
� 1

One Dimensional Arrays (array)
Definition

An instance A of the parameterized data type array<E> is a mapping from an interval I = [a..b]
of integers, the index set of A, to the set of variables of data type E, the element type of A. A(i)
is called the element at position i.

#include < LEDA/array.h >

Types

array<E>::item the item type.

array<E>::value_type the value type.

Creation

array<E> A(int a, int b) creates an instance A of type array<E> with index set [a..b].

array<E> A(int n) creates an instance A of type array<E> with index set [0..n - 1].

array<E> A creates an instance A of type array<E> with empty index set.

Special Constructors

array<E> A(int low, E x, E
y)

creates an instance A of type array<E> with index set [low, low
+ 1] initialized to [x, y].

array<E> A(int low, E x, E
y, E w)

creates an instance A of type array<E> with index set [low, low
+ 2] initialized to [x, y, w].

array<E> A(int low, E x, E y, E z, E w)

 creates an instance A of type array<E> with index set [low, low
+ 3] initialized to [x, y, z, w].

Operations

Basic Operations

E& A[int x] returns A(x).
Precondition a < = x < = b.

int A.low() returns the minimal index a of A.

int A.high() returns the maximal index b of A.

int A.size() returns the size (b - a + 1) of A.

Iteration STL compatible iterators are provided when compiled with -
DLEDA_STL_ITERATORS (see LEDAROOT/demo/stl/array.c for an example).

Implementation

Arrays are implemented by C++vectors. The access operation takes time O(1), the sorting is
realized by quicksort (time O(nlog n)) and the binary_search operation takes time O(log n),
where n = b - a + 1. The space requirement is O(I*sizeof (E)).

� 2

Linear Lists (list)
Definition

An instance L of the parameterized data type list<E> is a sequence of items (list_item). Each
item in L contains an element of data type E, called the element type of L. The number of
items in L is called the length of L. If L has length zero it is called the empty list. In the sequel
< x > is used to denote a list item containing the element x and L[i] is used to denote the
contents of list item i in L.

#include < LEDA/list.h >

Types

list<E>::item the item type.

list<E>::value_type the value type.

Creation

list<E> L creates an instance L of type list<E> and initializes it to the empty list.

Operations

Access Operations

int L.length() returns the length of L.

int L.size() returns L.length().

bool L.empty() returns true if L is empty, false otherwise.

list_item L.first() returns the first item of L (nil if L is empty).

list_item L.last() returns the last item of L. (nil if L is empty)

list_item L.succ(list_item it) returns the successor item of item it, nil if it = L.last().
Precondition it is an item in L.

list_item L.pred(list_item it) returns the predecessor item of item it, nil if it = L.first().
Precondition it is an item in L.

E L.inf(list_item it) returns L.contents(it).

E L.front() returns the first element of L, i.e. the contents of L.first().
Precondition L is not empty.

E L.head() same as L.front().

E L.back() returns the last element of L, i.e. the contents of L.last().
Precondition L is not empty.

E L.tail() same as L.back().

Update Operations

list_item L.push(E x) adds a new item < x > at the front of L and returns it
(L.insert(x,L.first(),LEDA::before)).

list_item L.push_front(E x) same as L.push(x).

list_item L.append(E x) appends a new item < x > to L and returns it

� 3

(L.insert(x,L.last(),LEDA::after)).

list_item L.push_back(E x) same as L.append(x).

E L.pop() deletes the first item from L and returns its contents.
Precondition L is not empty.

E L.pop_front() same as L.pop().

E L.Pop() deletes the last item from L and returns its contents.
Precondition L is not empty.

E L.pop_back() same as L.Pop().

E L.del_item(list_item
it)

deletes the item it from L and returns its contents L[it].
Precondition it is an item in L.

E L.del(list_item it) same as L.del_item(it).

void L.erase(list_item it) deletes the item it from L.
Precondition it is an item in L.

void L.clear() makes L the empty list.

