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A new algorithm for the undesirable 1-center problem
on networks
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Recent papers have developed efficient algorithms for the location of an undesirable (obnoxious) 1-center on general
networks with n nodes and m edges. Even though the theoretical complexity of these algorithms is fine, the computational
time required to get the solution can be diminished using a different model formulation and slightly improving the upper
bounds. Thus, we present a new O(mn) algorithm, which is more straightforward and computationally faster than the
previous ones. Computing time results comparing the former approaches with the proposed algorithm are supplied.
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Introduction

Network location problems deal with finding the right

position where one or more facilities should be placed, in

order to optimize a certain objective function that is related

to the distance from the facility to the demand points

(customers). Usually, the facilities to be located are

desirable, that is, potential customers (nodes) try to attract

them as closely as possible. For example, services such as

police/fire stations, hospitals, schools, or even shopping

centers are typical desirable facilities.

Hakimi1 introduced the network location analysis, addres-

sing the center problem (minimize the farthest distance) and

the median problem (minimize the sum of distances). Later

on, several authors have studied thoroughly these problems

and they have proposed polynomial algorithms to solve

them (see Minieka2 and Kariv and Hakimi3,4).

However, sometimes the facilities can be considered

undesirable for the surrounding population, such as nuclear

reactors, military installations, polluting plants, prisons,

correctional centers, and garbage dump sites. Erkut and

Neuman5 distinguish between noxious (harmful, lethal) and

obnoxious (annoying, unbearable) facilities. For the sake of

clearness, we call them undesirable.

Even though location theory begins in the 17th century,

location problems involving undesirable facilities have only

been discussed since the early 1970s. This is due to the fact

that undesirable facilities are the consequence of technology

and industrialization. In this sense, nuclear reactors, power

plants, dump sites, and huge airports are all contemporary

problems, whereas there have been desirable facilities, such

as police stations, hospitals, schools, and warehouses, for

centuries.

There are not many papers devoted to undesirable loca-

tion on networks. Church and Garfinkel6 studied the one-

facility maximum median (maxian) problem, providing an

O(mn log n) algorithm. This was improved by Tamir7 who

briefly suggested an O(mn) procedure. Minieka8 also pro-

posed the anticenter (maxmax) and the antimedian

(maxsum) procedures.

According to Erkut and Neuman5 and Cappanera,9 there

was no paper regarding the location of one undesirable

center (maximin) in the location literature thus far. The first

O(mn) algorithm for the 1-maximin problem was briefly

suggested by Tamir10 using Megiddo11 and Dyer.12 In the

particular cases in which the underlying graph is a path, a

star, or a tree, Burkard et al13 have developed algorithms

that improve those given by Tamir.10 Lately, Melachrinoudis

and Zhang14 have proposed another O(mn) procedure based

on upper bounds and on a minor modification to Dyer.12

The most recent paper regarding this problem is written by

Berman and Drezner,15 who gave a linear programming

approach in O(mn) time. The algorithm we present compu-

tationally improves these former approaches.

The main purpose of this paper is twofold. First, we

tighten the upper bounds already proposed,14 reducing even

more both the number of edges to be processed and, on each

edge, the number of operations to get the optimal point.

Secondly, we put forward a new algorithm in O(mn) time for

the undesirable 1-center on networks. This new approach

relies on the intersection of the distance function lines with

opposite sign slopes, and avoids the matching of superfluous

lines.14 Even though the theoretical complexity is identical

to the approaches formerly reported, the computing times of
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the new algorithm are normally smaller. This fact becomes

quite outstanding when we want to test the problem several

times in a sensitivity analysis. Likewise, some harder

problems, such as multicriteria network location problems,

require computing the solutions for each single criterion to

get the set of local non-dominated points.

The rest of the paper is structured as follows. First, we

present the basic notation and the formulation of the

undesirable 1-center problem, as well as the analysis of

the unweighted case. The next section states new properties

for the weighted undesirable 1-center problem. In the

following section the latest approaches to this problem are

analysed, along with the new tightened upper bounds.

Hence, we demonstrate that by reformulating the maximin

problem in an easier way we can greatly improve the

computational complexity. Finally, several graphics and

tables are presented comparing the new algorithm with

the two latest approaches. In the last section, we summarize

the paper and some future research issues are presented.

Notation and model formulation

Let N ¼ ðV ;EÞ be a simple (no loops or multiple edges)

undirected and connected network, V ¼ fv1; v2; . . . ; vng

being the set of nodes, and E ¼ fðvs; vtÞ: vs; vt 2 V g the set

of edges, with jEj ¼ m. On each node vi, we set a positive

weight (demand) wi as follows:

w:V ! Rþ

vi 2 V ! wðviÞ ¼ wi > 0

The lower the node weight, the farther the undesirable

facility is located from that node. Also, each edge e ¼

ðvs; vtÞ is labeled with a positive length (travel cost) le.

