is not sufficient to end the first line with \n, the escape sequence for embedding a newline character in a string constant.

The following two examples demonstrate causes of this error:

printf("Hello,
world");

or

printf("Hello,\n
world");

The following two examples show ways to correct this error:

printf("Hello,\

world");

or

printf("Hello,"

" world");

Note that any spaces at the beginning of the next line after a line-continuation character are included in the string constant. Note, also, that neither solution actually places a newline character into the string constant. To embed this character:

printf("Hello,\n\

world");

or

printf("Hello,\

\nworld");

or

printf("Hello,\n"

"world");

or

printf("Hello,"

"\nworld");

	HI2003
	expected defined id
An identifier was expected after the preprocessing keyword defined.

	HI2004
	expected defined(id)
An identifier was expected after the left parenthesis, (, following the preprocessing keyword defined.

	HI2005
	#line expected a line number, found token
A #line directive lacked the required line-number specification.

	HI2006
	#include expected a file name, found token
An #include directive lacked the required file-name specification.

	HI2007
	#define syntax

An identifier was expected following #define in a preprocessing directive.

	HI2008
	character : unexpected in macro definition

The given character was found immediately following the name of the macro.

	HI2009
	reuse of macro formal identifier
The given identifier was used more than once in the formal parameter list of a macro definition.

	HI2010
	character : unexpected in macro formal-parameter list

The given character was used incorrectly in the formal parameter list of a macro definition.

	HI2012
	missing name following '<'

An #include directive lacked the required filename specification.

	HI2013
	missing '>'

The closing angle bracket (>) was missing from an #include directive.

	HI2014
	preprocessor command must start as first non-white-space

Non-white-space characters appeared before the number sign (#) of a preprocessor directive on the same line.

	HI2015
	too many characters in constant

A character constant contained more than one character.

Note that an escape sequence (for example, \ t for tab) is converted to a single character.

	HI2016
	no closing single quotation mark

A newline character was found before the closing single quotation mark of a character constant.

	HI2017
	illegal escape sequence

An escape sequence appeared where one was not expected.

An escape sequence (a backslash, \, followed by a number or letter) may occur only in a character or string constant.

	HI2018
	unknown character hexnumber
The ASCII character corresponding to the given hexadecimal number appeared in the source file but is an illegal character.

One possible cause of this error is corruption of the source file. Edit the file and look at the line on which the error occurred.

	HI2019
	expected preprocessor directive, found character
The given character followed a number sign (#), but it was not the first letter of a preprocessor directive.

	HI2021
	expected exponent value, not character
The given character was used as the exponent of a floating-point constant but was not a valid number.

	HI2022
	number : too big for character

The octal number following a backslash (\) in a character or string constant was too large to be represented as a character.

	HI2025
	identifier : enum/struct/union type redefinition

The given identifier had already been used for an enumeration, structure, or union tag.

	HI2026
	identifier : member of enum redefinition

The given identifier has already been used for an enumeration constant, either within the same enumeration type or within another visible enumeration type.

	HI2027
	use of undefined enum/struct/union identifier
The given identifier referred to a structure or union type that was not defined.

	HI2028
	struct/union member needs to be inside a struct/union

Structure and union members must be declared within the structure or union.

This error may be caused by an enumeration declaration containing a declaration of a structure member, as in the following example:

enum a {

january,

february,

int march; /* Illegal structure declaration */

};

	HI2030
	identifier : struct/union member redefinition

The identifier was used for more than one member of the same structure or union.

	HI2031
	identifier : function cannot be struct/union member

The given function was declared to be a member of a structure or union.

To correct this error, use a pointer to the function instead.

	HI2033
	identifier : bit field cannot have indirection

The given bit field was declared as a pointer (*), which is not allowed.

	HI2034
	identifier : type of bit field too small for number of bits

The number of bits specified in the bit-field declaration exceeded the number of bits in the given base type.

	HI2035
	struct/union identifier : unknown size

The given structure or union had an undefined size.

Usually this occurs when referencing a declared but not defined structure or union tag.

For example, the following code causes this error:

struct s_tag *ps;

ps = &my_var;

ps = 17; / This line causes the error */

	HI2037
	left of operator specifies undefined struct/union identifier
The expression before the member-selection operator (-> or .) identified a structure or union type that was not defined.

	HI2038
	identifier : not struct/union member

The given identifier was used in a context that required a structure or union member.

	HI2041
	illegal digit character for base number
The given character was not a legal digit for the base used.

	HI2042
	signed/unsigned keywords mutually exclusive

The keywords signed and unsigned were both used in a single declaration, as in the following example:

unsigned signed int i;

	HI2056
	illegal expression

An expression was illegal because of a previous error, which may not have produced an error message.

	HI2057
	expected constant expression

The context requires a constant expression.

	HI2058
	constant expression is not integral

The context requires an integral constant expression.

	HI2059
	syntax error : token
The token caused a syntax error.

	HI2060
	syntax error : end-of-file found

The compiler expected at least one more token.

Some causes of this error include:

· Omitting a semicolon (;), as in

int *p

· Omitting a closing brace (}) from the last function, as in

main()

{

	HI2061
	syntax error : identifier identifier
The identifier caused a syntax error.

	HI2062
	type type unexpected

The compiler did not expect the given type to appear here, possibly because it already had a required type.

	HI2063
	identifier : not a function

The given identifier was not declared as a function, but an attempt was made to use it as a function.

	HI2064
	term does not evaluate to a function

An attempt was made to call a function through an expression that did not evaluate to a function pointer.

	HI2065
	identifier : undefined

An attempt was made to use an identifier that was not defined.

	HI2066
	cast to function type is illegal

An object was cast to a function type, which is illegal.

However, it is legal to cast an object to a function pointer.

	HI2067
	cast to array type is illegal

An object was cast to an array type.

	HI2068
	illegal cast

A type used in a cast operation was not legal for this expression.

	HI2069
	cast of void term to nonvoid

The void type was cast to a different type.

	HI2070
	illegal sizeof operand

The operand of a sizeof expression was not an identifier or a type name.

	HI2071
	identifier : illegal storage class

The given storage class cannot be used in this context.

	HI2072
	identifier : initialization of a function

An attempt was made to initialize a function.

	HI2043
	illegal break

A break statement is legal only within a do, for, while, or switch statement.

	HI2044
	illegal continue

A continue statement is legal only within a do, for, or while statement.

	HI2045
	identifier : label redefined

The label appeared before more than one statement in the same function.

	HI2046
	illegal case

The keyword case may appear only within a switch statement.

	HI2047
	illegal default

The keyword default may appear only within a switch statement.

	HI2048
	more than one default

A switch statement contained more than one default label.

	HI2049
	case value value already used

The case value was already used in this switch statement.

	HI2050
	nonintegral switch expression

A switch expression did not evaluate to an integral value.

	HI2051
	case expression not constant

Case expressions must be integral constants.

	HI2052
	case expression not integral

Case expressions must be integral constants.

	HI2054
	expected '(' to follow identifier
The context requires parentheses after the function identifier.

One cause of this error is forgetting an equal sign (=) on a complex initialization, as in

int array1[] /* Missing = */

{

1,2,3

};

	HI2055
	expected formal-parameter list, not a type list

An argument-type list appeared in a function definition instead of a formal parameter list.

	HI2075
	identifier : array initialization needs curly braces

There were no braces, {}, around the given array initializer.

	HI2076
	identifier : struct/union initialization needs curly braces

There were no braces, {}, around the given structure or union initializer.

	HI2077
	nonscalar field initializer identifier
An attempt was made to initialize a bit-field member of a structure with a nonscalar value.

	HI2078
	too many initializers

The number of initializers exceeded the number of objects to be initialized.

	HI2079
	identifier uses undefined struct/union name
The identifier was declared as structure or union type name, but the name had not been defined. This error may also occur if an attempt is made to initialize an anonymous union.

	HI2080
	illegal far _fastcall function

A far _fastcall function may not be compiled with the /Gw option, or with the /Gq option if stack checking is enabled.

	HI2082
	redefinition of formal parameter identifier
A formal parameter to a function was redeclared within the function body.

	HI2084
	function function already has a body

The function has already been defined.

	HI2086
	identifier : redefinition

The given identifier was defined more than once, or a subsequent declaration differed from a previous one.

The following are ways to cause this error:

int a;

char a;

main()

{

}
main()

{

int a;

int a;

}

However, the following does not cause this error:

int a;

int a;

main()

{

}

	HI2087
	identifier : missing subscript

The definition of an array with multiple subscripts was missing a subscript value for a dimension other than the first dimension.

The following is an example of an illegal definition:

int func(a)

char a[10][];

{ }

The following is an example of a legal definition:

int func(a)

char a[][5];

{ }

	HI2090
	function returns array

A function cannot return an array. It can return a pointer to an array.

	HI2091
	function returns function

A function cannot return a function. It can return a pointer to a function.

	HI2092
	array element type cannot be function

Arrays of functions are not allowed. Arrays of pointers to functions are allowed.

	HI2095
	function : actual has type void : parameter number
An attempt was made to pass a void argument to a function. The given number indicates which argument was in error.

Formal parameters and arguments to functions cannot have type void. They can, however, have type void * (pointer to void).

	HI2100
	illegal indirection

The indirection operator (*) was applied to a nonpointer value.

	HI2101
	'&' on constant

The address-of operator (&) did not have an lvalue as its operand.

	HI2102
	'&' requires lvalue

The address-of operator (&) must be applied to an lvalue expression.

	HI2103
	'&' on register variable

An attempt was made to take the address of a register variable.

	HI2104
	'&' on bit field ignored

An attempt was made to take the address of a bit field.

	HI2105
	operator needs lvalue

The given operator did not have an lvalue operand.

	HI2106
	operator : left operand must be lvalue

The left operand of the given operator was not an lvalue.

	HI2107
	illegal index, indirection not allowed

A subscript was applied to an expression that did not evaluate to a pointer.

	HI2108
	nonintegral index

A nonintegral expression was used in an array subscript.

	HI2109
	subscript on nonarray

A subscript was used on a variable that was not an array.

	HI2110
	pointer + pointer

An attempt was made to add one pointer to another using the plus (+) operator.

	HI2111
	pointer + nonintegral value

An attempt was made to add a nonintegral value to a pointer.

	HI2112
	illegal pointer subtraction

An attempt was made to subtract pointers that did not point to the same type.

	HI2113
	pointer subtracted from nonpointer

The right operand in a subtraction operation using the minus (-) operator was a pointer, but the left operand was not.

	HI2114
	operator : pointer on left; needs integral right

The left operand of the given operator was a pointer; so the right operand must be an integral value.

	HI2115
	identifier : incompatible types

An expression contained incompatible types.

	HI2117
	operator : illegal for struct/union

Structure and union type values are not allowed with the given operator.

	HI2118
	negative subscript

A value defining an array size was negative.

	HI2120
	void illegal with all types

The void type was used in a declaration with another type.

	HI2121
	operator : bad left/right operand

The left or right operand of the given operator was illegal for that operator.

	HI2124
	divide or mod by zero

A constant expression was evaluated and found to have a zero denominator.