Operators

E& L[list_item it] returns a reference to the contents of it.

list_item L += E x same as L.append(x); returns the new item.

ostream& ostream& out << L same as L.print(out); returns out.

istream& istream& in >> list<E>& L same as L.read(in)); returns in.

Iteration

forall_items(it, L) { ``the items of L are successively assigned to it'' }

forall(x, L) { ``the elements of L are successively assigned to x'' }

STL compatible iterators are provided when compiled with -DLEDA_STL_ITERATORS (see
LEDAROOT/demo/stl/list.c for an example).

Implementation

The data type list is realized by doubly linked linear lists. All operations take constant time
except for the following operations: search and rank take linear time O(n), item(i) takes time
O(i), bucket_sort takes time O(n + j - i) and sort takes time O(n*c*log n) where c is the time
complexity of the compare function. n is always the current length of the list.

� 4

Graphs (graph)
Definition

An instance G of the data type graph consists of a list V of nodes and a list E of edges (node
and edge are item types). Distinct graphs have disjoint node and edge lists. The value of a
variable of type node is either the node of some graph, or the special value nil (which is
distinct from all nodes), or is undefined (before the first assignment to the variable). A
corresponding statement is true for the variables of type edge.

#include < LEDA/graph.h >

Creation

graph G creates an object G of type graph and initializes it to the empty directed graph.

Operations

a) Access operations

int G.outdeg(node v) returns the number of edges adjacent to node v (|
adj_edges(v)|).

int G.indeg(node v) returns the number of edges ending at v (| in_edges(v)|) if
G is directed and zero if G is undirected).

int G.degree(node v) returns outdeg(v) + indeg(v).

node G.source(edge e) returns the source node of edge e.

node G.target(edge e) returns the target node of edge e.

node G.opposite(node v, edge e)

 returns target(e) if v = source(e) and source(e) otherwise.

int G.number_of_nodes() returns the number of nodes in G.

int G.number_of_edges() returns the number of edges in G.

list<node> G.all_nodes() returns the list V of all nodes of G.

list<edge> G.all_edges() returns the list E of all edges of G.

node G.first_node() returns the first node in V.

node G.last_node() returns the last node in V.

node G.choose_node() returns a random node of G (nil if G is empty).

edge G.first_edge() returns the first edge in E.

edge G.last_edge() returns the last edge in E.

edge G.choose_edge() returns a random edge of G (nil if G is empty).

bool G.is_directed() returns true iff G is directed.

bool G.is_undirected() returns true iff G is undirected.

bool G.empty() returns true iff G is empty.

b) Update operations

node G.new_node() adds a new node to G and returns it.

edge G.new_edge(node v, node w)

� 5

 adds a new edge (v, w) to G by appending it to adj
edges(v) and to in edges(w) (if G is directed) or adj
edges(w) (if G is undirected), and returns it.

void G.hide_edge(edge e) removes edge e temporarily from G until restored by
G.restore_edge(e).

bool G.is_hidden(edge e) returns true if e is hidden and false otherwise.

list<edge> G.hidden_edges() returns the list of all hidden edges of G.

void G.restore_edge(edge
e)

restores e by appending it to adj edges(source(e)) and to
in edges(target(e)) (adj edges(target(e)) if G is
undirected). Precondition e is hidden and neither
source(e) nor target(e) is hidden.

void G.restore_all_edges() restores all hidden edges.

void G.hide_node(node v) removes node v temporarily from G until restored by
G.restore_node(v). All non-hidden edges in adj edges(v)
and in edges(v) are hidden too.

void G.hide_node(node v, list<edge>& h_edges)

 as above, in addition, the list of leaving or entering edges
which are hidden as a result of hiding v are appended to
h_edges.

bool G.is_hidden(node v) returns true if v is hidden and false otherwise.

list<node> G.hidden_nodes() returns the list of all hidden nodes of G.