So, we have a length function:

l:E! Rþ

e ¼ ðvs; vtÞ 2 E! lðeÞ ¼ le > 0

Thus, a point x 2 e ranges in the interval ½0; le�.

For each pair of nodes vi, vj 2 V we define the distance

between two nodes dðvi; vjÞ as the length of the shortest path

between vi and vj.

Given any edge e ¼ ðvs; vtÞ 2 E, vi 2 V and an inner

point x 2 e, we define the distance between x and a node

vi as dðx; viÞ ¼ minfxþ dðvs; viÞ; le � xþ dðvt; viÞg.

The point where dðx; viÞ attains its equilibrium (ie xþ

dðvs; viÞ ¼ le � xþ dðvt; viÞ) is called a bottleneck point:

bi ¼
dðvt; viÞ þ le � dðvs; viÞ

2
ð1Þ

When bi is located inside e, then dðx; viÞ resembles

Figure 1c. Otherwise, the bottleneck point is located over

one of the two ending nodes.

Now we are ready to formulate the undesirable 1-center

(maximin) problem on networks. Given any point x 2 N we

define f ðxÞ ¼ min
vi2V

widðx; viÞ. Then, the problem consists of

calculating

max
x2N

min
vi2V

widðx; viÞ ¼ max
x2N

f ðxÞ ð2Þ

and a point xN 2 N is an undesirable 1-center point iff f ðxN Þ ¼

max
x2N

f ðxÞ. This problem is the opposite to the 1-center problem

(minimax), so it could be called the anti-center. Unfortunately,

this term has already been coined by Minieka8 to define the

maxmax problem. We instead propose the term 1-uncenter

(undesirable center) to define the optimal location point.

If there is at least one vertex vi such that wi ¼ 0, then

f ðxÞ ¼ 0, 8x 2 N and obviously any point on network N would

be a 1-uncenter. Therefore, we consider only wi > 0, 8vi 2 V .

Several interesting properties arise for this problem, all

stated and proved in Melachrinoudis and Zhang14 and in

Berman and Drezner.15

Property 1 For any edge e ¼ ðvs; vtÞ 2 E; x 2 e, the objec-

tive function f (x), is continuous, piecewise linear and

concave in the interval ½0; le�, consisting of at most 2n

strictly monotonic line segments. The value of the objective

function is zero at the ends of the edge (see Figure 2).

Let xe be the point in edge e ¼ ðvs; vtÞ 2 E such that

f ðxeÞ ¼ max
x2e

f ðxÞ. This point xe is called a local 1-uncenter

on edge e.

Property 2 A unique local 1-uncenter xe location exists on

each edge e. Consequently, there are at most m 1-uncenter

locations on a network.

Figure 1 The three possible plots of d(x, vi).

Figure 2 Objective function f (x), which is actually the lower
envelope of all distance functions.
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We now begin discussing in brief the unweighted case

for its simplicity, and later we will analyse the weight

1-uncenter problem.

When all the node weights are equal, 8vi 2 V , wi ¼ w, the

local 1-uncenter xe is sited at the central point of edge e.

Therefore, the unweighted 1-uncenter xN is located in the

middle of the longest edge(s).14,15 This is done in O(m) time.

New properties for the weighted 1-center problem

The previous properties allow us to reformulate the 1-uncenter

problem over each edge e ¼ ðvs; vtÞ 2 E as follows: xN 2 N

is a 1-uncenter point iff f ðxN Þ ¼ max
e2E

f ðxeÞ.

Since the local 1-uncenter point is the maximum value of

the concave objective function f (x), it should be located at

the intersection of two distance functions lines with opposite

sign slopes. Our goal is to find these two lines and the

intersection point between them.

The bottleneck point (1) can give us an idea about whether

the distance function line is increasing or decreasing. Thus,

given e ¼ ðvs; vtÞ 2 E and for all vi 2 V we can get these

relationships:

bi > 0, distance function line of vertex

vi is increasing to the left of bi:

bi < le , distance function line of vertex

vi is decreasing to the right of bi:

ð3Þ

Replace bi in expression (3), and let di ¼ dðvs; viÞ �

dðvt; viÞ. Then:

di < le , increasing distance function line:

�di < le , decreasing distance function line:
ð4Þ

We divide the set of nodes V into two sets, depending

on whether the distance function increases or decreases

from vs:

L ¼ fvk 2 V : dk < leg: nodes whose dðx; vkÞ is

increasing from the left-end node vs ðFigure 1a,cÞ:

R ¼ fvk 2 V :�dk < leg: nodes whose dðx; vkÞ is

increasing from the right-end node vt ðFigure 1b,cÞ:

A node vk may belong to both sets, and hence,

jLj þ jRj42n. For any node vi 2 V , we now define the

functions FL
i ðxÞ and FR

i ðxÞ as:

FL
i ðxÞ ¼ wiðxþ dðvs; viÞÞ

FR
i ðxÞ ¼ wiðle � xþ dðvt; viÞÞ

For any pair of nodes vi 2 L, vj 2 R we also define

X ðvi; vjÞ ¼
wjðle þ dðvt; vjÞÞ � widðvs; viÞ

wi þ wj

which computes the intersection point between two distance

function lines with opposite sign slopes, that is, the point x

where both FL
i ðxÞ and FR

j ðxÞ are equal. For the special case

where vi ¼ vj, we get the bottleneck point bi.