	HI2128
	identifier : huge array cannot be aligned to segment boundary

The given huge array was large enough to cross two segment boundaries, but could not be aligned to both boundaries to prevent an individual array element from crossing a boundary.

If the size of a huge array causes it to cross two boundaries, the size of each array element must be a power of two, so that a whole number of elements will fit between two segment boundaries.

	HI2129
	static function function not found

A forward reference was made to a static function that was never defined.

	HI2130
	#line expected a string containing the file name, found token
The optional token following the line number on a #line directive was not a string.

	HI2131
	more than one memory attribute

More than one of the keywords _near, _far, _huge, or _based were applied to an item, as in the following example:

typedef int _near nint;

nint _far a; /* Illegal */

	HI2132
	syntax error : unexpected identifier

An identifier appeared in a syntactically illegal context.

	HI2133
	identifier : unknown size

An attempt was made to declare an unsized array as a local variable.

	HI2134
	identifier : struct/union too large

The size of a structure or union exceeded the 64K compiler limit.

	HI2136
	function : prototype must have parameter types

A function prototype declarator had formal parameter names, but no types were provided for the parameters.

A formal parameter in a function prototype must either have a type or be represented by an ellipsis (...) to indicate a variable number of arguments and no type checking.

One cause of this error is a misspelling of a type name in a prototype that does not provide the names of formal parameters.

	HI2137
	empty character constant

The illegal empty character constant ('') was used.

	HI2139
	type following identifier is illegal

Two types were used in the same declaration.

For example:

int double a;

	HI2141
	value out of range for enum constant

An enumeration constant had a value outside the range of values allowed for type int.

	HI2143
	syntax error : missing token1 before token2
The compiler expected token1 to appear before token2.

This message may appear if a required closing brace (}), right parenthesis ()), or semicolon (;) is missing.

	HI2144
	syntax error : missing token before type type
The compiler expected the given token to appear before the given type name.

This message may appear if a required closing brace (}), right parenthesis ()), or semicolon (;) is missing.

	HI2145
	syntax error : missing token before identifier

The compiler expected the given token to appear before an identifier.

This message may appear if a semicolon (;) does not appear after the last declaration of a block.

	HI2146
	syntax error : missing token before identifier identifier
The compiler expected the given token to appear before the given identifier.

	HI2147
	unknown size

An attempt was made to increment an index or pointer to an array whose base type has not yet been declared.

	HI2148
	array too large

An array exceeded the maximum legal size of 64K.

Reduce the size of the array, or declare it with _huge.

	HI2149
	identifier : named bit field cannot have 0 width

The given named bit field had zero width. Only unnamed bit fields are allowed to have zero width.

	HI2150
	identifier : bit field must have type int, signed int, or unsigned int

The ANSI C standard requires bit fields to have types of int, signed int, or unsigned int. This message appears only when compiling with the /Za option.

	HI2151
	more than one language attribute

More than one keyword specifying a calling convention for a function was given.

	HI2152
	identifier : pointers to functions with different attributes

An attempt was made to assign a pointer to a function declared with one calling convention (_cdecl, _fortran, _pascal, or _fastcall) to a pointer to a function declared with a different calling convention.

	HI2153
	hex constants must have at least 1 hex digit

The hexadecimal constants 0x, 0X and \x are illegal. At least one hexadecimal digit must follow the x or X.

	HI2154
	segment : does not refer to a segment name

A _based-allocated variable must be allocated in a segment unless it is extern and uninitialized.

	HI2156
	pragma must be outside function

A pragma that must be specified at a global level, outside a function body, occurred within a function.

For example, the following causes this error:

main()

{

#pragma optimize("l", on)

}

	HI2157
	function : must be declared before use in pragma list

The function name in the list of functions for an alloc_text pragma has not been declared before being referenced in the list.

	HI2158
	identifier : is a function

The given identifier was specified in the list of variables in a same_seg pragma but was previously declared as a function.

	HI2159
	more than one storage class specified

A declaration contained more than one storage class, as in

extern static int i;

	HI2160
	## cannot occur at the beginning of a macro definition

A macro definition began with a token-pasting operator (##), as in

#define mac(a,b) ##a

	HI2161
	## cannot occur at the end of a macro definition

A macro definition ended with a token-pasting operator (##), as in

#define mac(a,b) a##

	HI2162
	expected macro formal parameter

The token following a stringizing operator (#) was not a formal parameter name.

For example:

#define print(a) printf(#b)

	HI2165
	keyword : cannot modify pointers to data

The _fortran, _pascal, _cdecl, or _fastcall keyword was used illegally to modify a pointer to data, as in the following example:

char _pascal *p;

	HI2166
	lvalue specifies const object

An attempt was made to modify an item declared with const type.

	HI2167
	function : too many actual parameters for intrinsic function

A reference to the intrinsic function name contained too many actual parameters.

	HI2168
	function : too few actual parameters for intrinsic function

A reference to the intrinsic function name contained too few actual parameters.

	HI2171
	operator : illegal operand

The given unary operator was used with an illegal operand type, as in the following example:

int (*fp)();

double d,d1;

fp++;

d = ~d1;

	HI2172
	function : actual is not a pointer : parameter number
An attempt was made to pass an argument that was not a pointer to a function that expected a pointer. The given number indicates which argument was in error.

	HI2173
	function : actual is not a pointer : parameter number1, parameter list number2
An attempt was made to pass a nonpointer argument to a function that expected a pointer.

This error occurs in calls that return a pointer to a function. The first number indicates which argument was in error; the second number indicates which argument list contained the invalid argument.

	HI2174
	function : actual has type void : parameter number1, parameter list number2
An attempt was made to pass a void argument to a function. Formal parameters and arguments to functions cannot have type void. They can, however, have type void * (pointer to void).

This error occurs in calls that return a pointer to a function. The first number indicates which argument was in error; the second number indicates which argument list contained the invalid argument.

	HI2177
	constant too big

Information was lost because a constant value was too large to be represented in the type to which it was assigned.

	HI2178
	identifier : storage class for same_seg variables must be extern

The given variable was specified in a same_seg pragma, but it was not declared with extern storage class.

	HI2179
	identifier : was used in same_seg, but storage class is no longer extern

The given variable was specified in a same_seg pragma, but it was redeclared with a storage class other than extern.

	HI2185
	identifier : illegal _based allocation

A _based-allocated variable that explicitly has extern storage class and is uninitialized may not have a base of any of the following:

(_segment) & var

_segname("_STACK")

(_segment)_self

void

If the variable does not explicitly have extern storage class or it is uninitialized, then its base must use _segname("string") where string is any segment name or reserved segment name except "_STACK".

	HI2187
	cast of near function pointer to far function pointer

An attempt was made to cast a near function pointer as a far function pointer.

	HI2189
	#error : string
An #error directive was encountered. The string is the descriptive text supplied in the directive.

	HI2193
	identifier : already in a segment

A variable in the same_seg pragma has already been allocated in a segment, using _based.

	HI2194
	segment : is a text segment

The given text segment was used where a data, const, or bss segment was expected.

	HI2195
	segment : is a data segment

The given data segment was used where a text segment was expected.

	HI2200
	function : function has already been defined

A function name passed as an argument in an alloc_text pragma has already been defined.

	HI2201
	function : storage class must be extern

A function declaration appears within a block, but the function is not declared extern. This causes an error if the /Za option is in effect.

For example, the following causes this error, when compiled with /Za:

main()

{

static int func1();

}

	HI2205
	identifier : cannot initialize extern block-scoped variables

A variable with extern storage class may not be initialized in a function.

	HI2208
	no members defined using this type

An enum, struct, or union was defined without any members. This is an error only when compiling with /Za; otherwise, it is a warning.

	HI2209
	type cast in _based construct must be (_segment)

The only type allowed within a cast in a _based declarator is (_segment).

	HI2210
	identifier : must be near/far data pointer

The base in a _based declarator must not be an array, a function, or a _based pointer.

	HI2211
	(_segment) applied to function identifier function
The item cast in a _based declarator must not be a function.

	HI2212
	identifier : _based not available for functions/pointers to functions

Functions cannot be _based-allocated. Use the alloc_text pragma.

	HI2213
	identifier : illegal argument to _based

A symbol used as a base must have type _segment or be a near or far pointer.

	HI2214
	pointers based on void require the use of :>

A _based pointer based on void cannot be dereferenced. Use the :> operator to create an address that can be dereferenced.

	HI2215
	:> operator only for objects based on void

The right operand of the :> operator must be a pointer based on void, as in

char _based(void) *cbvpi

	HI2216
	attribute1 may not be used with attribute2
The given function attributes are incompatible.

Some combinations of attributes that cause this error are:

· _saveregs and _interrupt

· _fastcall and _saveregs

· _fastcall and _interrupt

· _fastcall and _export

	HI2217
	attribute1 must be used with attribute2
The first function attribute requires the second attribute to be used.

Some causes for this error include:

· An interrupt function explicitly declared as near. Interrupt functions must be far.

· An interrupt function or a function with a variable number of arguments, when that function is declared with the _fortran, _ pascal, or _fastcall attribute. Functions declared with the _interrupt attribute or with a variable number of arguments must use the C calling conventions. Remove the _fortran, _ pascal, or _fastcall attribute from the function declaration.

	HI2218
	type in _based construct must be void

The only type allowed within a _based construct is void.

	HI2219
	syntax error : type qualifier must be after '*'

Either const or volatile appeared where a type or qualifier is not allowed, as in

int (const *p);

	HI2220
	warning treated as error - no object file generated

When the compiler option /WX is used, the first warning generated by the compiler causes this error message to be displayed.

Either correct the condition that caused the warning, or compile at a lower warning level or without /WX.

	HI2221
	'.' : left operand points to struct/union, use '->'

The left operand of the '.' operator must be a struct/union type. It cannot be a pointer to a struct/union type.

This error usually means that a -> operator must be used.

	HI2222
	-> : left operand has struct/union type, use '.'

The left operand of the -> operator must be a pointer to a struct/union type. It cannot be a struct/union type.

This error usually means that a '.' operator must be used.

	HI2223
	left of ->member must point to struct/union

The left operand of the -> operator is not a pointer to a struct/union type.

This error can occur when the left operand is an undefined variable. Undefined variables have type int.

	HI2224
	left of .member must have struct/union type

The left operand of the '.' operator is not a struct/union type.

This error can occur when the left operand is an undefined variable. Undefined variables have type int.

	HI2225
	tagname : first member of struct is unnamed

The struct with the given tag started with an unnamed member (an alignment member). Struct definitions must start with a named member.

H2INC Warnings

	HI4000
(level 1)
	UNKNOWN WARNING Contact Microsoft Product Support Services

The compiler detected an unknown error condition.

Note the circumstances of the error and notify Microsoft Corporation at http://support.microsoft.com/directory/.

	HI4001
(level 1, 4)
	nonstandard extension used - extension
The given nonstandard language extension was used when the /Ze option was specified.

This is a level 4 warning, except in the case of a function pointer cast to data when the Quick Compile option, /qc, is in use, which produces a level 1 warning.

If the /Za option has been specified, this condition generates a syntax error.

