
Two-Levels-Greedy: a generalization of

Dijkstra’s shortest path algorithm

Domenico Cantone1 Simone Faro2

Department of Mathematics and Computer Science, University of Catania
Viale A. Doria 6, 95125, Catania, Italy

The shortest path problem on weighted directed graphs is one of the basic
network optimization problems. Its importance is mainly due to its applica-
tions in various areas, such as communication and transportation. Here we are
interested in the single-source case. When the graph is not required to satisfy
any particular restriction and negative weight edges can occur, the problem
is solved by the Bellman-Ford-Moore algorithm [Bel58,For56,Moo59], whose
complexity is O(|V ||E|), with V and E denoting the sets of nodes and of
edges, respectively. A more efficient solution due to Dijkstra [Dij59] is avail-
able when weights are restricted to non-negative values. Depending on the
implementation used for maintaining a service priority queue, Dijkstra’s algo-
rithm has complexity O(|V |2) (simple list), or O(|E| log |V |) (standard binary
heap), or O(|V | log |V | + |E|) (Fibonacci heap [FT87]). Another case which
can be solved very efficiently occurs when the underlying graph is acyclic. In
such a case, by scanning the nodes in topological ordering, one can achieve a
O(|V | + |E|) complexity.

In this note we present a natural generalization of Dijkstra’s algorithm
to the case in which negative weight edges are allowed, but only outside of
any cycle. The resulting algorithm turns out to have the same asymptotic
complexity of Dijkstra’s algorithm and shows a linear behavior in the case of
acyclic graphs. In fact, we will also see that our proposed algorithm compares

1 Email: cantone@dmi.unict.it
2 Email: faro@dmi.unict.it

Electronic Notes in Discrete Mathematics 17 (2004) 81–86

1571-0653/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2004.03.019

mailto: cantone@dmi.unict.it 
mailto: faro@dmi.unict.it 
http://www.elsevier.com/locate/endm


very well in practice with the most efficient shortest path algorithms available,
such as the ones due to Dial [Dia69], Pape [Pap74], Pallottino [Pal84], Glover
et. al. [GGK84], and to Goldberg and Radzik [GR93].

1 Preliminaries

We begin by reviewing the relevant notations and terminology. A directed
graph is represented as a pair G = (V,E), where V is a finite set of nodes and
E ⊆ V × V is a set of edges such that E does not contain any self-loop of the
form (v, v). A weight function l on G = (V,E) is any real function l : E → R.
A path in G = (V,E) is any finite sequence (v1, v2, . . . , vk) of nodes such that
(vi, vi+1) is an edge of G, for i = 1, . . . , k − 1. The weight function can be
naturally extended over paths by putting l(v1, v2, . . . , vk) =

∑k−1
i=1 l(vi, vi+1).

A minimum weight path (or shortest path) from u to v is a path in G = (V,E)
whose weight is minimum among all paths from u to v. Provided that v is
reachable from u and that no path from u to v goes through a negative weight
cycle, a minimum weight path from u to v exists; in such a case we denote by
δ(u, v) the minimum weight of a path from u to v. If v is not reachable from u,
we put δ(u, v) = +∞. Finally, if there is a path from u to v through a negative
weight cycle, we put δ(u, v) −∞. The function δ : V × V → R ∪ {+∞,−∞}
is called the distance function on (G, l). Given a source node s in a graph
G, the single-source shortest path problem from s is the problem of finding
the minimum weight paths from s to all other nodes of G or to ascertain the
existence of a negative weight cycle in G reachable from s.

Most single-source shortest path algorithms are based on the labeling
method, which maintain a potential function d : V → R ∪ {+∞}, a pre-
decessor function π : V → V ∪ {nil}, and a status function S : V →
{unreached, labeled, scanned}. Initially, one puts d(s) := 0, π(s) :=
nil, S(s) := labeled, where s is the source node, and also puts d(v) := +∞,
π(v) = nil, and S(v) : unreached, for v ∈ V \ {s} (procedure Initialize).
Subsequently, the potential function d is updated only by assignments of the
form d(v) := d(u) + l(u, v), provided that d(v) > d(u) + l(u, v), in which case
one also puts π(v) := u and S(v) := labeled. It turns out that d(v) ≥ δ(s, v)
always holds, for v ∈ V . Additionally, if d(v) = δ(s, v), then the predecessor
function π can be used to reconstruct a shortest path from s to v backwards.
The values d(v) are updated within Scan operations (see below).