Note that our goal is to find the two distance function

lines (with opposite sign slopes) that cross at the maximum

value of the objective function. Since there are at most n

distance function lines in sets L and R, there are at most n2

possible intersection points. Let Pe be the set containing

such intersection points for a given edge e 2 E:

Pe ¼ fX ðvi; vjÞ: 8vi 2 L; 8vj 2 Rg; jPej4 n2

and let PN be the set obtained joining, for each edge, all the

points belonging to Pe, that is

PN ¼
[
e2E

Pe; jPN j4mn2

Hooker et al16 defined the arc bottleneck point set

BA ¼ fbi: vi 2 V g, and the center bottleneck point set BC .

This set BC contains points x 2 e such that, for any two

distinct nodes vi, vj 2 V , widðx; viÞ ¼ wjdðx; vjÞ, and besides,

dðx; viÞ and dðx; vjÞ do not both decrease when x is perturbed

slightly in either direction. Obviously, BA � Pe and BC � Pe.

Let vi 2 L and vj 2 R. If vi ¼ vj, then X ðvi; viÞ ¼ bi 2 BA.

On the other hand, if vi 6¼ vj then X ðvi; vjÞ 2 BC . Hence,

Pe ¼ BA [ BC .

Melachrinoudis and Zhang14 stated that the finite dom-

inating set (FDS) for the 1-maximin problem on networks

with positive weights is V [ BA [ BC (this result is also

described more generally in Hooker et al16). Nevertheless,

this is rather mistaken, and needs to be fixed. The following

result determines the correct FDS.

Lemma 1 The finite dominating set for the weighted

1-uncenter problem on networks is PN.

Proof. According to Property 1, the value of the objective

function is zero at the ends of the edges, so the maximum

can never be at those points. On the other hand, this

maximum value is unique on each edge (Property 2), and

must be attained at the crossing point of two distance

function lines with opposite sign slopes. These points are in

Pe. Therefore, the FDS for the weighted network 1-uncenter

problem is PN . u

Taking into account these last results, we can get a new

formulation for the 1-uncenter problem (2) as follows.

Given e ¼ ðvs; vtÞ 2 E, let FðxÞ ¼ fFL
i ðxÞ: 8vi 2 Lg

(or FðxÞ ¼ fFR
i ðxÞ: 8vi 2 Rg) be the set of left (right)

weighted distance functions on edge e. We define the

point ze on edge e such that FðzeÞ ¼ min
x2Pe

FðxÞ.

Lemma 2 The local 1-uncenter point xe in edge e is ze.

Proof. Properties 1 and 2 state that f (x) is a concave

function and has a unique maximum xe. This point is

obtained intersecting one increasing line FL
i ðxÞ with a

decreasing line FR
j ðxÞ. Therefore xe must belong to set Pe.

Now we show that xe ¼ ze. By the definition of ze, we

always have FL
i ðxeÞ5FL

i ðzeÞ. If xe 6¼ ze, and since all

weights wi must be positive, the line segments of function

M Colebrook et al—Undesirable 1-center problem 1359



f (x) have non-zero slope, and thus FL
i ðxeÞ 6¼ FL

i ðzeÞ. Hence,

we have FL
i ðxeÞ > FL

i ðzeÞ, which means that xe would not be

a local 1-uncenter point, and the result follows. u

Recall from (2) that our goal is to find a point on the

network that maximizes the minimum distance from that

point to the closest one. Then, denoting Fe as the value

FðxeÞ ¼ FðzeÞ, the original problem is equivalent to the

next one.

Theorem 1 The 1-uncenter problem on networks can be

expressed as

max
e2E

min
x2Pe

FðxÞ

and a point xN 2 N is an 1-uncenter point iff

FðxN Þ ¼ max
e2E

Fe:

Proof. According to Lemma 2, on each edge e the value of

max
e2E

f ðxeÞ is Fe. Hence, the optimum value xN on network N

is the maximum of all Fe. That is, max
e2E

min
x2Pe

FðxÞ. u

Taking into consideration the previous result, the initial

continuous 1-uncenter problem (2) on networks becomes a

discrete problem. Finally we remark that, despite the size of

set PN being at most mn2, the 1-uncenter point can be found

on a network in O(mn) time. This result is proved in a

subsequent section, where the new algorithm is presented.

Previous to this, we briefly comment on the latest

approaches and bounds cited in the literature, along with

the new bounds that we propose.

