
i.

SIMGRAPHICS II

User's Manual for MODSIM III

Title: (CACI Logo. eps)
Creator: Adobe Illustrator 88(TM) 1.9.3
CreationDate: (10/8/90) (9:11 AM)

 Products Company
3333 North Torrey Pines Court, La Jolla, California 92037 • (619) 824.5200 • Fax (619) 457-1184
Watchmoor Park, Riverside Way, Camberley, Surrey GU15 3YL, UK • 1276 671 671 • Fax 1276 670 677
1600 Wilson Blvd., 13th Floor, Arlington, Virginia 22209 • (703) 875-2900 • Fax (703) 875-2904

SIMGRAPHICS II User's Manual

Copyright 1996 CACI Products Co.
December 1996

All rights reserved. No part of this publication may be reproduced by any means without written permission from
CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Watchmoor Park
La Jolla, California 92037 Riverside Way
Phone: (619) 824.5200 Camberley, Surrey
Fax: (619) 457-1184 GU15 3YL, UK

Phone: 1276 671 671
Fax: 1276 670677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the
responsibility for any consequences resulting from the use thereof. The information contained herein is subject to
change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS II and MODSIM III are registered trademarks of CACI Products Company.

i. iii

Contents
Preface... a

Chapter 1: Introduction to SIMGRAPHICS II ... 1

1.1 SIMGRAPHICS II ENVIRONMENT ... 1
1.2 INTERFACE... 1
1.3 A SIMPLE PROGRAM ... 2

Chapter 2: SIMDRAW... 5

2.1 SIMDRAW OVERVIEW ... 5
2.2 RUNNING SIMDRAW ... 5
2.3 LOADING AND SAVING SIMGRAPHICS II FILES. ... 6
2.4 EDITING AN EXISTING OBJECT.. 6
2.5 ADDING AN OBJECT TO THE LIBRARY... 7
2.6 REMOVING AN OBJECT FROM THE LIBRARY .. 7
2.7 MAKING A DUPLICATE OF AN OBJECT .. 7
2.8 CHANGING THE NAME OF AN OBJECT .. 7
2.9 ADDING AN OBJECT FROM ANOTHER LIBRARY.. 7
2.10 EDITING IMAGES AND GRAPHS IN SAME WINDOW ... 7
2.11 LISTING OF OBJECTS... 7
2.12 COMMAND LINE ARGUMENTS ... 8
2.13 USING THE IMAGE EDITOR ... 8

2.13.1 Mode, Style, and Color Palettes ... 9
2.13.2 Selecting, Moving, and Resizing... 10
2.13.3 Using the Clipboard (Cut, Copy, Paste Commands) ... 10
2.13.4 Creating Primitives... 10
2.13.5 Creating Images... 14
2.13.6 Editing the Root Image... 14
2.13.7 Editing Points on a Primitive... 15
2.13.8 Defining Stacking Order or Priority ... 15
2.13.9 Defining the Center Point of a Shape ... 15
2.13.10 Using the Flip and Rotate Tools ... 16
2.13.11 Align and Distribute .. 16
2.13.12 Using Grid Lines .. 16
2.13.13 Changing Views (Panning and Zooming).. 17
2.13.14 Changing Dimension (Coordinate Space Boundaries) .. 17
2.13.15 Changing the Layout Size and Color .. 17
2.13.16 Program Access... 18

2.14 USING THE GRAPH EDITOR .. 18
2.14.1 Style, and Color Palettes.. 18
2.14.2 Selecting, Moving, and Resizing... 18
2.14.3 Charts (2-D Plots) .. 19
2.14.4 Pie Charts.. 23
2.14.5 Clocks.. 24
2.14.6 Dials .. 24
2.14.7 Level Meters .. 25
2.14.8 Digital Displays .. 25
2.14.9 Text Meters.. 26

2.15 USING THE DIALOG EDITOR.. 26
2.15.1 Selecting, Moving, and Resizing... 27
2.15.2 Dialog Box Coordinate System... 28
2.15.3 Using the Clipboard (Cut, Copy, Paste Commands) ... 29

SIMGRAPHICS II User's Manual

2.15.4 Controls..29
2.16 USING THE MENU BAR EDITOR ...37

2.16.1 Selecting and Moving (Transferring) ...38
2.16.2 Using the Clipboard (Cut, Copy and Paste Commands) ..39
2.16.3 Editing the Menu Bar ..39
2.16.4 Editing a Menu ...39
2.16.5 Editing a Menu Item..40

2.17 USING THE PALETTE EDITOR ..41
2.17.1 Selecting and Moving (Rearrangement) of Buttons ...42
2.17.2 Using the Clipboard (Cut, Copy and Paste)...43
2.17.3 Editing the Palette ..43
2.17.4 Editing a Palette Button ..44
2.17.5 Editing Palette Separators ..45

Chapter 3: Basic Graphic Objects and Methods ...47

3.1 PROPERTIES OF GRAPHICAL OBJECTS...47
3.2 BEHAVIORS OF GRAPHICAL OBJECTS ..49

Chapter 4: Windows..51

4.1 SIZE AND POSITIONING ..51
4.2 BACKGROUND COLOR ...52
4.3 ADDING GRAPHICAL OBJECTS TO A WINDOW..52
4.4 COORDINATE SYSTEMS FOR WINDOWS..52
4.5 CREATING NON-SQUARE WINDOWS ..54
4.6 MOUSE MONITORING...55
4.7 SCROLL BARS...58
4.8 USING THE STATUS BAR ON A WINDOW ...58
4.9 ASYNCHRONOUS NOTIFICATION OF WINDOW CLOSE AND RESIZE EVENTS59
4.10 PRINTING THE CONTENTS OF A WINDOW ..60

4.10.1 Rules for System Printing ...60
4.11 FRAME AND SUB-WINDOWS ..60
4.12 CONTROL WINDOWS..62

Chapter 5: Images ...65

5.1 IMAGE TREE USED IN GRAPHICS APPLICATIONS..65
5.2 IMAGE PRIORITY..67
5.3 CREATING AND USING IMAGES ..68
5.4 COORDINATE SYSTEMS..71
5.5 DERIVING FROM IMAGES...72
5.6 DETECTING IMAGE SELECTION..73
5.7 GETTING IMAGE BOUNDING BOXES ...74
5.8 BITMAPPED GRAPHICS...74

5.8.1 Zooming into Bitmaps...75
5.8.2 Bitmap Alignment (Centering)...76
5.8.3 Converting Images into PostScript..76

Chapter 6: Dynamic Objects ...81

6.1 DYNAMICOBJ..81
6.2 DYNIMAGEOBJ ...82
6.3 DYNCLOCKVOBJ ..83
6.4 TIME SCALING...84
6.5 EXAMPLE OF A SMALL GRAPHICAL SIMULATION ...84
6.6 DERIVING OBJECTS FROM DYNIMAGEOBJ ..85

Chapter 7: Graphs ...87

7.1 OBJECTS DERIVED FROM GRAPHVOBJ..87

Contents

v

7.2 CREATING AND USING GRAPHS .. 88
7.3 DESCRIPTION OF VARIOUS GRAPH OBJECTS.. 89

7.3.1 ChartObj .. 89
7.3.2 PiechartObj.. 92
7.3.3 ClockVObj.. 92
7.3.4 MeterVObj ... 93
7.3.5 TextDisplayObj .. 95

7.4 USING PRESENTATION GRAPHICS TO MONITOR VARIABLES ... 96
7.4.1 Single Variable Monitoring.. 96
7.4.2 Showing More Than One Variable in the Same Chart... 97
7.4.3 Showing Arrays of Variables Using Charts ... 99

7.5 GRAPH MONITORING TABLE... 100
7.6 GRAPH EXAMPLE.. 100
7.7 CREATING GRAPHS AT RUNTIME... 102

7.7.1 Methods to Set the Color of a Graph Component ... 102
7.7.2 Methods to Set the Fill, Line, or Mark Styles of a Graph Component 102
7.7.3 Methods to Set the Text Fonts of Graph Components.. 102
7.7.4 Method to 'Hide' a Graph Component... 103
7.7.5 Additional Methods for Programmatic Creation of a ClockVObj 103
7.7.6 PieChartObj Methods... 103
7.7.7 Methods for Programmatic Creation of a ChartObj ... 104
7.7.8 Setting Chart Options... 104
7.7.9 Setting Chart Data Set Options .. 105
7.7.10 Setting Chart Fields ... 107
7.7.11 Chart Components Listed in the 'GraphPartType' Enumeration 108
7.7.12 Other Methods of ChartObj .. 108
7.7.13 Example of Program Code for Creating a Chart ... 109

Chapter 8: Controls... 111

8.1 CREATING CONTROLS ... 113
8.2 RETRIEVING SYNCHRONOUS INPUT FROM CONTROLS ... 114
8.3 RECEIVING ASYNCHRONOUS INPUT FROM CONTROLS ... 114
8.4 DRAWING AND ERASING .. 115
8.5 DEACTIVATING AND ACTIVATING ... 115
8.6 SETTING THE CONTROL'S LABEL... 116
8.7 DISPOSING CONTROLS .. 116
8.8 UPDATING CONTROLS ... 116
8.9 BUTTONS... 117
8.10 CHECK BOX ... 117
8.11 TEXT BOX .. 117
8.12 VALUE BOX .. 118
8.13 LIST BOX AND LIST BOX ITEM ... 119
8.14 RADIO BOX AND RADIO BUTTON ... 121
8.15 TREE VIEW CONTROL.. 121
8.16 LABELOBJ.. 123
8.17 COMBOBOXOBJ ... 123
8.18 MULTILINEBOXOBJ... 124
8.19 TABLEOBJ ... 126
8.20 CALLING BESELECTED FOR THE TEXTBOXOBJ, VALUEBOXOBJ AND COMBOBOXOBJ 129
8.21 DIALOG BOX .. 129

8.21.1 User-controlled Dialog Box Fonts ... 131
8.21.2 Tabbed Dialogs.. 131
8.21.3 Dialog Box Example Program .. 132
8.21.4 System File Browser Dialogs.. 133

SIMGRAPHICS II User's Manual

8.21.5 System Font Dialog ..134
8.22. ALERT BOXES ..135
8.23 MENU BAR, MENU, MENU ITEM ..137

8.23.1 Mnemonics...139
8.23.2 Check/Uncheck Menu options ..139
8.23.3 Accelerators ...140
8.23.4 Menu Bar Example Program...140
8.23.5 Cascadable Menus...141
8.23.6 Popup Menus ...141

8.24 PALETTE, PALLETTE BUTTONS, PALETTE SEPARATORS ...143

Appendices..143

Appendix A: Common Pitfalls ..149

Appendix B: SIMGRAPHICS II - 3D...151

B.1 LIGHTS, CAMERAS, ACTION!! ...151
B.2 BUILDING A 3-D MODEL...151
B.3 OBJECTS USED ..152
B.4 COMBINING 2-D AND 3-D GRAPHICS...153
B.5 3-D PRIMITIVES ..154
B.6 TIPS FOR 3-D SIMULATION...154

Appendix C: Canvas and System Cursors...157

C.1 USING CANVAS CURSORS ...157
C.2 USING SYSTEM CURSORS ...158

Appendix D: Creating Images at Runtime..161

D.1 OBJECTS ...161
D.2 SYSTEM TEXT ..163
D.3 USING SYSTEM TEXT ..164
D.4 PORTABILITY ISSUES ...164
D.5 MARKERS ..165
D.6 SNAPSHOT OBJECT ..166
D.7 EXAMPLE PROGRAM ...166

Appendix E: Animation Speed Optimization ...165

E.1 REAL-TIME ANIMATION MODE ...169
E.2 SETSNAPSHOT ..169
E.3 SETREDRAWABLE ...169
E.4 EXCLUSIVE OR DRAWING MODE ..170
E.5 MISCELLANEOUS TIPS ON FASTER ANIMATION..170
E.6 COMMAND LINE OPTIONS ..170

Appendix F: Complete Solar System Example ..169

Appendix G: Utility Procedures..179

G. 1 UTILITIES..179

Appendix H: Run-time Graphics Errors ...177

Index...183

Contents

vii

Figures
Figure 2-1. Main Window.. 6
Figure 2-2. Image Editor... 9
Figure 2-3. Dialog Editor... 27
Figure 2-4. Menu Bar Editor .. 38
Figure 2-5. Palette Editor ... 42
Figure 3-1. Inheritance Tree for Graphical Objects ... 47
Figure 4-1. Overlapping Windows... 51
Figure 5-1. Image Tree for a Grocery Cart.. 65
Figure 5-2. Grouping of Grocery Carts ... 66
Figure 5-3. Image Tree for a Grocery Store.. 66
Figure 5-4. Image Priority... 68
Figure 5-5. Solar System Coordinate System ... 72
Figure 7-1. Inheritance Tree for Presentation Graphics... 88
Figure 7-2. 2-D Plot.. 89
Figure 7-3. Pie Chart .. 92
Figure 7-4. Digital Clock ... 93
Figure 7-5. Analog Clock .. 93
Figure 7-6. Dial .. 94
Figure 7-7. Level Meter .. 94
Figure 7-8. Digital Display .. 95
Figure 7-9. Text Display ... 95
Figure 7-10. Trace Plot... 97
Figure 8-1. Inheritance Tree for Controls .. 113
Figure 8-2. Deactivated Control .. 118
Figure 8-3. Button .. 117
Figure 8-4. Check Box.. 120
Figure 8-5. Text Box... 117
Figure 8-6. Value Box... 121
Figure 8-7. List Box .. 119
Figure 8-8. Radio Box .. 121
Figure 8-9. Tree View Control... 122
Figure 8-10. Combo Box .. 124
Figure 8-11. Multi-line Text Box.. 125
Figure 8-12 Table... 130
Figure 8-13. Table with Headers... 127
Figure 8-14. Tabbed Dialog .. 131
Figure 8-15. Alert Dialog Box.. 136
Figure 8-16. Menu Bar ... 138
Figure 8-17. Pop-Up Menu Example... 142
Figure 8-18. Palette Example ... 144
Figure B-1. New Triangle Formed by Point 4 in the Triangular Mesh Array 150
Figure B-2. The Camera Can See the Palm Trees, but not the Lunar Module or the Tank. 151
Figure F-1. Solar System ... 173

SIMGRAPHICS II User's Manual

viii

a

Preface

This Document

This manual is intended to both teach and serve as a user's manual for SIMGRAPHICS II.
SIMGRAPHICS II is a graphical tool kit built on MODSIM III. Using SIMGRAPHICS II you
can easily incorporate animation, presentation graphics and graphical user interfaces into your
MODSIM III programs. Some familiarity with MODSIM III is assumed.

Free Trial & Training
SIMGRAPHICS II is available exclusively from CACI Products Company. MODSIM III can be
sent to your organization for a free trial. We provide everything needed for a complete evaluation
on your computer: software, documentation, sample models, and immediate support when you
need it.

Training courses in MODSIM III are scheduled on a recurring basis in the following locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 N. Torrey Pines Ct. Watchmoor Park, Riverside Way
La Jolla, CA 92037 Camberley, Surrey GU15 3YL
(619)824.5200 United Kingdom
Fax (619) 457-1184 1276 671 671

Fax 1276 670 677

SIMGRAPHICS II User's Manual

b

1

Chapter 1: Introduction to SIMGRAPHICS II

The MODSIM III Graphics package allows easy access to animation, presentation
graphics, and user-interface toolkits using a graphics editor (SIMDRAW) to simplify
construction.

Animation is produced by drawing objects using SIMDRAW and then animating them
within a MODSIM III program. Operations such as scaling, rotating, and positioning can
be performed. The animated objects or images can have subcomponents which move
along with the whole object, but can be manipulated individually. For example, a dump
truck can have a bed subcomponent which is rotated independently of the base of the
truck.

Presentation graphics or graphs such as pie charts, level meters, bar graphs, etc. are also
created using SIMDRAW, and are then used within the MODSIM III program by asking
the graphs to plot values. The visual appearance of the graph is updated automatically.

Access to the user-interface toolkits or forms allows input using menu bars, dialog boxes
and palettes. The appearance of the forms conforms to the style of the system
MODSIM III is running on. On workstations, MOTIF dialog boxes are used; on
Microsoft Windows systems, Windows dialog boxes, pull down menus and palettes are
produced.

All elements of the MODSIM III graphics library are portable, which means if you take a
MODSIM III Graphics program which runs on one system and move it onto a new system
it will run, without modifying any code. The forms will change their appearance to
conform to the new system they are running on. The images and graphs will have the
same appearance as on the previous system.

1.1 SIMGRAPHICS II Environment

The world in which SIMGRAPHICS II lives can be described in terms of a screen and
windows. The computer screen can have multiple windows. Each window can contain
images, graphs, and forms.

The windows are provided by the system and can be moved and resized. When the
window is resized, its contents always maintain the same height to width relationship or
aspect ratio.

Graphic images created in the editor can be placed inside the window. The images can be
used to provide a background or they can be animated.

Each window can have a menu bar for making menu selections, and multiple dialog boxes
for accepting input of various types, such as numerical values, yes/no responses and text.
Windows can also contain palettes for changing modes or selecting operations.

SIMGRAPHICS II User's Manual

2

1.2 Interface

Since MODSIM III is an Object Oriented Language , the graphical interface is
implemented using objects. Images, graphs, and forms are associated with MODSIM III
objects. Therefore, using graphics involves creating and manipulating objects. Many basic
objects have already been provided. The most important are :

WindowObj—Standard system window which can be moved, resized, etc. Acts
as a container for all graphical objects.

ImageObj—Basic object used for static icons and backgrounds.

DynImageObj—Basic graphic object used for animation.

DialogBoxObj—Receives various types of input from the user. Controls, such
as buttons, check boxes, list boxes, radio boxes, value boxes and text boxes can be
part of a dialog box.

MenuBarObj—Receives simple menu selections.

PaletteObj—Receives input from two-state palette buttons.

Since there can be multiple windows on the screen, images, dialog boxes, and menu bars
must be added to a specific window. This is done using the AddGraphic method of the
window. For instance, to add an image to a window the method call would be:

 ASK MyWindow TO AddGraphic(MyImage);

To make an object visible on the screen you must ask it to draw:

 ASK MyWindow TO Draw;
 ASK MyImage TO Draw;

To erase an object:

 ASK MyImage TO Erase.

All of the objects created by the editor can be saved in a single file. This single file is
called a Library file and has an associated object in MODSIM III called a
GraphicLibObj. It is used to re-create the objects built in the editor so they can be
used within the MODSIM III program.

To use an image, graph or form created by the editor you must do the following:

1. Create a window:

NEW(window);

2. Create a GraphicLib object:

NEW(GraphicLib);

Chapter 1: Introduction to SIMGRAPHICS II

3

3. Ask it to read the file containing the objects created in the editor:

 ASK GraphicLib TO ReadFromFile("graphics.sg2");

4. Create instances of objects you want:

NEW(TruckImage);

5. Ask the instances to customize their appearance by copying an object in the
library:

ASK TruckImage TO LoadFromLibrary(GraphicLib,

 "truck");

6. Add the instances to the window:

 ASK window TO AddGraphic(TruckImage);

7. Draw either the window or object:

ASK window TO Draw;

1.3 A Simple Program

MAIN MODULE Example1;

{ This program gets a "truck" created in the editor and
 displays it for 10 seconds. }

FROM OSMod IMPORT Delay;
FROM Graphic IMPORT GraphicLibObj;
FROM Window IMPORT WindowObj;
FROM Animate IMPORT DynImageObj;

VAR
 GraphicLib : GraphicLibObj;
 window : WindowObj;
 truck : DynImageObj;

BEGIN

 NEW(window);

 NEW(GraphicLib);
 ASK GraphicLib TO ReadFromFile("graphics.sg2");

 NEW(truck);
 ASK truck TO LoadFromLibrary(GraphicLib, "truck");

SIMGRAPHICS II User's Manual

4

 ASK window TO AddGraphic(truck);
 ASK window TO Draw;
 Delay(10);

END MODULE.

5

Chapter 2: SIMDRAW

2.1 SIMDRAW Overview

SIMDRAW is an interactive menu based program for creating and editing
SIMGRAPHICS II objects. These objects can be used for animation, presentation
graphics, and interactive graphical input. Types of objects include images, dialog boxes,
menu bars, palettes, and various charts and graphs. These objects are saved to and loaded
from SIMGRAPHICS II ".sg2" files that can be accessed by a MODSIM III program.

Animation graphics or images can are built by drawing lines, circles, polygons, arcs,
sectors, bitmaps, and text. These primitives can be grouped together to form more
complex images containing parts that can be manipulated independently by the application
program. Images are built by the Image Editor.

Presentation graphs are constructed by setting attributes such as titles, minimums,
maximums, etc. Several different graph types can be built. They include 2-D plots, level
meters, pie charts, trace plots, clocks, dials, text displays, and digital displays. All graph
types are built with the Graph Editor.

A Layout Editor is available for sizing and positioning multiple graphs and images within
the same window.

Using the Dialog Editor, dialog boxes can be constructed for receiving interactive modal
or modeless data input. The dialog box can contain buttons, check boxes, text boxes,
combo boxes, list boxes, and radio button fields. A dialog box can also contain the more
complicated multi-line text boxes and 2-D tables. Tabbed dialog boxes can be created.

Menubars can built with the Menubar Editor for receiving modeless command input.
Menus can be attached to other menus producing any desired level of depth. Menu option
keyboard accelerators and mnemonic keys can be defined.

Palettes are built with the Palette Editor for receiving simple command input. They can be
initially docked on any edge of the window or can be floating. A palette contains palette
buttons and separators.

2.2 Running SIMDRAW

SIMDRAW can be started from within the MODSIM III Workbench, or from the
command line. Upon execution a main window containing a palette and toolbar is
displayed (figure 2-1). The window will contain a listing in the currently loaded
SIMGRAPHICS II library. The palette on the left is used to add new objects to the
library.

SIMGRAPHICS II User's Manual

6

Figure 2-1. Main Window

2.3 Loading and Saving SIMGRAPHICS II files.

The File/Open... menu option will load an existing SIMGRAPHICS II library file and show
its objects in the list window. Use the File/Save or File/Save As menu option to save all
objects shown in the list window, including objects being edited. Use the Options/Binary
File menu option to toggle between saving the file in ASCII or binary format.

2.4 Editing an Existing Object

To edit one of these objects, select its name in the listing, and use the Edit/Properties
menu option or the Properties toolbar option. A new window containing the appropriate
editor will appear showing its graphical representation. After moving, resizing, or
changing attributes of the object and its sub-components, select the File/Save or File/Save
As menu option to write this object to its SIMGRAPHICS II library file. To end editing of
this object, close its editor's window using the "go away" button in the top left corner of
the window's header bar.

Chapter 2: SIMDRAW

7

2.5 Adding an Object to the Library

Objects can be added to this library file by clicking on one of the "create" buttons on the
left palette, or by using the File/Insert menu option. Creating an object will automatically
invoke the editor for that object.

2.6 Removing an Object from the Library

To remove an unwanted object from the current library, select the object's name in the
listing, then use the Edit/Clear menu option. The library must be saved using File/Save
before this change is permanent.

2.7 Making a Duplicate of an Object

Any graphical object in the library can be duplicated by selecting its name in the main list
and then using the Edit/Duplicate menu option. The library must be saved using File/Save
before this change is permanent.

2.8 Changing the Name of an Object

To change the name of an object shown in the main list, select it and use the
Edit/Properties menu option to bring up its editor. Use the Edit/Properties menu option of
this editor to obtain a dialog box showing the object's attributes. Change the Library Name
text field to the new name, and save the object with the File/Save menu option.

2.9 Adding an Object from Another Library

If you want to add object(s) contained in a different SIMGRAPHICS II file, use the
File/Merge... menu option. Once a file is selected, a list box containing the names of all
objects in this source library will be displayed. Choose the objects you wish to copy to
your library. The Shift and Ctrl keys can be used in conjunction with the mouse to select
multiple objects.

