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Abstract – The state-of-the-art of local search heuristics for the traveling salesman 
problem (TSP) is chiefly represented by algorithms based on the classical Lin-
Kernighan procedure and the Stem-and-Cycle (S&C) ejection chain method. Critical 
aspects of implementing these algorithms efficiently and effectively derive from 
considering appropriate candidate lists for the potentially available moves and from 
taking advantage of special data structures especially for large-scale problems. This 
paper describes how these elements may affect the performance of the S&C ejection 
chain method, which also gives insights about how to improve the performance of 
general local search algorithms for circuit-based permutation problems. 
Computational findings are reported for TSP instances containing up to 1,000,000 
nodes. 
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1. Introduction 
 
The traveling salesman problem (TSP) has been frequently used as a testbed for the 
study of new local search techniques developed for general circuit-based 
permutation problems. An important characteristic of these problems is that tests 
performed on challenging TSP instances provide a basis for analyzing the 
performance characteristics of global search metaheuristic techniques. 
  
We focus on the undirected (symmetric) TSP problem in this paper. However, our 
observations and results also can be extended to the directed (asymmetric) case 
since the underlying stem-and-cycle reference structure can readily be 
implemented for directed TSPs. The undirected problem can be stated in graph 
theory terms as follows. Let ( , )G V A=  be a graph, where { },...,1V v vn= is a vertex (or 

node) set and { }( , ) | , ,A v v v v V i ji j i j= ∈ ≠  is an edge set, with a non-negative cost (or 
distance) matrix C = ( cij ) associated with A. The TSP consists in determining the 

minimum cost Hamiltonian cycle on the problem graph. This paper considers the 
symmetric version of the problem ( c cij ji= ), which satisfies the triangular inequality 

( + >c c cij jk ik ).  

 
To document the current state-of-the-art, and to provide a better understanding of 
the heuristic components that prove most effective for several classes of heuristic 
algorithms applied to the TSP, the 8th DIMACS Implementation Challenge on the 
Traveling Salesman Problem was recently organized by Johnson, McGeogh, Glover 
and Rego [11]. In this paper we describe findings from this Implementation 
Challenge as well as our own experience with different algorithm implementations. 
The outcomes give important insights about how to improve the performance of 
algorithms for several other circuit-based permutation problems. 
 
Some of the most efficient local search algorithms for the TSP are based on variable 
depth neighborhood search methods such as the classic Lin-Kernighan procedure 
[12] and the Stem-and-Cycle ejection chain method [6]. Critical aspects of 
implementing these algorithms efficiently and effectively derive from considering 
appropriate candidates for available moves and from taking advantage of 
specialized data structures, especially for large TSP problems. We describe how 
these elements affect the performance of a Stem-and-Cycle ejection chain method, 
and additionally show the impact of several other algorithmic components, 
including the use of different types of starting solutions and incorporating 
complementary neighborhood structures. Computational findings are reported for 
TSP instances containing up to 1,000,000 nodes. 
 
 
2. Algorithm Description 
 
We consider a local search algorithm based on the stem-and-cycle ejection chain 
method proposed in Glover [6]. The current implementation of the stem-and-cycle 
algorithm is a slight variant of the P-SEC algorithm described in Rego [14].  
The algorithm can be briefly described as follows. Starting from an initial tour, the 
algorithm attempts to improve the current solution iteratively by means of a 
subpath ejection chain method, which generates moves coordinated by a reference 
structure called a Stem-and-Cycle (S&C). The stem-and-cycle procedure is a 
specialized variable depth neighborhood approach that generates dynamic 
alternating paths (as opposed to static alternating paths produced, for example, by 
the classical Lin-Kernighan approach). The generation of moves throughout the 
ejection chain process is based on a set of rules and legitimacy restrictions 



 

determining the set of edges allowed to be used in subsequent steps of constructing 
an ejection chain. Implementation improvements in the basic algorithm strategy 
(described in Rego [14]) make the current version more efficient and more effective 
for solving very large scale problems. 
 