Latest approaches and new bounds

As we mentioned in the introduction, few papers have been

devoted to the 1-uncenter problem on networks thus far.

One of the latest algorithms in O(mn) time has been

presented by Melachrinoudis and Zhang.14

Their approach relies on three upper bounds that signi-

ficantly reduce the number of edges and, over each edge,

the number of distance function lines. Given an edge e ¼

ðvs; vtÞ 2 E, the first upper bound is defined as xUB1 ¼

X ðvs; vtÞ and FUB1 ¼ FL
s ðxUB1Þ ¼ FR

t ðxUB1Þ (Figure 3).

This bound cannot be improved. Nevertheless, the next

two bounds can be tightened. Let

vg 2 V :FL
g ð0Þ ¼ min

vk2V

vk 6¼vs

FL
k ð0Þ;

vh 2 V :FR
h ðleÞ ¼ min

vk2V

vk 6¼vt

FR
k ðleÞ

ð5Þ

be the nodes at which the distance functions attain their

minimum value on each side. Ties are broken taking the

node with the smallest weight w. The second upper bound is

xgh ¼ X ðvg; vhÞ and Fgh ¼ FL
g ðxghÞ ¼ FR

h ðxghÞ.

However, upper bound Fgh may be slightly improved in

two special cases (Figure 4). So, we introduce a new point z

and its ordinate, which are defined by:

ðz;FzÞ

¼

ðX ðvs;vhÞ;FL
s ðX ðvs;vhÞÞÞ if FL

s ðxghÞ4Fgh ðFigure 4aÞ

ðX ðvg;vtÞ;FR
t ðX ðvg;vtÞÞÞ if FR

t ðxghÞ4Fgh ðFigure 4bÞ

ð0;1Þ otherwise:

8><
>:

ð6Þ

Then, we propose the new bound FUB2 ¼ minfFgh;Fz;
FUB1g, and hence, xUB2 is equal to xgh, z, or xUB1.

Any distance function line over FUB2 is redundant and,

therefore, can be completely removed. Despite the fact that

the upper bound Fgh has been tightened to FUB2, the proof in

Melachrinoudis and Zhang14 is valid for this result as well.

Likewise, the third upper bound is defined considering

vp 2 V :FL
p ðleÞ ¼ min

vk2V

vk 6¼vs

FL
k ðleÞ;

vq 2 V :FR
q ð0Þ ¼ min

vk2V

vk 6¼vt

FR
k ð0Þ

ð7Þ

with xpq ¼ X ðvp; vqÞ and Fpq ¼ FL
p ðxpqÞ ¼ FR

q ðxpqÞ.

This bound Fpq can also be improved by establishing

a new point y and its ordinate, which are defined by:

ðy;FyÞ ¼

ðX ðvs; vqÞ;FL
s ðX ðvs; vqÞÞÞ if FL

s ðxpqÞ4Fpq

ðX ðvp; vtÞ;FR
t ðX ðvp; vtÞÞÞ if FR

t ðxpqÞ4Fpq

ð0;1Þ otherwise:

8<
:

ð8Þ

Then, we propose the new bound FUB3 ¼ minfFpq;Fy;FUB1g

and xUB3 is updated accordingly to xpq, y, or xUB1.

Figure 3 FUB1, the first upper bound.

Figure 4 Tighter bounds. The value of Fz is better than Fgh.
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Before presenting the new algorithm which makes use of

bounds (6) and (8), we outline the rest of Melachrinoudis

and Zhang’s algorithm.14

Once all the lines above minfFUB1;Fghg are deleted, the

remaining lines are compared pairwise. For each pair of lines,

either the intersection point is calculated or one of them is

deleted (dominated). Then, the median value of the intersec-

tion points is projected on the maximin function (lowest

lines). If the right and left gradients have opposite sign

slopes, the maximin point is found. Otherwise, the gradients

are used to delete a quarter of the paired lines. In the worst

case, the procedure keeps on until two lines remain only.

The main disadvantage of this pairing algorithm is the

matching of superfluous distance function lines, that is, lines

that do not actually exist (Figure 5). These lines load the

algorithm with useless computational effort and, therefore,

they need to be excluded.

On the other hand, the most recent contribution to the

1-uncenter problem is due to Berman and Drezner,15 who

presented a brief paper on the location of an obnoxious

facility on a network. They addressed this problem from a

linear programming viewpoint, making use of the algorithm

given in Megiddo11 to get an O(mn) time procedure.

However, this approach is not very fast (computationally

speaking) since every single edge has to be checked to

find the optimal value. This fact is proved later in the

computational experience section.

All the improvements discussed above, together with the

new upper bounds, are shown in the next algorithm that we

propose to solve the 1-uncenter problem.

