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The classic problem of finding the shortest path over a network has been the target of many
research efforts over the years. These research efforts have resulted in a number of different
algorithms and a considerable amount of empirical findings with respect to performance.
Unfortunately, prior research does not provide a clear direction for choosing an algorithm when
one faces the problem of computing shortest paths on real road networks. Most of the compu-
tational testing on shortest path algorithms has been based on randomly generated networks,
which may not have the characteristics of real road networks. In this paper, we provide an
objective evaluation of 15 shortest path algorithms using a variety of real road networks. Based
on the evaluation, a set of recommended algorithms for computing shortest paths on real road
networks is identified. This evaluation should be particularly useful to researchers and prac-
titioners in operations research, management science, transportation, and Geographic Infor-
mation Systems.

The computation of shortest paths is an impor-
tant task in many network and transportation re-
lated analyses. The development, computational
testing, and efficient implementation of shortest
path algorithms have remained important research
topics within related disciplines such as operations
research, management science, geography, trans-
portation, and computer science (DIJKSTRA, 1959;
DIAL et al., 1979; GLOVER, KLINGMAN, and PHILIPS,
1985; AHUJA et al., 1990; GOLDBERG and RADZIK,
1993). These research efforts have produced a num-
ber of shortest path algorithms as well as extensive
empirical findings regarding the computational per-
formance of the algorithms (cf., for instance, GLOVER
et al., 1985; GALLO and PALLOTTINO, 1988; MONDOU,
CRAINIC, and NGUYEN, 1991; CHERKASSKY, GOLD-
BERG, and RADZIK, 1993).

When faced with the task of computing shortest
paths, one must decide which algorithm to choose.
Depending on the application, algorithm runtime
can be an important consideration in the decision
making process. Although a number of computa-
tional evaluations have been reported in the litera-

ture (e.g., HUNG and DIVOKY, 1988; GALLO and PAL-
LOTTINO, 1988; CHERKASSKY et al., 1993), there is no
clear answer as to which algorithm, or set of algo-
rithms, runs fastest on real road networks, the most
common type of network faced by practitioners. The
primary goal of this paper is to identify which algo-
rithms run the fastest on real road networks. A
secondary goal is to better understand the sensitiv-
ity of algorithm performance to input data.

Past computational evaluations were mainly
based on randomly generated networks. The meth-
ods for random network generation varied consider-
ably. The resulting random networks ranged from
complete networks with uniformly distributed arc
lengths to highly structured grid networks. In com-
parison to real road networks, random networks
often differ with respect to the degree of connectivity
as indicated by the arc-to-node ratios. The real net-
works studied in this paper have arc-to-node ratios
ranging from 2.66 to 3.28. This is different from
many randomly generated networks described in
the literature where arc-to-node ratios are reported
as high as 10 (cf. GALLO and PALLOTTINO, 1988).
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Another aspect in which random networks can differ
from real networks stems from the fact that random
network arc lengths are usually randomly drawn in
an independent fashion. This can result in network
irregularities whereby a node may be “close” to two
adjacent nodes that are “far” apart. Such irregular-
ities can strongly favor certain types of algorithms
and drastically slow others. The random network
generators reviewed in the literature had one char-
acteristic which we felt resulted in significant differ-
ences in real versus random networks, namely, they
apply a process for establishing connectivity or arc
length generation in a homogeneous fashion across a
network. Real network topology often contains areas
of dense urban network surrounded by highly sub-
networked suburban areas which are then further
surrounded by a rural road structure. Certain meth-
ods for random network generation may replicate
one particular area well, for example, grid network
generators for downtown areas, but real networks
contain a mixed pattern of different types of road
network topologies which are virtually impossible to
simulate.