2.10 Editing Images and Graphs in Same Window

Sometimes a set of images and/or graphs must be displayed in the same context to get
their size and position correct. Multiple objects can be positioned and resized from within
one window using the Layout Editor. Select the Layout button on the far right hand side of
the toolbar. Using the Shift and Ctrl keys, select the set of images and graphs to be resized
and positioned from the list box. Use the File/Save menu option to save all edited objects
to the SIMGRAPHICS II file.

2.11 Listing of Objects

All objects contained in the current SIMGRAPHICS II library file are shown in a list
window. Objects shown in this window can be ordered through the Options menu option
in one of the following three ways:

SIMGRAPHICS II User's Manual

8

I. Natural Order -- Objects are ordered based on time of creation. The objects last
added to the library are shown at the bottom of the list.

II. Alphabetical Order -- Alphabetical order based on name.

III. Typed Order -- Objects are listed categorically. The categories are: Image, Graph,
Dialog Box, Menu Bar, and Palette. A "heading" is created for each category,
with the objects listed alphabetically under the appropriate heading. C lick on the
(-) to the left of the heading to expose the names of the objects.

2.12 Command Line Arguments

SYNOPSIS:
simdraw [-l file_name] [-S sys_path_name]
[-B sys_path_name] [-sim] [-e] [-dim xlo ylo xhi yhi]
[-nodialog] [-noimage] [-nograph][-nomenu] [-nopalette]
[-W path_name] [object names]

The following command line arguments are recognized by SIMDRAW:

-l file_name Specifies the name of the SIMGRAPHICS II graphics file
to edit.

-e, -single Specifies "single edit" mode. The specified objects will be
edited with no control window containing library
information.

-nodialog

-nograph

-noimage

-nomenu

-nopalette

Eliminates editing of the specified object types.

-dim xlo ylo
xhi ylo

Specifies the default real world coordinate space used by
the Image Editor.

-B path_name Specifies the path to bitmap files used by SIMDRAW.
-S path_name Specifies the path to system files needed to run

SIMDRAW (trailing delimiter '/' or '\' must be included).
-W path_name Specifies path to user Simgraphics II files.

2.13 Using the Image Editor

The Image Editor is used to create and edit primitives such as lines, polygons, circular
objects, and bitmaps. Primitives can be grouped hierarchically into images. The editor
window contains three palettes: Mode, Style, and Color. The Mode palette on the left side
of the window is used for adding primitives.

Chapter 2: SIMDRAW

9

Figure 2-2. Image Editor

2.13.1 Mode, Style, and Color Palettes

The Style palette contains the set of dash styles, hatch styles, line widths, and text fonts
that can be applied to the primitives. The Color palette contains 64 colors that can also be
applied to the primitives. When a primitive is selected, the Style and Color palettes will be
updated to reflect the style and color of that primitive. Style and Color palette changes will
also be applied to the selected primitive.

The Mode palette is shown on the left hand side of the Image Editor window. Use it to
add primitives to your drawing. Refer to paragraph 2.13.4.

SIMGRAPHICS II User's Manual

10

2.13.2 Selecting, Moving, and Resizing

Shapes are selected by clicking the mouse button over the desired shape. For example,
polylines must be selected by clicking on the line itself, NOT in the line's bounding box.
Multiple shapes are selected by holding down the Shift key and clicking on several shapes.
Multiple shapes may also be selected by clicking in the background of the window and
dragging the mouse over the shapes you want to select.

A group of shapes or images is selected by clicking on one of the objects in the group.
Subsequent clicks over the group will select shapes within that group. Primitives inside a
group can be selected directly by holding down the Ctrl key and clicking on the shape.
Using the Ctrl key, subsequent clicks will select the groups containing the currently
selected shape.

Selected shapes are marked by a bordering green or cyan box. Sides and corners of this
box contain eight small square resize handles. Resizing is performed by clicking down and
dragging a resize handle.

Click and drag a shape to move it to the desired position. Be careful not to click on the
resize or point handles.

2.13.3 Using the Clipboard (Cut, Copy, Paste Commands)

The Image Editor supports the standard cut, copy, and paste operations found under the
Edit menu. The Cut option deletes selected shapes and places them in the clipboard. The
deleted item remains on the clipboard until the next time a Cut or Copy is performed. Use
the Paste option to paste as many copies as desired from the clipboard into the image.
Shapes can be deleted without changing the clipboard by using the Delete option.

The clipboard is shared among all active Image Editor sessions. You can copy graphics
from one image into another by activating the source edit window, using the Copy option,
and activating the destination editor and using the Paste option.

2.13.4 Creating Primitives

The Image Editor supports creating and editing seven different primitive types. The
primitives are polygons, polylines, circles, arcs, sectors, text, and bitmaps.

Chapter 2: SIMDRAW

11

Polylines

Polylines are created by clicking either the freehand or polyline buttons on the Mode
palette. To create a polyline, select the polyline button on the mode palette. Point to
where you want to start the line and drag to draw a line segment. Continue pointing and
clicking until all but the last line segment has been defined. Double click to create the last
vertex and return to Select mode.

To create a freehand polyline press the freehand line button on the Mode palette. Drag the
mouse around the canvas area to draw the line. Releasing the mouse button will return
you to Select mode.

Use the Style palette to define dash style and line width. There are eight dash styles and
six line widths to choose from.

Another attribute of the polyline is rounding. Corners defined by intersecting line
segments can be given a rounded edge by selecting the polyline, and using the
Edit/Properties... menu option. The Round Corners By value box contains the length of
segment adjacent to each vertex to be replaced by a rounded corner. This value is
specified with respect to the real world coordinate space or dimension of the editor (the
default dimension is [0, 0, 32767, 32767]). A value of 1000.0 is reasonable for rounding
corners.

Polygons

Polygons are created by clicking either the freehand, polygon, or rectangle buttons on the
Mode palette. To create a polygon, press the Polygon button on the Mode palette. Point
and click in the window to define vertices. Double click to create the last vertex and r eturn
to Select mode.

To create a freehand polygon press the Freehand button on the Mode palette. Drag the
mouse around the canvas area to draw the shape. Releas e the mouse button to return to
Select mode.

To create a rectangle press the Rectangle button on the Mode palette. Point to where you
want the lower left hand corner of the rectangle to start, and drag the mouse to the desired
top right corner. Release the mouse button to return to Select mode.

Use the Style palette to define a hatch pattern. There are eight patterns to choose from.

SIMGRAPHICS II User's Manual

12

Circles

Circles are added by pressing the Circle button on the Mode palette. In Circle mode, point
to where you want the center of the circle and drag the mouse to define the radius.
Release the mouse button to draw the circle and return to the Select mode.

Use the Style palette to give the circle a hatch pattern. There are eight patterns to choose
from.

Sectors

A sector is a filled semicircular shape similar to a pie slice. Sectors are composed of a
center point, a starting point and an ending point, and are drawn counter clock-wise from
the starting point to the ending point. To draw a sector, first press the Sector button on
the Mode palette. Point to where you want the center point of the sector , and drag the
mouse. Release the mouse over where you want the starting point of the arc . Drag the
mouse to where you want the sector to end and release to return to Select mode.

Use the Style palette to give the sector a hatch pattern. There are eight patterns to choose
from.

Arcs

An arc is a curved line contained on the circumference of a circle. Arcs are composed by a
center point, a starting point and an ending point, and are drawn counter clock-wise from
the starting point to the ending point. To draw an arc, first press the Arc button on the
Mode palette. Point to where you want the center point of the arc , and drag the mouse.
Release the mouse over where you want the starting point of the arc . Drag the mouse to
where you want the arc to end and release to return to Select mode.

Use the Style palette to define dash style and line width. There are eight dash styles and
six line widths to choose from.

Chapter 2: SIMDRAW

13

Text

Single line text primitives can be created and added to your image. To create a text
primitive, press the Text button on the Mode palette. Point to where you want the center
of the text to go and click the mouse button. Use the Edit/Properties... menu option to
define the text string to be displayed.

There are two different types of text, vector text and system text. Vector text fonts are
fully scaleable in any dimension and are portable between MS Windows and X Windows
platforms. A vector text font can be assigned to a primitive by pressing any of the eight
Style palette buttons showing Ab.

System text fonts are "built-in" to the tool kit on which your server is running. Text
defined using a system font is non-scaleable and can only be resized by changing the font.
A system font is defined by font name, point size, and whether or not i t uses italic and/or
boldface calligraphy. To assign a system font to a text primitive select the primitive, and
press the Dialog Box button on the lower right hand corner of the Style palette. The
resulting Font box will display all fonts, point sizes, and calligraphy styles loaded on your
server. The font you select will be applied to the selected text primitive. This same font
can now be applied to other primitives using the ST button at the lower left corner of the
Style palette.

Text alignment with respect to the image can also be defined. For example, if you wanted
a text primitive defined with a system font to remain centered as an image is scaled, its
alignment should be centered horizontally and vertically using the Edit/Properties... menu
option.

Bitmaps

Bitmaps or "snap shots" are not created directly by the Image Editor, but can be created
using another drawing tool and imported. On MS Windows systems, Windows bitmap"
files with the ".bmp" extension can be imported and added to your image. On X
Windows systems, X Windows dump file formats ending in ".xwd" can be imported.

To add a raster file to your image use the Edit/Import... menu option. Select a ".bmp" or
".xwd" file from the dialog box and press the OK button to import the bitmap.

Once in the Image Editor, bitmaps can be resizeable or non-resizeable. To change the
scalability, select the bitmap and use the Edit/Properties... menu option. Remember that
resizeable bitmaps may take longer to render the first time, and can loose meaningful
pictorial information if made smaller.

SIMGRAPHICS II User's Manual

14

Alignment can be applied to bitmaps as well as text primitives. For example, if you wanted
a non-scaleable bitmap to remain centered as an image is scaled, its alignment should be
centered horizontally and vertically from the Properties dialog.

2.13.5 Creating Images

An image represents a grouping of primitives and/or other images. Images can contain
other images forming a hierarchy. To create an image, select the shapes to be grouped
using the Shift key, and use the Layout/Group menu option. The resulting group will be
shown bounded by the green selection box. Use the Layout/Ungroup menu option to
destroy an image.

An image is selected by clicking on one of the primitives within it. Repeated selections of
an image will select the shapes within it. Select primitives directly by clicking on them
while holding down the Ctrl key.

Shapes can be removed from an image by selecting the shape and using the
Layout/Remove from Group menu option. You can also add shapes to an existing image
by selecting first the shapes, then an image, and then using the Layout/Add to Group menu
option.

2.13.6 Editing the Root Image

The editor's window shows all objects contained by the image being edited or the root
image. To change properties of this image (such as its name), de-select all shapes and use
the Edit/Properties menu option.

To resize the root image, use Edit/Select All to select all of its shapes, and then use
Layout/Group to make a group. The image can be resized by dragging the square resize
handles on the green selection box. When the root image is appropriately sized, use
Layout/Ungroup to eliminate the grouping.

To reset the center point of the root image, deselect all shapes by clicking in the
background, and use the Edit/Recenter menu option. Select a new center point for the
image and then select the OK button on the Recenter dialog.

Chapter 2: SIMDRAW

15

2.13.7 Editing Points on a Primitive

The vertices defining a primitive can be moved, added and deleted using Image Editor.
Clicking on a selected primitive will enable point editing for that primitive. A primitive in
point edit contains a green skeleton which connects its vertices. Representing each vertex
point is a hollow green square or point handle. The currently selected point is shown by a
blue point handle.

To move a point, select and drag the appropriate point handle. To delete a point, select its
point handle and use the Edit/Delete menu option (or press the Delete key). To add a new
point to the primitive, click on the green skeleton and drag the mouse. When the mouse
button is released, a new point is inserted between the indicated vertices.

To leave Point Edit mode, click on the background or another shape.

2.13.8 Defining Stacking Order or Priority

You can specify how shapes are stacked when they overlap (stacking order). To move
shapes in front of or behind other shapes, use the Bring to Front or Send to Back options
from the Layout menu.

Stacking order is with respect only to other shapes in the same group or image. In other
words, the Bring to Front menu option will bring the selected shape to the front of all
other shapes in that group, but not necessarily to the front of all shapes in the window.

2.13.9 Defining the Center Point of a Shape

The center point of any image or primitive can be changed by selecting the shape, then
using the Edit/Recenter menu option. A set of green cross-hairs will appear showing the
current center point. Point to where you want the center point of the object to be, and
click. To leave the Recenter mode, press either the OK or Cancel buttons on the dialog
box.

You can reset the center point of the entire drawing (root image) by de-selecting all
shapes and then using the Edit/Recenter menu option.

SIMGRAPHICS II User's Manual

16

2.13.10 Using the Flip and Rotate Tools

Any selected shape can be rotated about its center point by any amount. To do this, select
the shape(s) and then use the Edit/Rotation/Clockwise or the Edit/Rotation/Counter-
Clockwise menu options. If you want to set the angle by which an object is rotated, use to
Edit/Rotation/Set Angle menu option.

To flip an object about its x-axis use the Edit/Flip/Horizontal menu option. To flip an
object about the y-axis use Edit/Flip/Vertical menu option. Remember that the intersection
of the x-axis and y-axis of a shape is its center point (defined using the Edit/Recenter
menu option). Before flipping or rotating a shape, first make sure that its center point is
defined appropriately.

2.13.11 Align and Distribute

Multiple shapes can be aligned either vertically or horizontally to the primary selection
(shown enclosed by green selection handles). They can be aligned vertically with respect
to either their left edge, right edge or center. Shapes can be aligned horizontally with
respect to their top edge, bottom edge, or center. To align, first select multiple objects
using the Shift key, and then use the Layout/Align menu option. Select an alignment
scheme from the resulting dialog box.

The Layout/Distribute menu option allows you to distribute three or more shapes in
relation to each other. Shapes can be distributed horizontally so that the same space exists
between left and right edges of adjacent shapes. Distributing vertically will reposition the
shapes so that the same space exists between bottom and top edges of adjacent shapes.
Shapes can be distributed uniformly along the circumference of a circle.

2.13.12 Using Grid Lines

A grid can be used to perform precise positioning and sizing of shapes , by breaking the
editor window up into divisions. You can show (or hide) grid lines by toggling the
View/Grid menu option.

You can change the color of the grid by selecting a color from the Color palette and then
using the View/Grid Color menu option. The granularity of the grid can be adjusted using
the View/Grid Spacing menu option. Granularity can be Fine, Medium, or Coarse. The
distance between grid lines for Fine graduation is 500.0, for Medium is 1500.0, and for
Coarse is 4500.0.

By toggling the View/Snap menu option, you can restrain positioning and resizing of
shapes to the intersections of the grid.

Chapter 2: SIMDRAW

17

If the Snap mode is active, the View/Snap From menu option allows you to specify which
corner of a shape's bounding box will be aligned to the g rid intersections during
repositioning. If View/Snap from/Center is selected, a repositioned shape's center point will
be glued to the grid intersections.

2.13.13 Changing Views (Panning and Zooming)

If working on a highly detailed portion of the image, you may want to magnify a portion
of the window. To zoom in to some area of the window, select the View/Zoom In menu
option. Drag out a rectangle with the mouse over the area of detail. When the mouse
button is released, the area inside the rectangle will be expanded to encompass the entire
window. To zoom back out, use the View/Zoom Out menu option.

When zoomed in, you can pan to other areas of the window using the horizontal and
vertical scroll bars.

Return to the default view by using the View/View [1:1] menu option. Unless the window
is square, the top or bottom portion of the view may not be visible. To see the entire
coordinate space, use the View/Fit in Window menu option. This viewing mode will leave
dead space off to the right of the window, but guarantee the entire coordinate space will
be seen.

2.13.14 Changing Dimension (Coordinate Space Boundaries)

Coordinate space boundaries or dimension can be assigned to the editor window. The
default coordinate space is the common Normalized device coordinates or (xlo=0, ylo=0,
xhi=32767, yhi=32767). These dimensions determine an object's coordinate system when
it is saved. The dimension should be set to match the world coordinate system used within
the program. This ensures that the positions of shapes defined from the image editor will
remain the same when they are displayed within that program. Use the Layout/Dimension
menu option to change the dimension in the Image Editor.

The Allow Icons to Scale... check box specifies the rule defining how the image is scaled
when used in the application program. If this item is checked, the image will automatically
be scaled according to the world coordinate system defined by the application pr ogram. If
this item is not set, the shape will stay the same size no matter what world it is attached to.

To see the current location of the pointer with respect to the editor's dimension, toggle the
View/Coordinates menu option. The pointer's (x,y) location will be displayed in the status
bar at the lower right hand corner of the editor window.

2.13.15 Changing the Layout Size and Color

To change the editor window's background color , select the desired color from the Color
palette and then use the Layout/Layout Color menu option.

SIMGRAPHICS II User's Manual

18

If you want to increase the size of the editing area beyond what is defined by the
boundaries of the world coordinate system, use the Layout/Layout Size menu option. A
dialog will be displayed allowing you to increase the number of "screens" thereby adding
space to the right and bottom sides of the editing area. This new space can be scrolled to
using the right and bottom scroll bars attached to the editor window.

2.13.16 Program Access

Any image or primitive added to the root image can be accessed from inside an applic ation
by specifying a Reference or Field name and/or Id through the Properties dialog box. The
image's library name should be specified for loading the image into your program.

2.14 Using the Graph Editor

The Graph Editor can be used to create and edit a variety of graphical object s whose
purpose is to depict a single value or set of numerical values. 2-D Plots, pie charts,
clocks, level meters, dials, and digital displays are some of the graph objects that can be
created. Graphs are not built as in the Image Editor. Instead you start off with a template
which can be modified as necessary.

2.14.1 Style, and Color Palettes

The Style palette on the right hand side of the window contains the set of dash styles,
hatch styles, line widths, and text fonts that can be applied to the selected graph
components. The Color palette on the bottom of the window contains 64 colors that can
be applied to a component. When a component is selected, the Style and Color palettes
will be updated to reflect the style and color of that graph part. At this time, Style and
Color palette changes will be applied to the selected part.

2.14.2 Selecting, Moving, and Resizing

Graph parts are selected by clicking the mouse button over a visible portion. Selected
parts are marked by a bordering green or cyan box. Multiple components can be selected
by holding down the Shift key and clicking on several parts. You can also select multiple
components by clicking in the background of the window and dragging the mouse over
the parts you want to select.

For resizing, it is necessary to select the entire graph. Use the Edit/Select All menu option
or drag the Select rectangle over the whole graph. Sides and corners of the selection box
contain eight small, square resize handles. Resizing is performed by clicking on and
dragging the appropriate resize handle.

To move the graph, select the graph or any of its components and drag it to the desired
location.

Chapter 2: SIMDRAW

19

2.14.3 Charts (2-D Plots)

A chart is a 2-D plot used to display one or more data sets represented as histograms, bar
graphs, surface charts, or simple plots of 2-D data. Charts have one x-axis, one or two y
axes, data sets, a title, and an optional legend.

2.14.3.1 Modifying Chart Attributes

To modify the title, legend display, or any attribute of the chart itself, select the title. Then
use the Edit/Properties menu option. The Chart Detail dialog box will be displayed. It
contains the following information:

Library Name – The name used to load the chart into your application program.
Title – The title shown on the top of the chart.
Axes on Edges – If checked, numbering and tic marks will be forced to appear
on the edges of the plot area. For better visual reference, two extra axes will be
drawn on both the top and right sides of the plot area.
Time Trace Plot – Setting this item implies that the chart is a time trace plot.
Whenever a variable being monitored by the chart is modified, its new value is
plotted along the Y-axis and the current simulation time is plotted along the X-
axis.
Show Legend – Chart will show a legend below the plot area. The fill style and
color of each data set is shown preceding its name.
Show Border – A chart can be defined to draw a rectangular background
underneath.
Data Sets – A data set can be added using the Add button, or removed by
selecting its name in the list box and then pressing the Remove button. To change
the name of a data set, select its current name in the list box and then press the
Edit button. (see “Attributes of a Data Set”)
Handling of Multiple Data Sets – If “stacked”, all discrete data sets will be
stacked on top of each other. In other words, the value plotted in a data cell is
reflected as the height of the bar, not its top. Therefore, stacking means that the
bottom of a cell in data set n is equal to the top of the same cell in data set n-1.
I.e. higher numbered data sets are stacked onto the lower numbered ones.

2.14.3.2 Modifying the X-Axis

To change the range, numbering interval, or any other property associated with the X-
axis, double click on the axis or choose the axis (or one of its components), and use the
Edit/Properties menu option. The X-axis has the following properties:

Title – Label for X-axis displayed below numbering.

SIMGRAPHICS II User's Manual

20

Rescaleable – Specifies whether the x-axis will be re-numbered (scaled) when
one of the data points extends beyond its limit. In this case, the Compress Data
item determines whether a scrolling window is used, and whether old data is
discarded, or the range of the graph is to be expanded showing all data. Note
that re-scaling may modify the tic mark, numbering, and grid line intervals to
maintain a similar visual representation of the chart. If this item is not checked,
data points falling beyond the limits of the X-axis will be discarded.
Show Grid Lines – If this item is on, grid lines will be shown crossing the X-
axis.
Tics Centered, Tics Inside, Tics Outside – Defines the tic mark alignment with
respect to the X-axis line. Tics marks can be attached to the X-axis from their
center, left or right sides.
Compress Data – When this item is set, re-scaling the X-axis will increase the
coordinate area of the chart enough to encompass the offending data point. As a
result, existing data will shrink in size. Clearing this item will have data scrolled
along the X-axis during axis rescale. In this case, data scrolled out of view will
be discarded.
Minimum, Maximum – Defines the initial X-axis data range of the chart.
Tic Interval (Major & Minor) – Defines the distance along the X-axis between
consecutive tic marks. If an interval is zero, tic marks will not be displayed.
Numbering Interval – Defines the distance along the X-axis between consecutive
number labels on the axis.
Grid line Interval – Defines the distance along the X-axis between consecutive
grid lines.
Y Intersection Point – Defines the point (in x-axis coordinates) along the X-axis
where the Y-axis intercepts.
Y2 Intersection Point – Defines the point (in x-axis coordinates) along the X-axis
where the second Y-axis intercepts.
Data Scaling Factor – Defines the factor multiplied to the X component of all
data plotted to the chart at runtime.

2.14.3.3 Modifying the Y-Axis

To change the range, numbering interval, or any other property associated with the Y-
axis, double click on the axis or choose the axis (or one of its components), and use the
Edit/Properties menu option. The Y-axis has the following properties:

Title – Label for Y-axis displayed to the left of its numbering.
Rescaleable –Specifies whether the Y-axis will be re-numbered (scaled) when
one of the data points extends beyond its range. Note that re-scaling may modify
the tic mark, numbering, and grid line intervals to maintain a similar visual
representation of the chart. If this item is not checked, data points falling beyond
the limits of the Y-axis will be clipped.

Chapter 2: SIMDRAW

21

Show Grid Lines – If this item is on, grid lines will be shown crossing the Y-
axis.
Tics Centered, Tics Inside, Tics Outside – Defines the tic mark alignment with
respect to the Y-axis line. Tics marks can be attached to the Y-axis from their
center, left or right sides.
Minimum, Maximum – Defines the initial Y-axis data range of the chart.
Tic Interval (Major & Minor) – Defines the distance along the Y-axis between
consecutive tic marks. If an interval is zero, tic marks will not be displayed.
Numbering Interval – Defines the distance along the Y-axis between consecutive
number labels on the axis.
Grid Line Interval – Defines the distance along the Y-axis between consecutive
grid lines.
X Intersection Point – Defines the point (in y-axis coordinates) along the Y-axis
where the X-axis intercepts.
Data Scaling Factor – Defines the factor multiplied to the Y component of all
data plotted to the chart at runtime.

