

Arquitectura de una FPGAs de Xilinx

Una Vista por encima

- Todas las FPGAs Xilinx contienen en general los mismos recursos básicos
 - Slices (agrupados dentro de los CLBs)
 - Contiene registros y lógica combinacional
 - Bloques I/O o IOBs
 - Interfase entre la FPGA y el mundo exterior
 - Interconexión programable
 - Otros Recursos
 - Memoria
 - Multiplicadores
 - Buffer para relojes globales
 - Boundary scan logic

Arquitectura de la Spartan 3

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

IOB Element

- Input path
- Two DDR registers
- Output path
 - Two DDR registers
 - Two 3-state enable
 DDR registers
- Separate clocks and clock enables for I and O
- Set and reset signals are shared

SelectIO Standard

- Allows direct connections to external signals of varied voltages and thresholds
 - Optimizes the speed/noise tradeoff
 - Saves having to place interface components onto your board
- Differential signaling standards
 - LVDS, BLVDS, ULVDS
 - LDT
 - LVPECL

SelectIO Standard

- Single-ended I/O standards
 - LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)
 - PCI-X at 133 MHz, PCI (3.3V at 33 MHz and 66 MHz)
 - GTL, GTLP
 - and more!

Comprehensive Connectivity

- Single ended and differential.
 - 784 single-ended, 344 differential pairs.
 - 622 Mb/sec LVDS.
 - 24 I/O standards, 8 flexible I/O banks.
 - PCI 32/33 and 64/33 support.
 - Eliminate costly bus transceivers.
- 3.3V, 2.5V, 1.8V, 1.5V, 1.2V

Chip-to-Chip Interfacing: Backplane Interfacing: High-speed Memory Interfacing:

I/O Block Advantages

- Independent registers.
 - Fast bus operations.
 - Interface to high-speed memory like ZBT and QDR.
 - Increase system performance with fast Tsu and Tco.
- Lower ground bounce with slew rate control.
- Zero hold-time for registered input signals using programmable input delay.
- Lower power consumption with keeper circuit.

SelectIO

	Standard	Output V _{CCO}	Input V _{REF}
le ended	LVTTL	3.3V	
	LVCMOS33	3.3V	
	LVCMOS25	2.5V	
	LVCMOS18	1.8V	
	LVCMOS15	1.5V	
	LVCMOS12	1.2V	
	PCI 32/64 bit 33MHz	3.3V	
	SSTL2 Class I	2.5V	1.25V
	SSTL2 Class II	2.5V	1.25V
ing	SSTL18 Class I	1.8V	0.9V
S	HSTL Class I	1.5V	0.75V
	HSTL Class III	1.5V	0.9V
	HSTL18 Class I	1.8V	0.9V
	HSTL18 Class II	1.8V	0.9V
	HSTL18 Class III	1.8V	1.1V
	GTL		0.8V
	GTL+		1.0V
Differential	LVDS2.5	2.5V	
	Bus LVDS2.5	2.5V	
	Ultra LVDS2.5	2.5V	
	LVDS_ext2.5	2.5V	
	RSDS	2.5V	
	LDT2.5	2.5V	

- More standards for system integration.
- Differential standards.
 - Higher I/O performance.
 - Lower power, lower cost.

SelectIO Standards

- V_{REF} defines input threshold reference voltage
- Available as user I/O when using internal reference

SelectIO Output Banks

- Each bank has an output driver voltage (V_{CCO}).
- Shared among all I/Os in that bank.
- All I/O in a bank must use the same voltage source.
- All V_{CCO} pins in a bank must be the same voltage.
- Only one V_{CCO} voltage for TQ144 per side.
- Outputs not requiring V_{CCO} fit in the bank.

SelectIO Input Banks

- Each bank has an input reference voltage (V_{REF}).
 - I/O in a bank must use the same reference voltage.
 - V_{REF} pins in a bank must be tied to the same voltage.
- Inputs not requiring a V_{REF} fit in the bank.
- V_{REF} pins in a bank available as additional I/O if I/O type does not require V_{REF} .