We have tested a set of 15 shortest path algo-
rithms using real road networks. The networks used
for testing include road networks from 10 states
across the Midwest and Southeast of the United
States, and the U.S. National Highway Planning
Network (NHPN) which spans the continental
United States. Our relative ranking of the algo-
rithms differs somewhat from past studies such as
those of GALLO and PALLOTTINO (1988) and
CHERKASSKY et al. (1993). The results should be
useful for researchers and practitioners in different
disciplines, such as operations research, manage-
ment science, transportation, and Geographic Infor-
mation Systems, who rely on shortest path compu-
tations within certain applications. Our study
focuses on the relative speeds of the various algo-
rithms. The issues of implementation and storage
requirements are important, however, the availabil-
ity of rigorously tested public domain codes allows
practitioners to easily obtain and implement such
codes into their own. The computational results for
this paper were obtained using the set of public
domain C source codes for computing shortest paths
provided by CHERKASSKY et al. (1993) with only
slight modifications. Their implementations proved
to be fast with respect to computation time and
efficient with respect to storage requirements.

The remainder of this paper is organized as fol-
lows. Section 1 provides some background on the
prior study of CHERKASSKY et al. (1993) and summa-
rizes the algorithms tested in our study. Section 2
details the computational study and results. Section

3 concludes the paper with a set of recommendations
regarding algorithm selection.

1. BACKGROUND

AMONG THE EVALUATIONS of shortest path algo-
rithms reported in the literature (GLOVER et al.,
1985; GALLO and PALLOTTINO, 1988; MONDOU et al.,
1991; and, CHERKASSKY et al., 1993), a recent study
by CHERKASSKY et al. (1993) is the most comprehen-
sive and up-to-date. CHERKASSKY et al. reported an
evaluation of 17 shortest path algorithms. In their
experiment, CHERKASSKY et al. tested the 17 algo-
rithms on a number of randomly generated net-
works with different characteristics. A main obser-
vation from their study was that no single algorithm
consistently outperformed all others over the vari-
ous classes of simulated networks. Among their con-
clusions, they suggested that the Dijkstra algorithm
implemented with double buckets (DIKBD) is the
best algorithm for networks with nonnegative arc
lengths, and that the Goldberg–Radzik algorithm
with distance updates during topological ordering
(GOR1) is a good choice for networks with negative
arc lengths.

We will use a test environment similar to that of
CHERKASSKY et al. as a starting point for our re-
search. Our evaluation differs from their evaluation
in that we use real road networks rather than ran-
domly generated networks. Of the 17 algorithms
evaluated in the CHERKASSKY et al. paper, only 15
are included in our study. Inasmuch as we do not
consider acyclic networks, the special-purpose algo-
rithm for acyclic networks tested by CHERKASSKY et
al. was excluded from our study. Also, after some
preliminary testing, we found that an implementa-
tion using stack ordering of labeled node processing
is significantly slower than the rest of the algo-
rithms and, hence, it too was not considered.

Before continuing, let us formally introduce some
notations and define the shortest path problem. A
network is a graph G 5 (N, A) consisting of an
indexed set of nodes N with n 5 uNu and a spanning
set of directed arcs A with m 5 uAu. Each arc is
represented as an ordered pair of nodes, in the form
from node i to node j, denoted by (i, j). Each arc (i, j)
has an associated numerical value, dij, which repre-
sents the distance or cost incurred by traversing the
arc. In this paper, we assume that bidirectional
travel between a pair of nodes i and j is represented
by two distinct directed arcs (i, j) and (j, i). Given a
directed network G 5 (N, A) with known arc length
dij for each arc (i, j) [ A, the shortest path problem
is to find the shortest distance (least cost) path from
a source node s to every other node in the node set N.
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These one-to-all shortest paths can be represented
as a directed out-tree rooted at the source node s.
This directed tree is referred to as a shortest path
tree.

All of the algorithms evaluated in our study are
based on the labeling method, but they differ accord-
ing to the rules used to select labeled nodes for
scanning and in the data structures used to manage
the set of labeled nodes. Readers are referred to
GALLO and PALLOTTINO (1988) and AHUJA, MAG-
NANTI and ORLIN (1993) for more comprehensive
discussions of these issues. The specific algorithms
evaluated in our study are summarized in Table I.
Details of the algorithms and their implementations
can be found in CHERKASSKY et al. (1993), or in the
additional references listed in Table I. The algo-
rithms are divided into the following five categories:
1) Bellman–Ford–Moore, 2) Dijkstra, 3) Incremental
Graph, 4) Threshold, and 5) Topological Ordering.
We further categorize the Dijkstra’s implementa-
tions as either naive, bucket structures, or heap
structures. It should be noted that the worst-case
computational complexities of the tested algorithms
include polynomial (polynomial in m and n), pseudo-
polynomial (polynomial in n, m, and C), and expo-
nential (PAPE algorithm).