Maintaining the fundamental rules of our algorithm unchanged, we have 
introduced the following modifications as a basis for investigating the effects of 
alternative candidate list strategies and datat structures. The first introduces the 
two-level tree data structure described in Fredman et al. [4], and used in some of 
the most efficient Lin-Kernighan implementations reported in the DIMACS 
Challenge (e.g. those of Johnson and McGeoch [10]; Appelgate and Cook [1]; and 
Helsgaun [9]). In our modified algorithm we have adapted the two-level tree data 
structure to replace the less effective doubly-linked lists previously used to 
represent both the TSP tours and the S&C reference structures. Another 
modification is to replace a two-dimensional array-based data structure with an n-
vector to control ”legitimacy restrictions” during the ejection chain construction, 
substantially reducing the storage space required by the earlier version. We have 
also incorporated in the modified algorithm the ability to directly access external 
neighbor lists in the format used by the Concorde system, thus providing additional 
alternatives to the nearest neighbor list used in the P-SEC algorithm. 
 
Our algorithm is implemented as a local search improvement method in the sense 
that no meta-strategy is used to guide the method beyond local optimality. Also, the 
method always stops after N iterations if its re-routing strategy fails to improve the 
best solution found so far. (Re-routing consists of starting an S&C ejection chain 
from a different route node.) Thus our implementation of the S&C algorithm is 
simpler than Lin-Kernighan implementations that make use of additional 
supplementary techniques such as the ”don’t look bits” strategy, caching distances, 
and other implementation tricks.   
 
2.1. The Stem-and-Cycle Reference Structure 
 
The reference structure used in the subpath ejection chain (SEC) algorithm 
described in Rego [14] and now enhanced is called Stem-and-Cycle (S&C). The S&C 
structure has its theoretical foundation in Glover [6] and is defined by a spanning 
subgraph of G, consisting of a path ( , ... , )ST v vt r=  called the stem, attached to a 
cycle 

1 2
( , , ... , , )CY v v v vr s s r= . An illustrative diagram of a Stem-and-Cycle structure is 

shown in Figure 1. The vertex vr  in common to the stem and the cycle is called the 
root, and consequently the two vertices of the cycle adjacent to vr  (

1
vs  and 

2
vs ) are 

called subroots. Vertex vt  is called the tip of the stem. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – The Stem-and-Cycle reference structure. 
 
In each step of the ejection chain process, a subpath is ejected in the form of a 
stem. The method starts by creating the initial S&C reference structure from a TSP 
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tour. Its creation is accomplished by linking two nodes of the tour and removing 
one of the edges adjacent to one of those nodes. The possible transformations for 
the S&C structure at each level of the chain are defined by two distinct ejection 
moves described as follows:  
 
Cycle-ejection move: Insert an edge ( , )v vt p , where vp  belongs to the cycle. Choose 

an edge of the cycle ( , )v vp q  to be removed, where vq  is one of the two adjacent 
vertices of vp . Vertex vq  becomes the new tip. 

 
Stem-ejection move: Insert an edge ( , )v vt p , where vp  belongs to the stem. Identify 

the edge ( , )v vp q  so that vq  is a vertex on the subpath ( , ... , )v vt p . Vertex vq  becomes 
the new tip. 
 
Figure 2 illustrates an example of the application of each of these moves to the S&C 
structure of Figure 1. In the example, grey lines represent the edges to be inserted 
in the new structure, and the dotted lines point out possible edges to be removed 
from the current structure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Ejection moves. 
 
The structure obtained through the application of an ejection move usually does 
not represent a feasible tour (unless vt = vr); thus, a trial move is required to 
generate a feasible TSP solution. Trial solutions are obtained by inserting an edge 
( , )v vt s , where vs  is one of the subroots, and removing edge ( , )v vr s . Figure 3 shows 
the two possible trial solutions that can be obtained from the S&C structure in 
Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Trial solutions. 
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2.2. Implementation Issues  
 
One of the primary modifications in our algorithm was the replacement of the Array 
data structure (implemented as a doubly-linked list) by the Two-Level Tree data 
structure (2-level tree). This structure was initially proposed by Chrobak, Szymacha 
and Krawczyk [3] and has been used in efficient implementations of the 2-Opt and 
3-Opt procedures as well as their generalization, the Lin-Kernighan procedure [12]. 
Fredman et al. [4] show the improvement in performance over the array data 
structure obtained in their implementation of the Lin-Kernighan algorithm by using 
the 2-level tree - they also report results for two other data structures. 
 
