
Fast and Simple Algorithms for Weighted Perfect

Matching

Mirjam Wattenhofer1 Roger Wattenhofer2

Department of Computer Science, ETH Zurich, Switzerland

Abstract

We present two fast and simple combinatorial approximation algorithms for constructing a minimum-weighted
perfect matching on complete graphs whose cost functions satisfy the triangle inequality. The first algorithm runs in
O(n2 log n) time and is at most a factor log n worse than an optimal solution. In the second algorithm, the average
time until a node is matched is O(n2) and the approximation ratio is log2 n.

Keywords: weighted matching, approximation algorithms

1 Introduction and Motivation

Let G = K(V) be a complete graph of an even number of |V | = n nodes and a non-negative
cost function w : E → R+ satisfying the triangle inequality. A perfect matching of G is a
subset M ⊂ E such that no two edges in M are adjacent and each node is incident to one
edge in M . The weight w(M) of a matching M is the sum of the weights of its edges. The
problem is to find a perfect matching of minimum weight (MM).

This problem can be solved in polynomial time by the algorithm of Edmonds [Edm65].
Though its running time was improved from O(n4) to O(n(m + n log n)) by [Gab90] it
is still too time-consuming for many applications. Hence, much effort was done to find
good approximation algorithms for MM which are faster than the exact algorithm (e.g.
[GW92], [VA99]). Besides its running time, Edmonds’ algorithm has another disadvantage:
By making use of the linear programming dual of the MM problem viewed as a linear
program, the algorithm and its analysis are difficult to understand, implement, or teach.
Unfortunately, most of the other exact or approximation algorithms for MM are based on
Edmonds’ algorithm or a linear programming approach. This almost inevitably leads to a
less intuitive understanding of the algorithms and/or their analysis.

1 Email: mirjam.wattenhofer@inf.ethz.ch
2 Email: wattenhofer@inf.ethz.ch

Electronic Notes in Discrete Mathematics 17 (2004) 285–291

1571-0653/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2004.03.052

mailto: mirjam.wattenhofer@inf.ethz.ch
mailto: wattenhofer@inf.ethz.ch
http://www.elsevier.com/locate/endm

In this paper we will in a first step introduce a simple, purely combinatorial algorithm
for MM, which yields a 2 log n approximation in O(n2 log n) time. In a next step, we are able
to reduce the average time until a node is matched to O(n2) by losing a factor of log n in the
approximation. Given that the only other simple MM algorithm we are aware of, the greedy
algorithm, has an approximation ratio of Ω(n0.58) [RT81] and that the fastest approxima-
tion algorithms need time at least O(n2

√
nα(m,n) log n)[GT91], respectively O(n2 log n)

[GW92], also on average, we believe that our results are of two-fold interest. On the one
hand the algorithms and their analysis are intuitive, and could be used as a stepping stone to
explain more intricate algorithms. On the other hand, the approximation ratio and running
time of our algorithms slightly improve the currently best known results for polylogarith-
mic approximations. Altogether, due to their simplicity and efficiency, we hope that our
algorithms or derivations thereof will be applicable in the distributed, online, and/or mobile
computing setting.

2 The Algorithms

2.1 Description

The main algorithm, Algorithm 1 (Perfect Matching), takes as input an undirected graph
K(V) with edge costs we ≥ 0 satisfying the triangle inequality and outputs a perfect match-
ing M . The basic structure of the algorithm involves maintaining a forest F of edges which
is initially empty. In each iteration φ of the algorithm’s while-loop a set of edges is se-
lected connecting distinct connected components of F . Define an active component to be
any connected component C of F with an odd number of nodes, else call the component
inactive. The while-loop terminates when all connected components C of F are inactive.
The approximation properties of the algorithm will follow from the way we choose the edges
in each iteration φ and which algorithm we call as a subroutine to compute the matching
on the forest F . First to the edge-selection step: In each iteration the algorithm connects
every active component to the nearest other active component, where nearest is meant in
the sense of minimizing the weight of the edges to be added (see Figure A.1). Now to
the matching-subroutines: Algorithm 2 (Idle Match) computes the matching on the forest
F after the termination of the while-loop of Algorithm 1, whereas Algorithm 3 (Instant
Match) matches the nodes in an ongoing fashion in each iteration of the while-loop. Thus,
decreasing the average time until a node is matched significantly but naturally losing some
accuracy.

2.2 Analysis

In this section we prove the approximation properties of the Perfect Matching Algorithm
(Algorithm 1) in connection with the Idle Match Algorithm (Algorithm 2), respectively
the Instant Match Algorithm (Algorithm 3). By using the Idle Matching Algorithm the
matching we compute comes within a factor of log n of optimal. Whereas, for Algorithm 3
we prove an approximation ratio of log2 n. In the next section we show that the running
time of the algorithms is n2 log n, but that for the Instant Match Algorithm the average
time until a node is matched is O(n2).