The Dijkstra algorithm has a node selection rule
that is distinct from the other algorithms. The rule
ensures that the shortest path tree is constructed by
“permanently labeling” one node at a time. Once a
node is permanently labeled, its optimal shortest

path distance from the source node is known. Hence,
if it is only necessary to find the shortest path from
one node to some other node (the one-to-one shortest
path problem), then Dijkstra’s algorithm can be ter-
minated as soon as the destination node is perma-
nently labeled. All other algorithms guarantee opti-
mal shortest path distance to any destination only
upon termination with the full shortest path tree.

2. COMPUTATIONAL STUDY AND RESULTS

THE DESIGN OF THE experiment includes the prepa-
ration of the network data and the computational
testing itself. Road networks from ten states in the
Midwest and Southeast of the United States, and a
road network consisting of the NHPN, covering the
entire continental United States, were used for test-
ing the shortest path algorithms. The ten states
chosen for testing provide a good range of rural,
suburban, and urban topology.

Two road network data sets were created and used
in our study. The two sets differ in the size of net-
works included. Data set 1 consists of ten low-detail
road networks, one for each of the ten states in our
study. The set was generated using the three high-
est levels of roads, namely, interstate highway, prin-
cipal arterial roads, and major arterial roads from
U.S. Geological Survey’s Digital Line Graphs. Fig-
ure 1 displays the Missouri road network from data
set 1. Data set 2 consists of ten high-detail state road
networks and a U.S. NHPN (abbreviated as US).

TABLE I
Summary of the Fifteen Algorithms Studied

Abbreviation Implementation Description Complexity* Additional References

Bellman–Ford–Moore
BF Basic implementation O(nm) Bellman (1958)
BFP With parent-checking O(nm)

Dijkstra
DIKQ Naive implementation O(n2) Dijkstra (1959)

Using buckets structure
DIKB Basic implementation O(m 1 nC) Dial (1969)
DIKBM With overflow bag O(m 1 n(C/a 1 a)) Cherkassky et al. (1993)
DIKBA Approximate buckets O(mb 1 n(b 1 C/b))
DIKBD Double buckets O(m 1 n(b 1 C/b))

Using heap structure
DIKF Fibonacci heap O(m 1 n log(n)) Fredman and Tarjan (1987)
DIKH k-array heap O(m log(n)) Corman et al. (1990)
DIKR R-heap O(m 1 n log(C)) Ahuja et al. (1990)

Incremental Graph
PAPE Pape–Levit implementation O(n2n) Pape (1974)
TWOiQ Pallottino implementation O(n2m) Pallottino (1984)

Threshold Algorithm
THRESH O(nm) Glover et al. (1984, 1985)

Topological Ordering
GOR Basic implementation O(nm) Goldberg and Radzik (1993)
GOR1 With distance updates O(nm)

*n, the number of network nodes; m, the number of network arcs; C, the maximum arc length in a network; a and b, input parameters.
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The ten high-detail state networks were generated
by adding a fourth level of roads identified as rural
minor arteries to the networks in data set 1. Figure
2 illustrates the Missouri road network from data
set 2.

The road networks were stored and maintained as
a set of nodes and bidirectional links in a geographic
information system. The nodes, links and link-
lengths were downloaded from the geographic infor-
mation system into ASCII files. Before downloading
the networks to files, a check was made to ensure
that the road networks were fully connected. Two
directed arcs were created for each bidirectional link
in the data sets, hence, the number of arcs was
always equal to twice the number of links. Charac-
teristics of the 21 test networks are given in Table II.
We found no notable difference in the arc-to-node

ratio across the two data sets. The arc lengths of the
networks are given in decimal geographic degrees.
Since the input to the shortest path codes required
integer distances, the arc lengths were multiplied by
a scaling factor, and the resulting arc lengths were
truncated to integers. This type of scaling and trun-
cation affects the size of the arc lengths, which may
have performance implications depending on the al-
gorithm. A study of algorithm sensitivity to the scal-
ing factor is described in a later part of this section.