	HI4002
(level 1)
	too many actual parameters for macro identifier
The number of actual arguments specified with the given identifier was greater than the number of formal parameters given in the macro definition of the identifier.

The additional actual parameters are collected but ignored during expansion of the macro.

	HI4003
(level 1)
	not enough actual parameters for macro identifier
The number of actual arguments specified with the given identifier was less than the number of formal parameters given in the macro definition of the identifier.

When a formal parameter is referenced in the definition and the corresponding actual parameter has not been provided, empty text is substituted in the macro expansion.

	HI4004
(level 1)
	missing ')' after defined
The closing parenthesis was missing from an #if defined phrase.

The compiler assumes a right parenthesis,), after the first identifier it finds. It then attempts to compile the remainder of the line, which may result in another warning or error.

The following example causes this warning and a fatal error:

#if defined(ID1) || (ID2)

The compiler assumed a right parenthesis after ID1, then found a mismatched parenthesis in the remainder of the line. The following avoids this problem:

#if defined(ID1) || defined(ID2)

	HI4005
(level 1)
	identifier : macro redefinition

The given identifier was defined twice. The compiler assumed the new macro definition.

To eliminate the warning, either remove one of the definitions or use an #undef directive before the second definition.

This warning is caused in situations where a macro is defined both on the command line and in the code with a #define directive.

	HI4006
(level 1)
	#undef expected an identifier

The name of the identifier whose definition was to be removed was not given with the #undef directive. The #undef was ignored.

	HI4007
(level 2)
	identifier : must be attribute
The attribute of the given function was not explicitly stated. The compiler forced the attribute.

For example, the function main must have the _cdecl attribute.

	HI4008
(level 2)
	identifier : _fastcall attribute on data ignored

The _fastcall attribute on the given data identifier was ignored.

	HI4009
(level 1)
	string too big, trailing characters truncated

A string exceeded the compiler limit of 2047 on string size. The excess characters at the end of the string were truncated.

To correct this problem, break the string into two or more strings.

	HI4010
(level 1)
	 identifier is a MASM keyword

This warning is issued if the .h include file tries to redefine a MASM keyword.

H2INC will give a warning whenever such conflicts take place. This includes #define, typedef, structures, and other variables. If you want to redefine a MASM keyword, use #define instead. A #define in the .INC file will not try to redefine the MASM keyword unless the /Ht option is set.

This warning will also be issued anytime converting a typedef statement will result in a type with the same name as the type. The translation is not done in this case. For more information on warning HI4010, see "Miscellaneous Utilities."

	HI4011
(level 1)
	identifier truncated to identifier
Only the first 31 characters of an identifier are significant. The characters after the limit were truncated.

This may mean that two identifiers that are different before truncation may have the same identifier name after truncation.

	HI4015
(level 1)
	identifier : bit-field type must be integral

The given bit field was not declared as an integral type. The compiler assumed the base type of the bit field to be unsigned.

Bit fields must be declared as unsigned integral types.

	HI4016
(level 3)
	function : no function return type, using int as default

The given function had not yet been declared or defined, so the return type was unknown. A default return type of int was assumed.

	HI4017
(level 1)
	cast of int expression to far pointer

A far pointer represents a full segmented address. On an 8086/8088 processor, casting an int value to a far pointer may produce an address with a meaningless segment value.

The compiler extended the int expression to a 4-byte value.

	HI4020
(level 1)
	function : too many actual parameters

The number of arguments specified in a function call was greater than the number of parameters specified in the function prototype or function definition.

The extra parameters were passed according to the calling convention used on the function.

	HI4021
(level 1)
	function : too few actual parameters

The number of arguments specified in a function call was less than the number of parameters specified in the function prototype or function definition.

Only the provided actual parameters are passed. If the called function references a variable that was not passed, the results are undefined and may be unexpected.

	HI4022
(level 1)
	function : pointer mismatch : parameter number
The pointer type of the given parameter was different from the pointer type specified in the argument-type list or function definition.

The parameter will be passed without change. Its value will be interpreted as a pointer within the called function.

	HI4023
(level 1)
	function : _based pointer passed to unprototyped function : parameter number
When in a near data model, only the offset portion of a _based pointer is passed to an unprototyped function. If the function expects a far pointer, the resulting code will be wrong. In any data model, if the function is defined to take a _based pointer with a different base, the resulting code may be unpredictable.

If a prototype is used before the call, the call will be generated correctly.

	HI4024
(level 1)
	function : different types : parameter number
The type of the given parameter in a function call did not agree with the type given in the argument type list or function definition.

The parameter will be passed without change. The function will interpret the parameter's type as the type expected by the function.

	HI4028
(level 1)
	parameter number declaration different

The type of the given parameter did not agree with the corresponding type in the argument type list or with the corresponding formal parameter.

The original declaration was used.

	HI4030
(level 1)
	first parameter list longer than the second

A function was declared more than once with different parameter lists.

The first declaration was used.

	HI4031
(level 1)
	second parameter list is longer than the first

A function was declared more than once with different parameter lists.

The first declaration was used.

	HI4034
(level 1)
	sizeof returns 0

The sizeof operator was applied to an operand that yielded a size of zero.

This warning is informational.

	HI4040
(level 1)
	memory attribute on identifier ignored

The _near, _far, _huge, or _based keyword has no effect in the declaration of the given identifier and is ignored.

One cause of this warning is a huge array that is not declared globally. Declare huge arrays outside of main.

	HI4042
(level 1)
	identifier : has bad storage class

The storage class specified for identifier cannot be used in this context.

The default storage class for this context was used in place of the illegal class:

· If identifier was a function, the compiler assumed extern class.

· If identifier was a formal parameter or local variable, the compiler assumed auto class.

· If identifier was a global variable, the compiler assumed the variable was declared with no storage class.

	HI4044
(level 1)
	_huge on identifier ignored, must be an array

The compiler ignored the _huge memory attribute on the given identifier. Only arrays may be declared with the _huge memory attribute. On pointers, _huge must be used as a modifier, not as a memory attribute.

	HI4047
(level 1)
	operator : different levels of indirection

An expression involving the specified operator had inconsistent levels of indirection.

If both operands are of arithmetic type, or if both are not (such as array or pointer), then they are used without change, though the compiler may DS-extend one of the operands if one is far and one is near. If one is arithmetic and one is not, the arithmetic operator is converted to the type of the other operator.

For example, the following code causes this warning but is compiled without change:

char **p;

char *q;

p = q; /* Warning */

	HI4048
(level 1)
	array's declared subscripts different

An expression involved pointers to arrays of different size.

The pointers were used without conversion.

	HI4049
(level 1)
	operator : indirection to different types

The pointer expressions used with the given operator had different base types.

The expressions were used without conversion.

For example, the following code causes this warning:

struct ts1 *s1;

struct ts2 *s2;

s2 = s1; /* Warning */

	HI4050
(level 4)
	operator : different code attributes

The function-pointer expressions used with operator had different code attributes. The attribute involved is either _export or _loadds.

This is a warning and not an error, because _export and _loadds affect only entry sequences and not calling conventions.

	HI4051
(level 2)
	type conversion, possible loss of data

Two data items in an expression had different base types, causing the type of one item to be converted. During the conversion, a data item was truncated.

	HI4052
	invalid numerical argument string
A numerical argument was expected instead of the given string.

	HI4053
(level 1)
	at least one void operand

An expression with type void was used as an operand.

The expression was evaluated using an undefined value for the void operand.

	HI4063
(level 2)
	function : function too large for post-optimizer

Not enough space was available to optimize the given function.

One of the following may be a solution:

· Recompile with fewer optimizations.

· Divide the function into two or more smaller functions.

	HI4066
(level 2)
	local symbol-table overflow - some local symbols may be missing in listings

The listing generator ran out of heap space for local variables, so the source listing may not contain symbol-table information for all local variables.

	HI4067
(level 1)
	unexpected characters following directive directive - newline expected

Extra characters followed a preprocessor directive and were ignored. This warning appears only when compiling with the /Za option.

For example, the following code causes this warning:

#endif NO_EXT_KEYS

To remove the warning, compile with /Ze or use comment delimiters:

#endif /* NO_EXT_KEYS */

	HI4071
(level 2)
	function : no function prototype given

The given function was called before the compiler found the corresponding function prototype.

The function will be called using the default rules for calling a function without a prototype.

	HI4072
(level 1)
	function : no function prototype on _fastcall function

A _fastcall function was called without first being prototyped.

Functions that are _fastcall should be prototyped to guarantee that the registers assigned at each point of call are the same as the registers assumed when the function is defined. A function defined in the new ANSI style is a prototype.

A prototype must be added when this warning appears, unless the function takes no arguments or takes only arguments that cannot be passed in the general-purpose registers.

	HI4073
(level 1)
	scoping too deep, deepest scoping merged when debugging

Declarations appeared at a static nesting level greater than 13. As a result, all declarations beyond this level will seem to appear at the same level.

	HI4076
(level 1)
	type : may be used on integral types only

The signed or unsigned type modifier was used with a nonintegral type.

The given qualifier was ignored.

The following example causes this warning:

unsigned double x;

	HI4079
(level 1)
	unexpected token token
An unexpected separator token was found in the argument list of a pragma.

The remainder of the pragma was ignored.

	HI4082
(level 1)
	expected an identifier, found token
An identifier was missing from the argument list.

The remainder of the pragma was ignored.

	HI4083
(level 1)
	expected '(', found token
A left parenthesis, (, was missing from a pragma's argument list.

The pragma was ignored.

The following example causes this warning:

#pragma check_pointer on)

	HI4084
(level 1)
	expected a pragma keyword, found token
The token following #pragma was not recognized as a directive.

The pragma was ignored.

The following example causes this warning:

#pragma (on)

	HI4085
(level 1)
	expected [on | off]

The pragma expected an on or off parameter, but the specified parameter was unrecognized or missing.

The pragma was ignored.

	HI4086
(level 1)
	expected [1 | 2 | 4]

The pragma expected a parameter of either 1, 2, or 4, but the specified parameter was unrecognized or missing.

	HI4087
(level 1)
	function : declared with void parameter list

The given function was declared as taking no parameters, but a call to the function specified actual parameters.

The extra parameters were passed according to the calling convention used on the function.

The following example causes this warning:

int f1(void);

f1(10);

	HI4088
(level 1)
	function : pointer mismatch : parameter number, parameter list number
The argument passed to the given function had a different level of indirection from the given parameter in the function definition.

The parameter will be passed without change. Its value will be interpreted as a pointer within the called function.

	HI4089
(level 1)
	function : different types : parameter number, parameter list number
The argument passed to the given function did not have the same type as the given parameter in the function definition.

The parameter will be passed without change. The function will interpret the parameter's type as the type expected by the function.

	HI4090
(level 1)
	different const/volatile qualifiers

A pointer to an item declared as const was assigned to a pointer that was not declared as const. As a result, the const item pointed to could be modified without being detected.

The expression was compiled without modification.

The following example causes this warning:

const char *p = "abcde";

int str(char *s);

str(p);

	HI4091
(level 2)
	no symbols were declared

The compiler detected an empty declaration, as in the following example:

int ;

The declaration was ignored.