I/O Signal Types

Chip-to-Chip Interfacing:

Backplane Interfacing:

High-speed Memory Interfacing:

Single Ended I/O

- Traditional means of data transfer.
- Data is carried on a single line.
- Large voltage swing between logic levels.

Differential I/O

- One data bit is carried through two signal lines.
- Voltage difference determines logic level.
- Small voltage swing between logic levels.

Differential I/O Benefits

- Small voltage swing between pairs.
 - Reduced emissions.
 - High performance per pin pair.
 - Reduced power consumption.
 - Improved noise rejection.
- Significant cost savings.
 - Fewer pins, board layers, board traces.
 - Smaller connectors.

Digitally Controlled Impedance Drivers

- On-chip I/O termination.
- Reduce total board cost.
 - Eliminate termination resistors.
 - Easier layout and fewer layers.
- Increases system reliability.
 - Greatly reduces component count.
 - Lower chance of failures.
- Elimination of stub reflection noise.
 - No traces between termination resistor and package pins.

Digital Controlled Impedance (DCI)

- DCI provides
 - Output drivers that match the impedance of the traces
 - On-chip termination for receivers and transmitters
- DCI advantages
 - Improves signal integrity by eliminating stub reflections
 - Reduces board routing complexity and component count by eliminating external resistors
 - Eliminates the effects of temperature, voltage, and process variations by using an internal feedback circuit

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Digital Clock Manager (DCM)

- Delay Locked Loop (DLL)
 - Clock phase de-skew.
 - 50% duty cycle correction.
 - 25 MHz to 280 MHz.
 - Simple phase shifts.
- Digital Phase Shift (DPS)
 - (Period / 256) increments.
- Digital Frequency Synthesis (DFS)
 - M/N clock multiply and divide.
 - M= 2 to 32, N= 1 to 32

DCM Functional Blocks

Clock Management Summary

- All digital DLL implementation.
 - Clock deskew.
 - Input noise rejection.
 - 50/50 duty cycle correction.
 - Clock mirroring.
- Multiply or divide clock.
- Programmable phase shift.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Slices and CLBs

- Each Spartan 3 CLB contains four slices
 - Local routing provides feedback between slices in the same CLB, and it provides routing to neighboring CLBs
 - A switch matrix provides access to general routing resources

Slices and CLBs

- Four slices per CLB.
 - 2 SLICEL are Logic only.
 - 2 SLICEM are Logic / Memory.
- Fast arithmetic functions with cascadable look-ahead carry chains.

Spartan-3 Slice Capabilities

- Basic SLICEL structure of a slice is two 4-input look-up tables followed by two D flip-flops (plus extra stuff).
- Basic SLICEM structure is like SLICEL but the LUT4s may instead be used as RAM or a shift register.

SLICEM	Function	SLICEL
\checkmark	Logic/ROM	\checkmark
\checkmark	Arithmetic/Carry	\checkmark
\checkmark	Wide Mux	\checkmark
\checkmark	Distributed RAM	
\checkmark	Shift Register	

Simplified Slice Structure

Each slice has four outputs

- Two registered outputs, two non-registered outputs
- Two BUFTs associated with each CLB, accessible by all 16 CLB outputs
- Carry logic runs vertically, up only
 - Two independent carry chains per CLB

Detailed Slice Structure

- The next few slides discuss the slice features
 - LUTs
 - MUXF5, MUXF6,
 MUXF7, MUXF8
 (only the F5 and
 F6 MUX are shown
 in this diagram)
 - Carry Logic
 - MULT_ANDs
 - Sequential Elements

Look-Up Tables

Combinatorial logic is stored in Look-Up Tables (LUTs)

- Also called Function Generators (FGs)
- Capacity is limited by the number of inputs, not by the complexity
- Cascaded for wide-input functions
- Delay through the LUT is constant

Connecting Look-Up Tables Dedicated Multiplexers

Fast Carry Logic

- Simple, fast, and complete arithmetic Logic
 - Dedicated XOR gate for single-level sum completion
 - Uses dedicated routing resources
 - All synthesis tools can infer carry logic

Arithmetic / Carry Logic

- Dedicated look-ahead carry logic.
 - High performance for counters and arithmetic functions.
 - Can be used to cascade LUTs for wide-input logic functions.
- Resources for efficient LUT implementation of shift and add multipliers.