void G.restore_node(node
v)

restores v by appending it to the list of all nodes. Note that
no edge adjacent to v that was hidden by G.hide_node(v)
is restored by this operation.

void G.restore_all_nodes() restores all hidden nodes.

void G.del_node(node v) deletes v and all edges incident to v from G.

void G.del_edge(edge e) deletes the edge e from G.

void G.del_all_nodes() deletes all nodes from G.

void G.del_all_edges() deletes all edges from G.

void G.sort_nodes(node_array<T> A)

 the nodes of G are sorted according to the entries of
node_array A (cf. section Node Arrays).
Precondition T must be numerical.

void G.sort_edges(edge_array<T> A)

 the edges of G are sorted according to the entries of
edge_array A (cf. section Edge Arrays).
Precondition T must be numerical.

void G.make_undirected() makes G undirected by appending in edges(v) to adj
edges(v) for all nodes v.

void G.make_directed() makes G directed by splitting adj edges(v) into out
edges(v) and in edges(v).

void G.clear() makes G the empty graph.

f) I/O Operations

void G.print_node(node v, ostream& O = cout)

 prints node v on the output stream O.

void G.print_edge(edge e, ostream& O = cout)

 prints edge e on the output stream O. If G is directed e is represented by an arrow

� 6

pointing from source to target. If G is undirected e is printed as an undirected line
segment.

void G.print(string s, ostream& O = cout)

 prints G with header line s on the output stream O.

void G.print(ostream& O = cout)

 prints G on the output stream O.

g) Non-Member Functions

node source(edge e) returns the source node of edge e.

node target(edge e) returns the target node of edge e.

graph* graph_of(node v) returns a pointer to the graph that v belongs to.

graph* graph_of(edge e) returns a pointer to the graph that e belongs to.

h) Iteration

All iteration macros listed in this section traverse the corresponding node and edge lists of the
graph, i.e. they visit nodes and edges in the order in which they are stored in these lists.

forall_nodes(v, G)
{ ``the nodes of G are successively assigned to v" }

forall_edges(e, G)
{ ``the edges of G are successively assigned to e" }

forall_rev_nodes(v, G)
{ ``the nodes of G are successively assigned to v in reverse order" }

forall_rev_edges(e, G)
{ ``the edges of G are successively assigned to e in reverse order" }

forall_adj_edges(e, w)
{ ``the edges adjacent to node w are successively assigned to e" }

forall_out_edges(e, w) a faster version of forall_adj_edges for directed graphs.

forall_in_edges(e, w)
{ ``the edges of in edges(w) are successively assigned to e" }

forall_inout_edges(e, w)
{ ``the edges of adj edges(w) and in edges(w) are successively assigned to e" }

forall_adj_nodes(v, w)
{ ``the nodes adjacent to node w are successively assigned to v" }

Implementation

Graphs are implemented by doubly linked lists of nodes and edges. Most operations take
constant time, except for all_nodes, all_edges, del_all_nodes, del_all_edges, make_map,
make_planar_map, compute_faces, all_faces, make_map, clear, write, and read which take
time O(n + m), and adj_edges, adj_nodes, out_edges, in_edges, and adj_faces which take
time O(output size) where n is the current number of nodes and m is the current number of
edges. The space requirement is O(n + m).

� 7

Parameterized Graphs (GRAPH)
Definition

A parameterized graph G is a graph whose nodes and edges contain additional (user defined)
data. Every node contains an element of a data type vtype, called the node type of G and
every edge contains an element of a data type etype called the edge type of G. We use < v,
w, y > to denote an edge (v, w) with information y and < x > to denote a node with information
x.

#include < LEDA/graph.h >

Creation

GRAPH<vtype,etype> G creates an instance G of type GRAPH<vtype,etype> and initializes
it to the empty graph.