The programs were compiled with the GNU gcc
compiler version 2.5.6 using the O4 optimization
option. Our experiments were conducted on a stand-
alone SUN Sparc-20 workstation, model HS21 with
a 125 MHz Hypersparc processor and 64 Megabytes
of RAM running under the Solaris 2.4 environment.

The reported runtimes represent the CPU time for
computing the shortest path trees and do not include
data input or solution output. For each network, a
sample of 100 nodes was randomly selected at the
outset and designated as the sample source nodes for
that network. For a given combination of road net-
work, algorithm, and scaling factor, an individual
time estimate for generating each of the 100 shortest
path trees was computed. To ensure accuracy, the
time estimate corresponding to a single source node
was made by averaging the time to generate 1000
identical trees from the source node for the networks
in data set 1. For data set 2, the average time to
generate 10 (rather than 1000) identical trees rep-
resented a source node estimate. Once the 100 indi-
vidual source node estimates were compiled, an av-
erage and a ratio of the maximum individual time to
the average were computed.

In our first set of computational results, we sum-
marize individual algorithm performance corre-
sponding to a scaling factor of 1000. In a later part of
this section, we analyze the effect of arc lengths on
certain algorithms by altering the scaling factor.
Tables III and IV display the relative speeds of the
algorithms on data sets 1 and 2, respectively, with a
scaling factor of 1000. For each table, the networks
are given in order of increasing number of nodes and
the algorithms are ordered by increasing overall
relative speed ratio (the column displayed in bold).
The last row in each table gives the average cpu time
per shortest path tree for the best performing algo-
rithm for a given network. The rows corresponding
to the algorithms give the ratio of the average cpu
time per tree for the algorithm to the time of the best
performing algorithm for a network. For example, in
Table III, PAPE was the best performing algorithm
for Nebraska (NE) and had an average cpu time per
tree of 0.46 milliseconds. The worst performing al-
gorithm on the Nebraska network was DIKF which

Fig. 1. Low-detail road network for Missouri from data set 1.

Fig. 2. High-detail road network for Missouri from data set 2.
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had an average runtime per tree that was 7.59 times
greater than PAPE. Hence, the cpu time for DIKF
can be figured as 7.59 times 0.46, or 3.49 millisec-
onds. The columns under the heading “Overall Per-
formance” display the total of the cpu-time-per-
source-node averages for an algorithm across all

networks and that value’s corresponding speed ratio
relative to the fastest algorithm.

The incremental graph algorithms (PAPE and
TWOiQ) dominate all other algorithms across both
data sets. The nearest competing algorithm for both
data sets is the Threshold (THRESH) algorithm

TABLE II
Characteristics of the Networks

Network Name
(abbreviation)

Number of
Nodes

Number
of Arcs

Arc/Node
Ratio

Arc Length*

Maximum Mean Stnd. Dev.

Data set 1: 10 state networks with 3 levels of roads
Nebraska (NE1) 523 1646 3.14 0.874764 0.215551 0.142461
Alabama (AL1) 842 2506 2.98 0.650305 0.128870 0.114031
Minnesota (MN1) 951 2932 3.08 0.972436 0.175173 0.132083
Iowa (IA1) 1003 2684 2.68 0.573768 0.119900 0.113719
Mississippi (MS1) 1156 3240 2.80 0.498810 0.095443 0.100703
South Carolina (SC1) 1784 5128 2.88 0.413163 0.062156 0.064389
Florida (FL1) 2155 6370 2.96 0.923088 0.075247 0.076590
Missouri (MO1) 2391 7308 3.06 0.494730 0.090977 0.064761
Louisianna (LA1) 2437 6876 2.82 1.021526 0.060662 0.067557
Georgia (GA1) 2878 8428 2.92 0.478579 0.068333 0.005668