2.14.3.4 Modifying the Second Y-Axis

To change the range, numbering interval, or any other property associated with the second
Y- axis, double click on the axis or choose the axis (or one of its components), and use the
Edit/Properties menu option. The second Y-axis has the following properties:

Title – Label for Y-axis displayed to the left of its numbering.
Rescaleable – Specifies whether the Y-axis will be re-numbered (scaled) when
one of the data points extends beyond its range. Note that re-scaling may modify
the tic mark, numbering, and grid line intervals to maintain a similar visual
representation of the chart. If this item is not checked, data points falling beyond
the limits of the second Y-axis will be highlighted.
Show Grid Lines – If this item is on, grid lines will be shown crossing the second
Y-axis.
Tics centered, Tics inside, Tics Outside – Defines the tic mark alignment with
respect to the second Y-axis line. Tics marks can be attached to the Y-axis from
their center, left or right sides.
Minimum, Maximum – Defines the initial data range of the second Y-axis.
Tic Interval (Major & Minor) – Defines the distance along the second Y-axis
between consecutive tic marks. If an interval is zero, tic marks will not be
displayed.
Numbering Interval – Defines the distance along the second Y-axis between
consecutive number labels on the axis.
Grid Line Interval – Defines the distance along the second Y-axis between
consecutive grid lines.

SIMGRAPHICS II User's Manual

22

Data Scaling Factor – Defines the factor multiplied to the Y component of all
data plotted to the chart at runtime.

2.14.3.5 Attributes of a Data Set

You can edit individual attributes of a data set by selecting the bars or plot line of the
desired data set and using the Edit/Properties menu option. Its Detail Dialog detail
includes:

Representation – Defines how the overall data set is structured. You can choose
one of the following data set types:

1. Bar Graph – Contains a fixed number of cells. Each new data point changes
the nearest cell's plot. Neighboring cells are NOT connected. The first cell
begins at (X_Minimum - Cell_Width / 2) units. The individual bar is centered
over the cell, and there is a small gap between bars.

2. Histogram – Also contains a fixed number of cells. Each new data point
changes the nearest cell’s bar. There is no connection between neighboring
cells. The bar is set at the left edge of the cell, and there is no gap between
bars. The first data cell begins at the X-axis minimum.

3. Discrete Surface – Neighboring cells are connected to form a surface, however
there are still a fixed number of cells. Each new data point changes the nea rest
“peak or valley” on the surface. The first cell begins at (X_Minimum -
Cell_Width / 2) units.

4. Continuous Surface – Variable number of cells, i.e. a new cell is added to the
graph each time a data point is plotted at the given (x,y) location. Neighbo ring
cells are connected.

Plot Type – A data set can be shown using a filled region or a simple surface line
with or without markers:

1. Fill – Plot a data cell using a filled polygon. The fill style can be reset using
the Style palette .

2. Line – Plot data cell using a polyline. Use the Style palette to reset the line
width or dash style.

3. Marker – Use a small marker to represent the data point. The specific marker
used for the data point is determined from the Edit/Mark Style menu option.
Markers are only valid for the “continuous surface” representation.

Cell Width – For bar, histogram and discrete surface data sets, this is the size of
each data cell. For histograms, the first data cell begins at the X-axis minimum.
For bar and surface graphs. The first cell begins at (X_Minimum - Cell_Width /
2) units.

Chapter 2: SIMDRAW

23

Interpolate – This check box determines whether there is linear interpolation in
forming the connecting surface between consecutive data point s. If this item is
NOT checked, the surface will be shown with only horizontal and vertical lines.

Use Left Axis / Use Right Axis – Your chart can be defined to simultaneously
show two sets of independently scaled data by using a second Y -axis (generally
shown to the right of the plot area). Each data set in your chart can belong to
either the left or right (second) Y-axis.

Static – This item is used to enhance performance whenever you do not intend
the plot to be modified once it has been displayed. In this case, a single polygon
(or polyline) will be used to display all cells in the data set.

2.14.3.6 Creating a Time Trace Plot

If you want the chart to be used to plot the value of a single variable over simulation
time, a time trace plot should be used. To create a trace plot, select the graph and use the
Edit/Properties option. Set the Time Trace Plot checkbox in the Chart Detail Dialog.

2.14.4 Pie Charts

A pie chart can depict a fixed sized array of scalar values in relation to one another. By
selecting the Pie Chart and using the Edit/Properties menu option you can change the
names and initial values shown by each pie slice. The color and fill style of individual
slices and other components (including legend text, title, and borders) can be changed by
selecting them and using the Style or Color palettes. The Detail Dialog for a pie chart
contains the following:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on top.
Show borders – Determines whether to put borders around the legend, title, and
plot of a pie chart.
Slice List Box – This list box contains the names of all slices in the chart.

1. To add a slice, set the new slice’s name and value in the Slice Name and Slice
Value text boxes, and press the Add button.

2. To remove a slice, select its name in the list box and press the Remove
button.

3. To change the name or value of a slice, select its name in the list box, and
update the Slice Name and Slice Value text boxes and press the Update
button.

SIMGRAPHICS II User's Manual

24

2.14.5 Clocks

Clocks are used to display simulation time within a program. Both analog and digital
varieties of clocks are available. By selecting the clock and using the Edit/Properties menu
option you can change its various attributes including axis scaling parameters as well as
whether or not to display hours, minutes and seconds. The color and fill style of
individual components (including face, title, and border) can be changed by selecting them
and using the Style or Color palettes. The Detail dialog for a clock contains the following:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on bottom.
Interval – (Analog clock only) Distance between tic marks around the face.
Num Interval – (Analog clock only) Distance between numbers around the face.
Max Hours – The maximum number of hours the clock (shown at the top of the
face) is capable of showing (generally 12). As this value is exceeded, the time
display will start over from 0:00:00.
Show Hours, Show Minutes, Show Seconds – You can control displaying the
hour, minute and second hands with these items.
Hours Per Day – Currently, this parameter has no effect on the layout of the
clock. It is only used within the application program.
Minutes Per Hour – Defines the time interval before the “hours” are incremented
by one.
Seconds Per Minute – Defines the time interval before “minutes” are
incremented.
Show Borders – (Analog clock only) Determines whether to put borders around
the legend, title, and plot of a pie chart.

2.14.6 Dials

A dial can be created in the Graph Editor for displaying a single scalar value. The hand of
the dial rotates clockwise as its value gets larger. By selecting the dial and using the
Edit/Properties menu option you can change the attributes shown below:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on bottom.
Minimum, Maximum – Defines the range of values shown by the dial.
Interval – Distance between tic marks around the face.

Chapter 2: SIMDRAW

25

Num Interval – Distance between numbers around the face.
Min Theta – Angle in degrees where the minimum value is placed around the dial
circumference.
Max Theta – Angle in degrees where the maximum value is placed around the dial
circumference.
Scale Factor – Factor multiplied by value before being displayed in the dial.
Show Border – A square background can be shown under the dial face and title.

2.14.7 Level Meters

A level meter shows a single scalar numerical value. The level meter is composed of a bar
which grows and shrinks along a vertical axis. The height of the bar reflects the
magnitude of the value being plotted. By selecting the meter and using the Edit/Properties
menu option you can change the attributes shown below:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on bottom.
Minimum, Maximum – Defines the range of values shown by the meter.
Interval – Distance between tic marks along the axis.
Num Interval – Distance between numbers along the axis.
Show Grid Lines – Horizontal grid lines extending across the plot area can be
shown.
Scale Factor – Factor multiplied by value before being displayed in the meter.

2.14.8 Digital Displays

A digital display is for showing a single scalar numerical value. The value is shown
explicitly as numerical text and is enclosed by a box. By selecting the display and using the
Edit/Properties menu option you can change the attributes shown below:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on bottom.
Minimum, Maximum – Defines the range of values shown by the meter.
Field Width – Number of places allotted for the entire value (including decimal
point).
Precision – Number of places to the right of the decimal point. If zero, an
integer value is shown.

SIMGRAPHICS II User's Manual

26

Scale Factor – Factor multiplied by value before being displayed in the meter.

2.14.9 Text Meters

This is a titled text value enclosed by a box. The following attributes can be set:

Library Name – The name of the object within the current graphics library.
Title – Text of title displayed on bottom.
Width – Number of places allotted for the text value.

2.15 Using the Dialog Editor

The Dialog Editor (figure 2-3) provides a fast and easy to use drag and drop facilit ies for
creating and editing dialog boxes. A dialog box is a container for controls which accept
various types of input. A dialog box can contain buttons, single and multi-line text boxes,
combo boxes, value boxes, list boxes, radio boxes, check boxes, text labels, and tables.
Tabbed dialog boxes can also be created. Items contained by a dialog box or a dialog box
tab are called controls.

Controls are created and added to the dialog box via the Mode palette on the left hand side
of the window. To create a control, first select the control type from the Mode palette.
Position the pointer over where you want the control to go into the dialog box

Chapter 2: SIMDRAW

27

Figure 2-3. Dialog Editor

and press the mouse button. The dialog box will automatically resize as needed to fit the
controls it contains. It is OK to drop a control outside of the dialog box in order to make
the box bigger.

The actual dialog box you are working on can be displayed using the Layout/Show Dialog
menu option. Double click on the "-" in the header bar of the dialog window to make it
disappear.

2.15.1 Selecting, Moving, and Resizing

Selected controls are marked by a bordering green or cyan box. Sides and corners of this
box may contain small square resize handles. A resize handle is present for each
dimension that the control can logically be resized in. Resizing is performed by clicking
down and dragging a resize handle.

To move a control, click down on it and drag to the desired location.

SIMGRAPHICS II User's Manual

28

2.15.2 Dialog Box Coordinate System

Chapter 2: SIMDRAW

29

Controls are positioned in font units. The width of a font unit is the width occupied by a
single digit within a dialog box. The height of a font unit is the maximum of button and
text box heights. The origin of a dialog box’s coordinate system is at its top left hand
corner with Y-values increasing downward.

2.15.3 Using the Clipboard (Cut, Copy, Paste Commands)

The Dialog Editor supports the standard Cut, Copy, and Paste operations found under the
Edit menu option. The Cut option deletes selected controls and places them in the
clipboard. The deleted item remains on the clipboard until the next time you use the
Edit/Cut or Edit/Copy option. Use the Edit/Paste option to paste as many copies as you
want from the clipboard into the image. Controls can be deleted without changing the
clipboard by using the Edit/Delete option.

The clipboard is shared among all active Dialog Editor sessions. You can copy graphics
from one image into another by activating the source edit window, using the Copy option,
and activating the destination editor and using the Paste option.

Note: The dialog box itself can never be “cut” or “deleted”. It can, however, be selected
for the purpose of changing its properties.

2.15.4 Controls

To create a control (check box, button, text box, etc.) select the appropriate control from
the Mode palette and drag its outline to where you want it to go on the dialog box. All
controls have the following attributes:

Y Position – Position in font units from the upper left hand corner of the dialog
box.

Reference (Field) name, Id – Any control added to the dialog can be accessed
from inside an application by specifying a Reference or Field name and/or Id.

Buttons

A button receives simple input and contains no data from the user. Using the
Edit/Properties menu option you can set the following attributes of a button:

Label – This is the text shown on the face of the button.

SIMGRAPHICS II User's Manual

30

Default – Setting this item will make this button the “default” button. This button
will be pressed when you press the Enter key.

Verifying – This will cause the button to check the contents of all value boxes in
the same dialog when it is pressed.

Terminating – Setting this check box will make the button erase its dialog box
when pressed.

Text Boxes

Text boxes are used to receive single line text string input. Using the Edit/Properties menu
option you can set the following attributes of a text box:

• Label – The text appearing on the left hand side of the box.
• Width – The number of characters that the text box can show.
• Text – The text string initially shown in the box.
• Selectable Using Return – Defines whether the application program will be

notified when you press the Return key while this text box has input focus.

Value Boxes

A value box is used to receive or show a single numerical value to the user. Using the
Edit/Properties menu option you can set the following attributes of a value box:

• Label – The text on the left hand side of the box identifying value type to the
user.

• Min – The minimum value the box can contain. If a value typed into the box is
out of range, the user will be informed whenever a verifying button is pressed.

• Max – The maximum value the box can contain.
• Precision – Precision is used to format output and round input. It defines the

number of digits to the right of the decimal point. (0 = integer value, 1 = 0.1, 2 =
0.01, -1 = rounded to 10’s, -2 = rounded to 100’s etc.)

• Value – The initial value displayed in the value box.
• Use Scientific Notation – Indicates whether output should be formatted using

scientific notation. (i.e. 71 = 7.1e+1).
• Selectable Using Return – Defines whether the application program will be

notified when the user presses the Return key while this text box has input focus.

Chapter 2: SIMDRAW

31

Check Boxes

A check box is used to receive and show yes/no input. Using the Edit/Properties menu
option you can set the following attributes:

• Label – The text on the right hand side of the box identifying it to the user.
• Checked – Initial state of the check box.

Radio Boxes

The radio box accepts input from a fixed list of alternatives. It contains a set of radio
buttons. You can only select one radio button at a time; when you select a new button, the
previously selected button pops up automatically. You can add and remove radio buttons
from the radio box using the Edit/Properties menu option:

• To add a button, enter its label, reference name, and id in the Radio Buttons
area of the Properties dialog, and then press the Add button.

• To remove a button, select its label in the list box and then press the Remove
button.

• To change the attributes of a buttons, select its label in the list box, modify its
label, reference name, or id, and then press the Update button.

List Boxes

A list box is used to accept input from a list of text values. The list may vary in length and
will be scrollable, if needed. You can define the list to accept only single item sele ctions,
or accept multiple item selections using the Shift and/or Ctrl keys. Using the
Edit/Properties menu option you can set the following attributes:

• Width – The width in font units of the list (including scroll bars).
• Height – The height in font units of the list.
• Allow Multiple Selections – Allows the user to select several items in the list

using the Shift and Ctrl keys.

SIMGRAPHICS II User's Manual

32

Multi-line Text Box

A multi-line text box can receive and show unlimited lines of text. Horizontal and vertical
scroll bars are attached, if needed. You can easily edit the text it contains using the
mouse. Using the Edit/Properties menu option you can set the following attributes:

• Width – The width in font units of the box (including scroll bar).
• Height – The height in font units of the box (including scroll bar) .
• Text – The text initially displayed in the box.
• Allow Horizontal Scrolling –If checked, a horizontal scroll bar will be attached

whenever a line of text is too long to be viewed in the text box. If not checked, a
long text lines will be truncated.

Labels & Group Boxes

A label is used to place explanatory text or titles in a dialog box. It can be positioned
anywhere within the dialog. A group box can be attached to the label and sized to enclose
a set of controls with some common property. Using the Edit/Properties menu option you
can set the following attributes:

• Label – The text of the label.
• Show Group Box – Defines whether a group box will be shown.
• Width – The width in font units of the group box.
• Height – The height in font units of the group box.

Combo Boxes

A combo (combination) box is a text box containing a small “drop down” button. When
that button is pressed, a scrollable list of choices for the text field is displayed. The combo
box can be defined to allow only those alternatives shown in the list to entered, or to be
fully editable like a text box. Using the Edit/Properties menu option you can set the
following attributes:

• Label – The text on the left hand side of the box identifying the box.
• Width – The width in font units of the text box plus the drop down button.
• Height – The number of visible items in the drop down list.

Chapter 2: SIMDRAW

33

• Editable – Defines whether or not you can edit the text field, or , if it is restricted,
to contain only one of the items shown in the drop down list

• Sorted Alphabetically – If checked, items in the drop down list will be shown in
alphabetical order.

Tables

A table is a two dimensional array of selectable text fields or “cells”. The table can be
horizontally and vertically scrollable. All cells in the same column have the same width,
but you can define the width of this column.

A table can have both column and row headers. A row of “column headers” is shown on
top of the array of cells. This special row of cells will scroll horizontally with the rest of
the table, but not vertically. “Row headers” are shown in a column to the left of the table.
This column scrolls with the table only in the vertical direction.

You can navigate through a table using the left -, right-, up- and down-arrow keys. The
program will be informed of cell selection whenever an arrow key is used to move to a
different cell. You can tell the table to automatically add a new row of cells to its bottom
row whenever the you attempt to move past the last row using the down-arrow key.
Use the Edit/Properties menu option to set the following attributes:

• Viewed Width – The total width in font units of space occupied by the entire
table (including row headers, and scroll bar).

• Viewed Height – The total height in font units of space occupied by the entire
table (including column headers and scroll bar).

• Number Columns – Number of columns of cells (not including headers).
• Number Rows – Number of rows of cells (not including headers).
• Column Headers – If checked, the table will contain a separate row of column

headers at the top of the cells.
• Row Headers – If checked, the table will contain a separate column of row

headers on the left of the cells.
• Automatic Grow – If checked, the table will automatically add a row , if the you

attempt to move past the last row with the down-arrow key.

The attributes of all columns in the table are shown within a separate Column Detail table
invoked by clicking on the Columns button:

• Column (1,2,...) Width – The number of characters shown in the cells of a
particular column. Select the cell in the column corresponding to the one you
want to change, and type in a new width.

SIMGRAPHICS II User's Manual

34

• Column (1,2,...) Alignment – Text in a table cell can be justified to the left or
right, or can be centered. Within the Column Detail table (l=Left justified,
c=Centered, and r=Right justified).

You can also set the initial contents of the cells in the table by clicking on the Contents …
button. A duplicate table of the one your working on will show the initial contents of all
cells. To change the initial contents of a cell, select the corresponding cell in the Cell
Detail table, and then type in the new text and press Return.

Dialog Box

Although the dialog box annotation cannot be moved or resized, it can still be edited by
selecting it and using the Edit/Properties menu option. The dialog box can be defined with
the following attributes:

• Library Name – The name used to access the dialog box from inside the
application.

• Title – The text shown on the header bar of the dialog.
• Modal Interaction – Defines whether the dialog is “modal” or “modeless”. When a

modal dialog box is displayed, the user cannot interact with any other comp onent
of the application but the contents of that dialog box. Modeless dialogs can be
interacted with asynchronously.

• Position with Respect to Screen – Specifies which corner of the screen the dialog
box will be offset from. For example, if Bottom Left positioning is selected, the X
Offset and Y Offset fields define the distance from the bottom left hand corner of
the screen to the bottom left corner of the dialog box. This distance is spec ified in
“screen coordinates” where the width and height of the computer screen are each
100 units.

• Tab Ordering of Members – If you wish to use the Tab key to transfer input focus
from one control to the next while interacting with the dialog box, the order in
which this traversal takes place can be established ahead of time. A list box shows
the labels of all controls in the dialog that can have input focus. The order of items
in this list is the order in which input focus will proceed when the Tab key is
pressed. Use the up- and down-arrow keys to shift the tab ordering of controls.

Tabbed Dialogs

The Dialog editor can be used to create Tabbed Dialogs or to convert existing dialogs to
be tabbed. Using a Tabbed Dialog you can attach sets of controls to overlapping Tab
Fields. Only the top Tab Field can be seen; all other tab fields and attached controls

Chapter 2: SIMDRAW

35

remain hidden underneath. The only visible portion of a Tab Field is a small rectangular
area containing its name, or a tab . Clicking on the tab will bring the Tab Field to the top
of the tab area and show all controls attached to it.

To create a Tabbed Dialog, you must first make sure that the area on the dialog box where
the Tab Field is to be placed is cleared of controls (they should be moved or temporarily
cut to the clipboard.) Create a Tab Field by dragging it from the palette onto the dialog
box. Any number of Tab Fields can be dropped onto the dialog box. The tab area can be
resized by resizing the top Tab Field, but cannot be moved.

Dropping a control onto the top Tab Field will automatically attach it to that tab. Controls
can be dragged from the Mode palette, pasted from the clipboard, or moved onto the top
Tab Field.

The tab area is not automatically resized when controls are dropped onto the Tab Field. It
should be sized manually prior to adding controls.

To remove a Tab Field, first remove all controls it contains and then use the Edit/Cut or
Edit/Delete menu options. Using the Edit/Properties menu option you can set the
following attributes of the selected Tab Field:

• Label – The text label shown on the “tab” part of the Tab Field.
• Icon Name – The resource or file name (without extension) of the bitmap shown

on the front of the tab.

2.15.4.1 Converting Conventional Dialog Boxes to be Tabbed

Perform the following steps to add tabs to an existing (untabbed) dialog box.

1. Create space for the tab area by selecting all controls using the Edit/Select All
menu option and then moving them into a saved area on the dialog box (move
them down or to the right by a liberal amount.)

2. Drag a Tab onto the dialog box from the Mode palette. Resize the Tab according
to how much space it needs.

3. Move each control which must go onto this Tab Field from the saved area.

4. Repeat steps two and three until all Tabs have been created and filled with
controls.

5. Select each Tab and use the Edit/Properties menu option to set the label on the
Tab, its icon, etc.

SIMGRAPHICS II User's Manual

36

2.15.4.2 Align and Distribute

Multiple controls can be aligned either vertically or horizontally to the primary selection
(shown enclosed by green selection handles). They can be aligned vertically with respect
to either their left edge, right edge or center. Controls can be aligned horizontally with
respect to their top edge, bottom edge, or center. To align, first select multiple objects
using the Shift key, and then use the Layout/Align menu option. Select an alignment
scheme from the resulting dialog box.

The Layout/Distribute menu option allows you to distribute three or more controls in
relation to each other. Controls can be distributed horizontally so that the same space
exists between left and right edges of adjacent controls. Distributing vertically will
reposition the controls so that the same space exists between the bottom and top edges of
adjacent controls.

2.15.4.3 Using Grid Lines

A grid can be used to perform precise positioning and sizing of controls by breaking the
editor window up into divisions. You can show (or hide) grid lines by toggling the
View/Grid menu option.

You can change the color of the grid by selecting a color from the Color palette and then
using the View/Grid Color menu option. The granularity of the grid can be adjusted using
the View/Grid Spacing menu option. Granularity can be Fine, Medium, or Coarse:

• Fine – 1 font unit wide, 0.25 font units high.
• Medium – 2 Font units wide, 0.5 font units high.
• Coarse – 3 Font units wide, 1 font unit high.

By toggling the View/Snap menu option, you can restrain positioning and resizing of
shapes to the intersections of the grid.

2.15.4.4 Changing Views (Panning and Zooming)

You may want to magnify a portion of the dialog. To zoom in to some area of the
window, first use the View/Zoom In menu option. Then drag out a rectangle with the
mouse over the area of detail. When the mouse button is released, the area inside the
rectangle will be expanded to encompass the entire window. To zoom back out, use the
View/Zoom Out menu option.

Chapter 2: SIMDRAW

37

When zoomed in, you can pan to other areas of the window using the horizontal and
vertical scroll bars.

You can return to the default view by using the View/View [1:1] menu option. Unless the
window is square, the top or bottom portion of the view may not be visible. To see the
entire coordinate space, use the View/Fit In Window menu option. This viewing mode will
leave dead space off to the right of the window, but guarantee the entire coordinate space
will be seen.

2.15.4.5 Changing the Layout Size, Color and Font

To change the editor window's background color, use the Layout/Set Color... menu
option. Select the RGB values of the background color.

Use the Layout/Set size... menu option if you want to increase the size of the editing area
to allow you to create or edit very large dialog boxes . A dialog will be displayed allowing
you to increase the number of "screens" thereby adding space to the right and bottom
sides of the editing area. This new space can be "scrolled" to using the right and bottom
scroll bars attached to the editor window.
The font used to depict labels and other text shown in a dialog can be reset with the
Layout/Set Font... menu option. To have the icons representing your controls appear
smaller or larger, simply select a smaller or bigger font.

2.16 Using the Menu Bar Editor

A menu bar contains menus which can contain either menu items, or other menus. The
Menu Bar Editor (figure 2-4) allows you to construct a menu bar by interactively dragging
and dropping icons representing menus and menu items onto a menu bar icon.

Menus and menu items are created and added to the menu bar via the Mode palette on the
left hand side of the window. To create a menu, first press the Menu button on the Mode
palette. Position the pointer over where you want the menu to go onto the menu bar and
press the mouse button. The menu will automatically be inserted into the menu bar.

SIMGRAPHICS II User's Manual

38

Figure 2-4. Menu Bar Editor

Menu panes can be displayed by simply clicking on the menu label. Unlike a “real” menu
bar, multiple menu panes can be dropped down at the same time allowing you to transfer
their menu items from one menu to another. A new menu item can be added to a menu by
first dropping down the menu pane, then dragging a menu item from the Mode palette to
the position in the pane where you want it to go.