Operations

vtype G.inf(node v) returns the information of node v.

const
vtype&

G[node v] returns a reference to G.inf(v).

etype G.inf(edge e) returns the information of edge e.

const
etype&

G[edge e] returns a reference to G.inf(e).

node G.new_node(vtype
x)

adds a new node < x > to G and returns it.

edge G.new_edge(node v, node w, etype x)

 adds a new edge < v, w, x > to G by appending it to adj
edges(v) and to in edges(w) and returns it.

void G.sort_nodes(list<node> vl)

 makes vl the node list of G.
Precondition vl contains exactly the nodes of G.

void G.sort_edges(list<edge> el)

 makes el the edge list of G.
Precondition el contains exactly the edges of G.

void G.sort_nodes() the nodes of G are sorted increasingly according to their
contents.
Precondition vtype is linearly ordered.

void G.sort_edges() the edges of G are sorted increasingly according to their
contents.
Precondition etype is linearly ordered.

Implementation

Parameterized graphs are derived from directed graphs. All additional operations for
manipulating the node and edge entries take constant time.

� 8

Undirected Graphs (ugraph)
Definition

An instance U of the data type ugraph is an undirected graph as defined in section Graphs.

#include < LEDA/ugraph.h >

Creation

ugraph U creates an instance U of type ugraph and initializes it to the empty
undirected graph.

ugraph U(graph
G)

creates an instance U of type ugraph and initializes it with an undirected
copy of G.

Operations

see section Graphs.

Implementation

see section Graphs.

Parameterized Ugraphs
(UGRAPH)
Definition

A parameterized undirected graph G is an undirected graph whose nodes and contain
additional (user defined) data (cf. Parameterized Graphs). Every node contains an element of
a data type vtype, called the node type of G and every edge contains an element of a data
type etype called the edge type of G.

#include < LEDA/ugraph.h >

UGRAPH<vtype,etype> U creates an instance U of type ugraph and initializes it to the
empty undirected graph.

Operations

see section Parameterized Graphs.

Implementation

see section Parameterized Graphs.

� 9

Node Arrays (node_array)
Definition

An instance A of the parameterized data type node_array<E> is a partial mapping from the
node set of a graph G to the set of variables of type E, called the element type of the array.
The domain I of A is called the index set of A and A(v) is called the element at position v. A is
said to be valid for all nodes in I.

#include < LEDA/node_array.h >

Creation

node_array<E> A creates an instance A of type node_array<E> with empty index
set.

node_array<E> A(graph
G)

creates an instance A of type node_array<E> and initializes the
index set of A to the current node set of graph G.

node_array<E> A(graph
G, E x)

creates an instance A of type node_array<E>, sets the index set
of A to the current node set of graph G and initializes A(v) with x
for all nodes v of G.

Operations

E& A[node v] returns the variable A(v).
Precondition A must be valid for v.

void A.init(graph G) sets the index set I of A to the node set of G, i.e., makes A valid for
all nodes of G.

void A.init(graph G, E
x)

makes A valid for all nodes of G and sets A(v) = x for all nodes v of
G.

Implementation

Node arrays for a graph G are implemented by C++vectors and an internal numbering of the
nodes and edges of G. The access operation takes constant time, init takes time O(n), where
n is the number of nodes in G. The space requirement is O(n).

Remark: A node array is only valid for a bounded number of nodes of G. This number is either
the number of nodes of G at the moment of creation of the array or it is explicitely set by the
user. Dynamic node arrays can be realized by node maps (cf. section Node Maps).

� 10

Edge Arrays (edge_array)
Definition

An instance A of the parameterized data type edge_array<E> is a partial mapping from the
edge set of a graph G to the set of variables of type E, called the element type of the array.
The domain I of A is called the index set of A and A(e) is called the element at position e. A is
said to be valid for all edges in I.