	HI4092
(level 2)
	untagged enum/struct/union declared no symbols

The compiler detected an empty declaration using an untagged structure, union, or enumerated variable.

The declaration was ignored.

For example, the following code causes this warning:

struct { . . . };

	HI4093
(level 3)
	unescaped newline in character constant in inactive code

The constant expression of an #if, #elif, #ifdef, or #ifndef preprocessor directive evaluated to 0, making the code that follows inactive. Within that inactive code, a newline character appeared within a set of single or double quotation marks.

All text until the next double quotation mark was considered to be within a character constant.

	HI4095
(level 1)
	expected ')', found token
More than one argument was given for a pragma that can take only one argument.

The compiler assumed the expected parenthesis and ignored the remainder of the line.

	HI4096
(level 2)
	attribute1 must be used with attribute2
The use of attribute2 requires the use of attribute1.

For example, using a variable number of arguments (...) requires that _cdecl be used. Also, _interrupt functions must be _far and _cdecl.

The compiler assumed attribute1 for the function.

	HI4098
(level 1)
	void function returning a value

A function declared with a void return type also returned a value.

A function was declared with a void return type but was defined as a value.

The compiler assumed the function returns a value of type int.

	HI4104
(level 1)
	identifier : near data in same_seg pragma, ignored

The given near variable was specified in a same_seg pragma.

The identifier was ignored.

	HI4105
(level 1)
	identifier : code modifiers only on function or pointer to function

The given identifier was declared with a code modifier that can be used only with a function or function pointer.

The code modifier was ignored.

	HI4109
(level 1)
	unexpected identifier identifier
The pragma contained an unexpected token.

The pragma was ignored.

	HI4110
(level 1)
	unexpected token int constant
The pragma contained an unexpected integer constant.

The pragma was ignored.

	HI4111
(level 1)
	unexpected token string
The pragma contained an unexpected string.

The pragma was ignored.

	HI4112
(level 1)
	macro name name is reserved, command ignored

The given command attempted to define or undefine the predefined macro name or the preprocessor operator defined. The given command is displayed as either #define or #undef, even if the attempt was made using command-line options.

The command was ignored.

	HI4113
(level 1)
	function parameter lists differed

A function pointer was assigned to a function pointer, but the parameter lists of the functions do not agree.

The expression was compiled without modification.

	HI4114
(level 1)
	same type qualifier used more than once

A type qualifier (const, volatile, signed, or unsigned) was used more than once in the same type.

The second occurrence of the qualifier was ignored.

	HI4115
(level 1)
	tag : type definition in formal parameter list

The given tag was used to define a struct, union, or enum in the formal parameter list of a function.

The compiler assumed the definition was at the global level.

	HI4116
(level 1)
	(no tag) : type definition in formal parameter list

A struct, union, or enum type with no tag was defined in the formal parameter list of a function.

The compiler assumed the definition was at the global level.

	HI4119
(level 1)
	different bases name1 and name2 specified

The _based pointers in the expression have different symbolic bases. There may be truncation or loss in the code generated.

	HI4120
(level 1)
	_based/unbased mismatch

The expression contains a conversion between a _based pointer and another pointer that is unbased. Some information may have been truncated.

This warning commonly occurs when a _based pointer is passed to a function that accepts a near or far pointer.

	HI4123
(level 1)
	different base expressions specified

The expression contains a conversion between _based pointers, but the base expressions of the _based pointers are different. Some of the _based conversions may be unexpected.

	HI4125
(level 4)
	decimal digit terminates octal escape sequence

An octal escape sequence in a character or string constant was terminated with a decimal digit.

The compiler evaluated the octal number without the decimal digit, and assumed the decimal digit was a character.

The following example causes this warning:

char array1[] = "\709";

If the digit 9 was intended as a character and was not a typing error, correct the example as follows:

char array[] = "\0709"; /* String containing "89" */

	HI4126
(level 1)
	flag : unknown memory model flag

The flag used with the /A option was not recognized and was ignored.

	HI4128
(level 4)
	storage-class specifier after type

A storage-class specifier (auto, extern, register, static) appears after a type in a declaration. The compiler assumed the storage class specifier occurred before the type.

New-style code places the storage-class specifier first.

	HI4129
(level 4)
	character : unrecognized character escape sequence

The character following a backslash in a character or string constant was not recognized as a valid escape sequence.

As a result, the backslash is ignored and not printed, and the character following the backslash is printed.

To print a single backslash (\), specify a double backslash (\\).

	HI4130
(level 4)
	operator : logical operation on address of string constant

The operator was used with the address of a string literal. Unexpected code was generated.

For example, the following code causes this warning:

char *pc;

pc = "Hello";

if (pc == "Hello") ...

The if statement compares the value stored in the pointer pc to the address of the string "Hello" which is separately allocated each time it occurs in the code. It does not compare the string pointed to by pc with the string "Hello."

To compare strings, use the strcmp function.

	HI4131
(level 4)
	function : uses old-style declarator

The function declaration or definition is not a prototype.

New-style function declarations are in prototype form.

· old style

int addrec(name, id)
char *name;
int id;
{ }

· new style

int addrec(char *name, int id)
{ }

	HI4132
(level 4)
	object : const object should be initialized

The value of a const object cannot be changed, so the only way to give the const object a value is to initialize it.

It will not be possible to assign a value to object.

	HI4135
(level 3)
	conversion between different integral types

Information was lost between two integral types.

For example, the following code causes this warning:

int intvar;

long longvar;

intvar = longvar;

If the information is merely interpreted differently, this warning is not given, as in the following example:

unsigned uintvar = intvar;

	HI4136
(level 4)
	conversion between different floating types

Information was lost or truncated between two floating types.

For example, the following code causes this warning:

double doublevar;

float floatvar;

floatvar = doublevar;

Note that unsuffixed floating-point constants have type double, so the following code causes this warning:

floatvar = 1.0;

If the floating-point constant should be treated as float type, use the F (or f) suffix on the constant to prevent the following warning:

floatvar = 1.0F;

	HI4138
(level 1)
	*/ found outside of comment

The compiler found a closing comment delimiter (*/) without a preceding opening delimiter. It assumed a space between the asterisk (*) and the forward slash (/).

The following example causes this warning:

int */*comment*/ptr;

In this example, the compiler assumed a space before the first comment delimiter (/*), and issued the warning but compiled the line normally. To remove the warning, insert the assumed space.

Usually, the cause of this warning is an attempt to nest comments.

To comment out sections of code that may contain comments, enclose the code in an #if/#endif block and set the controlling expression to zero, as in:

#if 0

int my_variable; /* Declaration currently not needed */

#endif

	HI4139
(level 1)
	hexnumber : hex escape sequence is out of range

A hex escape sequence appearing in a character or string constant was too large to be converted to a character.

If in a string constant, the compiler cast the low byte of the hexadecimal number to a char. If in a char constant, the compiler made the cast and then sign extended the result. If in a char constant and compiled with /J, the compiler cast the value to an unsigned char.

For example, ' \x1ff ' is out of range for a character. Note that the following code causes this warning:

printf("\x7Bell\n");

The number 7be is a legal hex number, but is too large for a character. To correct this example, use three hex digits:

printf("\x007Bell\n");

	HI4186
(level 1)
	string too long - truncated to 40 characters

The string argument for a title or subtitle pragma exceeded the maximum allowable length and was truncated.

	HI4200
(level 1)
	local variable identifier used without having been initialized

A reference was made to a local variable that had not been assigned a value. As a result, the value of the variable is unpredictable.

This warning is given only when compiling with global register allocation on (/Oe).

	HI4201
(level 3)
	local variable identifier may be used without having been initialized

A reference was made to a local variable that might not have been assigned a value. As a result, the value of the variable may be unpredictable.

This warning is given only when compiling with the global register allocation on (/Oe).

	HI4202
(level 4)
	unreachable code

The flow of control can never reach the indicated line.

This warning is given only when compiling with one of the global optimizations (/Oe, /Og, or /Ol).

	HI4203
(level 1)
	function : function too large for global optimizations

The named function was too large to fit in memory and be compiled with the selected optimization. The compiler did not perform any global optimizations (/Oe, /Og, or /Ol). Other /O optimizations, such as /Oa and /Oi, are still performed.

One of the following may remove this warning:

· Recompile with fewer optimizations.

· Divide the function into two or more smaller functions.

	HI4204
(level 3)
	function : in-line assembler precludes global optimizations

The use of in-line assembler in the named function prevented the specified global optimizations (/Oe, /Og, or /Ol) from being performed.

	HI4205
(level 4)
	statement has no effect

The indicated statement will have no effect on the program execution.

Some examples of statements with no effect:

1;

a + 1;

b == c;

	HI4209
(level 4)
	comma operator within array index expression

The value used as an index into an array was the last one of multiple expressions separated by the comma operator.

An array index legally may be the value of the last expression in a series of expressions separated by the comma operator. However, the intent may have been to use the expressions to specify multiple indexes into a multidimensional array.

For example, the following line, which causes this warning, is legal in C, and specifies the index c into array a:

a[b,c]

However, the following line uses both b and c as indexes into a two-dimensional array:

a[b][c]

	HI4300
(level 2)
	insufficient memory to process debugging information

The program was compiled with the /Zi option, but not enough memory was available to create the required debugging information.

One of the following may be a solution:

· Split the current file into two or more files and compile them separately.

· Remove other programs or drivers running in the system which could be consuming significant amounts of memory.

	HI4301
(level 2)
	loss of debugging information caused by optimization

Some optimizations, such as code motion, cause references to nested variables to be moved. The information about the level at which the variables are declared may be lost. As a result, all declarations will seem to be at nesting level 1.

	HI4323
(level 3)
	potential divide by 0

The second operand in a divide operation evaluated to zero at compile time, giving undefined results.

The 0 operand may have been generated by the compiler, as in the following example:

func1() { int i,j,k; i /= j && k; }

	HI4324
(level 3)
	potential mod by 0

The second operand in a remainder operation evaluated to zero at compile time, giving undefined results.

	HI4799
(level 1)
	unknown option character in option

A command-line option was specified that was not understood by H2INC, or the given character was not a valid letter for the option.

For example, the following line:

#pragma optimize("q", on)

causes the following warning:

unknown option 'q' in '#pragma optimize'

	HI4800
(level 1)
	more than one memory model specified

There was more than one memory model given at the command line. The /AT, /AS, /AM, /AC, /AL, and /AH options specify the memory model.

This error is caused by conflicting options specified at the command line and in the CL and H2INC environment variables.

	HI4801
(level 1)
	more than one target processor specified

There was more than one processor type given at the command line. The /G0, /G1, and /G2 options specify the processor type.

This error is caused by conflicting options specified at the command line and in the CL and H2INC environment variables.

	HI4802
(level 1)
	ignoring invalid /Zp value value
The alignment value specified to the /Zp option was not 1, 2, or 4. The default of 1 was assumed.

	HI4810
(level 2)
	untranslatable basic type size

H2INC could not translate the item to a MASM type.

The C void type cannot be translated to a similar MASM type.

	HI4811
(level 1)
	static function prototype not translated

H2INC does not translate static items, as they are not visible outside the C source file.