The algorithm

The algorithm has two main parts: the first computes the

three upper bounds; the second seeks for the best point in

the set of remaining distance function lines. For the sake of

comprehensibility, we first show the outlined algorithm and

then we explain each block of code.

function UnCenter(Network N, Distance Matrix d )

f // Current best value on network N.

FN  0

// Solution set.

S  �
for all edges e ¼ ðvs; vtÞ 2 E do

f // Compute the upper bounds.

xUB1 X ðvs; vtÞ

FUB1 FL
s ðxUB1Þ

if FN > FUB1 then continue to next edge

Compute UB2 using (5) and (6)

if FN > FUB2 then continue to next edge

Compute UB3 using (7) and (8)

if FN > FUB3 then continue to next edge

// Set ðxe;FeÞ to the best value found.

if FUB24FUB3 then ðxe;FeÞ ðxUB2;FUB2Þ

else ðxe;FeÞ ðxUB3;FUB3Þ

Create sets L and R using (4). All lines must be

below FUB2.

// Continue till the new value Fe cannot improve

the current FN ,

// or until one of the node sets becomes empty.

while Fe 5FN and (L 6¼ � or R 6¼ �) do

f Pair all nodes in L against R, using a

maxfjLj; jRjg matching

Project the value xe on the lower envelope

using (9) to get va and vb

xe  X ðva; vbÞ

Fe  FL
a ðxeÞ

Remove from L and R all lines above the new

value Fe

g

if Fe 5FN then

f FN  Fe

Store the pair ðxe; eÞ in S

g

g

return ðFN ; SÞ

g

The function UnCenter needs only two inputs: the net-

work N ¼ ðV ;EÞ and the distance matrix d, which can be

computed in O(mnþ n2 log n) time using Fredman and

Tarjan.17 The output is FN and the set of points S where

this value is attained.

The calculation of the first upper bound is easy. The

second one is computed using expressions (5) and (6),

whereas expressions (7) and (8) calculate the third upper

bound.

Then, the pair ðxe;FeÞ is set to the best upper bound.

The purpose of the rest of the algorithm is to sharpen Fe

until the optimal value is found.

Next, we divide set V into two sets L and R. The distance

function lines belonging to these sets are then matched, so

that the number of matchings must be equal to maxfjLj; jRjg.
For example, let L ¼ fv1; v3; v4g and R ¼ fv2; v3; v5; v7; v8g.

Then, the specific matchings ðvi 2 L; vj 2 RÞ are ðv1; v2Þ;
ðv3; v3Þ; ðv4; v5Þ; ðv1; v7Þ, and ðv3; v8Þ. In each pairing, the

intersection point between the two lines and its related

ordinate value are computed. Besides, any dominated line

is immediately removed.

Figure 5 Superfluous lines plotted as dotted lines.
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The value of xe is projected on the objective function

(lower envelope), and thus, we obtain a new value for

ðxe;FeÞ. All lines above Fe are then deleted from L and R.

The algorithm keeps going until either Fe < FN ; that is,

this edge cannot improve the network optimum, or both

L and R are empty.

The maximum matching assures a maximum of n paired

lines, which is essential to delete as many lines as possible.

The following lemma states this result.

Lemma 3 In each iteration of the ‘while’ loop, at least

ðmaxfjLj; jRjgÞ=2 nodes from L and R are removed.

Proof. For each of the paired lines ðvi; vjÞ, vi 2 L, vj 2 R,

let Qe ¼ fX ðvi; vjÞg such that jQej ¼ maxfjLj; jRjg, that is,

Qe contains all the intersection points of the line pairing.

Let Fe ¼ min
x2Qe
vi2L

FL
i ðxÞ and xe be, respectively, the minimum

value of all the paired lines and the point where this minimal

value is attained.

The value Fe might be optimal. Obviously, all lines

belonging to L and R are then deleted. Otherwise, let

va 2 L:FL
a ðxeÞ ¼ min

vk2L
FL

k ðxeÞ;

vb 2 R:FR
b ðxeÞ ¼ min

vk2R
FR

k ðxeÞ
ð9Þ

be the lowest lines (lower envelope) from L and R (ties are

broken taking the lower weight w). Let xe ¼ X ðva; vbÞ and

Fe ¼ FL
a ðxeÞ. This Fe is a new upper bound. Besides, since

FL
a ðxeÞ or FR

b ðxeÞ belong to the lower envelope, any line

above Fe can be removed. Indeed, each pair of lines ðvi; vjÞ

has only one line under Fe; to be precise, either FL
i ðxeÞ < Fe

or FR
j ðxeÞ < Fe. Both lines vi and vj cannot be below Fe

since that contradicts the fact that Fe is the minimal value.

Then, in the worst case, one single node belonging to each

pair ðvi; vjÞ can be removed from L or R. Therefore, each

removal process deletes at least ðjQejÞ=2 nodes (lines). u

Given the distance matrix, the following theorem proves

that the overall complexity of the new 1-uncenter algorithm

is O(mn).