#include < LEDA/edge_array.h >

Creation

edge_array<E> A creates an instance A of type edge_array<E> with empty index
set.

edge_array<E> A(graph G) creates an instance A of type edge_array<E> and initializes
the index set of A to be the current edge set of graph G.

edge_array<E> A(graph G,
E x)

creates an instance A of type edge_array<E>, sets the index
set of A to the current edge set of graph G and initializes A(v)
with x for all edges v of G.

edge_array<E> A(graph G,
int n, E x)

creates an instance A of type edge_array<E> valid for up to n
edges of graph G and initializes A(e) with x for all edges e of
G.
Precondition n > = | E|.
A is also valid for the next n - | E| edges added to G.

Operations

E& A[edge e] returns the variable A(e).
Precondition A must be valid for e.

void A.init(graph G) sets the index set I of A to the edge set of G, i.e., makes A valid for
all edges of G.

void A.init(graph G, E
x)

makes A valid for all edges of G and sets A(e) = x for all edges e of
G.

Implementation

Edge arrays for a graph G are implemented by C++vectors and an internal numbering of the
nodes and edges of G. The access operation takes constant time, init takes time O(n), where
n is the number of edges in G. The space requirement is O(n).

Remark: An edge array is only valid for a bounded number of edges of G. This number is
either the number of edges of G at the moment of creation of the array or it is explicitely set by
the user. Dynamic edge arrays can be realized by edge maps (cf. section Edge Maps).

� 11

Graph Windows (GraphWin)
Definition

GraphWin combines the two types graph and window and forms a bridge between the graph
data types and algorithms and the graphics interface of LEDA. GraphWin can easily be used
in LEDA programs for constructing, displaying and manipulating graphs and for animating and
debugging graph algorithms.

#include < LEDA/graphwin.h >

Creation

GraphWin gw(graph& G, const char* win_label="")

 creates a graph window for graph G with a display window of
default size and frame label win_label.

GraphWin gw(window&
W)

as above, but W is used as display window.

Operations

a) Window Operations

void gw.display() displays gw at default position.

bool gw.edit() enters the edit mode of GraphWin that allows to change the
graph interactively by operations associated with certain mouse
events or by choosing operations from the windows menu bar
(see section edit-mode for a description of the available
commands and operations). Edit mode is terminated by either
pressing the done button or by selecting exit from the file menu.
In the first case the result of the edit operation is true and in the
latter case the result is false.

bool gw.open() as above, but displays the window at default position.

void gw.close() closes the window.

void gw.message(const char* msg)

 displays the message msg at the top of the window.

string gw.get_message() returns the current messsage string.

void gw.del_message() deletes a previously written message.

double gw.get_xmin() returns the minimal x-coordinate of the window.

double gw.get_ymin() returns the minimal y-coordinate of the window.

double gw.get_xmax() returns the maximal x-coordinate of the window.

double gw.get_ymax() returns the maximal y-coordinate of the window.

b) Graph Operations

void gw.clear_graph() deletes all nodes and egdes.

graph& gw.get_graph() returns a reference of the graph of gw.

void gw.update_graph() this operation has to be called after any update operation that
has been performed directly (not by Graph Win) on the
underlying graph, e.g., deleting or inserting nodes or edges.

� 12

l) Miscellaneous

void gw.set_graph(graph&
G)

makes G the graph of gw.

bool gw.wait() waits until the done button is pressed (true returned) or exit is
selected from the file menu (false returned).

bool gw.wait(const char*
msg)

displays msg and waits until the done button is pressed (true
returned) or exit is selected from the file menu (false
returned).

bool gw.wait(float sec, const char* msg="")

 as above but waits no longer than sec seconds returns ?? if
neither button was pressed within this time interval.

void gw.acknowledge(string
s)

displays string s and asks for acknowledgement.

node gw.ask_node() asks the user to select a node with the left mouse button. If a
node is selected it is returned otherwise nil is returned.

edge gw.ask_edge() asks the user to select an edge with the left mouse button. If
an edge is selected it is returned otherwise nil is returned.

