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Bât 490 Université Paris-Sud, 91405 Orsay Cedex France

Grzegorz Gancarzewicz 3,4

AGH University of Science and Technology
Wydzia�l Matematyki Stosowanej

Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

We give sufficient degree-sum conditions for a graph to contain every matching in a
hamiltonian cycle or a hamiltonian path. Moreover we prove that some results are
almost best possible.
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1 Introduction

In 1960 O. Ore [6] proved the following:

Theorem 1.1 Let G be a graph on n � 3 vertices. If for all nonadjacent
vertices x, y ∈ V(G) we have: d(x) + d(y) � n, then G is hamiltonian.

Later many Ore type theorems dealing with degree-sum conditions where
proved. In particular J.A. Bondy [2] proved:

Theorem 1.2 Let G be a 2-connected graph on n � 3 vertices. If for any
independent vertices x, y, z ∈ V(G) we have: d(x) + d(y) + d(z) � 3n−2

2
, then

G is hamiltonian.

Let G be a graph and let k � 1. We shall call a set of k independent edges
a k-matching or simply a matching.

About cycles through matchings in general graphs K.A. Berman [1] proved
the following result conjectured by R. Häggkvist [4].

Theorem 1.3 Let G be graph of order n. If for any x, y ∈ V (G), xy �∈ E we
have d(x) + d(y) � n + 1, then every matching lies in a cycle.

Theorem 1.3 has been improved by B. Jackson and N.C. Wormald in [5].
R. Häggkvist [4] gave also a sufficient condition for a general graph to contain
any matching in a hamiltonian cycle. We give this theorem below in a slightly
improved version obtained in [7] by A.P. Wojda.

We denote the join of graphs by ∗.
Let Gn be the family of graphs G = K n+2

3
∗ H, where H is any graph of

order 2n−3
3

containing a perfect matching, if n+2
3

is an integer, and Gn = ∅
otherwise.

Theorem 1.4 Let G be a graph of order n � 3, such that for every pair of
nonadjacent vertices x and y d(x) + d(y) � 4n−4

3
. Then every matching of G

lies in a hamiltonian cycle, unless G ∈ Gn.
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2 Results

We have proved a similar result to Theorem 1.4, for containing every matching
in a hamiltonian path.

Theorem 2.1 ([3]) Let s � 1 and let G be a graph of order n � 4s + 6,
such that for every pair of nonadjacent vertices x and y ∈ V(G) we have:
d(x) + d(y) � 4n−4s−3

3
, then every matching of G lies on a cycle of length at

least n − s and hence in a path of length at least n − s + 1.

Suppose that s � 1 is such that n � 4s+6 and n+2s
3

� 2 is an integer. Let
H be a graph of order 2n−2s

3
containing a perfect matching.

Consider now the graph G′ = (n+2s
3

− 1) K1 � H.

We shall define a graph G′′ as a graph obtained from G′ by adding an
external vertex x adjacent only to 2n−2s

3
− 1 vertices from H i.e. we take

V(G′′) = V(G′) ∪ {x}, next we choose an arbitrary vertex h0 ∈ V(H) and we
put E(G′′) = E(G′) ∪ {xh : h ∈ V(H) \ {h0}}.

The graph G′′ satisfies the assumptions of Theorem 2.1 but violates those
of Theorem 1.4. So Theorem 1.4 and Theorem 2.1 are independent.

Note that the most interesting case of Theorem 2.1 is the case s = 1,
because we have a hamiltonian path containing M i.e.

Corollary 2.2 Let G be a graph of order n � 10, such that for every pair
of nonadjacent vertices x and y ∈ V(G) we have: d(x) + d(y) � 4n−7

3
, then

every matching of G lies in a cycle of G of length at least n − 1 and hence in
a hamiltonian path.

It is easy to check that even this case of Theorem 2.1 can not be obtained
as a corollary of Theorem 1.4 by adding in the graph G an external vertex
x adjacent to all vertices and removing an edge from a hamiltonian cycle in
G ∪ {x}. In this case G ∪ {x} does not satisfy the assumptions of Theorem
1.4.

Next we have tried to find a degree sum condition for three independent
vertices under which every matching from a graph G is contained in a hamil-
tonian cycle.
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Let G be a graph. We define α(G), the stability number of G, as the
cardinal of a maximum independent set of vertices of G. For a H ⊂ E(G), F
is an H-edge cut-set of G if and only if F ⊂ H and G \ F is not connected.
F is said to be a minimal H-edge cut-set of G if and only if F is an H-edge
cut-set of G which has no proper subset being an H-edge cut-set.

We have first proved the following theorem:

Theorem 2.3 Let G be a 3-connected graph of order n � 3 and let M be a
matching of G. If α(G) = 2, then there is a hamiltonian cycle of G containing
M or G has a minimal odd M-edge cut-set.

Later we have obtained the following result:

Theorem 2.4 Let G be a 3-connected graph of order n � 3, let 0 � k � n
3

and let M be a k-matching of G. If for any independent vertices x, y, z ∈
V(G) d(x)+d(y)+d(z) � 2n, then there is a hamiltonian cycle of G containing
M or G has a minimal odd M-edge cut-set.

We can show a similar theorem without the assumption that k � n
3
, but

in this case d(x) + d(y) + d(z) � 9n
4

.

Note that the bound 2n in Theorem 2.4 is almost best possible. Let p � 2
and consider a complete graph K2p with a perfect p-matching. We define
the graph G = (p + 1)K1 ∗ K2p, (∗ denotes the join of graphs). In this graph
n = 3p+1 and p ≈ n

3
. For any independent x, y, z ∈ V(G) d(x)+d(y)+d(z) �

2n− 2 and there is no hamiltonian cycle containing the p-matching from K2p.
So the bound 2n is almost best possible.
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