Data set 2: 10 state networks with 4 levels of roads and the U.S. National Highway Planning Network
Louisianna (LA2) 35793 98880 2.76 0.360678 0.013874 0.015297
Mississippi (MS2) 39986 120582 3.02 0.232062 0.015412 0.014000
Nebraska (NE2) 44765 146476 3.28 0.528283 0.018039 0.015652
Florida (FL2) 50109 133134 2.66 0.416212 0.011207 0.015264
South Carolina (SC2) 52965 149620 2.82 0.163557 0.009975 0.010198
Iowa (IA2) 63407 208134 3.28 0.269823 0.015733 0.009220
Minnesota (MN2) 65491 209340 3.20 0.410925 0.017202 0.014107
Alabama (AL2) 66082 185986 2.82 0.298232 0.011383 0.012410
Missouri (MO2) 67899 204144 3.00 0.212470 0.015542 0.013266
U.S. NHPN (US2) 75417 205998 2.74 1.500361 0.066084 0.094758
Georgia (GA2) 92792 264392 2.84 0.174245 0.010511 0.000107

*Arc lengths are in decimal degrees of a geographic coordinate system.

TABLE III
Relative Performance Summary for Data Set 1 with a Scaling Factor of 1000

Algorithm

Relative Performance by Network Overall Performance Average
Max-to-Mean

RatioNE1 AL1 MN1 IA1 MS1 SC1 FL1 MO1 LA1 GA1 Total Time Ratio

PAPE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 15.12 1.00 1.10
TWOiQ 1.08 1.08 1.08 1.08 1.09 1.08 1.07 1.07 1.08 1.06 16.22 1.07 1.10
THRESH 1.87 1.58 1.52 1.63 1.49 1.44 1.51 1.46 1.46 1.33 22.26 1.47 1.13
BFP 1.43 1.57 1.59 1.75 2.36 1.95 1.99 2.04 2.46 2.51 31.96 2.11 1.67
DIKBA 4.33 2.86 2.91 2.82 2.34 2.15 2.31 2.22 2.15 1.95 35.41 2.34 1.08
DIKB 4.33 2.87 2.92 2.85 2.35 2.16 2.33 2.23 2.16 1.97 35.61 2.36 1.09
GOR 2.47 2.47 2.49 2.46 2.59 2.50 2.42 2.52 2.50 2.47 37.61 2.49 1.10
DIKBM 4.63 3.20 3.14 3.29 2.66 2.42 2.53 2.61 2.33 2.31 39.98 2.64 1.28
DIKBD 3.75 3.48 3.29 3.36 2.95 2.90 2.96 3.06 2.88 2.67 45.25 2.99 1.04
BF 1.74 2.09 2.21 2.25 3.10 2.65 3.34 3.15 3.89 4.05 48.35 3.20 1.79
DIKQ 3.24 4.39 4.07 4.15 4.17 5.12 3.93 6.06 5.16 5.88 75.09 4.97 1.31
DIKH 4.61 5.37 4.71 5.12 4.87 5.26 4.68 5.37 5.28 5.31 77.47 5.12 1.48
DIKR 6.37 6.08 5.82 5.98 5.20 5.20 5.24 5.49 5.25 4.78 80.69 5.34 1.02
DIKF 7.59 8.25 7.82 8.19 7.57 8.42 7.73 8.94 8.57 8.23 124.63 8.24 1.07
GOR1 6.90 7.70 7.26 7.67 7.59 8.51 8.83 9.03 9.57 8.86 129.70 8.58 1.29
CPU time

of minimum 0.46 0.73 0.90 0.86 1.09 1.63 2.08 2.24 2.25 2.87 15.12

The values represent the ratio of the cpu time of an algorithm/network combination to the time of the best performing algorithm on
the network. The given cpu times are in milliseconds.

Column in bold: The algorithm are ordered by increasing overall relative speed ratio.
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with an average time per tree that is roughly 40%
larger than that of the incremental graph algo-
rithms.

The Dijkstra bucket implementations (DIKBA,
DIKB, DIKBD, DIKBM) perform fairly well on data
set 1 with running time ratios ranging from 2.34 to
2.99, compared to the running time of PAP. For the
larger networks of data set 2, the running times of
the bucket implementations range a steady 1.53 to
1.67 that of TWOiQ.