A usable menu bar can be interacted with using the Layout/Show Menu Bar menu option.
A temporary window will be displayed containing a “test” menu bar. Double click on the
"-" in the header bar of the temporary window to make disappear.

2.16.1 Selecting and Moving (Transferring)

A menu or menu item can be selected by clicking the mouse button over its label. S elected
menus are marked by a bordering green or cyan box. Selecting the label of a menu will
drop down its pane, showing all the items it contains. Multiple items can be selected by

Chapter 2: SIMDRAW

39

holding down the Shift key and then clicking on several items. To add a menu or item to
another menu, drop it onto the menu’s open pane.

You can also select the menu bar and edit its properties, but the bar cannot be moved.
You are not allowed to resize menus or the menu bar; they are resized automatically when
new items are added to them.

2.16.2 Using the Clipboard (Cut, Copy and Paste Commands)

The Menubar Editor supports the standard cut, copy, and paste operations found under the
Edit menu. The Cut option deletes selected items and places them in the clipboard. The
deleted item remains on the clipboard until the next time you use the Edit/Cut or Edit/Copy
options. You can use the Edit/Paste option to paste as many copies as you want from the
clipboard onto any open menu pane. Items can be deleted without changing the clipboard
by using the Edit/Delete option.

The clipboard is shared among all active Menubar Editor sessions. You can copy graphics
from one menubar into another by activating the source edit window, using the Copy
option, and then activating the destination editor and using the Paste option.

Note: The menu bar itself can never be cut, copied, or deleted. It can, however, be
selected for the purpose of changing its properties.

2.16.3 Editing the Menu Bar

The menu bar is not movable or resizeable, but using the Edit/Properties menu option you
can modify the Library Name of the menu bar.

2.16.4 Editing a Menu

You can add menus to the menu bar or other menus by dragging and dropping. The
menu’s pane can be displayed or hidden by clicking on its text label within its container. A
menu is defined by the following parameters:

• Reference (Field) name, Id – Any menu added to the menu bar or another menu
can be accessed from inside an application by specifying a Reference or Field
name and/or Id. For SIMSCRIPT II.5 users, the field name is passed to the
callback routine whenever a menu item is clicked on.

SIMGRAPHICS II User's Manual

40

• Label – The name identifying the menu which appears within the container menu
bar or menu.

• Mnemonic – A letter in the menu’s label that can be typed from the keyboard
(while holding down the Alt key) to bring down the menu pane. The mnemonic
character will appear underscored in your application.

2.16.5 Editing a Menu Item

A menu item can only be contained on a menu pane, and cannot contain other items.
Your application program is only informed of selections of a menu option, not of a menu
or menu bar. Double click or use the Edit/Properties menu option to change the attributes
of a menu option:

• Reference (Field) name, Id – Any menu item can be accessed from inside an
application by specifying its Reference or Field name and/or Id. For
SIMSCRIPT II.5 users, the field name is passed to the callback routine whenever a
menu item is clicked on.

• Label – The name identifying the menu item appearing within the container menu.
• Mnemonic – A letter in the item’s label that can be can be typed from the ke yboard

(while holding down the Alt key) to activate the item. The mnemonic character
will appear underscored in your application.

• Accelerator Key Name – While running the application, you can use the keyboard
to activate menu options instead of using the mouse. Any menu item can have its
own accelerator key. This attribute determines which key will be mapped to this
menu item. To use keys such as [a-z], [0-9], and other punctuation and symbol
keys to activate the menu item, type the key character directly. The naming
convention for keys performing functions are defined below:

• “escape” – Names the Esc or Escape key.
• “delete” – Names the Del or Delete key.
• “return” – Names the Enter or Return key.
• “backspace” – Names the or the Backspace key.
• “tab”– Names the Tab key.
• “f1”, “f2”, ..., “fn”– Names the function keys “F1”, “F2”, ..., “Fn” at the top of the

keyboard.
• Use Alt, Use Ctrl, Use Shift – Specifies which modifier key must be held down in

conjunction with the accelerator key described above.
• Accelerator Key Label – This is the name appended to the menu item label used to

describe how to invoke the keyboard accelerator. For example, the string
“(Ctrl+C)” could describe an accelerator activated by holding down the Ctrl key and
pressing “c”.

Chapter 2: SIMDRAW

41

• Status Message – If the window containing this menu bar has a status bar, this
help message will appear in the first status bar pane. The text will be displayed
whenever this menu item is highlighted by the pointer (not necessarily activated).

• Checked – Menu items can have an “off/on” state shown by a small check mark
next to the label. The initial state is defined by the Checked attribute.

Note: This state is NOT changed automatically when the item is clicked on, but
must be updated by the application program.

2.17 Using the Palette Editor

The Palette Editor (figure 2-5) provides a fast and easy to use drag and drop facility for
creating and editing palettes, toolbars etc. A palette is usually attached to the side of your
window (but is sometimes a separate window) and contains an array of buttons. The face
of each button can contain a bitmap icon or show a color. Separator objects can be added
to the palettes to produce space between groups of buttons.

You can define the number of columns or rows that the palette contains. For palettes
attached to the left and right sides of the window, or for floating palettes, the number of
columns is specified. The number of rows is used for palettes glued to the top or bottom
window edges

Palette buttons and separators are created and added to the palette via the Mode palette on
the left hand side of the edit window. To create a palette button, first select the Button
icon from the Mode palette. Position the pointer over where in the palette you want the
buttons to go, and click the mouse. The palette will automatically resize as needed to fit
the buttons it contains. It is OK to drop a button outside of the palette in order to make it
larger.

The actual palette you are working on can be displayed and tested using the Layout/Show
Palette menu option. Double click on the “-“ in the header bar of the palette test window
to make it go away.

SIMGRAPHICS II User's Manual

42

Figure 2-5. Palette Editor

2.17.1 Selecting and Moving (Rearrangement) of Buttons

A palette button or separator item can be selected by clicking the mouse button over the
top of it. Selected buttons are marked by a bordering green or cyan box. Multiple items
can be selected by holding down the Shift key and clicking on several items. To move a
palette button from one place to another, drop it over the top of the button whose position
you want it to occupy. You can select the palette and edit its properties , but it cannot be
moved.

You are not allowed to resize palette buttons or the palette. All palette buttons are sized
equally based on the size of the “first” button (at top left hand corner of the palette). This
“first” palette button is automatically made big enough to contain its bitmap icon.

However, palette separators can be resized. Resizing a separator has the effect of
adjusting the space between palette buttons. To resize the separator, select it and drag the
green resize handle shown on a side of the selection rectangle.

Chapter 2: SIMDRAW

43

2.17.2 Using the Clipboard (Cut, Copy and Paste)

The Palette Editor supports the standard cut, copy, and paste operations found under the
Edit menu. The Cut option deletes selected items and places them in the clipboard. The
deleted item remains on the clipboard until the next time you use the Edit/Cut or Edit/Copy
options. You can use the Edit/Paste option to paste as many copies as you want from the
clipboard onto any open menu pane. Items can be deleted without changing the clipboard
by using the Edit/Delete option.

The clipboard is shared among all active Palette Editor sessions. You can copy graphics
from one palette into another by activating the source edit window, using the Copy option,
and then activating the destination editor and using the Paste option.

Note: The palette itself can never be cut, copied, or deleted. It can, however, be selected
for the purpose of changing its properties.

2.17.3 Editing the Palette

A palette contains an array of selectable palette buttons. Palettes can be attached to any
edge of the application window, or be floating (not unlike a modeless dialog box.) On MS
Windows systems, palettes can be dockable meaning they can be moved from one edge of
the window to another while running the application. Palettes cannot be resized; they are
automatically sized to fit their contents. Double clicking on a palette will display the
following detail:

• Library Name – The name of this palette in the graphics library.
• • Title – Title text displayed in the header bar of a floating palette.
• # Columns for Left/Right Dock – Number of columns of palette buttons and

separators whenever the palette is docked on the left or right edges of the window,
or the palette is floating.

• # Rows for Top/Bottom Dock – Number of rows of palette buttons and separators
whenever the palette is docked on the top or bottom edges of the window.

• # Columns for Floating – Number of columns of palette buttons and separators
whenever the palette is not docked on a window edge, but floating free.

SIMGRAPHICS II User's Manual

44

2.17.4 Editing a Palette Button

Palettes are occupied by an array of palette buttons. A palette button has the following
attributes which are adjustable via the Edit/Properties menu option:

• Reference (Field) Name, Id – Any button added to the palette can be accessed
from inside an application by specifying a Reference or Field name and/or Id.
For SIMSCRIPT II.5 users, the field name is passed to the callback routine
whenever the button is clicked on.

• Icon Name – The name of the bitmap resource or file (without extension) icon
displayed on the front of the palette button. Pressing the small browse “ ..”
button next to this text box will allow you to browse the file system to select a
bitmap file name. Remember that the bitmap file MUST be in the same directory
as your library (.sg2) file.

• Status Message – Text displayed in pane 0 of the parent window’s status bar (if
present) whenever the pointer passes over this button.

• Tool Tip – Identifies the tool tip pop up message shown at the pointer’s current
location when it passes over this button.

• Momentary/Draggable/Toggle – Determines the variety of input interaction. One
of three button types can be selected:

1. Momentary – Button will automatically pop back up after it is pressed.

2. Toggle – Two state button. The state (up or down) alternates with each
activation.

3. Draggable – Like Toggle but allows you to hold the mouse button down and
drag an outline of the palette button bitmap onto the window.

• Icon Button/Color Button – If the Icon Button item is activated, the face of the
palette button will show the bitmap defined by the Icon Name field above. For
Color Buttons the button will be colored using the RGB parameters defined
below.

• Button Face Color (Red,Green,Blue) – You can set the color of the Color
Buttons through these value boxes. Color is defined by the percentage of Red,
Green, and Blue (range [0-100]).

Chapter 2: SIMDRAW

45

2.17.5 Editing Palette Separators

Palette separators receive no user input and cannot be seen on the test palette. They only
serve to provide a gap between buttons. This separation can be changed either by
dragging the resize tag on a selected separator, or by using the Edit/Properties menu
option. Separation is defined by percentage of button width (or height), and ranges from
0 to 100.

47

Chapter 3: Graphic Objects and Methods

The MODSIM III graphic library provides animation, presentation graphs, and user input
forms. These three broad object categories have overlapping requirements. For instance,
you need to be able to draw and erase all of them.

The graphic library was written in MODSIM III to take advantage of MODSIM III's
object oriented facilities. The library is built around a few objects which encapsulate the
attributes common to many different objects, and pass on these attributes to less
fundamental objects by inheritance.

A number of objects have been constructed to pass on their fundamental attributes, and
are not intended to be used directly. Such objects are termed virtual objects. One way to
recognize a virtual object is that they normally end in VObj. Virtual objects pass on their
attributes to more specific objects which you can use more easily.

All MODSIM III graphical objects that can have a physical appearance are derived from
the GraphicVObj object. This object provides the capabilities of drawing, positioning,
and selection. Another property of graphical objects is the ability to contain sets of other
objects. In other words, all graphical objects can have other objects added to or removed
from them.

With an understanding of this basic object in mind we can examine the capabilities of more
useful objects that are derived from GraphicVObj. A WindowObj represents a
window in the computer screen. Since it is derived from GraphicVObj, it can be
drawn, positioned, selected, or have objects added to or removed from it.

An ImageObj is an object appearing on the canvas of a window. It has the ability to be
scaled, rotated, and to have color. Since it is derived from GraphicVObj, it can be
drawn, positioned, and selected as well.

Graphical objects which use the vendor based tool kits to receive input are derived from
ControlVObj. Controls which act as containers are derived from a FormVObj. The
two types of forms are Dialog boxes and Menu bars.

3.1 Properties of Graphical Objects

Figure 3-1. Inheritance Tree for Graphical Objects

SIMGRAPHICS II User’s Manual

48

A property of graphical objects is that they contain a set of other objects. The methods
used to add and remove objects from these sets are similar to those of a MODSIM III
QueueObj. The names these methods are identical to QueueObj names but have had
the word Graphic suffixed to them.

There are three additional methods of a GraphicVObj that are not present in a
QueueObj. These are AddChild, RemoveChild and Child. AddChild takes a
graphical object, an Id and a ReferenceName as its arguments. The graphical object's
ReferenceName and Id fields are set to these arguments. These fields are used to
later retrieve an object from the list using the Child method. This method also takes an
Id and ReferenceName as arguments and returns the graphical object in the list that
matches both the ReferenceName and Id. Note that the reference name and id of a
graphical object can be set in the graphics editor. The Child() method can be used to
get a handle to this object.

The Descendant() method is identical to Child() except that if no matching child is
found, the objects in the CHILDREN's sets will be recursively searched.

For example, suppose you wanted to add the ImageObj “truck” to a window, get a
handle to its child with the reference name load, and then remove the first graphical
object in this load:

...
ASK window TO AddGraphic(truck);
load := ASK truck Child("load", 0);
firstInLoad := ASK load TO RemoveGraphic();
...

Another property of graphical objects is that they can be loaded and saved from graphical
object libraries. A GraphicLibObj keeps libraries of graphical objects. The
GraphicVObj methods LoadFromLibrary() and SaveToLibrary() load and
save graphical descriptions to a library. A name (not the reference name) is given to the
objects for reference within the library. This is the same name given to the object when it
is saved in the editor. For example, this code loads in the graphical description of a
"truck" from a library:

...
VAR
 truck : DynImageObj;
 library : GraphicLibObj;
...
ASK truck TO LoadFromLibrary(library, "Truck");
...

A GraphicLibObj is also used to retrieve objects created within SIMDRAW. Within
SIMDRAW, you create a library of objects. SIMDRAW saves this library to a file whose
name you specify. At runtime you create an instance of a GraphicLibObj and ask it to
ReadFromFile to obtain a copy of this library. Objects can be loaded from the l ibrary
with the LoadFromLibrary ASK METHOD. As an example, suppose you have
created a library of objects within SIMDRAW and named them "MERCURY", "VENUS",

Chapter 3: Basic Graphic Object Methods

49

and "EARTH". To load the graphic descriptions of these objects the following block of
code could be used:

{ Assume file "SolarSys.sg2" was created by
 SIMDRAW and contains the objects named
 "MERCURY", "VENUS", and "EARTH" }

VAR library : GraphicLibObj;
VAR mercury, venus, earth: ImageObj;
...
NEW(library);
NEW(mercury);
NEW(venus);
NEW(earth);
ASK library TO ReadFromFile("SolarSys.sg2");
ASK mercury TO LoadFromLibrary(library,
"MERCURY");
ASK venus TO LoadFromLibrary(library,

"VENUS");
ASK earth TO LoadFromLibrary(library,

"EARTH");
...

3.2 Behaviors of Graphical Objects

When an operation is performed on a graphical object that begins with Set, the effect of
that operation is not seen visually until the object is asked to Draw. Operations not
beginning with Set have immediate effect. For example, if you wanted to change the
position of a graphical object and actually see this position change, the following code
could be used:
 ...
 ASK graphic TO SetTranslation(x,y);
 { sets the position }
 ASK graphic TO Draw();
 { updates object display }
 ...

The DisplayAt method is equivalent to the code above. Since DisplayAt does not
begin with Set, the operation takes immediate effect:
 ...
 ASK graphic TO DisplayAt(x,y);
 ...

SIMGRAPHICS II User’s Manual

50

Whenever a graphical object is asked to Draw, all of its children will be asked to draw as
well. Any objects that were previously erased will now be shown in the window. To
maintain visibility status, the Update method should be used. This method will redraw
only those objects that are currently visible.

Another behavior common to all graphical objects is that they have an automatic
asynchronous selection capability. Whenever a leaf graphical object within the tree, is
clicked on with the mouse, its BeSelected method will be invoked automatically. This
method should be overridden to obtain notification of selection. If the INHERITED
BeSelected; statement is included in this code, then BeSelected will be called for
the object's parent. If you put the INHERITED BeSelected statement at the top of
the selection routine for an object, then notification of selection will proceed in a top down
fashion. (The selection code for the object's parent will be executed first). Putting the
statement at the bottom of the routine will inform in a bottom up fashion. For exa mple,
the code:

 MyDynImageObj = OBJECT(DynImageObj)
 OVERRIDE
 ASK METHOD BeSelected;
 END OBJECT;

could be used to define an object to be notified of selection. The implementation code for
such an object could look like this:

 ASK METHOD BeSelected; { top down selection }
 BEGIN
 INHERITED BeSelected; { inform parent of
 selection }
 OUTPUT("I was clicked on!");
 END METHOD;

or like this:

 ASK METHOD BeSelected; { bottom up selection }
 BEGIN
 OUTPUT("I was clicked on!");
 INHERITED BeSelected; { inform parent of
 selection }
 END METHOD;

51

Chapter 4: Windows

One of the most useful objects within the MODSIM III graphics library is a WindowObj.
A WindowObj represents a window on the screen that contains graphics. All graphic
objects including images, forms and graphs must be added to a window before they can be
displayed. A WindowObj has the following properties:

• Appearance—A WindowObj can be made visible and invisible using the Draw()
and Erase() ask methods. You can also change its size and position on the
screen.

• Color—You can change the background color of a WindowObj.

• Contents—A WindowObj can contain images, dialog boxes, a menu bar and
palettes.

• Mouse Monitoring—A WindowObj can receive mouse clicks and monitor mouse
movement within its largest centered square.

• Cursor—A WindowObj can have a cursor that tracks the mouse.

• Scroll Bars—A Window can have vertical and horizontal scroll bars. The size and
position of the “thumb” on the scroll bar can be set programatically.

• Status Bar—A multi-paned “status bar” can be contained by a window. Text in
the status bar can be programmatically changed.

4.1 Size and Positioning

The default size and position of a WindowObj is the largest possible centered window.
The SetTranslation method is used to position a WindowObj at a specific location
on the screen. The Translation specifies the position of its lower left hand corner in
screen coordinates. The screen coordinate system has (0.0, 0.0) at the lower left hand
corner of the screen, and (100.0, 100.0) at the upper right corner.

The WindowObj ASK METHOD SetSize sets the size of the window. Size is specified
in width and height, and is given with respect to the same coordinate system as d escribed
above. For example, to set the size of a window to 50% of the screen height and width,
and display the window in the center of the screen, the following code could be used:
 ...
 VAR window : WindowObj;
 ...
 NEW(window);
 ASK window TO SetSize(50.0, 50.0);
 ASK window TO SetTranslation(25.0, 25.0);
 ASK window TO Draw();
 ...

SIMGRAPHICS User’s Manual

52

4.2 Background Color

The background color of a window can also be set. This color can be set to one of the
predefined colors, or be described in terms of its RGB components. The SetColor and
SetRGBColor methods accomplish this. For example to set the background color of a
window to Blue:

 ...
 ASK window TO SetColor(Blue);
 ASK window TO Draw();
 ...

4.3 Adding Graphical Objects to a Window

Since a WindowObj inherits grouping capabilities from GraphicVObj, it contains a list
of graphical objects. There are a number of graphical objects that can be added to a
window's list. These include images, menu bars, and dialog boxes. Any number of i mages
and dialog boxes can be added to a window, but it can contain only one menu bar. A
window can have up to four docked palettes.

For example, if you had a menu bar, dialog box, and an image and wanted them to appear
within a window:
 ...
 VAR window : WindowObj;
 VAR dialogBox : DialogBoxObj;
 VAR menuBar : MenuBarObj;
 VAR rootImage : ImageObj;
 ...
 ASK window TO AddGraphic(dialogBox);
 ASK window TO AddGraphic(menuBar);
 ASK window TO AddGraphic(rootImage);

 ASK window TO Draw;
 ...

Note: Whenever a window is disposed of, drawn, or erased, all of its contents are also
disposed of, drawn or erased.

Chapter 4: Windows

53

4.4 Coordinate Systems for Windows

A coordinate system can be set up for a window which its image children will obey.
Coordinate systems physically apply to the largest centered square in the window, or to
the largest square defined by the width of the window if XMajorMap is used, or the
largest square defined by the height if YMajorMap is used. (Graphics cannot be drawn
beyond the extent of the largest centered square unless the mapping mode for the window
is set to XMajorMap or YMajorMap). Refer to paragraph 4.5. An image that has no
ancestor image containing a coordinate system will be positioned with respect to its
window's world. The ShowWorld method sets the world coordinate system of a
window. When this method is called, all images contained in the window will be redrawn
with respect to the new coordinate system. Images that are to be added to a window
should be saved from SIMDRAW using that window's dimensionality. (Use the
Layout/Dimension option.) If the ShowWorld method is never called, then the default
world is used. The boundaries of this world are found in the GTypes module. In this
world, (WorldXlo, WorldYlo) is the lower left-hand corner of the largest centered
square, and (WorldXhi, WorldYhi) is the upper-right corner. The aspect ratio of
the screen may be distorted depending on how the graphical objects map to their new
distorted world.
One useful method for changing how the contents of a window are viewed is the ZoomIn
method. When given a box in real world (window) coordinates, this method will zoom the
contents of that box to become the entire window. The aspect ratio of the scene will be
distorted if this box is not square. The ZoomIn method will automatically redraw the
contents of the window. Suppose you wanted to set the world coordinate system of a
window to (-100,-100), (100,100) and zoom in to the (0,0), (10,10) square:

...
ASK window TO AddGraphic(truck);
ASK window TO ShowWorld(-100.0, -100.0, 100.0,

 100.0);
ASK window TO ZoomIn(0.0, 0.0, 10.0, 10.0);
...

SIMGRAPHICS User’s Manual

54

4.5 Creating Non-square Windows

On occasion you may want to display images on a rectangular, non-square window . In
order to be able to do this and write to the entire contents of the window (not-just its
largest centered square), you must use the SetMappingMode method of
WindowObj. This method allows you to specify a major axis of the window that will
contain the full width or height of the window's world coordinate space (e.g. 0 .. 32767)
while the other axis shows only a portion. The individual modes are described as follows:

 CenteredSquareMap
(default) The window's contents are viewed in the largest centered square of the
window canvas. Graphics cannot be seen outside of this square.

 XMajorMap
Regardless of window size, the entire X-axis extent of the window's coordinate
system can be viewed in exactly the space provided by the window. If the window is
wider than it is tall, some the window's contents may be clipped along the top. For
windows that are taller than wide, extra non-writable space will be seen at the top.
Using this mode, window contents are never clipped along the side, nor is there ever
any non-writable space along the side.

YMajorMap
Regardless of window size, the entire Y-axis extent of the window's coordinate
system can be viewed in exactly the space provided by the window. If the window is
taller than it is wide, some the window's contents may be clipped along the right.
For windows that are wider than tall, extra non-writable space will be seen at the
right. Using this mode, window contents are never clipped along the top, nor is
there ever any non-writable space along the top.

Note: The aspect ratio of images seen in a window is never distorted under any mapping
mode.

EXAMPLE:

Suppose we wanted to see an image move along the bottom of the entire canvas of a short
but wide window:

 ASK window TO SetTranslation(0.0 40.0);
 ASK window TO SetSize(100.0, 20.0);
 ASK window TO SetMappingMode(XMajorMap);

 ASK dynimage TO SetSpeed(1000.0);
 ASK dynimage TO SetTranslation(0.0, 0.0);

Chapter 4: Windows

55

 ASK dynimage TO MoveTo(32767.0, 0.0);

Using modes XMajorMap and YMajorMap it is possible that not all of the windows
contents can be seen. You can discover the portion the window's coordinate system that
is visible using the ViewableArea method.

EXAMPLE:

 VAR xlo, ylo, xhi, yhi : REAL;
 ...
 ASK window TO SetMappingMode(XMajorMap);
 ASK window TO SetSize(80.0, 20.0);
 ASK window ViewableArea(xlo, ylo, xhi, yhi);

You may also want to SET the viewable portion of the window; thereby letting you
decide what part of the window's coordinate system is visible. This can be done using the
SetAspectRatio method. The aspect ratio of a window is its width/height. If the
mapping mode is XMajorMap, the height of the window is modified to reflect the
aspect ratio. Otherwise, window width is changed.