Theorem 2 The previous algorithm solves efficiently the

weighted 1-uncenter problem in O(mn) time.

Proof. The computation of the second and third upper

bounds takes O(n) time. The size of L and R is, in the worst

case, n5 maxfjLj; jRjg nodes. According to Lemma 3, each

iteration of the ‘while’ loop deletes (n=2) nodes. Therefore,

the complexity of that loop is:

nþ
n

2
þ

n

4
þ � � � þ

n

2k
¼ n

2k þ 2k�1 þ � � � þ 1

2k

� �

¼
n

2k

Xk

i¼0

2i ¼
n

2k
ð2kþ1 � 1Þ

In the worst case, this loop keeps on until one single line

remains in both L and R. Then ðn=2kÞ ¼ 2) n ¼ 2kþ1, and

consequently, ðn=2kÞð2kþ1 � 1Þ ¼ 2ðn� 1Þ < 2n 2 OðnÞ.

This process must be applied to all m edges. Thus, the

overall complexity is O(mn). u

The time complexity given in Melachrinoudis and

Zhang14 was bounded by 4n, and hence, this may explain

why the new algorithm is much faster. Moreover, as you

may have noticed, the 1-uncenter algorithm does not make

use of the median algorithm. Next, we illustrate the pro-

posed algorithm with a brief example.

An example

The network is depicted in Figure 6. It has n ¼ 8 nodes and

m ¼ 18 edges. The weights (in bold) on the nodes randomly

range from 1 to 9, whereas the lengths (in italics) randomly

vary from 1 to 49. The trace of the algorithm is summarized

in Table 1.

In the first iteration, the three upper bounds are computed.

The best of them is UB3. Since R is empty, there is no line

pairing. Thus, the first local 1-uncenter on edge ðv1; v3Þ is

located at xe ¼ 12:6, with Fe ¼ 21:6. The solution set S and

the value FN are updated.

The best upper bound on edge ðv1; v4Þ is (17,26). Again,

there is no line pairing and, since Fe ¼ 26 > FN , the set S is

updated. The next four edges cannot improve FN .

Edge ðv2; v3Þ updates the best network 1-uncenter value

to FN ¼ 31:5. The next edge ðv2; v4Þ leaves FN and S

unchanged, while in the iteration of edge ðv2; v5Þ the algo-

rithm steps to the following edge as soon as it checks that

UB2 is worst than FN .

Figure 6 Planar network with n¼ 8 and m¼ 18.
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The algorithm keeps on in the same way with edges

ðv2; v6Þ and ðv3; v4Þ, updating the network 1-uncenter value

FN ¼ 31:71 and S ¼ fð31:71; e26Þg. The first lines paired

arise in edge ðv3; v5Þ. The pairing is ðv7; v7Þ and ðv8; v7Þ,

which provides a new ðxe;FeÞ ¼ ð10; 34Þ, and hence, a new

FN and S.

In the next edge ðv3; v6Þ the line matching cannot improve

ðxe;FeÞ ¼ ð26; 50Þ. Given that no remaining edge provides

a better value, FN ¼ 50 becomes the 1-uncenter value at

S ¼ fð26; e36Þg.

Note that the algorithm processes only 6 out of 18

potential edges, with only 5 pairings. For the same example,

the maximin algorithm14 needs to process 7 edges, and

computes 26 pairings. Even though these numbers may

not seem important, they will be quite relevant when the

network size gets bigger (both in nodes and edges), as shown

in the next section.

Computational results

The computational results were developed using GNU gþþ

2.95.2 programming language and LEDA (Library of Efficient

Datatypes and Algorithms18), on a PC AMD K6-III 400 Mhz

under Redhat Linux 6.1 (Cartman). The sources were built

using the gþþ compiler optimizing option ‘�O’.

The distance matrix was computed using an algorithm

developed in LEDA, which is claimed to run in O(mnþ

n2 log n) time.

For the sake of a homogeneous comparison with the

algorithm reported by Melachrinoudis and Zhang,14 we

keep the same node weight range from 1 to 9, edge

length ranges from 1 to 49, and the edge density d ¼

m=ðnðn� 1Þ=2Þ equal to 1=2, 1=4, 1=8, and 1=16. However,

the sizes of the networks were too small for such a fast

computer, since they provided computational times near to

zero seconds. Thus, we decided to run the experiments from

n ¼ 100 up. The networks were created using the random

graph generators provided by LEDA.

Previous to the comparison with the algorithm by

Melachrinoudis and Zhang,14 we present the results obtained

for the comparison between the new algorithm and the linear

programming approach proposed by Berman and Drezner.15

For this task, we made use of the free linear solver lp solve.19

Since their method relies on an LP process over each and

every edge, we decided to test the algorithms on low density

networks. Thus, we created planar networks with m ¼ 3n� 6

and n ¼ 100 to 500, in steps of 25 nodes. Ten instances

were generated for each value of n. Table 2 illustrates the

average processed edges and the average computing time for

the three experiments accomplished. The label ‘B & D’

stands for Berman and Drezner.