The Dijkstra heap implementations (DIKF,
DIKH, DIKR) are clustered together on both data
sets. On data set 1, they perform poorly with relative
running time ratios ranging from 5.12 to 8.24. On
data set 2, their relative performance improves for
DIKR and DIKH with ratios of 2.15 and 2.70, respec-
tively. The relative ratios of DIKF lag behind the
other heap implementations. They are 8.24 and 4.31
for data sets 1 and 2, respectively.

Compared to the best performing algorithms, the
naive implementation of the Dijkstra algorithm
(DIKQ) is roughly five times slower on the small
networks of data set 1 and over 24 times slower on
the large networks of data set 2. The topological
ordering algorithms (GOR and GOR1) turn in lack-
luster performance on data set 1 with ratios of 2.49
and 8.58. On data set 2, GOR1 stays relatively slow
with a ratio of over 10, whereas GOR closes the
performance gap with a ratio of 1.62.

The Bellman–Ford–Moore implementations (BFP
and BF) run 2 to 3 times longer than PAPE on data
set 1 but then perform exceedingly poorly on data

set 2 with relative time ratios of approximately 14
and 31.

The last column in both Tables III and IV provides
a measure of algorithm predictability. For each com-
bination of algorithm and network, individual times
were calculated for generating shortest path trees
for 100 source nodes and the ratio of the maximum-
to-mean time was computed. The last column gives
an average of the maximum-to-mean ratios across
each set of networks. A high average ratio would
imply that the algorithm took a significantly longer
amount of time on some source nodes when com-
pared to the average per-node time. The Bellman–
Ford–Moore implementations had some of the high-
est average ratios for both data sets. The naive
implementation of Dijkstra has a somewhat low ra-
tio for data set 1, but then has a relatively high ratio
for data set 2. Most of the other algorithms have
relatively low ratios for both data sets, which sug-
gest they maintain a consistent speed performance
irrespective of source node.

The preceding results suggest that different forms
of bucket implementations of the Dijkstra algorithm
constitute a set of relatively fast shortest path algo-
rithms. In such implementations, however, the
number of buckets is directly related to the maxi-
mum arc length of a network. Thus, a natural ques-
tion concerning the results obtained so far is how a
different range of arc lengths would affect the per-
formance of the algorithms whose worst-case com-
plexity is a function of the maximum arc length. The
approaches in question are the four Dijkstra bucket

TABLE IV
Relative Performance Summary for Data Set 2 with a Scaling Factor of 1000

Algorithm

Relative Performance by Network Overall Performance Average
Max-to-Mean

RatioLA2 MS2 NE2 FL2 SC2 IA2 MN2 AL2 MO2 US2 GA2 Total Time Ratio

TWOiQ 1.05 1.02 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.00 1.00 2.95 1.00 1.16
PAPE 1.19 1.00 1.12 1.08 1.00 1.00 1.08 1.03 1.00 1.05 1.00 3.05 1.03 1.33
THRESH 1.00 1.33 1.39 1.06 1.42 1.72 1.47 1.28 1.59 1.36 1.43 4.11 1.39 1.13
DIKBA 1.17 1.60 1.56 1.14 1.58 1.95 1.69 1.44 1.75 1.30 1.60 4.53 1.53 1.11
DIKB 1.18 1.60 1.56 1.14 1.60 1.95 1.69 1.44 1.76 1.30 1.60 4.55 1.54 1.11
DIKBM 1.18 1.62 1.57 1.14 1.60 1.98 1.71 1.44 1.79 1.33 1.62 4.60 1.56 1.12
GOR 1.69 1.65 1.51 1.65 1.65 1.53 1.57 1.72 1.63 1.66 1.69 4.79 1.62 1.14
DIKBD 1.34 1.74 1.73 1.24 1.68 2.11 1.83 1.53 1.87 1.49 1.69 4.92 1.67 1.10
DIKR 1.78 2.18 2.26 1.58 2.07 2.78 2.40 1.93 2.39 2.02 2.13 6.35 2.15 1.12
DIKH 2.31 2.72 2.72 1.95 2.62 3.52 3.03 2.46 3.04 2.41 2.76 7.97 2.70 1.18
DIKF 4.04 4.66 4.23 3.32 4.21 5.23 4.80 4.07 4.79 3.80 4.44 12.73 4.31 1.14
GOR1 9.59 11.41 8.24 10.38 10.18 9.12 9.46 10.58 11.04 11.24 10.82 30.15 10.21 1.40
BFP 9.24 10.86 9.61 17.80 12.21 10.08 10.48 14.92 13.74 21.99 16.02 41.54 14.06 1.94
DIKQ 5.98 13.45 20.69 4.82 18.88 39.89 33.76 21.48 30.88 19.67 32.35 71.21 24.11 1.73
BF 19.35 24.54 22.75 37.69 26.23 23.83 23.95 31.57 32.59 44.66 34.28 90.44 30.62 1.99
CPU time