The main advantage of the 2-level tree is its ability to reverse an entire subpath of 
the structure in )( nO time, thus drastically reducing the computational times for 
large-scale problems. The path reversal issue arises because in computer 
implementation, an orientation is assumed for the structure in order to make it 
possible to read it. Hence, it is likely that an application of an ejection move would 
cause the need to reverse a subpath of the structure in order to preserve a feasible 
orientation. 
 
In Lin-Kernighan implementations, the 2-level tree is used to represent a TSP tour; 
however, in our algorithm it also represents the S&C structure, and hence requires 
some modifications from the way the tree is implemented for procedures based on 
the Lin-Kernighan approach.  
 
Our 2-level tree structure consists of two interconnected doubly-linked lists forming 
two levels of a tree. The first list defines a set of Parent nodes, each one associated 
with a segment of the S&C structure (or tour). Each segment represents an oriented 
path, and the correct association of all the paths represents a S&C structure (or 
tour). Figure 4 shows the Parent and the segment node structures and gives an 
example of the 2-level tree representation of the S&C structure with CY=(5, 0, 7, 1, 
4, 2, 5) and ST=(6, 8, 9, 3, 5). 
 
Each member of a segment contains a pointer to the associated Parent node, Next 
and Previous pointers, the index of the client it represents (Client), and a sequence 
number (I.D.). The numbering within one segment is required to be consecutive 
(but it does not need to start at 1), since each I.D. indicates the relative position of 
that element within the segment. 
 
A Parent node contains relevant information about the associated segment: the 
total number of clients (Size), pointers to the segment’s endpoints, a sequence 
number (I.D.), a reverse bit (Reverse), and a presence bit (Presence). The reverse bit 
is used to indicate whether a segment should be read from left to right (if set to 0) 
or in the opposite direction (if set to 1). Likewise, the presence bit indicates whether 
a segment belongs to the stem (if set to 0) or to the cycle (if set to 1).  
 
Segments are organized to place the root and the tip nodes as endpoints of a cycle 
and a stem segment, respectively. A null pointer is set to the tip node to indicate 
the end of the stem. The numbering of the Parent nodes always starts at the tip’s 
Parent that also fails to define one of its links. 
 
Also, clients are organized in an array structure allowing for random access to any 
client node in the 2-level tree.  
 



 

This 2-level tree structure is a special adaptation of the one described in Fredman 
et al. [4]. This adaptation involves a substantial modification of the operations 
described in [4] due to the significant differences between the Stem-and-Cycle and 
the Lin-Kernighan neighborhood structures. Since the S&C structure usually does 
not represent a Hamiltonian cycle and different rules for ejection moves apply to 
the stem and the cycle, a presence bit has been added to the Parent node structure 
to indicate whether one segment belongs to the stem or to the cycle. Another 
difference in our structure is the existence of null pointers in the tip node and 
associated Parent structures. We also introduce specialized 2-level tree update 
operations to ensure that each entire segment is either part of the stem or the 
cycle. The basic scheme is outlined in the following diagrams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – The Two-Level Tree representation of the S&C structure 
 
Five basic operations are needed to manage the 2-level tree data structure. Two 
operations deal with structure’s orientation and are used to traverse the structure. 
Three other operations are designed to implement each type of move considered in 
the S&C ejection chain method. These operations can be defined as follows: 
 
Path Traversal Operations 
 
Next(a), returns a’s successor in the current structure. First, it finds node a in the 
segment list and follows the pointer to its Parent node. If the reverse bit is set to 
zero, the return value is obtained by following a’s Next pointer or following a’s 
Previous pointer, otherwise.  
 
Previous(a), returns a’s predecessor in the current structure. 
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Move Operations 
 
CycleEjection(r, t, p, q), updates the reference structure by removing edge (p, q) and 
inserting edge (t, p). Depending on the orientations of the paths within the current 
structure, the path between t and r may have to be reversed. 
 