D. Cantone, S. Faro / Electronic Notes in Discrete Mathematics 17 (2004) 81–8682



procedure Initialize(G, s) procedure Scan(G, u)
for all v ∈ V do for all v ∈ V such that (u, v) ∈ E do

d(v) := +∞ if d(v) > d(u) + l(u, v) then
π(v) := nil d(v) := d(u) + l(u, v)
S(v) := unreached S(v) := labeled

d(s) := 0 π(v) := u
S(s) := labeled S(u) := scanned

Procedure Scan is called on labeled nodes until all nodes are marked
either unreached or scanned. Notice that after a Scan operation is called
on a labeled node u, some unreached or scanned node may become
labeled, whereas the node u becomes scanned.

Shortest path algorithms based on the labeling method are mainly char-
acterized by the strategy they adopt to select the next node to be scanned
from the set Q of all labeled nodes. For instance, the Bellman-Ford-Moore
algorithm maintains the set of labeled nodes into a FIFO queue. Thus, the
next node to be scanned is removed from the head of the queue, whereas a
node that becomes labeled is added to the tail. As another example, Dijk-
stra’s algorithm applies a greedy strategy, which consists in selecting at each
iteration a labeled node v ∈ Q with the minimum potential value d(v). It
turns out that Dijkstra’s algorithm is very efficient for graphs containing no
negative weight edges, but it may run in exponential time if they are present.

2 The Two-Levels-Greedy algorithm

The algorithm which we propose is a natural generalization of Dijkstra’s algo-
rithm to the case in which negative weight edges are allowed, but only outside
of any cycle (negative weight edge restriction). It consists in a preliminary
phase and a scanning phase.
Given a directed graph G = (V,E), with weight function l and satisfying the
above negative weight edge restriction, as a first preliminary step we compute
the graph GSCC (V SCC , ESCC ) of the strongly connected components (s.c.c.)
of G. We recall that V SCC is the partition of V with respect to the relation ∼
over V , where u ∼ v holds if and only if u and v lie on a same cycle, and ESCC

is the collection of pairs (C1,C2) such that there exists an edge (v1, v2) ∈ E,
with v1 ∈ C1 and v2 ∈ C2. It turns out that the graph GSCC can be computed
in O(|V |+ |E|)-time (cf. [CLR90]); moreover, GSCC is acyclic and, because of
the negative weight edge restriction, negative weight edges can connect only
nodes belonging to different components. Next, again in O(|V | + |E|)-time
(cf. [CLR90]), we compute a topological ordering of GSCC . This is any linear
ordering < of V SCC such that if (C1,C2) ∈ ESCC then C1 < C2. Finally, we
complete the preliminary phase by executing the procedure Initialize on the
graph G with a given source s. In the scanning phase, nodes are selected to be

D. Cantone, S. Faro / Electronic Notes in Discrete Mathematics 17 (2004) 81–86 83



Two-Levels-Greedy(G, s)
compute the component graph GSCC = (V SCC , ESCC )
compute a topological ordering < of GSCC

Initialize(G,s)
while G contains some node marked labeled do

let C ∈ ESCC be the <-smallest s.c.c. containing a labeled node
let v be a d-smallest labeled node in C
Scan(G, v)

Fig. 1. The Two-Levels-Greedy algorithm

processed by procedure Scan according to the following “two-levels” greedy
strategy, until there is no node which is marked labeled (for convenience, a
s.c.c. C containing a labeled node is said to be labeled as well):

• firstly, the labeled s.c.c. C ∈ ESCC which is smallest with respect to the
topological ordering < is selected;

• secondly, a labeled node v in C with minimal potential d(v) is selected to
be scanned.