	HI4812
(level 1)
	static variable declaration not accepted with /Mn switch

H2INC does not translate static items, as they are not visible outside the C source file.

	HI4815
(level 1)
	string : EQU string truncated to 254 characters

A #define statement exceeded 254 characters, the maximum length of a MASM EQU statement. The string was truncated.

	HI4816
(level 1)
	ignoring _fastcall function definition

H2INC does not translate function declarations or prototypes with the _fastcall attribute. The _fastcall calling convention cannot be used directly with MASM. See the documentation with your C compiler for details on _fastcall.

	HI4820
(level 1)
	ignoring function definition : function()

H2INC translates header information only; it cannot convert program code. H2INC does not translate function bodies.

ML Error Messages

ML Fatal Errors

	A1000
	cannot open file: filename
The assembler was unable to open a source, include, or output file.

One of the following may be a cause:

· The file does not exist.

· The file is in use by another process.

· The filename is not valid.

· A read-only file with the output filename already exists.

· Not enough file handles exist. In MS-DOS, increase the number of file handles by changing the FILES setting in CONFIG.SYS to allow a larger number of open files. FILES=50 is the recommended setting.

· The current drive is full.

· The current directory is the root and is full.

· The device cannot be written to.

· The drive is not ready.

	A1001
	I/O error closing file

The operating system returned an error when the assembler attempted to close a file.

This error can be caused by having a corrupt file system or by removing a disk before the file could be closed.

	A1002
	I/O error writing file

The assembler was unable to write to an output file.

One of the following may be a cause:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The current drive is full.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The current directory is the root and is full.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The device cannot be written to.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The drive is not ready.

	A1003
	I/O error reading file

The assembler encountered an error when trying to read a file.

One of the following may be a cause:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The disk has a bad sector.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The file-access attribute is set to prevent reading.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The drive is not ready.

	A1005
	assembler limit : macro parameter name table full

Too many parameters, locals, or macro labels were defined for a macro. There was no more room in the macro name table.

Define shorter or fewer names, or remove unnecessary macros.

	A1006
	invalid command-line option: option
ML did not recognize the given parameter as an option.

This error is generally caused when there is a syntax error on the command line.

	A1007
	nesting level too deep

The assembler reached its nesting limit. The limit is 20 levels except where noted otherwise.

One of the following was nested too deeply:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A high-level directive such as .IF, .REPEAT, or .WHILE
· SYMBOL 117 \f "MSIcons" \s 9.5 \h A structure definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A conditional-assembly directive

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A procedure definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A PUSHCONTEXT directive (the limit is 10).

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A segment definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h An include file

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A macro

	A1008
	unmatched macro nesting

Either a macro was not terminated before the end of the file, or the terminating directive ENDM was found outside of a macro block.

One cause of this error is omission of the dot before .REPEAT or .WHILE.

	A1009
	line too long

A line in a source file exceeded the limit of 512 characters.

If multiple physical lines are concatenated with the line-continuation character (\), the resulting logical line is still limited to 512 characters.

	A1010
	unmatched block nesting :

A block beginning did not have a matching end, or a block end did not have a matching beginning. One of the following may be involved:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A high-level directive such as .IF, .REPEAT, or .WHILE
· SYMBOL 117 \f "MSIcons" \s 9.5 \h A conditional-assembly directive such as IF, REPEAT, or WHILE
· SYMBOL 117 \f "MSIcons" \s 9.5 \h A structure or union definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A procedure definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A segment definition

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A POPCONTEXT directive

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A conditional-assembly directive, such as an ELSE, ELSEIF, or ENDIF without a matching IF

	A1011
	directive must be in control block

The assembler found a high-level directive where one was not expected. One of the following directives was found:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h .ELSE without .IF
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .ENDIF without .IF
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .ENDW without .WHILE
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .UNTIL[[CXZ]] without .REPEAT
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .CONTINUE without .WHILE or .REPEAT
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .BREAK without .WHILE or .REPEAT
· SYMBOL 117 \f "MSIcons" \s 9.5 \h .ELSE following .ELSE

	A1012
	error count exceeds 100; stopping assembly

The number of nonfatal errors exceeded the assembler limit of 100.

Nonfatal errors are in the range A2xxx. When warnings are treated as errors they are included in the count. Warnings are considered errors if you use the /Wx command-line option, or if you set the Warnings Treated as Errors option in the Macro Assembler Global Options dialog box of PWB.

	A1013
	invalid numerical command-line argument : number
The argument specified with an option was not a number or was an invalid number.

	A1014
	too many arguments

There was insufficient memory to hold all of the command-line arguments.

This error usually occurs while expanding input filename wildcards (* and ?). To eliminate this error, assemble multiple source files separately.

	A1015
	statement too complex

The assembler ran out of stack space while trying to parse the specified statement.

One or more of the following changes may eliminate this error:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h Break the statement into several shorter statements.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h Reorganize the statement to reduce the amount of parenthetical nesting.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h If the statement is part of a macro, break the macro into several shorter macros.

	A1017
	missing source filename

ML could not find a file to assemble or pass to the linker.

This error is generated when you give ML command-line options without specifying a filename to act upon. To assemble files that do not have a .ASM extension, use the /Ta command-line option.

This error can also be generated by invoking ML with no parameters if the ML environment variable contains command-line options.

	A1901
	Internal Assembler Error
Contact Microsoft Product Support Services

The MASM driver called Ml.exe, which generated a system error.

Note the circumstances of the error and notify Microsoft Corporation at http://support.microsoft.com/directory/.

ML Nonfatal Errors

	A2000
	memory operand not allowed in context

A memory operand was given to an instruction that cannot take a memory operand.

	A2001
	immediate operand not allowed

A constant or memory offset was given to an instruction that cannot take an immediate operand.

	A2002
	cannot have more than one ELSE clause per IF block

The assembler found an ELSE directive after an existing ELSE directive in a conditional-assembly block (IF block).

Only one ELSE can be used in an IF block. An IF block begins with an IF, IFE, IFB, IFNB, IFDEF, IFNDEF, IFDIF, or IFIDN directive. There can be several ELSEIF statements in an IF block.

One cause of this error is omission of an ENDIF statement from a nested IF block.

	A2003
	extra characters after statement

A directive was followed by unexpected characters.

	A2004
	symbol type conflict : identifier
The EXTERNDEF or LABEL directive was used on a variable, symbol, data structure, or label that was defined in the same module but with a different type.

	A2005
	symbol redefinition : identifier
The given nonredefinable symbol was defined in two places.

	A2006
	undefined symbol : identifier
An attempt was made to use a symbol that was not defined.

One of the following may have occurred:

· A symbol was not defined.

· A field was not a member of the specified structure.

· A symbol was defined in an include file that was not included.

· An external symbol was used without an EXTERN or EXTERNDEF directive.

· A symbol name was misspelled.

· A local code label was referenced outside of its scope.

	A2007
	non-benign record redefinition

A RECORD definition conflicted with a previous definition.

One of the following occurred:

· There were different numbers of fields.

· There were different numbers of bits in a field.

· There was a different label.

· There were different initializers.

	A2008
	syntax error :

A token at the current location caused a syntax error.

One of the following may have occurred:

· A dot prefix was added to or omitted from a directive.

· A reserved word (such as C or SIZE) was used as an identifier.

· An instruction was used that was not available with the current processor or coprocessor selection.

· A comparison run-time operator (such as ==) was used in a conditional assembly statement instead of a relational operator (such as EQ).

· An instruction or directive was given too few operands.

· An obsolete directive was used.

	A2009
	syntax error in expression

An expression on the current line contained a syntax error. This error message may also be a side effect of a preceding program error.

	A2010
	invalid type expression

The operand to THIS or PTR was not a valid type expression.

	A2011
	distance invalid for word size of current segment

A procedure definition or a code label defined with LABEL specified an address size that was incompatible with the current segment size.

One of the following occurred:

· A NEAR16 or FAR16 procedure was defined in a 32-bit segment.

· A NEAR32 or FAR32 procedure was defined in a 16-bit segment.

· A code label defined with LABEL specified FAR16 or NEAR16 in a 32-bit segment.

· A code label defined with LABEL specified FAR32 or NEAR32 in a 16-bit segment.

	A2012
	PROC, MACRO, or macro repeat directive must precede LOCAL

A LOCAL directive must be immediately preceded by a MACRO, PROC, macro repeat directive (such as REPEAT, WHILE, or FOR), or another LOCAL directive.

	A2013
	.MODEL must precede this directive

A simplified segment directive or a .STARTUP or .EXIT directive was not preceded by a .MODEL directive.

A .MODEL directive must specify the model defaults before a simplified segment directive, or a .STARTUP or .EXIT directive may be used.

	A2014
	cannot define as public or external : identifier
Only labels, procedures, and numeric equates can be made public or external using PUBLIC, EXTERN, or EXTERNDEF. Local code labels cannot be made public.

	A2015
	segment attributes cannot change : attribute
A segment was reopened with different attributes than it was opened with originally.

When a SEGMENT directive opens a previously defined segment, the newly opened segment inherits the attributes the segment was defined with.

	A2016
	expression expected

The assembler expected an expression at the current location but found one of the following:

· A unary operator without an operand

· A binary operator without two operands

· An empty pair of parentheses, (), or brackets, []

	A2017
	operator expected

An expression operator was expected at the current location.

One possible cause of this error is a missing comma between expressions in an expression list.

	A2018
	invalid use of external symbol : identifier
An attempt was made to compare the given external symbol using a relational operator.

The comparison cannot be made because the value or address of an external symbol is not known at assembly time.

	A2019
	operand must be RECORD type or field

The operand following the WIDTH or MASK operator was not valid.

The WIDTH operator takes an operand that is the name of a field or a record. The MASK operator takes an operand that is the name of a field or a record type.

	A2020
	identifier not a record : identifier
A record type was expected at the current location.

	A2021
	record constants cannot span line breaks

A record constant must be defined on one physical line. A line ended in the middle of the definition of a record constant.

	A2022
	instruction operands must be the same size

The operands to an instruction did not have the same size.

	A2023
	instruction operand must have size

At least one of the operands to an instruction must have a known size.

	A2024
	invalid operand size for instruction

The size of an operand was not valid.

	A2025
	operands must be in same segment

Relocatable operands used with a relational or minus operator were not located in the same segment.

	A2026
	constant expected

The assembler expected a constant expression at the current location. A constant expression is a numeric expression that can be resolved at assembly time.

	A2027
	operand must be a memory expression

The right operand of a PTR expression was not a memory expression.

When the left operand of the PTR operator is a structure or union type, the right operand must be a memory expression.

	A2028
	expression must be a code address

An expression evaluating to a code address was expected.

One of the following occurred:

· SHORT was not followed by a code address.

· NEAR PTR or FAR PTR was applied to something that was not a code address.

	A2029
	multiple base registers not allowed

An attempt was made to combine two base registers in a memory expression.

For example, the following expressions cause this error:

[bx+bp]
[bx][bp]

In another example, given the following definition:
id1 proc arg1:byte

either of the following lines causes this error:

mov al, [bx].arg1
lea ax, arg1[bx]

	A2030
	multiple index registers not allowed

An attempt was made to combine two index registers in a memory expression.