The first column in Table 2 shows the results for the

original approach by Berman and Drezner.15 These times

are extremely high, since their method has to run over all

existing edges. The next column shows the results for the

T
a

b
le

1
T

ra
ce

o
f

th
e

1
-u

n
ce

n
te

r
al

g
o

ri
th

m
fo

r
th

e
n

et
w

o
rk

o
f

F
ig

u
re

6

E
d

g
e

F
N

(x
U

B
1
,

F
U

B
1
)

(x
U

B
2
,

F
U

B
2
)

(x
U

B
3
,

F
U

B
3
)

(x
e
,

F
e
)

L
R

S

e 1
3
¼

(v
1
,

v 3
)

0
(1

2
.2

7
,

2
4

.5
4

)
(1

2
.2

7
,

2
4

.5
4

)
(1

2
.6

,
2

1
.6

)
(1

2
.6

,
2

1
.6

)
{
v 7

}
Ø

{
(1

2
.6

,
e 1

3
)}

e 1
4
¼

(v
1
,

v 4
)

2
1

.6
(1

5
,

3
0

)
(1

5
,

3
0

)
(1

7
,

2
6

)
(1

7
,

2
6

)
{
v 7

}
Ø

{
(1

7
,

e 1
4
)}

e 1
5
¼

(v
1
,

v 5
)

2
6

(5
.2

5
,

1
0

.5
)

–
–

–
–

–
{
(1

7
,

e 1
4
)}

e 1
7
¼

(v
1
,

v 7
)

2
6

(1
0

,
2

0
)

–
–

–
–

–
{
(1

7
,

e 1
4
)}

e 1
8
¼

(v
1
,

v 8
)

2
6

(2
,

4
)

–
–

–
–

–
{
(1

7
,

e 1
4
)}

e 2
1
¼

(v
2
,

v 1
)

2
6

(1
2

,
1

2
)

–
–

–
–

–
{
(1

7
,

e 1
4
)}

e 2
3
¼

(v
2
,

v 3
)

2
6

(3
5

.1
,

3
5

.1
)

(3
3

.3
3

,
3

3
.3

3
)

(3
1

.5
,

3
1

.5
)

(3
1

.5
,

3
1

.5
)

Ø
{
v 7

,
v 8

}
{
(3

1
.5

,
e 2

3
)}

e 2
4
¼

(v
2
,

v 4
)

3
1

.5
(1

3
.3

3
,

1
3

.3
3

)
–

–
–

–
–

{
(3

1
.5

,
e 2

3
)}

e 2
5
¼

(v
2
,

v 5
)

3
1

.5
(4

2
,

4
2

)
(2

5
.5

,
2

5
.5

)
–

–
–

–
{
(3

1
.5

,
e 2

3
)}

e 2
6
¼

(v
2
,

v 6
)

3
1

.5
(3

1
.7

1
,

3
1

.7
1

)
(3

1
.7

1
,

3
1

.7
1

)
(3

1
.7

1
,

3
1

.7
1

)
(3

1
.7

1
,

3
1

.7
1

)
–

–
{
(3

1
.7

1
,

e 2
6
)}

e 3
4
¼

(v
3
,

v 4
)

3
1

.7
1

(2
.3

6
,

2
1

.2
7

)
–

–
–

–
–

{
(3

1
.7

1
,

e 2
6
)}

e 3
5
¼

(v
3
,

v 5
)

3
1

.7
1

(1
6

.8
,

1
5

1
.2

)
(7

.3
3

,
3

6
.6

6
)

(1
0

,
3

4
)

(1
0

,
3

4
)

{
v 7

,
v 8

}
{
v 7

}
{
(1

0
,

e 3
5
)}

e 3
6
¼

(v
3
,

v 6
)

3
4

(1
9

.2
,

1
7

2
.8

)
(2

4
.5

,
7

1
)

(2
6

,
5

0
)

(2
6

,
5

0
)

{
v 2

,
v 7

,
v 8

}
{
v 2

,
v 4

,
v 7

}
{
(2

6
,

e 3
6
)}

e 3
7
¼

(v
3
,

v 7
)

5
0

(3
.8

,
3

4
.2

)
–

–
–

–
–

{
(2

6
,

e 3
6
)}

e 3
8
¼

(v
3
,

v 8
)

5
0

(2
,

1
8

)
–

–
–

–
–

{
(2

6
,

e 3
6
)}

e 4
6
¼

(v
4
,

v 6
)

5
0

(9
,

1
8

)
–

–
–

–
–

{
(2

6
,

e 3
6
)}

e 4
8
¼

(v
4
,

v 8
)

5
0

(1
.5

,
3

)
–

–
–

–
–

{
(2

6
,

e 3
6
)}

e 5
7
¼

(v
5
,

v 7
)

5
0

(0
.2

8
,

1
.7

1
)

–
–

–
–

–
{
(2

6
,

e 3
6
)}

M Colebrook et al—Undesirable 1-center problem 1363



same approach including the new upper bounds proposed in

this paper. These bounds remarkably reduce the number of

processed edges, and hence, the overall computing times.