We name the resulting algorithm Two-Levels-Greedy (TLG, for short).
Its pseudo-code is shown in Fig. 2. It may be shown that under the above
restriction on negative weight edges the TLG algorithm computes correctly
all shortest-paths from a given source s in G. Moreover, it turns out that the
TLG algorithm retains the same asymptotic time complexity as Dijkstra’s al-
gorithm. In addition, when the input graph is acyclic, its complexity is linear
in the size of the graph.

3 Experimental results

A significant amount of experimental testing on shortest path algorithms has
been carried out over the years, see for instance [Ber93], [CG99], [CGR96], and
[MCN91]. To this purpose, several classes of graphs have been introduced. We
present below experimental results relative to two extreme classes of graphs
for the TLG algorithm: Rand-Len, a class of strongly connected and dense
random graphs, and Acyc-p2n, a class of acyclic random graphs with a vari-
able fraction of negative edges (see [CGR96] for more details). All algorithms
have been implemented in the C programming language and have been tested
on a PC with AMD Athlon processor of 1.19 GHz. For each test, we computed
the running time in CPU milliseconds (in bold) and the average number of
scan operations per node. Maintaining the same style of [CGR96], each entry
is the average of five runs of the code on problem instances produced with
the same generator parameters, except for the pseudo-random generator seed.
For each problem, the two best results have been underlined.

The TLG algorithm has been tested against the following algorithms: the

D. Cantone, S. Faro / Electronic Notes in Discrete Mathematics 17 (2004) 81–8684



Bellman-Ford-Moore algorithm (BFM) and one of its variants (BFP), which
implements the parent-checking heuristic introduced in [CGR96]; Dijkstra’s al-
gorithm implemented with bucket heaps (DIKB), as proposed by Dial [Dia69];
two incremental algorithms due to Pape (PAPE) [Pap74] and Pallottino
TWOQ) [Pal84]; the threshold algorithm (THRESH) due to Glover et. al.
[GGK84]; two topological sorting algorithms (GOR and GOR1) due to Gold-
berg and Radzik [GR93]. The priority queue of the TLG algorithm has been
implemented with bucket heaps.

The first table presents experimental results on the Rand-Len class of
graphs, where each graph is constructed by first creating a Hamiltonian cycle
and then adding edges with distinct end points. In our experiments we set
to 1 the weight of the edges on the Hamiltonian cycle whereas the weights of
the remaining edges have been randomly selected in the interval [L,U ], using
a uniform distribution.

[L, U ] BFM BFP DIKB PAPE TWOQ THRESH GOR GOR1 TLG

[1, 1] 215 216 218 214 224 346 347 917 330
1.00 1.00 1.00 1.00 1.00 1.00 1.61 4.48 1.00

[0, 10] 671 601 265 506 509 367 779 1124 360
3.17 2.67 1.00 2.85 2.84 1.01 4.36 5.94 1.00

[0, 102] 1534 1354 293 1171 1229 705 1376 1400 390
7.40 6.14 1.00 8.07 8.05 1.78 8.93 8.21 1.00

[0, 104] 3867 3463 339 3360 3693 2738 2573 2101 468
19.04 16.74 1.00 27.31 26.07 9.16 19.48 14.15 1.00

[0, 108] 5564 5219 352 5500 5584 4096 3527 1520 478
29.21 26.76 1.00 47.60 41.89 16.03 27.96 12.26 1.00

The second table shows experimental results obtained on the class Acyc-
p2n of acyclic random graphs. In a graph of this class all edge weights are
selected uniformly from the interval [L,U ], where the values of L < 0 and
U > 0 determine the expected fraction f = −L/(U − L) of negative weight
edges.

f (%) BFM BFP DIKB PAPE TWOQ THRESH GOR GOR1 TLG

0 52 52 44 42 44 38 76 40 80
1.76 1.66 1.00 1.83 1.83 1.01 2.61 2.00 1.00

10 72 64 44 56 62 42 84 40 240
2.43 2.21 1.14 2.64 2.64 1.29 3.01 2.00 1.00

20 167 146 134 134 140 123 125 40 250
8.41 6.78 7.28 10.92 10.53 7.06 6.29 2.00 1.00