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291286

Algorithm 1 Perfect Matching

Input: an undirected graph G = K(V) with edge costs we ≥ 0
Output: a matching M
1: (∗ depending on preferences either call line 11 or line 14 but not both to compute

matching ∗)
2: F ← ∅, M ← ∅, φ = 0,
3: Cφ ← {{v} : v ∈ V }
4: while (∃ active component C ∈ Cφ) do
5: ECφ

← ∅
6: for each active component C ∈ Cφ do
7: find a path P from C to an active component C ′, C �= C ′, that minimizes w(EC),

where EC = P − F
8: ECφ

← ECφ

.∪ EC

9: end for
10: F ← F ∪ ECφ

11: M ← Algorithm 3 with Input (F, M, φ)
12: φ ← φ + 1
13: update Cφ

14: end while;
15: M ← Algorithm 2 with Input F

Algorithm 2 Idle Match

Input: a forest F
Output: a perfect matching M
1: duplicate every edge of each component of F and shortcut to obtain a collection of cycles

(see Figure A.2) (∗ the cycles have even length since all components are inactive ∗)
2: keep the best matching M out of the two matchings defined by every cycle

Algorithm 3 Instant Match

Input: a forest F , a partial matching M , φ
Output: a partial matching M
1: if (φ = 0) then
2: duplicate every edge of each component of F and shortcut to obtain a collection of

(maybe odd-length) cycles
3: for every odd cycle fix an arbitrary node to remain unmatched
4: keep the best matching out of the two (partial) matchings defined by every cycle (and

fixed node)
5: else
6: match free nodes in every component, s.t. the paths between matched nodes are

disjoint (∗ See Lemma 2.5 for how to construct such paths. ∗)
7: end if
8: update M

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291 287

Lemma 2.1 The while-loop of the Perfect Matching Algorithm is executed at most log n
times.

Proof. At least three active components must be connected to each other such that the new
component is active again. Therefore, in each iteration the number of active components
decreases by a factor of at least three and the logarithmic number of executions follows.

The incidence vector of the forest F produced by the Perfect Matching Algorithm is a
feasible solution for following integer linear programm (IP):

(IP) Min
∑

e∈E

wexe

subject to: x(δ(S)) ≥ |S| mod 2 ∅ �= S ⊂ V

xe ∈ {0, 1} e ∈ E,

where δ(S) denotes the set of edges having exactly one endpoint in S and x(F) =
∑

e∈F xe.
The optimal solution F ∗ to (IP) is obviously of less weight than is the optimal solution M ∗

of the minimum-weighted perfect matching problem.

Lemma 2.2 The weight of the set of edges added in each execution of the while-loop of the
Perfect Matching Algorithm is at most the weight of the optimal forest F ∗: w(ECφ

) ≤ w(F ∗).

Proof. We will argument about an arbitrary iteration φ. Construct a graph H by consid-
ering the inactive and active components of this iteration as nodes in H. We conceptually
divide the edges of H into red and blue edges. The edges e ∈ F ∗ ∩ δ(C) for all C ∈ Cφ are
the red edges of H. The edges e ∈ ECφ

added in this iteration to F are the blue edges 3 .
Keeping in mind that the incidence vector of edges of F ∗ must be a feasible solution for
(IP) we know that for each node v in H associated with an active component (a so called
active node) there is a path P r

v , consisting of red edges only, which connects this node to
another active node in H. By the way we chose ECφ

we know that there is also a blue path
P b

v connecting v to another active node in H which is at most as heavy as the corresponding
red path: w(P b

v) ≤ w(P r
v). Consequently,

∑
v∈Va

w(P b
v) ≤ ∑

v∈Va
w(P r

v), where Va is the
set of nodes in H associated with active components. Since,

∑
v∈Va

w(P r
v) ≤ 2w(F ∗) and

2w(ECφ
)
∑

v∈Va
w(P b

v) the lemma follows. (The factors of two arise because each path is
counted twice, once for each endpoint.)

Corollary 2.3 The weight of the forest F at the termination of the while-loop of the Perfect
Matching Algorithm is at most log n · w(F ∗).

Proof. The Corollary follows immediately from Lemma 2.1 and Lemma 2.2.

Theorem 2.4 The matching computed by the Idle Matching Algorithm is a log n-approxi-
mation of the minimum-weighted perfect matching M ∗.

Proof. We compute an Euler tour with shortcuts on each component and choose the better
out of the two possible matchings for each tour. Since the weight of an Euler tour is at
most twice the weight of the component, the weight of the better matching is at most the

3 Note that some edges may be red as well as blue.

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291288

weight of the component. All together the matching has weight at most w(F), which is by
Corollary 2.3 at most log n · w(F ∗). Since w(F ∗) ≤ w(M ∗) we can deduce the theorem.

Before we analyze the Instant Match Algorithm (Algorithm 3) we need following helper
lemma.

Lemma 2.5 Given a tree T = (V,E) and a set of marked nodes S = {v1, v2, . . .} ⊆ V . Let
Sp = {(vi, vj), . . .} ⊂ (

S
2

)
be a disjoint pairing of the nodes in S and for each pair (vi, vj),

pij the path connecting vi to vj. Then it is always possible to construct Sp in such a way
that the paths pij are mutually edge-disjoint.