For example, the following expressions cause this error:

[si+di]
[di][si]

	A2031
	must be index or base register

An attempt was made to use a register that was not a base or index register in a memory expression.

For example, the following expressions cause this error:

[ax]
[bl]

	A2032
	invalid use of register

An attempt was made to use a register that was not valid for the intended use.

One of the following occurred:

· OFFSET was applied to a register. (OFFSET can be applied to a register under the M510 option.)

· A special 386 register was used in an invalid context.

· A register was cast with PTR to a type of invalid size.

· A register was specified as the right operand of a segment override
operator (:).

· A register was specified as the right operand of a binary minus operator (–).

· An attempt was made to multiply registers using the * operator.

· Brackets ([]) were missing around a register that was added to something.

	A2033
	invalid INVOKE argument : argument number
The INVOKE directive was passed a special 386 register, or a register pair containing a byte register or special 386 register. These registers are illegal with INVOKE.

	A2034
	must be in segment block

One of the following was found outside of a segment block:

· An instruction

· A label definition

· A THIS operator

· A $ operator

· A procedure definition

· An ALIGN directive

· An ORG directive

	A2035
	DUP too complex

A declaration using the DUP operator resulted in a data structure with an internal representation that was too large.

	A2036
	too many initial values for structure: structure
The given structure was defined with more initializers than the number of fields in the type declaration of the structure.

	A2037
	statement not allowed inside structure definition

A structure definition contained an invalid statement.

A structure cannot contain instructions, labels, procedures, control-flow directives, .STARTUP, or .EXIT.

	A2038
	missing operand for macro operator

The assembler found the end of a macro's parameter list immediately after the ! or % operator.

	A2039
	line too long

A source-file line exceeded the limit of 512 characters.

If multiple physical lines are concatenated with the line-continuation character
(\), the resulting logical line is still limited to 512 characters.

	A2040
	segment register not allowed in context

A segment register was specified for an instruction that cannot take a segment register.

	A2041
	string or text literal too long

A string or text literal, or a macro function return value, exceeded the limit of 255 characters.

	A2042
	statement too complex

A statement was too complex for the assembler to parse.

Reduce either the number of tokens or the number of forward-referenced identifiers.

	A2043
	identifier too long

An identifier exceeded the limit of 247 characters.

	A2044
	invalid character in file

The source file contained a character outside a comment, string, or literal that was not recognized as an operator or other legal character.

	A2045
	missing angle bracket or brace in literal

An unmatched angle bracket (either < or >) or brace (either { or }) was found in a literal constant or an initializer.

One of the following occurred:

· A pair of angle brackets or braces was not complete.

· An angle bracket was intended to be literal, but it was not preceded by an exclamation point (!) to indicate a literal character.

	A2046
	missing single or double quotation mark in string

An unmatched quotation mark (either ' or ") was found in a string.

One of the following may have occurred:

· A pair of quotation marks around a string was not complete.

· A pair of quotation marks around a string was formed of one single and one double quotation mark.

· A single or double quotation mark was intended to be literal, but the surrounding quotation marks were the same kind as the literal one.

	A2047
	empty (null) string

A string consisted of a delimiting pair of quotation marks and no characters within.

For a string to be valid, it must contain 1–255 characters.

	A2048
	nondigit in number

A number contained a character that was not in the set of characters used by the current radix (base).

This error can occur if a B or D radix specifier is used when the default radix is one that includes that letter as a valid digit.

	A2049
	syntax error in floating-point constant

A floating-point constant contained an invalid character.

	A2050
	real or BCD number not allowed

A floating-point (real) number or binary coded decimal (BCD) constant was used other than as a data initializer.

One of the following occurred:

· A real number or a BCD was used in an expression.

· A real number was used to initialize a directive other than DWORD, QWORD, or TBYTE.

· A BCD was used to initialize a directive other than TBYTE.

	A2051
	text item required

A literal constant or text macro was expected.

One of the following was expected:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A literal constant, which is text enclosed in < >.
· SYMBOL 117 \f "MSIcons" \s 9.5 \h A text macro name.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A macro function call.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h A % followed by a constant expression.

	A2052
	forced error

The conditional-error directive .ERR or .ERR1 was used to generate this error.

	A2053
	forced error : value equal to 0

The conditional-error directive .ERRE was used to generate this error.

	A2054
	forced error : value not equal to 0

The conditional-error directive .ERRNZ was used to generate this error.

	A2055
	forced error : symbol not defined

The conditional-error directive .ERRNDEF was used to generate this error.

	A2056
	forced error : symbol defined

The conditional-error directive .ERRDEF was used to generate this error.

	A2057
	forced error : string blank

The conditional-error directive .ERRB was used to generate this error.

	A2058
	forced error : string not blank

The conditional-error directive .ERRNB was used to generate this error.

	A2059
	forced error : strings equal

The conditional-error directive .ERRIDN or .ERRIDNI was used to generate this error.

	A2060
	forced error : strings not equal

The conditional-error directive .ERRDIF or .ERRDIFI was used to generate this error.

	A2061
	[[ELSE]]IF2/.ERR2 not allowed : single-pass assembler

A directive for a two-pass assembler was found.

The Microsoft Macro Assembler (MASM) is a one-pass assembler. MASM does not accept the IF2, ELSEIF2, and .ERR2 directives.

This error also occurs if an ELSE directive follows an IF1 directive.

	A2062
	expression too complex for .UNTILCXZ

An expression used in the condition that follows .UNTILCXZ was too complex.

The .UNTILCXZ directive can take only one expression, which can contain only == or !=. It cannot take other comparison operators or more complex expressions using operators like ||.

	A2063
	can ALIGN only to power of 2 : expression
The expression specified with the ALIGN directive was invalid.

The ALIGN expression must be a power of 2 between 2 and 256, and must be less than or equal to the alignment of the current segment, structure, or union.

	A2064
	structure alignment must be 1, 2, or 4

The alignment specified in a structure definition was invalid.

	A2065
	expected : token
The assembler expected the given token.

	A2066
	incompatible CPU mode and segment size

An attempt was made to open a segment with a USE16, USE32, or FLAT attribute that was not compatible with the specified CPU, or to change to a 16-bit CPU while in a 32-bit segment.

The USE32 and FLAT attributes must be preceded by one of the following processor directives: .386, .386C, .386P, .486, or .486P.

	A2067
	LOCK must be followed by a memory operation

The LOCK prefix preceded an invalid instruction. No instruction can take the LOCK prefix unless one of its operands is a memory expression.

	A2068
	instruction prefix not allowed

One of the prefixes REP, REPE, REPNE, or LOCK preceded an instruction for which it was not valid.

	A2069
	no operands allowed for this instruction

One or more operands were specified with an instruction that takes no operands.

	A2070
	invalid instruction operands

One or more operands were not valid for the instruction they were specified with.

	A2071
	initializer too large for specified size

An initializer value was too large for the data area it was initializing.

	A2072
	cannot access symbol in given segment or group: identifier
The given identifier cannot be addressed from the segment or group specified.

	A2073
	operands have different frames

Two operands in an expression were in different frames.

Subtraction of pointers requires the pointers to be in the same frame. Subtraction of two expressions that have different effective frames is not allowed. An effective frame is calculated from the segment, group, or segment register.

	A2074
	cannot access label through segment registers

An attempt was made to access a label through a segment register that was not assumed to its segment or group.

	A2075
	jump destination too far [: by 'n' bytes]

The destination specified with a jump instruction was too far from the instruction.

One of the following may be a solution:

· Enable the LJMP option.

· Remove the SHORT operator. If SHORT has forced a jump that is too far, n is the number of bytes out of range.

· Rearrange code so that the jump is no longer out of range.

	A2076
	jump destination must specify a label

A direct jump's destination must be relative to a code label.

	A2077
	instruction does not allow NEAR indirect addressing

A conditional jump or loop cannot take a memory operand. It must be given a relative address or label.

	A2078
	instruction does not allow FAR indirect addressing

A conditional jump or loop cannot take a memory operand. It must be given a relative address or label.

	A2079
	instruction does not allow FAR direct addressing

A conditional jump or loop cannot be to a different segment or group.

	A2080
	jump distance not possible in current CPU mode

A distance was specified with a jump instruction that was incompatible with the current processor mode.

For example, 48-bit jumps require .386 or above.

	A2081
	missing operand after unary operator

An operator required an operand, but no operand followed.

	A2082
	cannot mix 16- and 32-bit registers

An address expression contained both 16- and 32-bit registers.

For example, the following expression causes this error:

[bx+edi]

	A2083
	invalid scale value

A register scale was specified that was not 1, 2, 4, or 8.

	A2084
	constant value too large

A constant was specified that was too big for the context in which it was used.

	A2085
	instruction or register not accepted in current CPU mode

An attempt was made to use an instruction, register, or keyword that was not valid for the current processor mode.

For example, 32-bit registers require .386 or above. Control registers such as CR0 require privileged mode .386P or above. This error will also be generated for the NEAR32, FAR32, and FLAT keywords, which require .386 or above.

	A2086
	reserved word expected

One or more items in the list specified with a NOKEYWORD option were not recognized as reserved words.

	A2087
	instruction form requires 80386/486

An instruction was used that was not compatible with the current processor mode.

One of the following processor directives must precede the instruction: .386, .386C, .386P, .486, or .486P.

	A2088
	END directive required at end of file

The assembler reached the end of the main source file and did not find an .END directive.

	A2089
	too many bits in RECORD : identifier
One of the following occurred:

· Too many bits were defined for the given record field.

· Too many total bits were defined for the given record.

The size limit for a record or a field in a record is 16 bits when doing 16-bit arithmetic or 32 bits when doing 32-bit arithmetic.

	A2090
	positive value expected

A positive value was not found in one of the following situations:

· The starting position specified for SUBSTR or @SubStr
· The number of data objects specified for COMM
· The element size specified for COMM

	A2091
	index value past end of string

An index value exceeded the length of the string it referred to when used with INSTR, SUBSTR, @InStr, or @SubStr.

	A2092
	count must be positive or zero

The operand specified to the SUBSTR directive, @SubStr macro function, SHL operator, SHR operator, or DUP operator was negative.

	A2093
	count value too large

The length argument specified for SUBSTR or @SubStr exceeded the length of the specified string.

	A2094
	operand must be relocatable

An operand was not relative to a label.

One of the following occurred:

· An operand specified with the END directive was not relative to a label.

· An operand to the SEG operator was not relative to a label.

· The right operand to the minus operator was relative to a label, but the left operand was not.

· The operands to a relational operator were either not both integer constants or not both memory operands. Relational operators can take operands that are both addresses or both non-addresses but not one of each.

	A2095
	constant or relocatable label expected

The operand specified must be a constant expression or a memory offset.

	A2096
	segment, group, or segment register expected

A segment or group was expected but was not found.

One of the following occurred:

· The left operand specified with the segment override operator (:) was not a segment register (CS, DS, SS, ES, FS, or GS), group name, segment name, or segment expression.

· The ASSUME directive was given a segment register without a valid segment address, segment register, group, or the special FLAT group.