EXAMPLE:

Suppose you wanted the viewable portion of the windows contents to be xlo = 0.0,
ylo = 0.0, xhi = 32767.0, yhi = 22000.0:

 ASK window TO SetSize(80.0, 80.0);
 ASK window TO SetMappingMode(XMajorMap);
 ASK window TO SetAspectRatio(32767.0 / 22000.0);
 { window height is changed }
 ASK window TO Draw;

4.6 Mouse Monitoring

Another property of a window is that it can monitor the mouse. The window (optionally)
can be informed of both mouse movement and mouse button clicking. The default is to
monitor both. Monitoring of mouse movement is turned on and off by the method.
Monitoring of mouse button clicks is turned on and off by the SetClickMonitoring
method. For example, to tell a window to monitor mouse movement only, the following
code is used:

VAR window : WindowObj;
...
ASK window TO SetClickMonitoring(FALSE);
ASK window TO SetMoveMonitoring(TRUE);

SIMGRAPHICS User’s Manual

56

...

If ClickMonitoring is set, the window's MouseClick method will be called when
the user pushes a mouse button within the largest centered square of the window.
Analogously, if MoveMonitoring is set, the window's MouseMove method will be
called continuously as the mouse moves across the window. This behavior is useful if you
want to be notified of mouse movement and button clicking. Within MouseClick and
MouseMove, you can examine several WindowObj fields that give more detailed
information on the state of the mouse: ButtonDown is TRUE if the mouse button is
currently down; Button gives the number of the button that was pressed or released;
SecondClick is True if the most recent click is the second click of a double-click; and
BackgroundClick is TRUE unless the mouse was clicked down on a selectable
object.

To monitor mouse clicks or mouse moves, define an object that is derived from
WindowObj, and that overrides the MouseMove and MouseClick methods. The
definition for this object would look something like this:

 DEFINITION MODULE Example4;

 FROM Window IMPORT WindowObj;

 TYPE

 MyWindowObj = OBJECT(WindowObj);
 OVERRIDE
 ASK METHOD MouseMove (IN x, y : REAL);
 ASK METHOD MouseClick (IN mouseX, mouseY :
 REAL; IN buttonDown : BOOLEAN);
 END OBJECT;

 END MODULE.

. . . and the implementation module like this:

Chapter 4: Windows

57

 IMPLEMENTATION MODULE Example4;

 OBJECT MyWindowObj;
 ASK METHOD MouseMove(IN x, y : REAL);
 BEGIN
 OUTPUT("The position of the mouse is: x = ", x,
 " y = ", y);
 INHERITED MouseMove(x, y);
 { this sets the window fields }
 END METHOD;

 ASK METHOD MouseClick(IN x, y : REAL; IN
 buttonDown : BOOLEAN);
 BEGIN
 OUTPUT("Mouse was clicked at: x = ", x,
 " y = ", y);
 OUTPUT("Mouse Button #", Button, " clicked");
 OUTPUT("The state of the button is: ",
 ORD(buttonDown), " 0=Up 1=Down");
 IF (SecondClick) OUTPUT("A SecondClick!");

 END IF;
 IF (BackgroundClick) OUTPUT("A BackgroundClick!");

 END IF;
 INHERITED MouseClick(x, y, buttonDown);

 END METHOD;
 END OBJECT;

 END MODULE.

A simple program that used these objects to report mouse movement and clicking to the
user would look like:

 MAIN MODULE MainEx4;

 FROM GTypes IMPORT WaitForEvent;
 FROM GProcs IMPORT HandleEvents;
 FROM Example4 IMPORT MyWindowObj;

 VAR mywindow : MyWindowObj;

 BEGIN
 { Create window with overridden mouse click and

SIMGRAPHICS User’s Manual

58

 mouse move methods. }
 NEW(mywindow);
 ASK mywindow TO Draw;
 { Now wait in a loop handling user input }
 LOOP
 HandleEvents(WaitForEvent);
 END LOOP;
 END MODULE.

All mouse coordinates are specified using the world coordinate system given to the
window with the ShowWorld method. If the world is not specified, then the default
world is used (0...32767, 0...32767).

4.7 Scroll Bars

WindowObj objects can contain both vertical and horizontal scroll bars . The size and
position of the thumb contained in a scroll bar can be set programmatically. Thumb size is
specified as a percentage of the total scroll bar size (as a REAL in the interval [0.0, 1.0]).
The horizontal scroll position is specified as the distance of the leftmost side of the thumb
from the left side of the scrollbar (as a REAL in [0.0, 1.0-ThumbWidth]).
Vertical scroll position is the distance of the top side of the thumb from the top of the
vertical scroll bar (as a REAL in [0.0, 1.0-ThumbHeight]). Whenever a thumb
position is changed by the user, the BeScrolled method is called.

Note: Window contents are NOT scrolled automatically. This is the responsibility of the
programmer.

4.8 Using the Status Bar on a Window

Windows can also have status bars. A status bar is a set of text output boxes or panes
attached to the bottom of a window. The text in these panes can be set programmatically,
but cannot be changed by a user. Panes are numbered from left to right starting with pane
0. The SetNumPanes method defines how many status bar panes to show. (No status
bar will appear if the number of panes is zero.) The width (in character units) of each
pane except pane 0 can be defined using the SetPaneWidth method. To set the text
shown in a particular pane, use the ShowStatus method.

The leftmost status pane or pane 0 is special for two reasons. First, it is used to display
status bar messages shown when the pointer passes over a menu item. (See
 MenuItemObj.SetMessage.) In addition, the width of this pane varies with the
width of the window. Therefore, the space for panes 1, 2, ..., n will not be truncated
unless absolutely nessessary.

Chapter 4: Windows

59

4.9 Asynchronous Notification of Window Close and Resize Events

Many toolkits provide a mechanism for closing windows while an application is running.
Whenever a user closes a SIMGRAPHICS II window, that window's BeClosed method
is automatically invoked. The default behavior of BeClosed is to terminate the
application, but you can OVERRIDE this method to do something else.

EXAMPLE:

 MyWindowObj = OBJECT(WindowObj)
 OVERRIDE
 ASK METHOD BeClosed;
 END OBJECT:

 OBJECT MyWindowObj;
 ASK METHOD BeClosed;
 BEGIN
 OUTPUT("Window has been closed by the user!");
 ASK window TO Erase;
 { don't quit, just get rid of window! }
 END METHOD;
 END OBJECT;

Similarly, for resize events:

 MyWindowObj = OBJECT(WindowObj)
 OVERRIDE
 ASK METHOD BeResized;
 END OBJECT:

 OBJECT MyWindowObj;
 ASK METHOD BeResized;
 BEGIN
 OUTPUT("Window has been resized by the user!");
 END METHOD;
 END OBJECT;

Whenever you resize a window, that window's BeResized method is automatically
invoked. You may override the BeResized method, but you should do an inherited
BeResized for all of the window's contents to be rendered.

SIMGRAPHICS User’s Manual

60

4.10 Printing the Contents of a Window

The system-specific print dialog and print mechanism allows individual SIMGRAP HICS II
image trees as well as entire windows to be dumped to any installed printer. This is a big
advantage under Microsoft Windows where the standard system print dialog a llows
printing to a wide variety of printers. For systems that do not have native printing
facilities, a generic print dialog box is provided which generates Encapsulated Postscript
files. The following method is defined in module Graphic:

ASK METHOD PrintGraphic (IN usedialog: BOOLEAN)
 : BOOLEAN ;

This procedure prints the contents of a visible WindowObj or ImageObj in
a system-specific manner. If usedialog is TRUE, a modal system print
dialog box will appear (if appropriate for the platform) to allow printer
selection, format options, etc. If FALSE, current defaults will be used.

Return values are TRUE for success and FALSE for failure.

4.10.1 Rules for System Printing

1. Only WindowObj's or ImageObjs (or user-derived subclasses of them) can be
printed. For instance, ChartObjs will not be printed if asked to
PrintGraphic. However, it can be printed by attaching the chart to an image
tree and asking for an ImageObj or WindowObj ancestor to PrintGraphic.

2. Any ImageObj to be printed should be attached to an image tree rooted at a
WindowObj which has been asked to Draw; otherwise, certain internal scaling
information will not be computed correctly. WindowObj's asked to
PrintGraphic should be visible.

4.11 Frame and Sub-windows

This feature is implemented for Windows NT and Windows 95 only. All windows can
now be made sub-windows of an application frame window . One common 'frame'
window will contain all sub-windows. The frame window is constructed automatically by
the application when the first sub-window is displayed. These sub-windows can be tiled,
cascaded or arranged as you desire, but they always remain within the main frame window
of the application. (The Window menu which is displayed automatically provides these
capabilities) When a sub-window is brought to the front, its palettes and menu bar will
become part of the frame. In addition, the first and last menus of the first sub-window
(usually the File and Help menus) will be shared among all other sub-windows

The following procedures are available for manipulating the frame window:

PROCEDURE SetFrameTitle(IN title : STRING);
This procedure will reset the title displayed on the header bar of the frame

Chapter 4: Windows

61

window. The procedure can be called before or after the frame window has been
made visible, and will automatically update the title.

PROCEDURE SetFrameIconNames(IN smallIconName,
largeIconName : STRING);
Sets the icons used when the frame window is minimized. If the application
contains a frame and sub-windows, this procedure will identify either the resource
or bitmap file names of the icons representing the minimized application.

PROCEDURE SetFrameTranslation(IN tx, ty : PctType)
If the application contains a frame and sub-windows, this procedure will specify
the initial position of the lower left hand corner of the frame window. Position is
specified in "screen" coordinates (where the lower left hand corner of the
computer screen is (0,0) and the upper right corner is (100,100). This procedure
must be called before the first sub-window is drawn.

PROCEDURE SetFrameSize(IN width, height : PctType)
If the application contains a frame and sub-windows, this procedure will specify
the initial size in "screen" coordinates ([0,100], [0,100]) of the frame window.
This procedure must be called before the first sub-window is drawn.

PROCEDURE GetFrameTranslation(OUT tx, ty : PctType)
If the application contains a frame and sub-windows, this procedure will retrieve
the current position of the lower left hand corner of the frame window. Position is
specified in "screen" coordinates [0,100], [0,100].

PROCEDURE GetFrameSize(OUT width, height : PctType)
Gets the current size of the frame window. If a sub-windowed style application is
being used, this procedure will retrieve the current size in "screen" coordinates
([0,100], [0,100]) of the frame window.

Methods of WindowObj and ControlWindowObj relating to sub-windows:

ASK METHOD SetSubWindow(IN isSubWindow : BOOLEAN);
Enables the application frame / sub-window interaction. Instructs the window to
be a sub-window inside a frame window. The frame window does not correspond
to any particular WindowObj object, but is manipulated through procedures in
the module GProcs.

SIMGRAPHICS User’s Manual

62

ASK METHOD SetInitialState(IN position : WindowStateType);
Sets initial state (minimized, maximized) of the sub-window.
NormalWindowState means the sub-window will appear somewhere within
the frame window at less than maximized size. MinimizedWindowState
means the window will appear as an icon. MaximizedWindowState means
the window will appear maximized to the full extent of the frame window.
Implemented for Windows NT and Windows 95 platforms only. Has no effect on
other platforms.

ASK METHOD SetAutoGeometry(IN useDefaultSizeAndPosition
: BOOLEAN);
Sets flag enabling the frame window to determine initial size and position of a sub
window. IF TRUE, window Translation, Width, and Height fields are ignored.

ASK METHOD SetIconNames(IN sIconName, lIconName : STRING);
Sets the names of icon bitmaps shown when the window is minimized.
Implemented for Windows NT and Windows 95 platforms only. Has no effect on
other platforms.

ASK METHOD BeActivated;
This method is called when the you activate a sub-window. Override this method
to be notified of when a sub-window is brought to the front.

4.12 Control Windows

SIMGRAPHICS II offers the ability to add controls like buttons and value boxes to
windows rather than just dialogs. A control window is a window that contains any
controls normally found inside a dialog box. Control windows are implemented via the
ControlWindowObj object found in definition module Window. The following
features apply to control windows:

1. Control windows are sized and positioned exactly like conventional windows u sing
the SetSize and SetTranslation methods with the parameters given in
“Screen Space” (0,0) to (100,100).

2. Unlike dialog boxes, you can resize a control window. You can also minimize and
maximize a control window.

3. Control windows do not automatically grow to fit their contents like dialog boxes.
A control window will automatically attach and manage scroll bars if there is not
enough visible area to show all of its controls.

4. A control window can be managed as a sub-window inside a frame window.

5. The ListBoxMultObj, TableObj, TreeObj and MultiLineBoxObj
controls can be maximized inside a control window. In this case, the control will
occupy the full width and height of the canvas, and automatically resize with the

Chapter 4: Windows

63

window. This allows you to have “table windows”, “tree windows”, and “text
editor windows”.

Control windows handle their own mouse events. There is no notification of mouse
movement or background clicking in a control window as there is with a standard
window.

SIMGRAPHICS User’s Manual

64

65

Chapter 5: Images

In MODSIM III, Images are shapes that are seen on the canvas of a window. The image
provides many capabilities. The basic ones are:

• Animation: In MODSIM III, images are easily animated. When images in the
same window pass over the top of each other they will be automatically re freshed
by the runtime library.

• Color: Each ImageObj can have its own color. This color can either be defined
by an enumerated constant of type ColorType, or be defined in terms of its
RGB intensities.

• Scaling: The size of an image can be scaled in both x and y directions.

• Rotation: An image can be rotated a certain number of radians.

• SnapShot: For optimal animation performance, the library can optionally construct
a snapshot for an image. This can be used to draw a complicated image with no
performance penalty.

• Hierarchically described: An image can have subcomponents that are scaled,
rotated and positioned with the whole image, but that can be manipulated
individually.

5.1 Image Tree Used in Graphics Applications

In MODSIM III an image can be organized into a hierarchy using ImageObj objects.
An ImageObj inherits the ability to contain graphical objects from GraphicVObj.
Since objects contained in an ImageObj can also contain ImageObj objects, a
hierarchy of images (or an image tree) can be constructed to represent the system that is to
be graphically modeled. The images contained in an image are referred to as its children.
The collection of the children, the childrens' children, etc., are referred to as an image's
descendants. The container of an image is called its parent . The collection of an image's
parent, its parent's parent, etc., is called its ancestors.

The ability to organize an image hierarchically is a powerful feature and can be used in a
variety of ways. First of all, it can be used to break an object down into its
subcomponents. Suppose you wanted to depict an image of a shopping cart. This cart
could be broken down into a “body”, a “front wheel”, and a “back wheel.” You could use
a hatched polygon for the body and circles for the wheels. The image tree for the cart
would look something like this:

Figure 5-1. Image Tree for a Grocery Cart

SIMGRAPHICS II User's Manual

66

Another way of using an image tree is for simple grouping. Suppose you had created a
number of these carts. You could group them together into a common image called carts.
Since any operation performed on an image is automatically performed on its children, this
grouping would prove useful to you if you wanted to do something to all carts at once—
like erase, move or scale them. Grouping can also be used as an organizational
convenience. The image tree that groups the carts looks like this:

Figure 5-2. Grouping of Grocery Carts

The image tree is also used to describe the entire model. Suppose we were modeling a
grocery store. Within the model we wanted to show shopping carts, checkout counters,
and grocery aisles. The carts, counters and aisles would simply be children of their
grocery store image.

Figure 5-3. Image Tree for a Grocery Store

An image tree can be built within SIMDRAW using SIMDRAW's grouping facility, or can
be constructed dynamically at runtime. The Add and Remove methods inherited from
GraphicVObj are used to build and manipulate the tree structure . For example,
suppose you wanted to graphically model the solar system. You could do this by creating
an ImageObj instance for the entire solar system, and then add ten ImageObj instances
to it that represented the planets and sun:

VAR
 solarSystem : ImageObj;
 sun, mercury, venus, earth, mars : ImageObj;

 { Get or create planet and sun images }

NEW(solarSystem);
ASK solarSystem TO AddGraphic(sun);

Chapter 5: Images

67

ASK solarSystem TO AddGraphic(mercury);
ASK solarSystem TO AddGraphic(venus);
ASK solarSystem TO AddGraphic(earth);
ASK solarSystem TO AddGraphic(mars);
...

When an operation is performed upon an image, the operation is automatically performed
upon its children in the tree. In the example above, if you were to draw the solar system
image, the planets would be drawn also. Erasing the solar system would cause all the
planets to be erased. If you scaled down the solar system in size, the planets would
automatically appear smaller, as well as having the physical distances between them shrink.

Position and sizing attributes of an image (such as scaling, rotation, and translation) are
always set with respect to the image's parent in the image tree, not the window in which it
lies. If an image rotation was set to 45 degrees, this means that the image would appear
rotated 45 degrees from its parent in the tree. If the image's parent had also been rotated
45 degrees, then total rotation of the image seen in the window would be 90 degrees. In
the above solar system example, suppose we wanted to move one of the planets. We
would then specify a new position for the planet relative to the center of the solar system.
Then, if we moved the solar system around the window, the planets would automatically
move with it since their positioning relative to the solar system center has not changed.

5.2 Image Priority

Any image will appear on top of other images that come before it in its parent's list of
children. It therefore appears beneath other images that come after it in the list. In the
above block of code the Earth comes after Mercury and Venus in the solar system's list of
children. Therefore, at times when the planets overlap, the earth would appear on top of
Venus and Mercury. But since Earth comes BEFORE Mars in the list, Mars would
appear on top of Earth during an overlap.

SIMGRAPHICS II User's Manual

68

Title:
Creator:
CreationDate:

Figure 5-4. Image Priority

5.3 Creating and Using Images

Images can be created in one of two ways. One way is to construct them at runtime by
creating instances and setting their display-specific attributes (such as points, color and
style). This can be time consuming because there are many attributes that define what an
image will look like. Also, the programmer cannot see what the images will look like on
the screen until the program is compiled and run. For this reason the MODSIM III
graphics package comes with SIMDRAW, an interactive, user friendly, graphics editor.
Refer to chapter 2.

SIMDRAW can be used to construct simple primitives, or entire image trees. Within
SIMDRAW you name the images and primitives you have constructed and would like to
use in your program. SIMDRAW then creates a library of these objects and saves it to a
file. As described in Chapter 4, a GraphicLibObj is used to obtain instances of the
objects created in SIMDRAW:

 { ... Assume file "SolarSys.sg2" was created by
 SIMDRAW and contains the objects named
 "MERCURY", "VENUS", "EARTH" etc. ... }

 VAR library : GraphicLibObj;
 VAR mercury, venus, earth, mars : ImageObj;
 ...
 NEW(library);
 NEW(mercury);

Chapter 5: Images

69

 NEW(venus);
 NEW(earth);
 NEW(mars);
 ASK library TO ReadFromFile("SolarSys.sg2");
 ASK mercury TO LoadFromLibrary(library,"MERCURY");
 ASK venus TO LoadFromLibrary(library, "VENUS");
 ASK earth TO LoadFromLibrary(library, "EARTH");
 ASK mars TO LoadFromLibrary(library, "MARS");
 ...

The grouping facility of SIMDRAW is used to create images. When a set of images is
grouped within SIMDRAW, an image is created for that set. Components of a group are
optionally given STRING reference names and INTEGER Id tags. They are set in
SIMDRAW using the Edit/Properties menu option. These are used by the application
program to get handles to children of the image or grouping that SIMDRAW has created.
The GraphicVObj ask method Child returns the child of the image that has this
unique name and INTEGER ID. Suppose a solar system was created within . If the
planet groupings seen in the editor were given the reference names Mercury, Venus,
Earth, and Mars, the following block of code could be used to get handles to the planets
of the solar system:

 VAR library : GraphicLibObj;
 VAR mercury, venus, earth, mars : ImageObj;
 VAR solarSystem : ImageObj;
 ...
 NEW(library);
 NEW(solarSystem);
 ASK library TO ReadFromFile("SolarSys.sg2");
 ASK solarSystem TO LoadFromLibrary(library,
 "SOLAR SYSTEM");
 mercury := ASK solarSystem Child("MERCURY", 0);
 venus := ASK solarSystem Child("VENUS", 0);
 earth := ASK solarSystem Child("EARTH", 0);
 mars := ASK solarSystem Child("MARS", 0);
 ...

Before any image can be drawn or updated, its image tree must be added to the window in
which it is going to appear. The following code illustrates how to bring up a window and
add an image to it:

 VAR window : WindowObj;
 VAR image : ImageObj;
 ...
 NEW(window);

SIMGRAPHICS II User's Manual

70

 { create the window }
 ASK window TO Draw();
 { bring it up on the screen }
 ASK window TO AddGraphic(image);
 { add an image to it }

The following example gets a "solar system" from a library, and draws it on the screen:

 MAIN MODULE Example2;

 FROM Window IMPORT WindowObj;
 FROM GTypes IMPORT WaitForEvent;
 FROM GProcs IMPORT HandleEvents;
 FROM Graphic IMPORT GraphicLibObj;
 FROM Image IMPORT ImageObj;

 VAR parentWindow : WindowObj;
 VAR solarSystem : ImageObj;
 VAR library : GraphicLibObj;

 BEGIN
 NEW(parentWindow);
 { create a window }
 ASK parentWindow TO Draw();
 { bring it up on the screen }

 NEW(library);
 { create a library }
 ASK library TO ReadFromFile("Example2.sg2");
 { read the editor file }
 NEW(solarSystem);
 ASK solarSystem TO LoadFromLibrary(library,
 "SOLAR SYSTEM");
 { get a "SOLAR SYSTEM" from library }

 ASK parentWindow TO AddGraphic(solarSystem);
 { add the solar system to the window }

 ASK solarSystem TO Draw();
 { draw the entire solar system }
 LOOP

Chapter 5: Images

71

 { wait forever }
 HandleEvents(WaitForEvent);
 END LOOP;
 END MODULE.

5.4 Coordinate Systems

When animating graphics, you must have a knowledge of the coordinate system in which
the graphical objects live in order to specify their new positions. In MODSIM III, a
coordinate system can be attached to any image, and the CHILDREN of the image live
within this system. This means that all real world coordinates of an image's children must
be specified in this coordinate system. Therefore, the position of any image in the image
tree is always specified as the coordinates of its center point in PARENT coordinate
system units. The center of any image is always point (0.0, 0.0). Coordinate
systems are specified for an image using the SetWorld method. If no world is set for an
image, it will use its parent's world coordinate system. If none of the ancestors of an
image contain a coordinate system, a default system is used. In this system (WorldXlo,
WorldYlo) is the lower left-hand corner of the world, and (WorldXhi,
WorldYhi) is the upper right-hand corner. (These constants are found in the library
module GTypes.)

For example, suppose we wanted the positions of the planets within the solar system to be
specified in terms of light minutes. We also want the solar system to include Mars as the
furthest planet out, with the Sun as the solar system’s center. The world boundaries
would then be the distance of Mars from the Sun. This is illustrated by the following
block of code:
 ...
 ASK solarSystem TO SetWorld(-12.662, -12.662,
 12.662, 12.662);
 ASK sun TO SetTranslation(0.0, 0.0);
 { sun is center of solar system }
 ASK mercury TO SetTranslation(3.217, 0.0);
 { merc. dist. from sun }
 ASK venus TO SetTranslation(6.011, 0.0);
 { venus dist. from sun }
 ASK earth TO SetTranslation(8.310, 0.0);
 { earth dist. from sun }
 ASK mars TO SetTranslation(12.662, 0.0);
 { mars dist. from sun }

 { ... assume no world is set for solar system
 parent --> use default world }

SIMGRAPHICS II User's Manual

72

 ...
 ASK solarSystem TO
 SetTranslation(WorldXlo / 2.0, WorldYlo / 2.0);
 ...

By default, the physical size of an image's world coordinate space is the largest centered
square of the window in which the image lies. An important note is that when a
transformation (scale, rotation, or translation) is applied to an image, its coordinate
system's physical size and position with respect to the window is the ONLY thing that
actually changes. This means that none of the real world points of an image actually
change when it is scaled or rotated, but it physically changes size and position because its
entire coordinate system has physically changed in size and position If the solar system
image in the above example were to be scaled by (0.5, 0.5), the distance of the earth from
the sun would remain at 8.31, but the solar system's world coordinate space would now
only occupy one quarter the size of the window.