MULT_AND Gate

Highly efficient multiply and add implementation

- Earlier FPGA architectures require two LUTs per bit to perform the multiplication and addition
- The MULT_AND gate enables an area reduction by performing the

multiply and the add in one LUT per bit

Flexible Sequential Elements

- Either flip-flops or latches
- Two in each slice; eight in each CLB
- Inputs come from LUTs or from an independent CLB input
- Separate set and reset controls
 - Can be synchronous or asynchronous
- All controls are shared within a slice
 - Control signals can be inverted locally within a slice

Distributed RAM

- A LUT in a SLICEM may be configured for use as a RAM.
 - Implement single and dual port.
 - Cascade LUTs to increase size.
- Synchronous write only.
- Reads may be synchronous or asynchronous.

Distributed RAM

- RAM and ROM are initialized during configuration
 - Data can be written to RAM after configuration
- Emulated dual-port RAM
 - One read/write port
 - One read-only port

Shift Register LUT

- A LUT in a SLICEM may be configured for use as a RAM.
 - Implement single and dual port.
 - Cascade LUTs to increase size.
 - Dynamically addressable delay up to 16 cycles.

Shift Register LUT

Dynamically addressable serial shift registers

- Maximum delay of 16 clock cycles per LUT (128 per CLB)
- Cascadable to other LUTs or CLBs for longer shift registers
 - Dedicated connection from Q15 to D input of the next SRL16CE
- Shift register length can be changed asynchronously by toggling address A

Spartan-3 CLB Summary

- Flexible Configurable Logic Block (CLB).
- Logic, Flip Flops.
- Distributed RAM, Shift Registers.
- CLB configurable for simple to complex logic.
- Any 6 input function into one logic level.
- Excellent for fast arithmetic operations.
 - Specialized carry logic for arithmetic operations.
 - Fast DSP functions, FIR filters.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

BlockRAM

- Dedicated blocks of 18-kilobit synchronous RAM.
- Ideal for many memory requirements.
- Builds both single and true dual-port memories, true dual port ideal for asynchronous FIFOs.
- May be initialized and used as synchronous ROM.

BlockRAM

High Performance Sync Dual-Port[™] RAM

- Independent configuration for port A and for port B.
- Enables data width conversion.

Configuration	Depth	Data bits	Parity bits
16K x 1	16Kb	1	0
8K x 2	8Kb	2	0
4K x 4	4Kb	4	0
2K x 9	2Kb	8	1
1K x 18	1Kb	16	2
512 x 36	512	32	4

True Dual-Port

- True simultaneous read and/or write to both ports.
- Each port has independent controls.
 - Address
 - Clock/Enable
 - Data
 - Read/Write
 - Reset
- May be used as two independent half-sized single port memories.

Dual-Port Flexibility

- Each port can be configured with different data width.
- Provides easy data width conversion.

Embedded Multipliers

Not actually located in CLB, but this seems a good place to bring it up...

- 18 x 18 bit signed operation.
- 17 x 17 bit unsigned operation.
- 2's complement operation.
- Combinational and pipelined options.
- Multipliers are physically located next to block SelectRAM[™] memory
- Optimized to implement Multiply and Accumulate functions

Embedded Memory Summary

- Flexible BlockRAMs enable:
 - Single and True Dual-Port RAMs.
 - FIFOs for buffering data.
 - Data width conversion.
 - Caches and register banks.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Routing Wire Types

(b) Hex Line

(d) Direct Lines

Global Routing

- Distribute clocks and other high fanout signals throughout the device with minimum skew.
- Eight global clock nets designed to distribute high fanout clock signals.

Routing Summary

- Vector-based routing provides predictable routing delays independent of:
 - Design placement.
 - Device size.
- Superior routing results in quick routing times and increased design performance.