Finally, the third column presents the computing results of

the new algorithm, which achieves faster computing times

than the bounded version of Berman and Drezner. The time

reduction percent between these two latter procedures is

shown in the last column.

Table 2 Processed edges and computing times of Berman & Drezner’s procedure and the new algorithm for planar networks
(m¼ 3n7 6) with n¼ 100 to 500 nodes

B & D B & D (with UBs) New algorithm

n Proc. edges Time (s) Proc. edges Time (s) Proc. edges Time (s) Reduction (%)

100 294 1.611 6 0.046 6 0.010 78
125 369 2.859 5 0.055 5 0.014 75
150 444 4.593 7 0.095 7 0.020 79
175 519 6.902 6 0.112 6 0.023 79
200 594 11.608 7 0.183 7 0.033 82
225 669 16.453 6 0.203 6 0.047 77
250 744 26.371 9 0.321 9 0.054 83
275 819 28.585 8 0.375 8 0.068 82
300 894 37.029 7 0.380 7 0.076 80
325 969 47.419 8 0.496 8 0.085 83
350 1044 57.553 8 0.570 8 0.101 82
375 1119 70.416 8 0.625 8 0.114 82
400 1194 82.602 7 0.678 7 0.134 80
425 1269 103.021 8 0.867 8 0.133 85
450 1344 110.540 8 0.758 8 0.130 83
475 1419 144.851 8 0.892 8 0.155 83
500 1494 169.766 7 0.864 7 0.159 82

Figure 7 Processed edges, line pairings (matchings) and computing times for d¼ 1=2 and n¼ 100 to 500, and for planar networks
(m¼ 3n7 6) with n¼ 1000 to 5000 nodes.
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Regarding the comparison with Melachrinoudis and

Zhang’s procedure,14 three kinds of experiments were per-

formed. In the first one, n varies from 100 to 500 nodes in

steps of 25, with d equal to 1=2, 1=4, 1=8, and 1=16. In the

second, the number of nodes ranges from 525 to 1000 in

steps of 25 nodes, with d equal to 1=8 and 1=16. In the last

experiment, random planar ðm ¼ 3n� 6Þ networks were

generated for n ¼ 1000 to 5000, with a step of 250 nodes.

In all cases, ten instances of each combination were run.

The comparison is based on the average value of the pro-

cessed edges, line pairings, and computing time. The label

‘M & Z’ stands for Melachrinoudis and Zhang.

Figure 7 shows the processed edges, line pairings, and

computing times for d ¼ 1=2. Due to the tighter bounds,

there are fewer edges processed by the 1-uncenter algorithm

than by the maximin procedure. Besides, the number of

paired lines is much less in our algorithm. Likewise, the

1-uncenter algorithm beats the maximin in all the computing

time graphics. Finally, in Figure 7 we also describe the results

for random planar networks. It seems that the 1-uncenter

algorithm behaves even better than the maximin procedure

when the number of edges m is O(n). In this particular case,

the gap between the two algorithms is quite large.

In Table 3 we show an overall summary of numerical results

obtained for the different set of densities as well as for planar

networks. In all cases, the number of edges processed by our

algorithm, and the number of matchings (line crossings) is

fewer than Melachrinoudis and Zhang,14 gaining in some

instances a reduction of over 50%. As a consequence of all

this, the computing times of the new algorithm are better,

achieving in some cases a reduction of 80%. Besides, the

reduction augments as the number of nodes n increases.

Concluding remarks and further research

The location of an undesirable facility under the max-min

criterion is addressed. As was stated in the introduction,

there are only a few references to this problem in the

literature. One of the latest proposes a O(mn) time

algorithm14 based on three upper bounds and on a modified

procedure.12 However, we show that their upper bounds can

be tightened, and that pairing superfluous lines is not

needed. The other paper15 approaches the problem in a

linear programming way. Although it has the same

theoretical complexity, its running times are extremely

high, since the algorithm has to process every single edge.

Hence, using tighter bounds and eliminating the superfluous

line pairing by means of a more convenient problem formula-

tion, we propose a new O(mn) time algorithm. Besides, the

algorithm needs no median procedure. As a result of all this,

the proposed algorithm is more straightforward and its running

times are faster than the ones already reported.14

Further research is mainly focused in getting an improved

version of the anti-cent-dian problem searching for new

tighter bounds to reduce computing times. Another source

of research could arise in the development of the multi-

criteria 1-uncenter problem, considering several weights on

the nodes and several lengths on the edges.
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