StemEjection(r, t, p, q), updates the reference structure removing edge (p, q) and 
inserting edge (t, p). The path between t and q is reversed. 
 
Trial(r, t, s), updates the reference structure by removing edge (s, r) and inserting 
edge (t, s). Depending on the orientations of the current structure, the path between 
t and r may have to be reversed. 
 
In the move operations, any time the edge to be deleted is in the same segment, the 
operation involves splitting the segment between the edge’s nodes and merging one 
of the resulting partitions with a neighbor segment. Besides these cut and merge 
procedures, other actions are needed to update the structure through the execution 
of any of the operations, such as updating pointers and renumbering sequence 
values for the segment nodes and Parent nodes involved as well as other Parent 
information such as segment size and presence bits. The values of the reverse bits 
change every time the associated segment is part of a path to be reversed. After 
performing the necessary cut and merges, path reversal is performed by flipping the 
reverse bits of the Parent nodes of all the segments in the path.  
 
Our cut and merge operations are designed to maintain a 2-level tree structure with 
the following characteristics. Each segment is restricted such that all its nodes 
either belong to the cycle (cycle-segment) or to the stem (stem-segment). In 
addition, the root is set to be an endpoint of a cycle-segment, and the tip is set to 
be an endpoint of the rightmost segment of the stem. These specifications 
complicate the merge options and sometimes necessitate additional cuts and 
merges. Special cases also cause extra cuts and merges, such as the case that the 
cycle occupies a single segment. For a comprehensive description and detailed 
explanation of all these operations and special cases we refer the reader to 
Gamboa, Rego and Glover [5].  
 
In order to clarify the effects of the execution of an operation, an example of a cycle-
ejection move on the 2-level tree of Figure 4 is illustrated in Figure 5. In this move, 
edge (4, 2) is deleted and edge (4, 6) is added, which generates the S&C structure 
with CY=(5, 0, 7, 1, 4, 6, 8, 9, 3, 5) and ST=(2, 5). The execution of CycleEjection(5, 6, 
4, 2) involves the following operations. Number the new part of the cycle (6, 8, 9, 3, 
5) by setting to 1 the presence bit of Parent 1 (original I.D.). Also, because nodes 4 
and 2 are on the same segment, split it up between those nodes and merge node 4 
to the initial segment 3. As the root (node 5) is now the new stem-segment, merge it 
into segment 3. Set up the links between nodes 4 and 6 and between the associated 
Parent nodes. Reverse the path 6 and 5 by flipping the reverse bit of Parent 1. Set 
up links between the root and its new subroot (node 3) and between the associated 
Parent nodes. Flip the presence bit of Parent 2 and number the new stem. Finally, 
reorder the I.D. numbers of the Parent nodes starting at the new tip’s (node 2) 
Parent node. 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 – Cycle-ejection move: resulting 2-level tree structure. 

 
 
3. Experimental Results 
 
This section studies the effects of a number of algorithm features that are usually 
critical for the performance of local search algorithms. The testbed consists of 
instances used in the “8th DIMACS Implementation Challenge” [10] from classes E 
(uniformly distributed clients) and C (clients organized in clusters) as well as a set 
of instances from the TSPLIB library [15] with different characteristics and sizes.   
 
Runs were performed on a Sun Enterprise with two 400 MHz Ultra Sparc 
processors and 1 GB of memory.  
 
3.1. Efficiency Analysis 
 
To measure the relative efficiency of the 2-level tree implementation, several 
computational tests were carried out on three classes of problems. Table 1 reports 
the running times for two implementations of the same S&C algorithm that only 
differ in the data structures used to represent the S&C structure and the TSP tour. 
Besides the designation and size of each instance, the table shows the normalized 
(i.e. divided by n ) computational times, the difference between the running times 
obtained by the two implementations, and the number of times the array version is 
slower than the 2-level tree version. 
 