	A2097
	segment expected : identifier
The GROUP directive was given an identifier that was not a defined segment.

	A2098
	invalid operand for OFFSET

The expression following the OFFSET operator must be a memory expression or an immediate expression.

	A2099
	invalid use of external absolute

An attempt was made to subtract a constant defined in another module from an expression.

You can avoid this error by placing constants in include files rather than making them external.

	A2100
	segment or group not allowed

An attempt was made to use a segment or group in a way that was not valid. Segments or groups cannot be added.

	A2101
	cannot add two relocatable labels

An attempt was made to add two expressions that were both relative to a label.

	A2102
	cannot add memory expression and code label

An attempt was made to add a code label to a memory expression.

	A2103
	segment exceeds 64K limit

A 16-bit segment exceeded the size limit of 64K.

	A2104
	invalid type for data declaration : type
The given type was not valid for a data declaration.

	A2105
	HIGH and LOW require immediate operands

The operand specified with either the HIGH or the LOW operator was not an immediate expression.

	A2107
	cannot have implicit far jump or call to near label

An attempt was made to make an implicit far jump or call to a near label in another segment.

	A2108
	use of register assumed to ERROR

An attempt was made to use a register that had been assumed to ERROR with the ASSUME directive.

	A2109
	only white space or comment can follow backslash

A character other than a semicolon (;) or a white-space character (spaces or TAB characters) was found after a line-continuation character (\).

	A2110
	COMMENT delimiter expected

A delimiter character was not specified for a COMMENT directive.

The delimiter character is specified by the first character that is not white space (spaces or TAB characters) after the COMMENT directive. The comment consists of all text following the delimiter until the end of the line containing the next appearance of the delimiter.

	A2111
	conflicting parameter definition

A procedure defined with the PROC directive did not match its prototype as defined with the PROTO directive.

	A2112
	PROC and prototype calling conventions conflict

A procedure was defined in a prototype (using the PROTO, EXTERNDEF, or EXTERN directive), but the calling convention did not match the corresponding PROC directive.

	A2113
	invalid radix tag

The specified radix was not a number in the range 2–16.

	A2114
	INVOKE argument type mismatch : argument number
The type of the arguments passed using the INVOKE directive did not match the type of the parameters in the prototype of the procedure being invoked.

	A2115
	invalid coprocessor register

The coprocessor index specified was negative or greater than 7.

	A2116
	instructions and initialized data not allowed in AT segments

An instruction or initialized data was found in a segment defined with the AT attribute.

Data in AT segments must be declared with the ? initializer.

	A2117
	/AT option requires TINY memory model

The /AT option was specified on the assembler command line, but the program being assembled did not specify the TINY memory model with the .MODEL directive.

This error is only generated for modules that specify a start address or use the .STARTUP directive.

	A2118
	cannot have segment address references with TINY model

An attempt was made to reference a segment in a TINY model program.

All TINY model code and data must be accessed with NEAR addresses.

	A2119
	language type must be specified

A procedure definition or prototype was not given a language type.

A language type must be declared in each procedure definition or prototype if a default language type is not specified. A default language type is set using either the .MODEL directive, OPTION LANG, or the ML command-line options /Gc or /Gd.

	A2120
	PROLOGUE must be macro function

The identifier specified with the OPTION PROLOGUE directive was not recognized as a defined macro function.

The user-defined prologue must be a macro function that returns the number of bytes needed for local variables and any extra space needed for the macro function.

	A2121
	EPILOGUE must be macro procedure

The identifier specified with the OPTION EPILOGUE directive was not recognized as a defined macro procedure.

The user-defined epilogue macro cannot return a value.

	A2122
	alternate identifier not allowed with EXTERNDEF

An attempt was made to specify an alternate identifier with an EXTERNDEF directive.

You can specify an optional alternate identifier with the EXTERN directive but not with EXTERNDEF.

	A2123
	text macro nesting level too deep

A text macro was nested too deeply. The nesting limit for text macros is 40.

	A2125
	missing macro argument

A required argument to @InStr, @SubStr, or a user-defined macro was not specified.

	A2126
	EXITM used inconsistently

The EXITM directive was used both with and without a return value in the same macro.

A macro procedure returns a value; a macro function does not.

	A2127
	macro function argument list too long

There were too many characters in a macro function's argument list. This error applies also to a prologue macro function called implicitly by the PROC directive.

	A2129
	VARARG parameter must be last parameter

A parameter other than the last one was given the VARARG attribute.

The :VARARG specification can be applied only to the last parameter in a parameter list for macro and procedure definitions and prototypes. You cannot use multiple :VARARG specifications in a macro.

	A2130
	VARARG parameter not allowed with LOCAL

An attempt was made to specify :VARARG as the type in a procedure's LOCAL declaration.

	A2131
	VARARG parameter requires C calling convention

A VARARG parameter was specified in a procedure definition or prototype, but the C, SYSCALL, or STDCALL calling convention was not specified.

	A2132
	ORG needs a constant or local offset

The expression specified with the ORG directive was not valid.

ORG requires an immediate expression with no reference to an external label or to a label outside the current segment.

	A2133
	register value overwritten by INVOKE

A register was passed as an argument to a procedure, but the code generated by INVOKE to pass other arguments destroyed the contents of the register.

The AX, AL, AH, EAX, DX, DL, DH, and EDX registers may be used by the assembler to perform data conversion.

Use a different register.

	A2134
	structure too large to pass with INVOKE : argument number
An attempt was made with INVOKE to pass a structure that exceeded 255 bytes.

Pass structures by reference if they are larger than 255 bytes.

	A2136
	too many arguments to INVOKE

The number of arguments passed using the INVOKE directive exceeded the number of parameters in the prototype for the procedure being invoked.

	A2137
	too few arguments to INVOKE

The number of arguments passed using the INVOKE directive was fewer than the number of required parameters specified in the prototype for the procedure being invoked.

	A2138
	invalid data initializer

The initializer list for a data definition was invalid.

This error can be caused by using the R radix override with too few digits.

	A2140
	RET operand too large

The operand specified to RET, RETN, or RETF exceeded two bytes.

	A2141
	too many operands to instruction

Too many operands were specified with a string control instruction.

	A2142
	cannot have more than one .ELSE clause per .IF block

The assembler found more than one .ELSE clause within the current .IF block.

Use .ELSEIF for all but the last block.

	A2143
	expected data label

The LENGTHOF, SIZEOF, LENGTH, or SIZE operator was applied to a non-data label, or the SIZEOF or SIZE operator was applied to a type.

	A2144
	cannot nest procedures

An attempt was made to nest a procedure containing a parameter, local variable, USES clause, or a statement that generated a new segment or group.

	A2145
	EXPORT must be FAR : procedure
The given procedure was given EXPORT visibility and NEAR distance.

All EXPORT procedures must be FAR. The default visibility may have been set with the OPTION PROC:EXPORT statement or the SMALL or COMPACT memory models.

	A2146
	procedure declared with two visibility attributes : procedure
The given procedure was given conflicting visibilities.

A procedure was declared with two different visibilities (PUBLIC, PRIVATE, or EXPORT). The PROC and PROTO statements for a procedure must have the same visibility.

	A2147
	macro label not defined : macrolabel
The given macro label was not found.

A macro label is defined with :macrolabel.

	A2148
	invalid symbol type in expression : identifier
The given identifier was used in an expression in which it was not valid.

For example, a macro procedure name is not allowed in an expression.

	A2149
	byte register cannot be first operand

A byte register was specified to an instruction that cannot take it as the first operand.

	A2150
	word register cannot be first operand

A word register was specified to an instruction that cannot take it as the first operand.

	A2151
	special register cannot be first operand

A special register was specified to an instruction that cannot take it as the first operand.

	A2152
	coprocessor register cannot be first operand

A coprocessor (stack) register was specified to an instruction that cannot take it as the first operand.

	A2153
	cannot change size of expression computations

An attempt was made to set the expression word size when the size had been already set using the EXPR16, EXPR32, SEGMENT:USE32, or SEGMENT:FLAT option or the .386 or higher processor selection directive.

	A2154
	syntax error in control-flow directive

The condition for a control-flow directive (such as .IF or .WHILE) contained a syntax error.

	A2155
	cannot use 16-bit register with a 32-bit address

An attempt was made to mix 16-bit and 32-bit offsets in an expression.

Use a 32-bit register with a symbol defined in a 32-bit segment.

For example, if id1 is defined in a 32-bit segment, the following causes this error:

id1[bx]

	A2156
	constant value out of range

An invalid value was specified for the PAGE directive.

The first parameter of the PAGE directive can be either 0 or a value in the range 10–255. The second parameter of the PAGE directive can be either 0 or a value in the range 60–255.

	A2157
	missing right parenthesis

A right parenthesis,), was missing from a macro function call.

Be sure that parentheses are in pairs if nested.

	A2158
	type is wrong size for register

An attempt was made to assume a general-purpose register to a type with a different size than the register.

For example, the following pair of statements causes this error:

ASSUME bx:far ptr byte ; far pointer is 4 or 6 bytes
ASSUME al:word ; al is a byte reg, cannot hold word

	A2159
	structure cannot be instanced

An attempt was made to create an instance of a structure when there were no fields or data defined in the structure definition or when ORG was used in the structure definition.

	A2160
	non-benign structure redefinition : label incorrect

A label given in a structure redefinition either did not exist in the original definition or was out of order in the redefinition.

	A2161
	non-benign structure redefinition : too few labels

Not enough members were defined in a structure redefinition.

	A2162
	OLDSTRUCT/NOOLDSTRUCT state cannot be changed

Once the OLDSTRUCTS or NOOLDSTRUCTS option has been specified and a structure has been defined, the structure scoping cannot be altered or respecified in the same module.

	A2163
	non-benign structure redefinition : incorrect initializers

A STRUCT or UNION was redefined with a different initializer value.

When structures and unions are defined more than once, the definitions must be identical. This error can be caused by using a variable as an initializer and having the value of the variable change between definitions.

	A2164
	non-benign structure redefinition : too few initializers

A STRUCT or UNION was redefined with too few initializers.

When structures and unions are defined more than once, the definitions must be identical.

	A2165
	non-benign structure redefinition : label has incorrect offset

The offset of a label in a redefined STRUCT or UNION differs from the original definition.

When structures and unions are defined more than once, the definitions must be identical. This error can be caused by a missing member or by a member that has a different size than in its original definition.

	A2166
	structure field expected

The right side of a dot operator (.) is not a structure field.

This error may occur with some code acceptable to previous versions of the assembler. To enable the old behavior, use OPTION OLDSTRUCTS, which is automatically enabled by OPTION M510 or the /Zm command-line option.

	A2167
	unexpected literal found in expression

A literal was found where an expression was expected.

One of the following may have occurred:

· A literal was used as an initializer

· A record tag was omitted from a record constant

	A2169
	divide by zero in expression

An expression contains a divisor whose value is equal to zero.

Check that the syntax of the expression is correct and that the divisor (whether constant or variable) is correctly initialized.

	A2170
	directive must appear inside a macro

A GOTO or EXITM directive was found outside the body of a macro.