Proof. We prove the lemma by giving a construction for Sp. Beginning from the leaves,
pair vi with vj if they have a common ancestor va and there is no un-paired node vk which
has a closer common ancestor vb with either vi or vj, where closer is meant in the sense of
the length of the path between the nodes. This construction leads to all desired properties
of the set Sp.

Lemma 2.6 The weight of the edges added to the matching M at the end of the Instant
Match Algorithm is at most the weight of the input forest F .

Proof. If φ = 0 we basically do the same as in the Idle Match Algorithm, except for
some cycles being of odd length, which does not have any implications on the weight of the
matching. Hence, the weight of the edges added to the matching is at most the weight of
the components of F , which is w(F). For φ > 0 we know by Lemma 2.5 that we can match
the free nodes (except for one in each active component) in a component of F such that
the paths between matched nodes are disjoint. Furthermore, by the triangle inequality we
know that connecting the nodes directly is at most as expensive as connecting them via
other nodes. Consequently, for each component of F the weight of the edges added to the
matching is at most the weight of the component itself and the lemma follows.

Theorem 2.7 The matching computed by the Instant Match Algorithm is a log2 n-approxi-
mation of the minimum-weighted perfect matching M ∗.

Proof. By Lemma 2.2 the weight of the forest in iteration φ is at most

w(F) = w(Cφ) = w(Cφ−1) + w(ECφ−1
) ≤ w(Cφ−1) + w(F ∗) ≤ φ · w(F ∗).

By Lemma 2.6 we have:

w(M) ≤
log n∑

φ=1

w(Cφ) ≤
log n∑

φ=1

φ · w(F ∗)

=
1

2
(log2 n + log n) · w(F ∗) ≤ log2 n · w(M ∗) .

2.3 Implementing the Algorithms

algorithms efficiently. Both, the Idle Match Algorithm and the Instant Match Algorithm,
have a running time of O(n). Thus, the critical step of the implementation is the while-loop
of the Perfect Matching Algorithm. More specific, in each iteration the crucial part is to
find the paths P and to merge the components in the update of Cφ. If we maintain the

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291 289

components C as a union-find structure of nodes, merging will take at most O(nα(n, n))
time, α being the inverse Ackermann function [Tar75]. By using a generalized Voronoi
diagram the time to find the shortest path for all active components in an iteration is O(n2)
[SPR80]. Since the while-loop is executed at most log n times, after O(n2 log n) time steps,
the Perfect Matching Algorithm terminates, independent of whether we use the Idle Match
or the Instant Match Algorithm as a subroutine.

In the following we will prove that the average time until a node is matched decreases
by a factor of magnitude log n if we use the Instant Match Algorithm.

Theorem 2.8 After on average at most two iterations of the while-loop of the Perfect
Matching Algorithm and using the Instant Match Algorithm as a subroutine a node is
matched.

Proof. After the first iteration at least 2
3

of all nodes are matched, since at most one node
remains unmatched in each active component. By the same reasoning, after iteration φ at
least (1 − (1

3
)φ) · n nodes are matched. For the average matching time we get:

E[# iterations until a node is matched] =
∑log n

φ=1 (1 − (1
3
)φ)(1 − (1

3
)φ−1) · φ ∑log n

φ=1 2(1
3
)φ · i ≤

3
2
.

References

[Edm65] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[Gab90] H.N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. in Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 434–443, 1990.

[GT91] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph match-
ing problems. Journal of the ACM, 38(4):815–853, 1991.

[GW92] M.X. Goemans and D.P. Williamson. A general approximation technique for con-
strained forest problems. In SODA: ACM-SIAM Symposium on Discrete Algo-
rithms (A Conference on Theoretical and Experimental Analysis of Discrete Algo-
rithms), 1992.

[RT81] E.M. Reingold and R.E. Tarjan. On a greedy heuristic for complete matching.
SIAM Journal on Computing, 10:676–681, 1981.

[SPR80] K.J. Suppowit, D.A. Plaisted, and E.M. Reingold. Heuristics for weighted per-
fect matching. in Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, pages 398–419, 1980.

[Tar75] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22:215–225, 1975.

[VA99] K.R. Varadarajan and P.K. Agarwal. Approximation algorithms for bipartite and
non-bipartite matching in the plane. In SODA: ACM-SIAM Symposium on Dis-
crete Algorithms (A Conference on Theoretical and Experimental Analysis of Dis-
crete Algorithms), 1999.

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291290

A APPENDIX

A.1 Visualization of Matching Algorithms

inactive

active

active

active

active

Fig. A.1. Connecting Active Components Fig. A.2. Duplicating and Shortcutting

M. Wattenhofer, R. Wattenhofer / Electronic Notes in Discrete Mathematics 17 (2004) 285–291 291

	Introduction and Motivation
	The Algorithms
	Description
	Analysis
	Implementing the Algorithms

	APPENDIX
	Visualization of Matching Algorithms