  Time/n Difference Times (1) 
Problem N Array(1) 2L Tree(2) (1)-(2) slower than (2) 
E1k.0 1,000 0.013 0.008 0.005 0.6 
E3k.0 3,162 0.041 0.012 0.029 2.4 
E10k.0 10,000 0.124 0.018 0.106 5.9 
E31k.0 31,623 0.438 0.044 0.394 9.0 
E100k.0 100,000 0.926 0.055 0.871 15.8 
E316k.0 316,228 4.231 0.202 4.029 20.0 
C1k.0 1,000 0.011 0.008 0.003 0.4 
C3k.0 3,162 0.027 0.010 0.017 1.7 
C10k.0 10,000 0.087 0.020 0.067 3.4 
C31k.0 31,623 0.360 0.059 0.301 5.1 
C100k.0 100,000 1.032 0.109 0.923 8.5 
pla7397 7,397 0.091 0.015 0.076 5.1 
rl11849 11,849 0.145 0.020 0.125 6.3 
usa13509 13,509 0.129 0.019 0.110 5.8 
d18512 18,512 0.267 0.025 0.242 9.7 
pla33810 33,810 0.758 0.060 0.698 11.6 
pla85900 85,900 0.701 0.048 0.653 13.6 

 
Table 1 – Running times (seconds) for three classes of problems. 
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The results show that the efficiency of the 2-level tree implementation over the 
array implementation grows significantly with the problem size. In fact, if we 
consider the real times (not normalized), in order to solve the largest instance, the 
array implementation takes about 15 days to obtain a solution identical to the one 
provided by the 2-level tree implementation in 17 hours. 
 
3.2. Analysis on the Effect of the Initial Solution  
 
Typically, constructive algorithms are used to rapidly create a feasible solution for 
an optimization problem; however, the quality of the solutions provided by these 
algorithms is usually far below from the one that can be obtained by effective local 
search procedures. Because local search algorithms are based on the definition of a 
neighborhood structure designed to locally explore the solution space of the current 
solution at each iteration of the method, different solutions may be obtained 
depending on the initial solution from which the method starts.  
 
This section analyzes the possible effect of the starting solution on the quality of the 
solutions provided by the S&C algorithm. Table 2 reports results for the algorithm 
starting from three constructive algorithms (Boruvka, Greedy and Nearest 
Neighbor) as well as randomly generated solutions (Random). For each type of 
initial solution, the results were obtained by running the algorithm using two 
different candidate lists: 20 quadrant neighbors (20QN) and 50 nearest neighbors 
(50NN). The Concord TSP Library was used to generate both the initial solutions 
and the candidate lists, except for the random solutions, where the systematic 
generator in Rego [14] was used with  k=2 and k=5 to provide starting solutions for 
two runs (results for the “Random” columns are the average of the two runs). All 
runs were performed with a fixed set of algorithm parameters.  
 
 

 Candidate Lists 
 20QN 50NN 
 % above the optimal solution or above the Held and Karp lower bound  
Problem Boruvka Greedy Nearest Random Boruvka Greedy Nearest Random 
E100k.0 2.071 2.052 2.017 2.079 2.207 2.006 1.990 1.995 
C100k.0 3.813 4.197 3.897 4.022 7.634 7.322 9.399 38.556 
pla7397.tsp 0.964 1.055 0.700 0.732 1.032 1.026 0.923 0.913 
rl11849.tsp 1.491 1.467 1.870 1.533 1.399 1.438 1.368 1.490 
usa13509.tsp 1.153 1.390 1.233 1.215 1.210 1.153 1.221 1.248 
d18512.tsp 1.471 1.160 1.321 1.249 1.234 1.205 1.278 1.068 
pla33810.tsp 1.531 1.139 1.455 1.275 1.497 1.384 1.331 1.571 
pla85900.tsp 1.287 1.727 1.672 1.617 1.252 1.086 1.115 1.147 

Average 1.723 1.773 1.771 1.715 2.183 2.078 2.328 5.999 

Number of  
times best 3 3 2 0 0 2 4 2 

 
Table 2 – Results for different initial solutions. 

 
The quality of the solutions obtained is measured by the percentage above the 
optimal solution (when known) or the Held and Karp lower bound [7, 8]. 
 
The last two lines in the table show the average solution quality for each column 
and the number of times the algorithm found the best solution starting from the 
initial solution provided by the associated constructive algorithm.   
 