Title:
Creator:
CreationDate:

Figure 5-5. Solar System Coordinate System

5.5 Deriving from Images

You may derive new objects from ImageObj, however you should not use multiple
inheritance to drive from the two graphical objects such as ImageObj and
PolygonObj or ButtonObj and ImageObj. The most common case for deriving
from ImageObj is to add additional fields and methods or to over ride the BeSelected
method to obtain notification when the user has clicked on it.

Chapter 5: Images

73

5.6 Detecting Image Selection

Often it is useful to enable a user to make a selection between a number of images. This
is done using the AcceptInput method and LastPicked field. Every graphical
object has a LastPicked field. If LastPicked <> NILOBJ, it holds the highest
descendant which is Selectable, which has a non-0 Id or non-null , and which was
last clicked upon, or had a descendant last clicked upon. The method waits until such a
descendant is clicked upon, and then returns LastPicked. As an example, assume
PanelImage contains two objects with "Truck" and "Car"; assume further that
"Car" contains two images, "Body" and "Wheel". Then the following code waits for
a mouse click on a descendant of PanelImage and determines exactly what was clicked
upon:

 selectedItem := ASK PanelImage TO AcceptInput();
 CASE ASK selectedItem ReferenceName
 WHEN "Truck"
 ...
 WHEN "Car" :
 selectedItem2 := ASK selectedItem LastPicked;
 CASE ASK selectedItem2 ReferenceName

 WHEN "Body":
 ...

 WHEN "Wheel":
 ...

 OTHERWISE
 END CASE;

If you need to detect image selection while a simulation is running you must override its
BeSelected method and insert the code you want to execute when the image is
selected. Within BeSelected you can use the methods ClickButton() and
ClickIsSecond() to find out the button used to select, and whether or not this is a
Double Click:

 OBJECT Truck
 ASK METHOD BeSelected
 BEGIN
 ...
 END METHOD
 END OBJECT.

The BeSelected method will be called automatically when the user clicks on the
graphical object.

SIMGRAPHICS II User's Manual

74

5.7 Getting Image Bounding Boxes

To aid in properly positioning and aligning images, the new ImageObj method can be
used to obtain the bounding box in raw Normalized Display Coordinates (NDC). This is
the same coordinate system used for the coordinates in the WindowObj, MouseMove
and MouseClick callback methods. To convert these coordinates to a coordinate
system defined by another image, use the GProcs module procedure "Transform",
specifying NILOBJ for the "from" image:

ASK image TO GetBoundingBox(xlo, ylo, xhi, yhi);
Transform(NILOBJ, image.Parent, xlo,ylo, txlo, tylo);
Transform(NILOBJ, image.Parent, xli, yhi, txhi, tyhi);

5.8 Bitmapped Graphics

SIMGRAPHICS provides integrated vector and raster capabilities . Raster format files can
be displayed as backgrounds, or icons, and combined with vector icons. The raster format
supported is that of the one most commonly used on the target platform. On X Windows
based workstations, the xwd format is used; on machines running Microsoft Wi ndows, the
.BMP format is used.

A SnapShotObj is used to display bitmaps. The bitmap to display is loaded from the
file named in the File field of a SnapShotObj; more accurately, the bitmap is loaded
from the file whose name is formed by concatenating File with a system dependent
extension.

A SnapShotObj also supports (optional) bitmap masks, which are used for showing
bitmaps that allow parts of the background to shine through. A mask bitmap is the same
shape as the real bitmap, but contains only two colors: pixels colored with the minimum
color index denote pixels where the background should show through, and all other pixels
have the maximum color index. After loading a bitmap from File, the SnapShotObj
looks for a file named File+"m"; if it finds one, its assumes that it contains a mask
bitmap for the bitmap in File. The bitmap is not actually read in until it is asked to
Draw.

The mask bitmap is used to define which areas of the bitmap should be displayed. If there
is not a mask bitmap, the entire rectangle of the bitmap is used. Masks can be used to
produce irregular shaped renderings of bitmaps, including holes.

A SnapShotObj can be defined as "Scalable". If it is scalable, it can grow and shrink
like any ImageObj. Non-scalable bitmaps always appear at the same size and shape. A
SnapShotObj never changes its appearance when asked to Rotate. SnapShotObj
behaves like other primitives such as polygons, polylines, circles, etc., except that it ca nnot
be rotated and it scales more slowly than the vector primitives. SnapShotObj's may be
added to image hierarchies along with vector primitives.

To create a bitmap that can be used by a SnapShotObj, consult the platform-specific
release notes for the supported formats. Any scanning or painting package that can

Chapter 5: Images

75

generate an appropriate format may be used to create a bitmap file. Another possibility is
to draw an object using SIMDRAW. SIMDRAW can create an appropriate bitmap file
from any picture you can draw by selecting File/Export Raster menu option. A final
possibility is to write a MODSIM program that creates an ImageObj; then the
WriteSnapShot() method can be used to generate an appropriate bitmap file.

The following is an example of reading in a scalable bitmap called "coast" and displaying
it. The bitmap is scaled to 1/2 the size of the window:

FROM GTypes IMPORT PointArrayType;
FROM GSnap IMPORT SnapShotObj;

PROCEDURE ReadBitmap(IN window : WindowObj);

VAR
 bitmap : SnapShotObj
 points : PointArrayType;

BEGIN
 ...

 NEW(bitmap);
 ASK window TO AddGraphic(bitmap);
 ASK bitmap TO SetFile("coast")'
 NEW(points, 0..1);
 points[0] .x := 0.0;
 points[0] .y := 0.0;
 points[1] .x := 16384.0; (* 1/2 the window size in

ndc's*)
 points[1] .y := 16384.0;
 ASK bitmap TO SetPoints(points);
 DISPOSE(points);
 ASK bitmap TO Draw;

 ...

END PROCEDURE;

5.8.1 Zooming into Bitmaps

You must be careful when scaling bitmaps, since they can easily consume large amounts of
memory. This problem becomes apparent if you zoom into a section of a bitmap. The
scaling operation could produce an enormous bitmap which would take a long time to
render or would crash the program because of a lack of memory.

You may use the SetPortion method of the SnapShotObj to limit the area of the
bitmap that is drawn. This is useful when zooming to prevent the entire bitmap from b eing

SIMGRAPHICS II User's Manual

76

scaled.

5.8.2 Bitmap Alignment (Centering)

Normally, the position of a SnapShotObj object is specified with respect to its center
point at the lower left hand corner. The center point can be changed through the
SetAlignment method. For example, to center a non-scalable bitmap in the window
(assuming you are using the "default" coordinate system), use the following code:

 . . .
ASK snapShot TO SetAlignment(SnapHorizCentered, SnapVertMiddle);
ASK snapShot TO SetTranslation(WorldXhi/2.0, WorldYhi/2.0);
 . . .

5.8.3 Converting Images into PostScript

Any ImageObj object can be converted to EPS PostScript using either SIMDRAW, or
program code. ImageObj objects can be converted to PostScript using SIMDRAW. To
do this, first save the object you wish to convert to a SIMGRAPHICS II library file using
the SaveToLibrary and WriteToFile methods described in Chapter 3. Then load
the image into the SIMDRAW Image Editor and use the File/Export menu option. The
following options are available for conversion:

1. Use built-in PostScript fonts instead of SIMGRAPHICS II fonts.

2. Specify the number of copies to print.

3. Show or not show the background.

4. Set background color to RGB (values between 0.0 and 100.0).

5. Draw a window border and generate a title.

6. Specify width and height of window in inches.

7. Position image window on paper in inches from the lower left of the page.

8. Convert bitmaps using color or greyscale pixel values.

A specific image or the entire contents of a window can be converted into PostScript
using program code through the EPSObj object found the module GEPS. Use the
SetFile method to set the name of the EPS file you wish to write to. Use other ‘set’
methods to set up conversion options. Pass either a WindowObj or ImageObj object
to the Convert method to create the EPS postscript file. The following code could be
used to perform conversion:

VAR
 eps : EPSObj;
 window : WindowObj;
...

Chapter 5: Images

77

NEW(eps);
ASK eps TO SetFile(“tempfile.eps”);
ASK eps TO Convert(window);

The EPSObj object provides the following ASK methods:

ASK METHOD SetFile(IN pathName : STRING);
Sets the name of the file which will be opened. If no file name is set,
OutputLine()will do nothing.

ASK METHOD Convert(IN graphic : GraphicVObj)
Converts graphic into postscript. At this point the file is opened for writing (if
File <> "") .

ASK METHOD OutputLine(IN pstring : STRING)
This method is called for each postscript line that is generated. The default
behavior of this method is to write the line out to the file.

ASK METHOD SetCopies(IN PageCount : INTEGER)
Sets number of copies to print.

ASK METHOD SetSize(IN size : REAL)
Sets size of output copy in inches. It is always square. Equivalent to SetSizes
(size, size).

ASK METHOD SetSizes(IN width, height : REAL)
Sets output area of page in inches. This is a new routine to support non-square
window output and enable full page use.

ASK METHOD SetOrientation(IN orient : PSOrientationType)
Sets orientation of image on page. This is a new routine to support non-square
window output and enables full page use. Landscape orientation will cause the X-
axis of the image to be aligned along the long dimension of the paper (the same
direction specified by the SetSizes height argument). Default is Portrait.

ASK METHOD SetSizeToFit(IN flag : BOOLEAN)
Allows image to be scaled to fit drawing area. Supports non-square window
output and enables full page use. If set TRUE, the ImageObj or WindowObj
graphics will be scaled (by the same amount in both x and y) to fit in the specified
output area. See SetSizes.

ASK METHOD SetOffset(IN x, y : REAL)
Sets offset from lower left corner of page in inches.

Note: Width refers to the default x direction (narrow dimension of paper)
REGARDLESS of the orientation of the image. See SetOrientation.

SIMGRAPHICS II User's Manual

78

ASK METHOD SetBackground(IN r, g, b : REAL)
Sets background color for the image that is printed. Notice that printed pages are
usually white, while SG2 application windows rarely are. If the application's text
was white, for instance, it would be invisible on a white page. Use this method to
change the background to a contrasting color (such as black).

ASK METHOD SetShowWindow(IN show : BOOLEAN)
If show = TRUE displays a window around the printed image.

ASK METHOD SetWindowName(IN name : STRING)
Displays name at top of image if SetShowWindow = TRUE.

ASK METHOD SetPSFont(IN UseBuiltInFont : BOOLEAN)
If SetFont = TRUE substitutes PostScript fonts for stroked SG2 fonts.
PostScript fonts are always substituted for System Text fonts.

ASK METHOD SetPSTarget(IN target : PSTargetType)
Specifies how SnapShotObjs are encoded into PostScript. Generates
 SnapShotObj Postscript for Level 1 black and white (PSTGrey), color/Level
2 (PSTColor), or portable format for both (PSTBoth). Default is PSTBoth.
Note that the portable format will result in a larger file than the others; the
black/white/grey format is the smallest.

79

Chapter 6: Dynamic Objects

MODSIM III provides for a connection between graphical objects and simulation.
Objects that form this connection are called dynamic objects. All dynamic objects inherit
the properties of ImageObj (which inherits properties of GraphicVObj). Some of
the most useful inherited methods are summarized below:

ASK METHOD Draw()
Draws a graphical object.

ASK METHOD Erase()
Erases a graphical object.

ASK METHOD DisplayAt(IN x,y REAL)
Displays a graphical object at (x,y).

ASK METHOD LoadFromLibrary(IN library : GraphicLibObj; IN
name : STRING)

Loads the description of a graphical object from a library.

ASK METHOD BeSelected()
Automatically invoked when object is clicked on. Can be overridden to receive
asynchronous selection.

ASK METHOD AddGraphic(IN graphic : GraphicVObj)
Adds an object to the end of the set of graphical objects.

ASK METHOD RemoveThisGraphic(IN graphic : GraphicVObj)
Removes a specific object from the set of graphical objects.

ASK METHOD Descendant(IN refName : STRING; IN id :
INTEGER)

Returns the object in the set with reference name refName and I.D. id.
Recursively searches through sets of objects in set.

Note: These are only some of the methods inherited by dynamic objects. Other methods
are outlined in chapter 15.

6.1 DynamicObj
There are several objects which provide access to the built-in simulation features of

SIMGRAPHICS II User's Manual

80

Chapter 7: Graphs

81

MODSIM III. These objects are called dynamic objects and are derived from a common
object called a DynamicObj.

SIMGRAPHICS II User's Manual

82

The three methods of all dynamic objects are StartMotion, StopMotion and
DynamicUpdate. A StartMotion call will cause the object to be periodically
updated by the simulation timing routine. The StopMotion method will stop the
object from being updated. The DynamicUpdate method is called by the timing
mechanism to update the state of the object. It takes as arguments the current simulation
time, and the elapsed simulation time since the last call. You can override this method to
perform some appropriate action.

6.2 DynImageObj

A DynImageObj object combines the functionality of an ImageObj with that of a
DynamicObj. It may be moved, scaled and rotated with respect to simulation time. It
inherits the properties of three other objects: MovingObj, RotatingObj, and
ScalingObj. The functions of these objects (and hence a DynImageObj) are as
follows:

MovingObj

ASK METHOD SetCourse(IN course : REAL);
Sets direction which the object will travel. The course is specified in radians
measured clockwise from the positive x-axis of the world coordinate system.

ASK METHOD SetSpeed(IN speed : REAL);
Sets the speed of the object in world coordinate units per time unit.

TELL METHOD MoveTo(IN XDestination, YDestination : REAL);
Moves the object to a specific point. The method finishes when the object arrives
at the destination. The object's speed should be set before invoking MoveTo.

TELL METHOD FollowPath(IN path : PointArrayType);
Moves the object along a path defined by the array of points. This method
finishes when the object has arrived at the last point in the array. Use
Interrupt to stop it from continuing.

RotatingObj

ASK METHOD SetRotationSpeed(IN rotationSpeed : REAL);
Sets the speed of rotation in radians per second. Negative values cause clockwise
rotation.

TELL METHOD RotateTo(IN theta : REAL);
Waits for an object to rotate to theta radians using RotationSpeed. The
rotation speed should be set before invoking this method.

Chapter 7: Graphs

83

ScalingObj

ASK METHOD SetScaleSpeed(IN scaleSpeed : REAL);
Sets the amount that is added to an objects scaling factor every time unit. For
example, with a scale speed of 1.0, an object will become twice as large after 1
time unit, 3 times as large after 2 time units, etc.

TELL METHOD ScaleTo(IN xScale, yScale : REAL);
Waits for an object to scale to 'xScale, yScale' using scaleSpeed. The
scale speed should be set before invoking this method.

Note: DynamicObj, MovingObj, RotatingObj, and ScalingObj are not
graphical objects and cannot be displayed. Use a "DynImageObj" object which
inherits all functionality of these objects.

Animating a DynImageObj can be done in one of two ways. One way is to set the
course and speed of the object and ask it to StartMotion. This will cause it to move
with respect to these attribute settings indefinitely. Another way is to TELL or WAIT
FOR the object to MoveTo, ScaleTo or RotateTo a destination. These methods
elapse simulated time and finish when the object has arrived at its destination.

6.3 DynClockVObj

Objects derived from DynClockVObj (DynAClockObj and DynDClockObj) are
used to display simulated time. As a default, elapsed simulation time is displayed as
hours on the clock. The method SetTimeScale can be used to specify the number of
clock hours per unit of simulated time.

A dynamic clock must be asked to StartMotion() before it will show simulation
time. The following code sets up a dynamic clock that was named Analog Clock in
the editor:

...
VAR
 dynclock : DynAClockObj;
 window : WindowObj;
 library : GraphicLibObj;
...
NEW(dynclock);
ASK dynclock TO LoadFromLibrary(library, "Analog Clock");
ASK window TO AddGraphic(dynclock);
ASK dynclock TO StartMotion;
...
StartSimulation;
...

SIMGRAPHICS II User's Manual

84

6.4 Time Scaling

When using animated graphics within a simulation, simulation time elapsed in a WAIT
statement must also elapse real time. The global variable Timescale found in module
SimMod specifies the number of real seconds that will pass for each unit of simulation
time. Its default value is 1.0.

Note: When the first graphical object is created, this variable is initialized to 1.0. Be
sure to set Timescale after creating the first graphical object.

6.5 Example of a Small Graphical Simulation

The following example creates a clock to display simulation time, and moves a truck
image to the center of the window using the MoveTo method:

MAIN MODULE Example6;

FROM Animate IMPORT DynImageObj, DynAClockObj;
FROM Window IMPORT WindowObj;
FROM Graphic IMPORT GraphicLibObj;
FROM SimMod IMPORT StartSimulation; Timescale;
VAR
 truck : DynImageObj;
 clock : DynAClockObj;
 window : WindowObj;
 lib : GraphicLibObj;

BEGIN
 { create objects }
 NEW(window);
 NEW(lib);
 NEW(truck);
 NEW(clock);

 { load in defs. of objects }
 ASK lib TO ReadFromFile("Example6.sg2");
 ASK truck TO LoadFromLibrary(lib, "Truck");
 ASK clock TO LoadFromLibrary(lib, "Clock");

 { add objects to the window }
 ASK window TO AddGraphic(truck);
 ASK window TO AddGraphic(clock);
 ASK window TO Draw;

Chapter 7: Graphs

85

 { start the clock's motion }
 ASK clock TO StartMotion;

 { set speed of truck }
 ASK truck TO SetSpeed(1000.0);
 { move truck to window center }
 TELL truck TO MoveTo(16384.0, 16384.0);

 { two seconds for every time unit }
 Timescale := 2.0;

 { start animation }
 StartSimulation;

 END MODULE.

6.6 Deriving Objects from DynImageObj

There is a general problem of allowing the methods of an ImageObj to be overridden
when the Image has been created by SIMDRAW. You may need to create your own
object derived from some graphical object, but you need your new object to have all of
the information set in SIMDRAW. This is accomplished using the Associate()
method. The Associate() method copies all of the data set by SIMDRAW into the
user defined object. It will also automatically put your object into the image tree at the
time a LoadFromLibrary is performed.

TYPE
 TurretObj = OBJECT(DynImageObj)
 TELL METHOD PointTo(IN angle : DegreeType);
 END OBJECT;

 TankObj = OBJECT(DynImageObj)
 TELL METHOD Fire;
 END OBJECT;

{ Assume the turret made in SIMDRAW has reference name
"Turret" and id 0, Also assume it is a subgouping
attached to a "TANK" }

VAR
 turret : TurretObj;
 tank : TankObj;
 ...

SIMGRAPHICS II User's Manual

86

 NEW(tank);
 NEW(turret);
 ASK tank TO Associate(turret, "Turret", 0);
 ASK tank TO LoadFromLibrary(library, "TANK");

{ My 'TurretObj' object will now be automatically put
into the image tree, and have all the graphical
attributes set up in the editor. }

This is the mechanism used to substitute user defined images for images created by
SIMDRAW. All of the attributes and child images of the old image are copied to the
new image, and then the old image is disposed of.

87

Chapter 7: Graphs

In SIMGRAPHICS II, graph objects are used to graphically display a dynamically
changing value or set of values. The generic GraphVObj object is used to refer to a
graph object. There are a number of objects derived from GraphVObj and a variety of
ways that data can be displayed. A set of data can be displayed using a piechart or a 2-D
chart. Single values can be displayed using a dial, level meter or digital display, and time
can be shown with a clock. A GraphVObj has the following properties:

• Construction—A graph is built using SIMDRAW.

• Automatic rescaling—2-D graphs, dials and level meters are rescaled
automatically if one of the values in its data sets exceeds its range.

• Easy updating—If a new value is set in a graph, the Draw method will do
whatever is necessary to redisplay this value. Because all graphs are derived from
ImageObj, any operation that can be performed on an image can also be
performed on a graph.

7.1 Objects Derived from GraphVObj

These are the presentation graphics objects:

GraphVObj — Generic object meaning any graph type.

ChartObj — A chart containing a data plot, legends, and titling.

ClockVObj — A generic object describing a clock.

AnalogClockObj — A graphical display of an analog clock.

DigitalClockObj — A graphical display of a digital clock.

PiechartObj — A piechart containing slices, legends, and titling.

MeterVObj — A generic object for any graphical display of a single value of type
REAL.

DialObj — A graphical display of an analog dial.

DigitalDisplayObj — A simple display of a single value.

LevelMeterObj — A graphical display of a level meter.

TextDisplayObj — A graphical display of a text string.

The class inheritance tree for MODSIM III presentation graphics looks like this:

SIMGRAPHICS II User’s Manual

88

GraphVObj

ChartObj ClockVObj MeterVObj PieChartObj

DigitalClockObj AnalogClockObj DialObj LevelMeterObj DigitalDisplayObj TextDisplayObj

DynDClockObj DynAClockObj

Figure 7-1. Inheritance Tree for Presentation Graphics

7.2 Creating and Using Graphs

The above types of graphs are created using SIMDRAW. Since a GraphVObj is
inherited from ImageObj, all operations that can be performed upon an image can also
be performed on a graph. Therefore, loading a graph from a library is done in the same
manner as any image. For example, if you wanted to get a dial that was given the name
"Fuel Gauge" in SIMDRAW, the following code would be used:

 VAR library : GraphicLibObj;
 VAR fuelGauge : DialObj;
 ...
 NEW(library);
 ASK library TO ReadFromFile("graphs.sg2");
 NEW(fuelGauge);
 ASK fuelGauge TO LoadFromLibrary(library,
 "Fuel Gauge");
 ...

If not set within SIMDRAW, the size of a graph can be set using the SetViewbox ask
method. Its arguments are width and height specified in parent coordinate space units .
To set the size of a dial to 10000.0 units wide by 10000.0 units tall:

 ...
 ASK dial TO SetViewbox(10000.0, 10000.0);
 ...

The position of the graph is set within SIMDRAW, but can be set at runtime in the same
manner that images are positioned, using the SetTranslation method:
 ...
 ASK fuelGauge TO SetTranslation(x,y);
 ...

Chapter 7: Graphs

89

SetTranslation sets the upper left corner for all graph types.

7.3 Description of Various Graph Objects

7.3.1 ChartObj

A chart is used to present a 2-D plot containing a number of data sets. It has a title for
itself, and for each of the axes of its 2-D plot. It also (optionally) contains legends for
each of the data sets within its 2-D plot. Within SIMDRAW you can specify whether the
2-D plot is a trace plot or a simple plot. You also specify how each of the data sets is to
be represented.

Title:
Creator:
CreationDate:

Figure 7-2. 2-D Plot

The Plot method is used to plot a point within one of the data sets in the chart. The
number of the data set to plot and the x and y coordinates are given to the method. If the
Y value plotted extends beyond the Y-axis boundaries, that axis is automatically rescaled.
The plot's X-axis is rescaled only if that plot is a trace plot. For example, to see y = 50.0
plotted at x = 20.0 within data set '1' the following code is used:
 ...
 ASK chart TO Plot(1, 20.0, 50.0);
 ...

A chart can also be plotted with the SetCoordinate method. Using this method, the
change to the graph is not made visually apparent until it is asked to Draw. Therefore
multiple points can be plotted without seeing the effect until a Draw is done.

A chart can optionally contain legends for each of the datasets. The name used in the
legend is the name given to the data set within SIMDRAW.

The data sets contained in the 2-D plot can be represented as follows:

SIMGRAPHICS II User’s Manual

90

Histogram—Used to plot a fixed number of values. A plotted value or data cell is
shown using a rectangle. Each rectangle spans across adjacent X-axis tick marks.
Therefore, the width of each data cell is exactly the X-axis tick mark interval.

Bar chart—This data set also contains a fixed number of cells. Each bar is a recta ngle
centered directly over an X-axis tick mark. When a coordinate is plotted, the bar
nearest to the given x coordinate is modified to reflect the magnitude of the given y
coordinate.

Discrete surface—A surface chart data set contains a fixed number of cells. A series
of polygons or lines is used to show the entire data set as a surface. Each point is
plotted directly over each x-axis tick mark.