30 731 542 771 516 488 619 195 40 270
40.9 28.75 41.31 69.27 59.69 40.28 12.49 2.00 1.00

40 4702 3402 5666 5161 3304 4707 351 40 285
288.7 179.65 325.83 940.89 641.19 339.58 22.81 2.00 1.00

50 32692 19496 43372 67320 29774 37842 485 40 300
2171.6 1056.25 2405.31 12088.96 9510.17 2862.66 30.81 2.00 1.00

60 - 39761 - - 53357 83537 587 38 320
- 2149.88 - - 20124.87 5918.05 33.52 2.00 1.00

100 - 44185 - - 25967 - 40 35 386
- 2349.75 - - 10819.75 - 2.00 2.00 1.00

D. Cantone, S. Faro / Electronic Notes in Discrete Mathematics 17 (2004) 81–86 85



Concerning the running time, it turns out that the TLG algorithm achieves
in both cases very good results and often it is very close to the best perfor-
mances. Concerning the number of scan operations performed by the algo-
rithms, it turns out that the TLG algorithm always obtains the best results.

References

[Bel58] Bellman, R. E.: On a routing problem. In: Quarterly Applied Mathematics (1958), Nr.
16, S. 87–90

[Ber93] Bertsekas, D. P.: A simple and fast label correcting algorithm for shortest paths. In:
Networks 23 (1993), S. 703–709

[CG99] Cherkassky, B. V. ; Goldberg, A. V.: Negative-cycle detection algorithms. In:
Mathematical Programming 85 (1999), Nr. series A, S. 277–311

[CGR96] Cherkassky, B. V. ; Goldberg, A. V. ; Radzik, T.: Shortest paths algorithms: theory
and experimental evaluation. In: Mathematical Programming 73 (1996), Nr. series A, S.
129–174

[CLR90] Cormen, T. H. ; Leiserson, C. E. ; Rivest, R. L.: Introduction to Algorithms. In: MIT
Press, Cambridge, MA (1990)

[Dia69] Dial, R. B.: Algorithm 360: Shortest Path Forest with Topological Ordering. In: Comm.
ACM 12 (1969), S. 632–633

[Dij59] Dijkstra, E. W.: A note on two problems in connexion with graphs. In: Numerische
Matematik 1 (1959), S. 269–271

[For56] Ford, L. R.: Network flow theory. In: Rand Corporation Report (1956), S. P–293

[FT87] Fredman, M. L. ; Tarjan, R. E.: Fibonacci heaps and Their Uses In Improved Network
Optimization Algorithms. In: J. Assoc. Comput. Mach. 34 (1987), S. 596–615

[GGK84] Glover, F. ; Glover, R. ; Klingman, D.: Computational Study of an Improved Shortest
Path Algorithm. In: Networks 14 (1984), S. 25–37

[GR93] Goldberg, A. V. ; Radzik, T.: A Heuristic Improvement of the Bellman-Ford
Algorithm. In: Applied Math. Let. 6 (1993), S. 3–6

[MCN91] Mondou, J.-F. ; Crainic, T. G. ; Nguyen, S.: Shortest path algorithms: a computational
study with the C programming language. In: Computers and Operations Research 18
(1991), S. 767–786

[Moo59] Moore, E. F.: The shortest path through a maze. In: In Proceedings of the International
Symposium on the Theory of Switching, Harvard University Press (1959), S. 285–292

[Pal84] Pallottino, S.: Shortest-path methods: complexity, interrelations and new propositions.
In: Networks 14 (1984), S. 257–267

[Pap74] Pape, U.: Implementation and efficiency of Moore algorithms for the shortest root
problem. In: Mathematical Programming 7 (1974), S. 212–222

D. Cantone, S. Faro / Electronic Notes in Discrete Mathematics 17 (2004) 81–8686


	Preliminaries
	The Two-Levels-Greedy algorithm
	Experimental results
	References