of minimum 0.12 0.15 0.22 0.21 0.24 0.28 0.30 0.30 0.30 0.39 0.43 2.95

The values represent the ratio of the cpu time of an algorithm/network combination to the time of the best performing algorithm on
the network. The given cpu times are in seconds.

Column in bold: The algorithms are ordered by increasing overall relative speed ratio.
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implementations (DIKBA, DIKB, DIKBD, and
DIKBM) and the Dijkstra algorithm implemented
with an R-heap structure (DIKR).

In order to see whether the findings obtained in
the first set of runs (with a scaling factor of 1000)
hold when the arc lengths change, additional scaling
factors of 100, 10,000, and 100,000 were applied and
the selected codes were rerun on the resulting net-
works. The rationale for analyzing performance over
these four scaling factors can be easily understood
by examining the maximum and mean arc length of
all networks in Table II. A scaling factor smaller
than 100 will generate networks with many arc
lengths equal to zero. Arc lengths generated by a
scaling factor of 100,000 will have a precision
greater than that normally needed in practice. A
scaling factor larger than 100,000 for the data sets
would likely result in integer overflow difficulties
within many of the shortest path codes.

The scaling factor of 100,000 resulted in maxi-
mum arc lengths with values as high as 102,153 in
data set 1, 52,828 in data set 2 excluding the U.S.
network, and 150,032 for the U.S. network. Such a
scaling factor would provide a much greater degree
of accuracy than would normally be needed in prac-
tice. However, we wanted to test the algorithms with
these extreme arc lengths to examine their robust-
ness.

The results are summarized in Table V, which
shows the total cpu time (in seconds) used to con-
struct 100 shortest path trees on all given networks
for each implementation on each data set. Note that
the U.S. network is reported separately from data
set 2 because the U.S. arc lengths differ significantly
from the arc lengths of the states. As expected, the
cpu times increase along with an increase in scaling
factor. However, the degree of increase differs across
implementations and data sets. All five of the imple-
mentations seem to maintain consistent perfor-
mance on the data set 2 networks, with DIKR show-
ing the greatest fall-off in performance. This is due

to the fact that the data set 2 arc lengths stay
relatively lower with a maximum value of only
52,828.

For the data set 1 networks and, to some extent,
the U.S. network, the performances of all algorithms
drop significantly as the scaling factor is increased.
The implementations that appear to be most sensi-
tive to arc length are DIKB and DIKBM, each dis-
playing a dramatic slowdown between the scaling
factors of 10,000 and 100,000. The Dijkstra’s imple-
mentations with approximate (DIKBA) and double
(DIKBD) buckets exhibit relatively little degrada-
tion in performance under increasing arc lengths up
to a scaling factor of 10,000. At a scaling factor of
100,000, DIKBD incurs additional slowdown, yet
relatively less as compared to DIKBA.

The results in this section suggest that implemen-
tation performance can be greatly impacted by arc
length. Hence, an understanding of the network
data is needed before choosing one of the above
implementations.