Graphs in Figure 6 depict the effect of the different starting solutions using the 
results in Table 2. The results for problem C100k.0 are not shown on the graphics 



 

because their high values (especially for the Random initial solution and 50NN 
candidate list) would not allow a clear reading of the graphics.  
 
Table 2 shows that the combination 20QN/Random gives the best results (on 
average), but it did not find any best solution. The 50NN/Random combination 
reports the worst average; however, it finds two best solutions. These results 
indicate that no initial solution dominates all the others. In fact, the graphics in 
Figure 6 clearly show that the choice of any of these initial solutions does not 
greatly influence the quality of the final solutions. The fact that the algorithm fails 
for the C100k.0/50NN/Random indicates that the candidate list plays an 
important role in the effectiveness of a local search algorithm. Specifically, this 
result indicates that in cases where the starting solution does not contain a 
sufficient number of arcs in common with the optimal or high-quality solutions and 
the missing arcs are not in the candidate list either, it is very unlikely that the 
algorithm could find a good solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Comparing the effect of the initial solutions. 
 
Another indication of the relevance of an effective candidate list is that the 
algorithm achieves significantly better solutions (on average) using a 20-node 
candidate list (20QN) than the 50-node candidate list (50NN), regardless of the 
initial solution. A more extensive examination of the possible effect of the candidate 
design study is presented in the next section. 
 
3.3. Analysis on the effect of the candidate list 
 
The application of neighborhood search procedures to large-scale TSP problems 
requires the utilization of candidate lists in order to restrict the size of the 
neighborhood to search (at each iteration). The candidate list should contain all the 
components (or move attributes) necessary for an effective application of the 
neighborhood structure. Therefore, different candidate list designs may lead to 
different levels of performance for the same algorithm. 
 
Table 3 reports comparative results for four different candidate lists: 12 quadrant 
neighbors (12QN), 50 nearest neighbors (50NN) and two other lists obtained by  
concatenating the first two with the list generated by the construction of Delaunay 
triangulations. We denote the latter by 12QN+D and 50NN+D, respectively.  
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Figure 7 provides illustrative graphics for the results presented in Table 3. In order 
to expose possible dependencies of the candidate lists on the structure of the initial 
solution, two different solutions (Greedy and Random) were used with each 
candidate list.  
 

 Initial Solutions 
 Greedy Random 
 % above the optimal solution or above the Held and Karp lower bound  
Problem 12QN 12QN+D 50NN 50NN+D 12QN 12QN+D 50NN 50NN+D 
E100k.0 2.118 2.060 2.006 1.997 2.053 2.081 1.995 2.025 
C100k.0 4.309 3.958 7.322 4.848 4.684 3.988 38.556 4.688 
pla7397.tsp 0.786 1.050 1.026 1.000 1.077 1.761 0.913 1.120 
rl11849.tsp 1.948 1.365 1.438 1.315 1.514 1.816 1.490 1.245 
usa13509.tsp 1.246 1.299 1.153 1.286 1.355 1.376 1.248 1.197 
d18512.tsp 1.242 1.195 1.205 1.128 1.211 1.212 1.068 1.217 
pla33810.tsp 1.258 1.406 1.384 0.974 1.834 1.258 1.571 1.275 
pla85900.tsp 2.262 1.608 1.086 1.074 2.368 1.483 1.147 1.222 

Average 1.897 1.743 2.078 1.703 2.012 1.872 5.999 1.749 

Number of  
times best 1 1 2 4 0 2 4 2 

 
Table 3 – Results for different candidate lists. 