Continuous Surface—A simple plot has a variable number of cells. Data is always
added to this data set; in other words data cells are never replotted as in the above
representations. This representation can be useful in post-processing a large amount of
data when every piece of the data must be seen somewhere in the plot. Data sets
shown in a trace plot are always represented in this fashion.

Plot stacking is useful when multiple sets with approximately the same values are
plotted, where they would tend to obscure each other, or when it's desirable to present
each data set value in relation to the sum of all data set values for a given cell in the
manner of a pie chart. Fixed width data sets with the same representation can be displayed
in stacked form, where the values plotted for each data set are added to the sum of the
previously plotted values. The data sets are plotted from the bottom up, in order of
increasing data set number.
For example, suppose we have two data sets plotted using a bar chart representation,
whose first cell values are 1 and 3, respectively. If stacking is off, the second data set
bar would cover the first data set bar completely. With stacking on, the first data set
value is represented as a bar extending from 0 to 1 and the second data set value is plotted
as a bar extending above the first from 1 to 4.

Data sets of the histogram and bar chart variety can be displayed side by side. In this case,
individual bars and rectangles are made thin enough to allow room for bars and rectangles
from the other datasets. Therefore, all data sets of the same representation can be seen
within a single cell. Laying data sets side by side can be useful because no data sets are
obscured.

A value plotted in a data set can be retrieved using the ChartObj method
Y(datasetnum, x). Given a data set number and an x coordinate, the y value plo tted
at that coordinate is returned. If the representation of the data set is of the simple plot
variety, linear interpolation is used to get the exact y value shown at the given x value.
Suppose a user wanted to know what was plotted at x=20.0 in data set 2:

Chapter 7: Graphs

91

 VAR yval : REAL;
 ...
 yval := ASK chart Y(2, 20.0);
 ...

Another property that charts have is the ability to label key parts of their 2-D plot. Labels
will automatically move with the rest of the plotted data when the graph is rescaled.
Labeling is done using the PlotLabel method. This takes an x,y coordinate and an
object as the label. For example, suppose you want to label the point (20.0, 30.0) with the
string "<-- Peak Value". You also want this label to be rotated 45 degrees and the
"<" character in the label to rest over the (20.0, 30.0) point. The following code would
accomplish this:

 VAR label : TextObj;
 VAR chart : ChartObj;
 ...
 NEW(label);
 ASK label TO SetText("<— Peak Value");
 ASK label TO SetAlignment(HorizLeft, VertMiddle);
 ASK label TO SetRotation(pi / 4.0);
 ASK chart TO PlotLabel(label, 20.0, 30.0);

Occasionally, it may be necessary to change some of the attributes of a ChartObj (e.g.
Intervals, X-axis minimum, Y-axis minimum) to fit the set of data that will be plotted.
There are several methods of ChartObj that can do this:

ASK METHOD SetRanges(IN xmin, xmax, ymin, ymax : REAL);
Sets the maximum and minimum values shown on the ends of the axes of a
ChartObj.

ASK METHOD SetIntervals(IN xinterval, yinterval : REAL);
Sets the X-axis and Y-axis tick mark intervals. Also sets the X-axis bar width
interval.

ASK METHOD SetNumIntervals(IN xnuminterval,
 ynuminterval : REAL);
Sets the X-axis and Y-axis numbering intervals.

ASK METHOD SetGridIntervals(IN xgridinterval,
 ygridinterval : REAL);
Sets the X-axis and Y-axis grid line intervals.

ASK METHOD SetIntercepts(IN xintercept, yintercept :
REAL);
Sets the axis intercepts. xintercept is the point along the X-axis where the
Y-axis crosses over. yintercept is the point where the X-axis crosses over.

SIMGRAPHICS II User’s Manual

92

Note: The above methods should only be called AFTER a chart has been loaded in from a
graphic library (e.g. the LoadFromLibrary method). Refer to paragraph 7.7 for
more information concerning programmatic setting of graph attributes.

7.3.2 PiechartObj

A PiechartObj is a graph containing a piechart, a title, and legends for the pie slices.
Each slice in the pie shows a value as a percentage of the sum of all the values.

Title:
Creator:
CreationDate:

Figure 7-3. Pie Chart

The slices in a pie chart are numbered starting with '1'. The numbering of slices begins at
the 3:00 position with respect to the pie, and continues in a counter-clockwise direction.
The DisplaySlice method is used to set the value of a pie slice given its number. The
percentage value of the slice is automatically computed and displayed in the legend for the
pie slice. For example, to change the value of slice number '2' to '57.0':
 ...
 ASK piechart TO DisplaySlice(2, 57.0);
 ...

7.3.3 ClockVObj

A ClockVObj is a generic object describing a clock. Clocks are either analog or digital.
Time is specified in hours, minutes, and seconds. The time value seen within a clock is
bounded by the attributes MaxHours, MinutesPerHour and SecondsPerMinute
(set within SIMDRAW). You can, however, set the clock to a time value that goes past
one or more of these boundaries. If you do, your value will be rolled over to the next
highest place. For example, if you specified a time value of 120 seconds to a clock with
the SecondsPerMinute field set to 60, the clock would display 2:00. The time value
displayed in a clock is specified by the DisplayTime method:

Chapter 7: Graphs

93

 ...
 ASK clock TO DisplayTime(6, 45, 30);
 { set time to 6:45:30 (h:m:s) }
 ...

Title:
Creator:
CreationDate:

Figure 7-4. Digital Clock

Title:
Creator:
CreationDate:

Figure 7-5. Analog Clock

A DigitalClockObj is a graphical display of a digital clock. It is shown by a box
containing a readout of the time displayed in “hours:minutes:seconds” format.

An AnalogClockObj is a graphical display of an analog clock. Like a conventional
clock it has hour, minute and second hands.

If you are using the clock with a simulation you can use a DynAClockObj or
DynDClockObj instead. These dynamic clock objects are automatically updated as
simulation time advances. See paragraph 6.3 for more details.

7.3.4 MeterVObj

A MeterVObj is a generic object used to represent a single real value. A meter can be a
dial, level meter, or digital display. All meters have a Max and Min field that specify their
range. They also have a ScaleFactor (set within SIMDRAW). The value seen in the
meter is actually the meter's value (set by the user) multiplied by its scale factor. This
value is set using the DisplayValue method. Suppose you wanted to graphically
display the value 100.0:

SIMGRAPHICS II User’s Manual

94

 VAR meter : MeterVObj;
 ...
 ASK meter TO DisplayValue(100.0);
 ...

MeterVObjs have a method called SetRange, which sets the Min and Max fields for
the meter.

One of the meter objects is a DialObj; this is a graphical display of a dial. It can have
numbering on the inside or outside.

Title:
Creator:
CreationDate:

Figure 7-6. Dial

Title:
Creator:
CreationDate:

Figure 7-7. Level Meter

DialObjs have methods SetBounds, SetNumOutside, and SetRange.
SetBounds sets the position in degrees of the maximum and minimum values on the
dial. MinTheta and MaxTheta are integer fields that specify the minimum and
maximum angular positions given in degrees.

SetNumOutside sets whether numbering will be outside the dial. NumOutside is a
Boolean field that is TRUE if numbering is outside the face of the dial, and false,
otherwise. The default is FALSE.

Chapter 7: Graphs

95

SetRange is inherited from MeterVObj.

Another meter is a LevelMeterObj. A level meter is a small rectangular 1-D graph
containing a bar whose height represents the value being displayed.

LevelMeterObj has a method SetGridLines, which turns grid lines on and off. If
the Boolean variable Gridlines is TRUE, grid lines are turned on, otherwise they are
off.

SetRange is inherited from MeterVObj.

A DigitalDisplayObj is another meter type. This is a simple box with a title
containing the value. The FieldWidth attribute of the digital display specifies the total
number of spaces that the value will occupy (including decimal point and fractional part).
The Precision attribute specifies the number of decimal places displayed.
SetFieldWidth sets the number of spaces in the box for the value. SetPrecision
sets the number of spaces allowed for any fractional part.

Title:
Creator:
CreationDate:

Figure 7-8. Digital Display

7.3.5 TextDisplayObj

A TextDisplayObj contains a graphical display of a value of type STRING. It has a
title, and is composed of a simple box containing the string. The field width of a
text meter is set within SIMDRAW, and if the length of the string is greater than this field
width, then the string is truncated. This string is always aligned to the right end of the
box. It can also be set with the method SetFieldWidth. The contents of a text meter
are set by the DisplayText method. For example:

VAR textMeter : TextDisplayObj;
...
ASK textMeter TO DisplayText("Waiting For Input");
...

Title:
Creator:
CreationDate:

Figure 7-9. Text Display

SIMGRAPHICS II User’s Manual

96

7.4 Using Presentation Graphics to Monitor Variables

In MODSIM III a single variable or array of variables can be monitored using a
SIMGRAPHICS II presentation graph. A single variable can be monitored by a level
meter, dial, digital display, trace plot, chart, or pie chart. An array of variables can be
monitored by a chart or pie chart. STRING variables can be monitored by a text display.

Refer to the MODSIM III Reference Manual for detailed information on variable
monitors.

7.4.1 Single Variable Monitoring

Meters

A data point is used to monitor a single changing variable. There are three monitor
objects provided by the SIMGRAPHICS II runtime library for data points.
IDataPtMObj monitors an INTEGER, RDataPtMObj monitors a REAL, and
SDataPtMObj monitors a STRING variable. A variable must be defined as being left
monitored by one of these objects before its value can be shown on a graph. The
SetGraph method of these objects makes the association between a SIMGRAPHICS II
graph and the monitor object. The following code loads in a dial from a graphic library,
and uses it to show the monitored variable fuelRemaining:

 VAR
 fuelRemaining : LMONITORED REAL BY RDataPtMObj;
 dial : DialObj;
 ...
 NEW(dial);
 ASK dial TO LoadFromLibrary(graphicLib, "dial");
 ASK window TO AddGraphic(dial);
 ...
 ASK GETMONITOR(fuelRemaining, RDataPtMObj) TO
 SetGraph(dial);
 ...
 fuelRemaining := 12.0;

Histograms

A data point can also be monitored using a histogram. In this case a ChartObj object
must be used for the graph. This chart should be set up from the editor with the
representation Histogram, Bar Chart, or Surface Chart. In addition, the SetHistMode
method of the monitor object should be invoked with the parameter TRUE. The following
code monitors the variable queueLength with a histogram:

 VAR
 queueLength : LMONITORED INTEGER BY IDataPtMObj;

Chapter 7: Graphs

97

Title:
Creator:
CreationDate:

 histogram : ChartObj;
 ...
 NEW(histogram);
 ASK histogram TO LoadFromLibrary(graphicLib,
 "Queue Length");
 ...
 ASK GETMONITOR(queueLength, IDataPtMObj) TO
 SetGraph(histogram);
 ASK GETMONITOR(queueLength, IDataPtMObj) TO
 SetHistMode(TRUE);
 ...
 queueLength := 12;

Trace Plots

A single variable can be monitored with respect to time using a Trace plot. The Trace plot
is shown with a ChartObj object, which must be set up as a Time Trace Plot in
SIMDRAW. The monitoring is set up in the same fashion as dials, level meters and digital
displays. When the value of the monitored variable changes, a point is plotted to the
chart. The variable's new value is the y coordinate of the point and simulation time is the x
coordinate, thus producing a graph of the variable over time.

Figure 7-10. Trace Plot

7.4.2 Showing More Than One Variable in the Same Chart

In SIMGRAPHICS II, two or more monitored variables can be shown in the same chart.
This is accomplished with the SetDataSet method of the monitor object. This method
is given the data set number the variable is to be shown in. For example, to show the

SIMGRAPHICS II User’s Manual

98

monitored variables Position, Velocity and Acceleration in the same chart,
the following code would be used:

 VAR
 Position, Velocity, Acceleration : RDataPt;
 tracePlot : ChartObj;
 ...
 ASK GETMONITOR(Position, RDataPtMObj) TO
 SetGraph(tracePlot);
 ASK GETMONITOR(Velocity, RDataPtMObj) TO
 SetGraph(tracePlot);
 ASK GETMONITOR(Acceleration, RDataPtMObj) TO
 SetGraph(tracePlot);
 ASK GETMONITOR(Position, RDataPtMObj) TO
 SetDataSet(1);
 ASK GETMONITOR(Velocity, RDataPtMObj) TO
 SetDataSet(2);
 ASK GETMONITOR(Acceleration, RDataPtMObj) TO
 SetDataSet(3);
 ...

A single variable can also be shown as the bar on a chart, or a slice on a pie chart. The
SetElement method takes the bar or slice number of the chart that the data point is to
be shown in. Bars on a chart are numbered from 1 to N going left to right. Slices on a pie
chart are numbered from 1 to N going counter-clockwise starting at the 3:00 position in
the pie. The following code would be used to show the variables bostonSales,
detroitSales and chicagoSales in a piechart:

 VAR
 bostonSales, detroitSales, chicagoSales :
 RDataPt;
 piechart : PiechartObj;
 ...
 ASK GETMONITOR(bostonSales, RDataPtMObj) TO
 SetGraph(piechart);
 ASK GETMONITOR(detroitSales, RDataPtMObj) TO
 SetGraph(piechart);
 ASK GETMONITOR(chicagoSales, RDataPtMObj) TO
 SetGraph(piechart);
 ASK GETMONITOR(bostonSales, RDataPtMObj) TO
 SetElement(1);
 ASK GETMONITOR(detroitSales, RDataPtMObj) TO

Chapter 7: Graphs

99

 SetElement(2);
 ASK GETMONITOR(chicagoSales, RDataPtMObj) TO
 SetElement(3);
 ...

Variables of type STRING can be shown using a TextDisplayObj object. The
variable must be defined as being monitored by an SDataPtMObj. Setting up the
monitoring is the same as with other types of variables.

7.4.3 Showing Arrays of Variables Using Charts

An array of variables can be shown using a chart or pie chart. The array type must be of
type LMONITORED RDataSet BY RDataSetMObj for REAL arrays and of type
LMONITORED IDataSet BY IDataSetMObj for INTEGER arrays. Elements in
the array conform to either bars in a chart, or slices in a pie chart. The order of the array
element determines what slice or bar will show its value. The first element in the array is
shown by the first bar or slice in the chart, the second element by the second bar, etc. To
show the array valueArray with a chart, the following code could be used:

 From Graph IMPORT RDataSet, RDataSetMObj;

 VAR
 valueArray : LMONITORED RDataSet BY
 RDataSetMObj;
 chart : ChartObj;
 ...
 NEW(valueArray, 1..10);
 ASK GETMONITOR(valueArray, RDataSetMObj) TO
 SetGraph(chart);
 ...
 valueArray[3] := 27.0; {automatically updates
 chart}

Note: Definitions for DataPtMObj objects are found in the module 'Graph'. There are
also several predefined types provided in this module that may be useful in defining
monitored variables.

SIMGRAPHICS II User’s Manual

100

7.5 Graph Monitoring Table

MONITORING GRAPH MONITOR MONITOR
NEEDS OBJECTS OBJECTS METHODS

Single variable of type DigitalDisplayObj RDataPtMObj SetGraph
INTEGER or REAL DialObj IDataPtMObj

LevelMeterObj

Single variable of type TextDisplayObj SDataPtMObj SetGraph
STRING

Histogram of a single ChartObj RDataPtMObj SetGraph
variablle IDataPtMObj SetHistMode

Single variable plotted ChartObj (trace RDataPtMObj SetGraph
over time plot in editor) IDataPtMObj

Many single variables in ChartObj RDataPtMObj SetGraph
the same graph (each shown PiechartObj IDataPtMObj SetElement
as a bar or pie slice)

Histograms of 2 or more ChartObj RDataPtMObj SetGrap
variables in the same graph IDataPtMObj SetHistMode

 SetDataSet

2 or more variables plotted ChartObj (trace RDataPtMObj SetGraph
over time in the same graph plot in editor) IDataPtMObj SetDataSet

2 or more sets of many singleChartObj RDataPtMObj SetGraph
variables in the same graph IDataPtMObj SetDataSet
(each single variable shown SetElement
as a bar in a chart)

Array of variables of type ChartObj RDataSetMObj SetGraph
REAL or INTEGER PiechartObj IDataSetMObj

2 or more arrays of variables ChartObj RDataSetMObj SetGraph
of type REAL or INTEGER IDataSetMObj SetDataSet
on the same graph

7.6 Graph Example

Here is an example program using a chart:

 MAIN MODULE Example5;

 { This small program loads in a chart from a
 library, and plots a curve within it.

 We assume that the editor has created a chart
 named "Chart". This graph should have it's XMin

Chapter 7: Graphs

101

 at -2.0, XMax at 2.0, YMin at -8.0, and YMax at
 8.0, and have 2 data sets. These data sets
 should be of the 'simple plot' representation.
 It should be saved in "Example5.sg2" }

 FROM Window IMPORT WindowObj;
 FROM Graphic IMPORT GraphicLibObj;
 FROM Chart IMPORT ChartObj;
 FROM GProcs IMPORT HandleEvents;
 VAR
 window : WindowObj
 library : GraphicLibObj;
 chart : ChartObj;
 x : REAL;
 BEGIN
 { create a window and open it up }
 NEW(window);
 ASK window TO Draw();
 { read a "Example5.sg2" into a library, and
 get a chart called "Chart" }
 NEW(library);
 ASK library TO ReadFromFile("Example5.sg2");
 NEW(chart);
 ASK chart TO LoadFromLibrary(library, "Chart");
 { Add the chart to the window }
 ASK window TO AddGraphic(chart);

 { Plot the curve y = x^2 in dataset 1 and y =
 x^3 in data set 2 }
 x := -2.0;
 WHILE x <= 2.0
 ASK chart TO SetCoordinate(1, x, x*x);
 ASK chart TO SetCoordinate(2, x, x*x*x);
 x := x + 0.1;
 END WHILE;
 { Now 'see' the chart and the results of the
 plotting }
 ASK chart TO Draw();
 { wait }
 LOOP
 HandleEvents(TRUE);
 END LOOP;
 END MODULE.

SIMGRAPHICS II User’s Manual

102

7.7 Creating Graphs at Runtime

Using a set of provided ASK methods, a programmer can create any graph that can be
created by SIMDRAW. Fill styles, line styles, mark styles, colors, and fonts of graph
components can be specified. These components are identified in the enumerated type
GraphPartType found in the GTypes module. The ChartDataSet and
PieSlice parts must be used in conjunction with an integer identifying which data set
component to modify. The following methods can be used to program the appearance of
a graph.

7.7.1 Methods to Set the Color of a Graph Component

ASK METHOD SetPartColor
 (IN part : GraphPartType; IN dsid : INTEGER; IN

color : ColorType);
ASK METHOD SetPartRGBColor
 (IN part : GraphPartType; IN dsid : INTEGER; IN r,g,b

: PctType);

7.7.2 Methods to Set the Fill, Line, or Mark Styles of a Graph Component

ASK METHOD SetPartFillStyle
 (IN part : GraphPartType; IN dsid : INTEGER; IN fs :

FillStyleType);

ASK METHOD SetPartLineStyle
 (IN part : GraphPartType; IN dsid : INTEGER; IN ls :

LineStyleType;
 IN linePctWidth {range: 0 to 1} : REAL);

ASK METHOD SetPartMarkStyle
 (IN part : GraphPartType; IN dsid : INTEGER; IN ms :

MarkStyleType);

7.7.3 Methods to Set the Text Fonts of Graph Components

ASK METHOD SetPartTextFont
 (IN part : GraphPartType; IN dsid : INTEGER; IN font

: TextFontType);

ASK METHOD SetPartTextSysFont
 (IN part : GraphPartType; IN dsid : INTEGER;
 IN family : STRING; IN ptSize, weight, slant :

INTEGER);

Chapter 7: Graphs

103

7.7.4 Method to 'Hide' a Graph Component

ASK METHOD SetPartHidden
 (IN part : GraphPartType; IN dsid : INTEGER;

hiddenFlag : BOOLEAN);

7.7.5 Additional Methods for Programmatic Creation of a ClockVObj

The following methods are available for programmatic creation of a Clock:

ASK METHOD SetHandShowing
 (IN showHours, showMinutes, showSeconds : BOOLEAN);

Controls the display of the hour, minute, and second indicators. Default is TRUE
for displaying each indicator.

ASK METHOD SetHandScaling
 (IN hoursPerDay, minutesPerHour, secondsPerMinute :

 REAL);
Sets the number of hours in a day, the number of minutes in an hour, and the
number of seconds in a minute. The default values are 24, 60, and 60,
respectively.

ASK METHOD SetMaxHours (IN maxShown : REAL);
Sets the highest hour displayed on the clock (i.e. the number at the top of an
analog clock). The default value is 12.

ASK METHOD SetNumInterval (IN numHoursBetweenLabel :
REAL);
(AnalogClockObj only)

Sets the number of hours between consecutive numbering. The default value is 3.

ASK METHOD SetInterval (IN ticInterval : REAL);
(AnalogClockObj only)

Sets the tick marking interval in hours.

7.7.6 PieChartObj Methods

The following methods enable programmatic creation of a pie chart:

ASK METHOD AddSlice;
Adds a slice to the pie chart. The new slice will be the last slice in the order.

ASK METHOD RemoveSlice (IN sliceNumber : SliceRefType);
Removes a pie slice from the chart given its number (order). High numbered slices
will be consecutively renumbered.

SIMGRAPHICS II User’s Manual

104

ASK METHOD SetSliceTitle
 (IN sliceNumber : SliceRefType; IN sliceLegendText :

STRING);
Sets the text shown in the legend for a particular pie slice.

7.7.7 Methods for Programmatic Creation of a ChartObj

Generally speaking, charts are defined through the SetAxisField, SetOption, and
the SetDSOption. These methods accept enumerated type constants specifying which
particular field or option of the chart is to be set.

Data sets are added and removed with the AddDataSet and RemoveDataSet
methods. As before, a data set is specified by its ordinal number within the chart (an
integer ranging from 1 to the total number of data sets).

7.7.8 Setting Chart Options

The SetOption method given below turns on or off an option for the chart. The
options available are described by the ChartOptionType enumeration.

ASK METHOD SetOption(
 IN option : ChartOptionType; (* possible values

listed below *)
 IN optionOn : BOOLEAN);

ChartShowLegend
If TRUE, chart will show a legend below the plot area. Calling the SetDSTitle
method will set the data set description appearing in the legend. The default value is
FALSE.

ChartShowBox
If TRUE, numbering and tick marks will be forced to appear on the edges of the plot
area. For better visual reference, two extra axes will be drawn on both the top and
right sides of the plot area. The default value is FALSE.

ChartTimeTrace
Setting this option implies that the chart is a time trace plot. Whenever a variable
being monitored by the chart is modified, its new value is plotted along the Y-axis and
the current simulation time is plotted along the X-axis. (See the paragraph on si ngle
variable monitoring). The default value is FALSE.

ChartStacked
If TRUE, all discrete data sets will be stacked on top of each other. In other words,
the value plotted in a data cell is reflected as the height of the bar, not its top.
Therefore, stacking means that the bottom of a cell in data set n is equal to the top of
the same cell in data set n-1, i.e. higher numbered data sets are stacked onto the lower
numbered ones. The default value is FALSE.

Chapter 7: Graphs

105

ChartAdjacent
If TRUE, all bars mapping to the same physical cell in the plot area will be made
thinner, and shown side by side. This guarantees that any bar in a particular data cell
can not hide a shorter bar in any lower numbered data set. For this option to work
properly, all data sets should be set up with the same options. The default value is
FALSE.

ChartXTicsInside, ChartYTicsInside
These options set the tick mark alignment with respect to the axis lines for X and Y
axes. If TRUE, the bottom X-axis tick marks will be bottom justified, while top tics
are top justified. Left Y-axis ticks will be left justified, while right ticks are right
justified. The default values are FALSE.

ChartXTicsOutside, ChartYTicsOutSide
These options set the tick mark alignment with respect to the axis lines for X - and Y-
axes. If TRUE, the bottom X-axis tick marks will be top justified, while top ticks are
bottom justified. Left Y-axis ticks will be right justified, while right ticks are left
justified. If neither or both of Inside and outside options are set, then tick marks are
centered over the axis. The default values are FALSE.