3. CONCLUSIONS AND RECOMMENDATIONS

SHORTEST PATH ALGORITHMS are central to many
network and transportation analysis problems.
When computing shortest paths for solving practical
problems, one often faces a task of choosing the
fastest shortest path algorithm for a problem at hand.
Unfortunately, past evaluations of existing shortest
path algorithms were mainly based on randomly
generated networks which may not accurately re-
flect the characteristics of real road networks.
Hence, the results regarding the performance of al-
gorithms from these past evaluations may be mis-
leading when they are used as guidelines to choose
an algorithm for computing shortest paths on real
road networks. The aim of this paper has been to fill
this void and to obtain a set of recommended short-
est path algorithms for computing shortest paths on
real road networks.

TABLE V
Total cpu Time (in seconds) for Selected Algorithms under Various Arc Length Scaling Factors

Algorithm

Scaling Factors

10 State Networks in Data Set 1
10 State Networks in Data Set 2

(the U.S. NHPN is excluded) The U.S. NHPN Network

100 1000 10,000 100,000 100 1000 10,000 100,000 100 1000 10,000 100,000

DIKBA 0.029 0.035 0.047 0.121 3.473 4.024 3.999 4.032 0.496 0.504 0.500 0.510
DIKB 0.030 0.036 0.115 1.128 3.477 4.040 3.932 4.759 0.502 0.505 0.545 1.443
DIKBD 0.037 0.045 0.057 0.075 3.593 4.341 4.583 5.002 0.524 0.580 0.619 0.819
DIKBM 0.034 0.040 0.104 0.525 3.506 4.078 3.975 4.626 0.503 0.518 0.539 1.219
DIKR 0.055 0.081 0.105 0.127 4.099 5.559 6.668 7.699 0.642 0.786 0.916 1.051

CPU times are the average total cpu times for constructing 100 shortest path trees on all given networks in a data set.
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We have tested a set of 15 shortest path algo-
rithms on two data sets generated from real road
networks chosen from 10 states across the Midwest
and Southeast of the United States, and from the
U.S. National Highway Planning Network covering
the entire continental United States. Based on speed
and stability corresponding to different arc lengths,
we recommend a number of algorithms for networks
with varying sizes.

The best performing implementations for solving
the one-to-all shortest path problem are PAPE and
TWOiQ. Both implementations are extremely fast
for large or small networks and their per-shortest-
path tree runtimes showed little variation as a func-
tion of source node. Furthermore, their performance
is not a function of arc length magnitude. The fact
that TWOiQ has a polynomial worst case complexity
versus PAPE’s exponential worst case gives a slight
edge to TWOiQ.

If it is only necessary to compute a one-to-one
shortest path or the shortest paths from a source
node to a subset of the nodes (one-to-some), it may be
worthwhile to consider one of the Dijkstra’s imple-
mentations. As mentioned in Section 1, the Dijkstra
implementations have the advantage that they can
be terminated as soon as the destination node(s)
become permanently labeled. This often yields sig-
nificant computational savings if the destination
nodes are in relatively close proximity to the source
node. Our recommendations from the set of Dijkstra
implementations depend on the maximum size of
the network arc lengths.

If the network arc lengths stay within some rea-
sonable maximum, say 1500, the Dijkstra approxi-
mate buckets implementation (DIKBA) is recom-
mended. This implementation is the fastest among
the Dijkstra codes for problems generated with a
scaling factor of 1000 and, hence, maximum arc
lengths of around 1500. For problems with a maxi-
mum arc length greater than 1500, the Dijkstra
double buckets (DIKBD) implementation should
also be considered because it appears to be less
sensitive on problems in data set 1 with very large
arc lengths.

A summary of our recommendations is given in
Table VI. Certain implementations should be
avoided altogether when solving shortest paths on
real networks, namely, BF, BFP, and DIKQ. The
Bellman–Ford–Moore implementations (BF and
BFP) have serious difficulties on large networks. In
the case of the U.S. network, their required cpu
times were roughly 45 and 22 times larger than the
best performing algorithms. In addition, they have
the largest ratios of maximum-to-mean source node

times. The naive implementation of Dijkstra’s algo-
rithm (DIKQ) also encounters difficulties as the net-
work size increases and should thus be avoided.
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