 
Table 3 shows that the use of the 50NN+D candidate list with a Greedy initial 
solution provides better final solutions (on average) and usually finds the best 
solutions more often. The overall performance and relative advantage of this 
candidate list is illustrated in Figure 7. On the other hand, it appears that 
quadrant-based candidate lists result in better solutions (as expected) for clustered 
problems, as shown by the results obtained for the C100k.0 problem. (Even a 12-
node quadrant list can do better than a 50-node nearest neighbor list enriched with 
delauny triangulations for this clustering problem). This conclusion is reinforced by 
the results in Table 2 where a 20-node quadrant list (20QN) significantly 
outperforms (on average) a 50-node nearest neighbor list (50NN), regardless of the 
initial solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Comparing candidate lists. 
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3.4. Comparative Analysis of Alternative Algorithms 
 
We now analyze the performance of several highly effective heuristic algorithms 
using the results submitted to the “8th DIMACS Implementation Challenge” [10] for 
a comparative analysis. For the purpose of this study we restrict our attention to 
the information that is relevant to the analysis under consideration. For a complete 
list of results and details on generating the testbed instances, running times, scale 
factors for different computer systems, and other settings used in the challenge, we 
refer the reader to the Challenge web site [10]. 
 
 
The complete testbed consists of instances of class E (sizes between 1,000 and 
10,000,000 nodes), C (sizes between 1,000 and 316,228 clients), and those from 
the TSP Library [15] with at least 1,000 nodes. However, for the current study we 
limited the number of problems to instances up to 1,000,000 (for classes E and C) 
and to problems larger than 3,000 nodes for the TSP instances. 
 
In the attempt to render an accurate comparison of running times, a benchmark 
code was provided for Challenge participants to run in the same machines as the 
competing algorithms were run.  
 
Figures 8, 9 and 10 provide comparative results on the performance of the following 
algorithms: 
 
SC: The Stem-and-Cycle algorithm, 12QN+D candidate list, Boruvka initial 
solutions, two-level tree structure. All runs were performed with a fixed set of 
algorithm parameters. The algorithm considers ejection chains of 50 levels 
(component steps or “depth”). 
 
LK-JM: Implementation of the Lin-Kernighan algorithm by Johnson and McGeoch 
[10], Greedy initial solutions, 20QN candidate list, “don’t look bits” strategy, two-
level tree structure. 
 
LK-N: Implementation of the Lin-Kernighan algorithm by Neto [13], 20QN+20NN 
candidate list, especial routines for “Clusters” compensation, “don’t look bits” 
strategy, two-level tree structure. 
 
LK-ABCC: Implementation of the Lin-Kernighan algorithm (in the Concord library) 
by Applegate, Bixby, Chvátal and Cook [2], 12QN candidate list, Q-Boruvka initial 
solutions, “don’t look bits” strategy, two-level tree structure. 
 
LK-ACR: Implementation of the Lin-Kernighan algorithm by Applegate, Cook and 
Rohe [1], 12QN candidate list, “don’t look bits” strategy, two-level tree structure. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 8 – Comparing TSP algorithms. 

 
 
Graphics in Figure 8 show that the Stem-and-Cycle algorithm outperforms all 
implementations (for uniformly distributed and clustered problems) of the Lin-
Kernighan procedure, except for the one presented by Johnson and McGeoch [10], 
which appears more effective for class C instances. However, as pointed out by the 
authors, it is important to note that the LK-JM implementation contains several 
tuning and implementation tricks (not described in the paper) that explain its 
relative performance. In contrast, the Stem-and-Cycle implementation has no 
additional components or tuning beyond the basic approach already indicated. 
These results suggest that the Stem-and-Cycle neighborhood structure provides 
additional advantages over the Lin-Kernighan structure.  
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Likewise, for the TSPLIB instances, the results presented in the third graphic of 
Figure 8 clearly show that the Stem-and-Cycle algorithm is very robust and 
outperforms several Lin-Kernighan implementations except LK-JM and LK-Neto. 
However, it is interesting to point out that if, in the TSPLIB graphic, we replace the 
SC results using Boruvka’s initial solution by the ones shown in Table 3 for the 
Greedy/50NN+D combination, the Stem-and-Cycle algorithm outcomes are 
superior to the other results (cf. Figure 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – The effect of using Greedy and 50NN+D. 
 