	A2171
	cannot expand macro function

A syntax error prevented the assembler from expanding the macro function.

	A2172
	too few bits in RECORD

There was an attempt to define a record field of 0 bits.

	A2173
	macro function cannot redefine itself

There was an attempt to define a macro function inside the body of a macro function with the same name. This error can also occur when a member of a chain of macros attempts to redefine a previous member of the chain.

	A2175
	invalid qualified type

An identifier was encountered in a qualified type that was not a type, structure, record, union, or prototype.

	A2176
	floating point initializer on an integer variable

An attempt was made to use a floating-point initializer with DWORD, QWORD, or TBYTE. Only integer initializers are allowed.

	A2177
	nested structure improperly initialized

The nested structure initialization could not be resolved.

This error can be caused by using different beginning and ending delimiters in a nested structure initialization.

	A2178
	invalid use of FLAT

There was an ambiguous reference to FLAT as a group.

This error is generated when there is a reference to FLAT instead of a FLAT subgroup. For example,

mov ax, FLAT ; Generates A2178
mov ax, SEG FLAT:_data ; Correct

	A2179
	structure improperly initialized

There was an error in a structure initializer.

One of the following occurred:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The initializer is not a valid expression.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h The initializer is an invalid DUP statement.

	A2180
	improper list initialization

In a structure, there was an attempt to initialize a list of items with a value or list of values of the wrong size.

	A2181
	initializer must be a string or single item

There was an attempt to initialize a structure element with something other than a single item or string.

This error can be caused by omitting braces ({ }) around an initializer.

	A2182
	initializer must be a single item

There was an attempt to initialize a structure element with something other than a single item.

This error can be caused by omitting braces ({ }) around an initializer.

	A2183
	initializer must be a single byte

There was an attempt to initialize a structure element of byte size with something other than a single byte.

	A2184
	improper use of list initializer

The assembler did not expect an opening brace ({) at this point.

	A2185
	improper literal initialization

A literal structure initializer was not properly delimited.

This error can be caused by missing angle brackets (< >) or braces ({ }) around an initializer or by extra characters after the end of an initializer.

	A2186
	extra characters in literal initialization

A literal structure initializer was not properly delimited.

One of the following may have occurred:

· SYMBOL 117 \f "MSIcons" \s 9.5 \h There were missing or mismatched angle brackets (< >) or braces ({ }) around an initializer.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h There were extra characters after the end of an initializer.

· SYMBOL 117 \f "MSIcons" \s 9.5 \h There was a syntax error in the structure initialization.

	A2187
	must use floating point initializer

A variable declared with the REAL4, REAL8, and REAL10 directives must be initialized with a floating-point number or a question mark (?).

This error can be caused by giving an initializer in integer form (such as 18) instead of in floating-point form (18.0).

	A2188
	cannot use .EXIT for OS_OS2 with .8086

The INVOKE generated by the .EXIT statement under OS_OS2 requires the .186 (or higher) directive, since it must be able to use the PUSH instruction to push immediates directly.

	A2189
	invalid combination with segment alignment

The alignment specified by the ALIGN or EVEN directive was greater than the current segment alignment as specified by the SEGMENT directive.

	A2190
	INVOKE requires prototype for procedure

The INVOKE directive must be preceded by a PROTO statement for the procedure being called.

When using INVOKE with an address rather than an explicit procedure name, you must precede the address with a pointer to the prototype.

	A2191
	cannot include structure in self

You cannot reference a structure recursively (inside its own definition).

	A2192
	symbol language attribute conflict

Two declarations for the same symbol have conflicting language attributes (such as C and PASCAL). The attributes should be identical or compatible.

	A2193
	non-benign COMM redefinition

A variable was redefined with the COMM directive to a different language type, distance, size, or instance count.

Multiple COMM definitions of a variable must be identical.

	A2194
	COMM variable exceeds 64K

A variable declared with the COMM directive in a 16-bit segment was greater than 64K.

	A2195
	parameter or local cannot have void type

The assembler attempted to create an argument or create a local without a type.

This error can be caused by declaring or passing a symbol followed by a colon without specifying a type or by using a user-defined type defined as void.

	A2196
	cannot use TINY model with OS_OS2

A .MODEL statement specified the TINY memory model and the OS_OS2 operating system. The tiny memory model is not allowed under OS/2.

	A2197
	expression size must be 32-bits

There was an attempt to use the 16-bit expression evaluator in a 32-bit segment. In a 32-bit segment (USE32 or FLAT), you cannot use the default 16-bit expression evaluator (OPTION EXPR16).

	A2198
	.EXIT does not work with 32-bit segments

The .EXIT directive cannot be used in a 32-bit segment; it is valid only when generating 16-bit code.

	A2199
	.STARTUP does not work with 32-bit segments

The .STARTUP directive cannot be used in a 32-bit segment; it is valid only when generating 16-bit code.

	A2200
	ORG directive not allowed in unions

The ORG directive is not valid inside a UNION definition.

You can use the ORG directive inside STRUCT definitions, but it is meaningless inside a UNION.

	A2201
	scope state cannot be changed

Both OPTION SCOPED and OPTION NOSCOPED statements occurred in a module. You cannot switch scoping behavior in a module.

This error may be caused by an OPTION SCOPED or OPTION NOSCOPED statement in an include file.

	A2202
	illegal use of segment register

You cannot use segment overrides for the FS or GS segment registers when generating floating-point emulation instructions with the /FPi command-line option or OPTION EMULATOR.

	A2203
	cannot declare scoped code label as PUBLIC

A code label defined with the "label:" syntax was declared PUBLIC. Use the "label::" syntax, the LABEL directive, or OPTION NOSCOPED to eliminate this error.

	A2204
	.MSFLOAT directive is obsolete : ignored

The Microsoft Binary Format is no longer supported. You should convert your code to the IEEE numeric standard, which is used in the 80x87-series coprocessors.

	A2205
	ESC instruction is obsolete : ignored

The ESC (Escape) instruction is no longer supported. All numeric coprocessor instructions are now supported directly by the assembler.

	A2206
	missing operator in expression

An expression cannot be evaluated because it is missing an operator. This error message may also be a side-effect of a preceding program error.

The following line will generate this error:

value1 = (1 + 2) 3

	A2207
	missing right parenthesis in expression

An expression cannot be evaluated because it is missing a right (closing) parenthesis. This error message may also be a side-effect of a preceding program error.

The following line will generate this error:

value1 = ((1 + 2) * 3

	A2208
	missing left parenthesis in expression

An expression cannot be evaluated because it is missing a left (opening) parenthesis. This error message may also be a side-effect of a preceding program error.

The following line will generate this error:

value1 = ((1 + 2) * 3))

	A2209
	reference to forward macro redefinition

A macro cannot be accessed because it has not been yet defined.

Move the macro definition ahead of all references to the macro.

	A2901
	cannot run ML.EXE

The MASM driver could not spawn Ml.exe.

One of the following may have occurred:

· Ml.exe was not in the path.

· The READ attribute was not set on Ml.exe.

· There was not enough memory.

ML Warnings

	A4000
	cannot modify READONLY segment

An attempt was made to modify an operand in a segment marked with the READONLY attribute.

	A4002
	non-unique STRUCT/UNION field used without qualification

A STRUCT or UNION field can be referenced without qualification only if it has a unique identifier.

This conflict can be resolved either by renaming one of the structure fields to make it unique or by fully specifying both field references.

The NONUNIQUE keyword requires that all references to the elements of a STRUCT or UNION be fully specified.

	A4003
	start address on END directive ignored with .STARTUP

Both .STARTUP and a program load address (optional with the END directive) were specified. The address specification with the END directive was ignored.

	A4004
	cannot ASSUME CS

An attempt was made to assume a value for the CS register. CS is always set to the current segment or group.

	A4005
	unknown default prologue argument

An unknown argument was passed to the default prologue.

The default prologue understands only the FORCEFRAME and LOADDS arguments.

	A4006
	too many arguments in macro call

There were more arguments given in the macro call than there were parameters in the macro definition.

	A4007
	option untranslated, directive required : option
There is no ML command-line equivalent for the given MASM option. The desired behavior can be obtained by using a directive in the source file.

Option Directive
/A .ALPHA
/P OPTION READONLY
/S .SEQ

	A4008
	invalid command-line option value, default is used : option
The value specified with the given option was not valid. The option was ignored, and the default was assumed.

	A4009
	insufficient memory for /EP : /EP ignored

There is not enough memory to generate a first-pass listing.

	A4010
	expected '>' on text literal

A macro was called with a text literal argument that was missing a closing angle bracket.

	A4011
	multiple .MODEL directives found : .MODEL ignored

More than one .MODEL directive was found in the current module. Only the first .MODEL statement is used.

	A4012
	line number information for segment without class 'CODE'

There were instructions in a segment that did not have a class name that ends with "CODE." The assembler did not generate CodeView information for these instructions.

CodeView cannot process modules with code in segments with class names that do not end with "CODE."

	A4013
	instructions and initialized data not supported in AT segments

An instruction or initialized data was found in a segment defined with the AT attribute. The code or data will not be loaded at run time.

Data in AT segments must be declared with the ? initializer.

	A4910
	cannot open file: filename
The given filename could not be in the current path.

Make sure that filename was copied from the distribution disks and is in the current path.

	A5000
	@@: label defined but not referenced

A jump target was defined with the @@: label, but the target was not used by a jump instruction.

One common cause of this error is insertion of an extra @@: label between the jump and the @@: label that the jump originally referred to.

	A5001
	expression expected, assume value 0

There was an IF, ELSEIF, IFE, IFNE, ELSEIFE, or ELSEIFNE directive without an expression to evaluate. The assembler assumes a 0 for the comparison expression.

	A5002
	externdef previously assumed to be external

The OPATTR or .TYPE operator was applied to a symbol after the symbol was used in an EXTERNDEF statement but before it was declared. These operators were used on a line where the assembler assumed that the symbol was external.

	A5003
	length of symbol previously assumed to be different

The LENGTHOF, LENGTH, SIZEOF, or SIZE operator was applied to a symbol after the symbol was used in an EXTERNDEF statement but before it was declared. These operators were used on a line where the assembler assumed that the symbol had a different length and size.

	A5004
	symbol previously assumed to not be in a group

A symbol was used in an EXTERNDEF statement outside of a segment and then was declared inside a segment.

	A5005
	types are different

The type given by an INVOKE statement differed from that given in the procedure prototype. The assembler performed the appropriate type conversion.

	A6001
	no return from procedure

A PROC statement generated a prologue, but there was no RET or IRET instruction found inside the procedure block.

	A6003
	conditional jump lengthened

A conditional jump was encoded as a reverse conditional jump around a near unconditional jump.

You may be able to rearrange code to avoid the longer form.

	A6004
	procedure argument or local not referenced

You passed a procedure argument or created a variable with the LOCAL directive that was not used in the procedure body.

Unnecessary parameters and locals waste code and stack space.

	A6005
	expression condition may be pass-dependent

Under the /Zm command-line option or the OPTION M510 directive, the value of an expression changed between passes.

This error message may indicate that the code is pass-dependent and must be rewritten.