 
Figure 10 depicts the running time variation as the problem size increases (for both 
groups E and C). We can see that the computation times for the SC-B algorithm 
suddenly deteriorate for sizes larger than 10,000 nodes, making the algorithm less 
efficient than the LK implementations for such problem sizes.  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 10 – Comparing running times. 
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Graphics in Figure 11 show the normalized running times of the Stem-and-Cycle 
algorithm. For the problems of groups E and C the running times significantly 
increase for problems over 100,000 nodes. As shown in Figure 11 in the graphic for 
the TSPLIB problems, problem size is not the only factor affecting the 
computational times. The structure of the problem also appears to be important. 
This result suggests that the increase in running times for very large scale 
instances is due to the fact that the current implementation of the stem-and-cycle 
algorithm does not take advantage of any specialized mechanism to reduce the size 
of the neighborhood operating on the initial candidate list. Under this assumption, 
the “don’t look bits” strategy used in the LK implementations is particularly critical 
for the relative performance of these algorithms when solving large scale instances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Stem-and-Cycle running times. 
 

Another important factor worth noting as a basis for further improvement is the 
use of more efficient candidate lists to restrict the neighborhood size while keeping 
the “right” edges to be considered for a move. In fact, it is clearly shown in 
Helsgaun [9] that the choice of an appropriate candidate list has great influence on 

SC
Normalized Times 

0,00

0,10

0,20

0,30

E1k.
0

E1k.
3

E1k.
7

E3k.
0

E3k.
1

E3k.
2

E10k
.0

E10k
.1

E10k
.2

E31k
.0

E31k
.1

E100
k.0

E100
k.1

E316
k.0

E1M
.0

Uniformly Distributed Problems

(T
im

e 
in

 s
ec

o
n

ds
 )

/
n

SC
 Normalized Times

0,00

0,10

0,20

C1k.
0

C1k.
3

C1k.
7

C3k.
0

C3k.
1

C3k.
2

C10k
.0

C10k
.1

C10k
.2

C31k
.0

C31k
.1

C100
k.0

C100
k.1

C316
k.0

Clustered Problems

(T
im

e 
in

 s
ec

o
n

ds
 )

/
n

SC
 Normalized Times

0,00

0,01

0,02

0,03

pcb303
8

fl3
795

fnl
446

1
rl5

91
5

rl5
93

4

pla7
397

rl1
18

49

usa
135

09

d185
12

pla3
381

0

pla8
590

0

TSPLIB Problems

(T
im

e 
in

 s
ec

o
nd

s 
)/

n



 

both the efficiency and effectiveness of a LK implementation and thus a local search 
algorithm.  
 
Another key feature that has proved crucial in the most efficient LK-based 
implementations (including the ones discussed in this study) is the use of 
supplementary neighborhoods called “double-bridges” that generate disconnected 
moves that cannot be achieved with the basic LK neighborhood. Again, we should 
point out that no alternative neighborhood is used in our stem-and-cycle algorithm. 
Although the possibilities for disconnected moves exist as an integral component of 
a generalization of the S&C ejection chain method (called doubly-rooted), this 
feature remains unexplored in our current implementations.  
 
Finally, other possible improvements may consist in using adaptive memory 
programming (as proposed in tabu search contexts) to implement intensification 
and diversification strategies for effective exploration of the solution space.  
 
4. Conclusions 
 
The ability of the basic Stem-and-Cycle approach to obtain high quality outcomes 
without recourse to the usual array of supplementary strategies and auxiliary 
neighborhoods used to make other methods competitive suggests the opportunity 
for additional enhancement. A natural change in this direction is simply to utilize 
more effectively designed candidate lists. In addition, several types of choice and 
trial solution options in the stem-and-cycle approach remain unexplored, including 
those arising from more general doubly-routed reference structures.  
 
Apart from the quality of the solutions that can be obtained, the computation time 
remains an important factor to consider, especially when very large instances have 
to be solved. Therefore, and because finding good solutions for large scale problems 
necessarily requires a significant number of iterations of a local search algorithm, 
there are two natural ways to reduce the time complexity for the next generation of 
TSP algorithms. One way is to develop even more effective data structures than the 
current widely-used 2-level tree to maintain and update a TSP tour (and possible 
reference structures). Another obvious way is to call upon parallel processing, 
which not only allows for reducing computation times but also provides an 
opportunity to design new neighborhood structures that may be effectively 
implemented in parallel. These possibilities for improvements afford interesting 
avenues for future investigation. 
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