ChartXGrid, ChartYGrid, ChartY2Grid
These options specify whether grid lines will be shown crossing the respective axis.
The default values are FALSE.

ChartRescaleX, ChartRescaleY, ChartRescaleY2
These options specify as to whether an axis will be re-numbered (scaled) when one of
the data points extends beyond its limit. Note that re -scaling will modify the tick
mark, numbering, and grid line intervals to maintain a similar visual representation of
the chart. If RescaleXOption is FALSE, data points falling beyond the limits of
the X-axis will be discarded. A data point whose Y value is out of range of a non re-
scaleable Y-axis is highlighted. The default value of these options is TRUE.

ChartCompressX
When this option is TRUE, re-scaling the X-axis will increase the coordinate area of
the chart enough to encompass the offending data point. As a result, existing data will
shrink in size. Setting the option to FALSE is equivalent to having data scrolled along
the X-axis during rescaling. In this case, data scrolled out of view will be di scarded.
The default value is FALSE.

7.7.9 Setting Chart Data Set Options

Data set options apply only to a individual data set. Values in the DSOptionType
enumeration specify the option to be changed. An option of a particular data set can be
modified only AFTER that data set has been added to the chart.

SIMGRAPHICS II User’s Manual

106

ASK METHOD SetDSOption(IN dsNum : DSRefType);
(* possible option's shown below *)
IN option : ChartDSOptionType;
IN optionOn : BOOLEAN);

ChartDSDiscrete
If TRUE, the data set is represented by a fixed number of data cells. The width of a
data cell is set with the SetDSInterval method. When a value is plotted to a
discrete data set, the data bar whose X-center point is closest to the given X-
coordinate will be modified. This type of data set can only accumulate as much data
as there are cells in the chart. If this option is FALSE, the data set is continuous and
will accumulate as much data as is plotted. In this case the value plotted will be the
exact point specified to SetCoordinate or Plot. The default value is TRUE.

ChartDSStatic
Applies to continuous data sets only. This option should be enabled if the data to be
plotted to the chart is known off-line (i.e. all data is to be plotted at the same time).
This will dramatically improve plotting time for charts showing large amounts of static
data. The default value is FALSE.

ChartDSSurface
Setting this option will show the data set as a continuous surface connecting
successive data points. Surfacing can be enabled for both discrete and continuous data
sets, (In the continuous case it should ALWAYS be enabled). The default value is
FALSE.

ChartDSCentered
Applies to discrete data sets only. If TRUE, the center point of the bar is equal to the
center point of the data cell. Generally, for histograms this option should be TRUE,
and for surface and bar charts it should be FALSE. Default value is TRUE.

ChartDSNarrow
Applies to discrete (non-surface) data sets only. Makes bars thinner so that gaps can
be seen in-between them. Should be TRUE for bar charts. The default value is
FALSE.

ChartDSY2Axis
If TRUE this data set will belong to the second (right) Y-axis. In this case, Y-
coordinate values passed to the SetCoordinate and Plot methods should fall
within the Y2 axis boundaries. If this option is FALSE for all data sets, then the right
Y-axis is not shown. The default value is FALSE.

ChartDSInterpolate
Applies to surface charts only. If TRUE, successive data points are connected by a
straight line. Otherwise, a horizontal line will fill the gap. This line is positioned
vertically at the leftmost data point. The default value of the option is TRUE.

Chapter 7: Graphs

107

ChartDSFill, ChartDSLine, ChartDSMark
These options determine which primitive types to use in showing the data set.
Usually, only the fill option is enabled for histograms and bar charts. The default
value for FillOption is TRUE, and for LineOption and MarkOption it is
FALSE.

7.7.10 Setting Chart Fields

The chart fields are values of type REAL defining various intervals and boundaries
pertaining to the axes. Numbering, tick mark and grid line intervals are expressed with
respect to the range implied by the axis boundaries. The item is not be displayed if the
interval for an item is zero. The SetAxisField method given below modifies a
particular field in the chart. The fields available are described by the ChartFieldType
enumeration.

ASK METHOD SetAxisField(
 IN field : ChartAxisFieldType; (* possible fields

described below *)
 IN fieldValue : REAL);

ChartXMin, ChartYMin, ChartY2Min, ChartXMax, ChartYMax, ChartY2Max
These are the boundaries of each axis. These values are displayed on the left and right
of the X-axis, and the top and bottom of both Y-axes.

ChartXInterval, ChartYInterval, ChartY2Interval
These fields are the tick mark intervals. The X-tick interval is used for the discrete
data set cell width if this value is zero.

ChartXMinorInterval, ChartYMinorInterval, ChartY2MinorInterval
These fields are for the smaller (minor) tick marks shown between the larger (major)
ticks. Generally speaking, the major interval should be a multiple of the minor.

ChartXNumInterval, ChartYNumInterval, ChartY2NumInterval
These fields specify the interval between successive numberings on an axis.

 ChartXGridInterval, ChartYGridInterval, ChartY2GridInterval,
These fields specify the interval between successive grid lines on an axis. Grid lines
are only shown if the appropriate option has been set to TRUE.

ChartXIntercept
Point along the X-axis where the Y-axis intersects.

ChartYIntercept
Point along the Y-axis where the X-axis intersects.

SIMGRAPHICS II User’s Manual

108

ChartX2Intercept
Point along the X-axis where the second (right) Y-axis intersects.

ChartXScale, ChartYScale, ChartY2Scale
These fields are the scale factors applied to the data. Coordinates passed to the
SetCoordinate and Plot methods will be multiplied by these factors before b eing
displayed on the chart. (However, the Y() method returns the original un-modified Y
coordinate value). Default values are 1.0.

7.7.11 Chart Components Listed in the 'GraphPartType' Enumeration

ChartTitle, ChartXTitle, ChartYTitle, ChartY2Title
Specifies one of the text string labels around the plot area on the chart face. Text font,
and color can be set.

ChartXAxis, ChartYAxis, ChartY2Axis
Refers to an axis including the axis line, and tick marks. Only the color attribute can be
set.

ChartXNumbering, ChartYNumbering, ChartY2Numbering
Refer to all numbers on an axis. Text font and color can be set.

ChartXGrid, ChartYGrid, ChartY2Grid
Refers to the grid line for a particular axis. Line style and color attributes can be set.

ChartBorder
Refers to the rectangular 'background' encompassing the entire chart. Fill style and color
attributes can be set.

ChartLegend
Refers to the text describing data set contents in all legends. Text font and color can be
set.

ChartDataSet
Refers to the primitives composing the data set specified by the 'dsnum' parameter. Line
style, fill style, mark style and color can be set.

7.7.12 Other Methods of ChartObj

Other miscellaneous attributes of a chart can be set up using the following methods:

Chapter 7: Graphs

109

ASK METHOD SetAxisTitles(IN xAxisTitle, yAxisTitle :
STRING);
ASK METHOD SetY2AxisTitle(IN y2AxisTitle : STRING);

These methods set the text "title" display along one of the three axes. Y -axis title
text will be automatically rotated 90 degrees while the Y2 axis title will be rotated
270 degrees.

ASK METHOD AddDataSet;
Adds a new data set to the chart. Should be called once for every data set the chart
is to contain. Must be called BEFORE a new data set can be referenced.

ASK METHOD RemoveDataSet(IN dsnum : DSRefType);
Removes a data set from the chart. All data contained in the data set is discarded
and erased from the plot area. Higher numbered data sets will be consecutively
renumbered.

ASK METHOD ClearDataSet(IN dsnum : DSRefType);
All data contained in the data set is discarded and erased from the plot area.

ASK METHOD SetDSTitle(IN dsnum : DSRefType; IN
dataSetLegend : STRING);

Sets the text shown in the legend for the specified data set.

ASK METHOD SetDSInterval(IN dsnum : DSRefType; IN
interval : REAL);

Sets the width of each data cell for a discrete data set between the successive data
cells of a discrete data set.

ASK METHOD ClearDataSet(IN dsnum : DSRefType);
Discards all previously plotted data in the given data set.

ASK METHOD SetDSInterval(IN dsnum : DSRefType; IN width :
REAL);

Sets the cell width along the X axis for a "Discrete" type data set. If this
parameter is 0, then the cell width will be the X tick mark interval.

ASK METHOD SetDSTitle(IN dsnum : DSRefType; IN title :
STRING);

Sets the data set description text shown in the legend.

7.7.13 Example of Program Code for Creating a Chart

Suppose we wanted to create a chart showing plots of the ma thematical functions y = t2
and y = t3. The following code will accomplish this:

NEW(chart);
ASK chart TO SetTitle("Example of two continuous data
sets");

SIMGRAPHICS II User’s Manual

110

ASK chart TO SetAxisTitles("Time in seconds", "f(t)");
{ create two data sets }

ASK chart TO AddDataSet;
ASK chart TO AddDataSet;

 { set up options for chart and data set }
ASK chart TO SetOption(ChartShowLegend, TRUE);
ASK chart TO SetOption(ChartShowBox, TRUE);
ASK chart TO SetDSTitle(1, "Plot of y = t*t");
ASK chart TO SetDSTitle(2, "Plot of y = t*t*t");

 { set data set options }
FOR i := 1 TO 2
 ASK chart TO SetDSOption(ChartDSFill, i, FALSE);
 ASK chart TO SetDSOption(ChartDSLine, i, TRUE);
 ASK chart TO SetDSOption(ChartDSDiscrete, i, FALSE);
 ASK chart TO SetDSOption(ChartDSSurface, i, TRUE);
 ASK chart TO SetDSOption(ChartDSStatic, i, TRUE);
END FOR;

 { set chart fields }
ASK chart TO SetAxisField(ChartXMin, -1.0);
ASK chart TO SetAxisField(ChartYMin, -1.0);
ASK chart TO SetAxisField(ChartXMax, 1.0);
ASK chart TO SetAxisField(ChartYMax, 1.0);

ASK chart TO SetAxisField(ChartXInterval, 0.1);
ASK chart TO SetAxisField(ChartYInterval, 0.1);
ASK chart TO SetAxisField(ChartXNumInterval, 0.5);
ASK chart TO SetAxisField(ChartYNumInterval, 0.5);

 { plot values to the chart }
FOR i := -100 TO 100
 t := FLOAT(i) * 0.01;
 ASK chart TO SetCoordinate(1, t, t * t);
 ASK chart TO SetCoordinate(2, t, t * t * t);
END FOR;

 { finally display the chart }
ASK window TO AddGraphic(chart);
ASK chart TO SetScaling(0.5, 0.5);
ASK chart TO DisplayAt(8192.0, 8192.0);

 { wait for user to click on something }

111

Chapter 8: Controls

The MODSIM III Graphical User Interface (GUI) provides a connection to the
underlying vendor toolkit. Each control is associated with an object and is used to accept
user input. Different control types are provided to allow various types of input to be
accepted.

CONTROL TYPES:

ButtonObj—Receives simple selection.

CheckBoxObj—Receives YES/NO input.

ComboBoxObj—A combo box that allows you to either select from a list or type in
your own selection.

DialogBoxObj—Modal or modeless container of controls.

FileDialogBoxObj—Allows you to browse the file system and select a file.

FontDialogBoxObj—Allows you to browse and select installed text fonts.

LabelObj—Displays a STRING or a group box.

ListBoxItemObj—Label inside a list box which can be selected.

ListBoxObj—Allows selection of exactly one item out of many. Contains list box
items.

ListBoxMultObj—Allows selection of a variable number of items. Contains list
box items.

MessageDialogBoxObj—Receives simple yes, no input, or alerts users.

MenuBarObj—Contains menus.

MenuItemObj—Receives simple selection.

MenuObj—Contains menu items.

MultiLineBoxObj—Receives multi-line text input.

PaletteObj—Allows modeless selection from an array of one or two state
buttons.

PaletteButtonObj—Receives simple selection or YES/NO input from inside a
palette.

PaletteSeparatorObj—Separates groups of palette buttons.

popMenuObj—Contains menu items.

SIMGRAPHICS II User's Manual

112

RadioBoxObj—Contains a group of radio buttons.

RadioButtonObj—Receives YES/NO input which is mutually exclusive among a
group of radio buttons.

TableObj—Receives row/column input.

TextBoxObj—Receives text string input.

TreeObj—Allows selection of one item out of many.

TreeItemObj—Label inside a TreeObj.

ValueBoxObj—Receives numeric input.

Several objects are used as intermediate object types. They should not be used directly.
These intermediate types include:

ControlVObj—Basic control object which all specific controls are derived from.

FormVObj—Object which is a parent to other controls but does not have a parent
control. The MenuBarObj and DialogBoxObj are derived from this object.

ToggleVObj—Object used to receive ON/OFF input. CheckBoxObj and
RadioButtonObj are derived from this object.

The control inheritance tree is as shown in figure 8-1.

Chapter 8: Controls

113

ControlVObj

ToggleVObj

ButtonObj

FormVObj

TableObj

LabelObj

ListBoxItemObj

ListBoxMultOBj

MenuObj

MenuItemObj

PaletteObj

PaletteButtonObj

PaletteSeparatorObj

PopupMenuObj

RadioBoxObj

TabObj

TreeObj

TreeItemObj

TextBoxObj

CheckBoxObj

RadioButtonObj

SysFormVObj

DialogBoxObj

File DialogBoxObj

FontDialogBoxObj

MessageDialogBoxObj

ListBoxObj

ComboBoxObj

MultiLineBoxObj

ValueBoxObj

Figure 8-1. Inheritance Tree for Controls

8.1 Creating Controls

Controls are created interactively using the SIMGRAPHICS II editor. SIMDRAW stores
a description of the controls it has created in a library file. Part of the control description
includes a reference string and ID value which form a unique concatenated “key” used to
identify the control within a MODSIM III program. Using the controls created by
SIMDRAW involves loading the library description and finding the individual controls

SIMGRAPHICS II User's Manual

114

using the reference string and ID. A control can be found using the following method:

 control := ASK dialogbox Child(ReferenceName, id);

8.2 Retrieving Synchronous Input from Controls

After a DialogBoxObj has been asked to AcceptInput, the user may click on
check boxes to change their state, enter text into text boxes, enter values into value boxes
and press on buttons—in any order. At some point you will want to find out what the
user has selected. AcceptInput() does not return until the dialog box is erased,
which usually happens because a terminating button is pressed. AcceptInput()
returns the contents of the LastPicked field after the selection has been made.

If you ask a menu bar to AcceptInput() the program will stop execution until one of
the menu items has been selected:

item:= ASK MenuBar to AcceptInput()
CASE ASK item ReferenceName
 WHEN "file":
CASE item.LastPicked.ReferenceName
 When "exit": HALT;
 ...
END CASE;

To examine the state of a control, you interrogate a field of the object which contains its
state information. Please note that the TextBox and ValueBox BeSelected
methods are not called (unless their ReturnSelectable field is TRUE). You must
use the Text() method of the text box to return its contents. Value() must be used to
return the contents of a ValueBox.

8.3 Receiving Asynchronous Input from Controls

If your program needs immediate notification of control interaction (without waiting for
AcceptInput() to return after a terminating button has been pressed) you can
OVERRIDE the BeSelected method of the DialogBoxObj, PaletteObj, or
MenuBarObj. The BeSelected method is called automatically when one of the
following events happens:

1. The user clicks on a button, palette button, check box, radio button, list box item,
tree item, or menu item.

2. The user presses Return inside a text box, combo box, or value box whose
ReturnSelectable field is TRUE.

3. The user clicks on a cell inside a table.

Chapter 8: Controls

115

Within the BeSelected method you can check the LastPicked field to see which
control was just clicked on. To do this you’ll need to create your own variety of
DialogBoxObj, MenuBarObj or PaletteObj. For example:

MyDialogBoxObj = OBJECT(DialogBoxObj)
 OVERRIDE
 ASK METHOD BeSelected;
END OBJECT;

The implementation of BeSelected could look something like this:

OBJECT MyDialogBoxObj;
 ASK METHOD BeSelected;
 BEGIN
 { “browse”, “itemlist” and “radiobox” are names

assigned within SIMDRAW }
 CASE LastPicked.ReferenceName
 WHEN “browse” :
 OUTPUT(“Browse button selected”);
 WHEN “itemlist” :
 OUTPUT(“List box item selected”);
 WHEN “radiobox” :
 OUTPUT(“Radio button selected”);
 ...
 END CASE;
 END METHOD;
END OBJECT;

8.4 Drawing and Erasing

Any control may be drawn or erased using the GraphicVObj Draw and Erase
methods. If the FormVObj containing the control has not been drawn then drawing and
erasing a child control has no effect.

8.5 Deactivating and Activating

All controls can be activated or deactivated. If a control is deactivated it will not accept
user input and is dimmed. A control is deactivated by the following set/draw
methods:

ASK control TO SetSelectable(FALSE);
ASK control TO Draw;

or by the shortcut:

ASK control TO Deactivate;

SIMGRAPHICS II User's Manual

116

Figure 8-2. Deactivated Control

The control can be reactivated using the Set/Draw methods:

ASK control TO SetSelectable(TRUE);
ASK control TO Draw;

or by the shortcut:

ASK control TO Activate;

Activating a control which is already activated, or deactivating a previously deactivated
control has no effect.

8.6 Setting the Control's Label

A control can have its optional label set using the Set/Draw methods:

ASK control TO SetLabel("label");
ASK control TO Draw;

8.7 Disposing Controls

Any control can be disposed using the DISPOSE procedure. Disposing a control
automatically disposes of all the controls attached to it. In addition, disposing a window
or a dialog box causes all of the controls attached to it to be disposed.

8.8 Updating Controls

Any control can be asked to draw. Draw causes the attributes of the control and any
control attached to it to take effect.

Export is
deactivated

Chapter 8: Controls

117

8.9 Buttons

Figure 8-3. Button

A button is used to receive a simple input event. Clicking on the button selects it. It is
also used to verify controls, and terminate dialog boxes.

Buttons can be verifying and/or terminating. A verifying button causes all value boxes in
the dialog box to check their contents when it is pressed.

Buttons can also be terminating. A terminating button causes its parent dialog box to be
erased when it is selected.

8.10 Check Box

Figure 8-4. Check Box

The check box is used to receive YES/NO input. The Checked field shows the state of
the check box. You can set the state of the check box using the SetCheck method as
follows:

ASK checkbox TO SetCheck(TRUE);
ASK checkbox TO Draw;

or by the shortcut:

ASK checkbox TO DisplayCheck(TRUE);

8.11 Text Box

Figure 8-5. Text Box

SIMGRAPHICS II User's Manual

118

The text box is used to receive a string of characters.

The contents of the text box can be read using the following method:

textstring := ASK textbox Text();

The contents of a text box can be changed using the Set/Draw methods.

ASK textbox TO SetText("new contents");
ASK textbox TO Draw;

or by using the shortcut:

ASK textbox TO DisplayText("new contents");

8.12 Value Box

Figure 8-6. Value Box

A value box receives numeric data between a specified minimum and maximum. The
data can be entered in standard or scientific notation. If the entered value does not fall
within the valid range or is non-numeric, and the verify attribute has been turned on, the
window will beep and a < sign will be placed next to the invalid value.

The contents of the value box can be read as follows:

value := ASK valuebox Value();

Value() returns a REAL number.

The content of a value box can be set using the Set/Draw methods:

ASK valuebox TO SetValue(1.222);
 ASK valuebox TO Draw;

or by using the shortcut:

 ASK valuebox TO DisplayValue(1.222);

Chapter 8: Controls

119

8.13 List Box and List Box Item

Figure 8-7. List Box

The list box allows list box items to be selected. Any number of list box items may be
attached to the list box control. There are two types of list boxes: a ListBoxMultObj
allows any number of ListBoxItemObjs to be selected; a ListBoxObj allows
exactly one ListBoxItemObj to be selected.

List box items are added and removed from the list box using the standard
GraphicSetObj, AddGraphic and RemoveGraphic methods. The order of the
list box items in the list box is determined by their order in the graphical set. The
following code creates, initializes, and adds several items to a list box:

 NEW(ListBoxItem1);
 NEW(ListBoxItem2);
 NEW(ListBoxItem3);

NEW(listbox);

ASK ListBoxItem1 TO SetLabel("item number 1");
 ASK ListBoxItem2 TO SetLabel("item number 2");
 ASK ListBoxItem3 TO SetLabel("item number 3");

ASK listbox TO AddGraphic(ListBoxItem1);
 ASK listbox TO AddGraphic(ListBoxItem2);
 ASK listbox TO AddGraphic(ListBoxItem3);

ASK listbox TO Draw;

Items can be removed using the standard RemoveGraphic or RemoveThisGraphic
methods as follows:

ASK listbox TO RemoveThisGraphic(ListBoxItem1);

 ASK listbox TO Draw;

If the items are added using the AddAlpha() method, then the items in the list box will
appear in sorted order:

ASK listbox TO AddAlpha(ListBoxItem);

All items in a list box can be removed by doing the following:

SIMGRAPHICS II User's Manual

120

ASK listbox TO RemoveAll;

The selection status of an item in a ListBoxMultObj can be set using either the
listbox's or the listbox item's SetIsSelected() method:

ASK listbox TO SetIsSelected(ListBoxItem1, TRUE);

ASK ListBoxItem2 TO SetIsSelected(FALSE);
ASK listbox TO Update;

You can find out which items in a list box are currently selected by iterating through the
children of the list box and examining their IsSelected fields:

VAR anItem : ListBoxItemObj;
...

anItem := ASK listbox FirstGraphic();
WHILE (anItem <> NILOBJ)

IF (ASK anItem IsSelected)
END IF;
anItem := ASK listbox NextGraphic(anItem);

END WHILE;

The current list box selection in a ListBoxObj can be set as follows:

ASK listbox TO SetSelectedItem(ListBoxItem1);

 ASK listbox TO Draw;

or by the short cut:

ASK listbox TO DisplaySelectedItem(ListBoxItem1);

The current selection in a ListBoxObj can be retrieved as follows:

currentitem := ASK listbox SelectedItem;

Detection of double clicks on list box items is usually used as a short cut for selecting an
item, and then picking an edit button. ListBoxObj has the following field:

SecondClick : BOOLEAN; { TRUE iff last item selected

 was double clicked on }

To use this, the ListBoxObj or its parent DialogBoxObj should be subclassed and
have its BeSelected method overridden. When the BeSelected method is called,
the listbox's SecondClick field will be TRUE if the last item selected was double-
clicked.

Chapter 8: Controls

121

8.14 Radio Box and Radio Button

Figure 8-8. Radio Box

The radio box is a container for radio buttons. The position of the radio buttons are
determined by the position of the radio box. Each of the radio buttons appears in a
vertical column starting at the radio box position.

The currently selected radio button can be retrieved from either the radio box or from the
individual radio buttons. The following retrieves it from the radio box:

currentbutton := ASK radiobox SelectedButton;

The selected button in a radio box can be set using the Set/Draw method:

ASK radiobox TO SetSelectedButton(button);

ASK radiobox TO Draw;

or by the shortcut

ASK radiobox TO DisplaySelectedButton(button);

8.15 Tree View Control

Tree view control (figure 8-9) is a special list box control that displays a set of objects as
an indented outline based on their logical hierarchical relationship. The control includes
buttons that allow the outline to be expanded and collapsed. You can use a tree view
control to display the relationship between a set of containers or other hierarchical
elements. (See the Windows95 Explorer for an example).

The tree view control itself is implemented by creating a TreeObj (found in Gtree).
The TreeObj contains TreeItemObj objects representing each item in the list. Each
item is shown with a text label and a bitmap icon. The hierarchy is built by adding
TreeItemObjs to other TreeItemObj objects. A TreeObj is defined below:

SelectedItem : TreeItemObj
 { Currently selected list box item. };
Width : INTEGER { Width of the list box in font units. };

SIMGRAPHICS II User's Manual

122

Height : INTEGER { Height of the list box in font
units. };

Maximized : BOOLEAN { Tree will be maximized upon
creation };

SecondClick : BOOLEAN { Was last TreeItemObj
selection a double click? };

Figure 8-9. Tree View Control

 ASK METHOD SetIsSelected(IN item : TreeItemObj;
IN isSelected : BOOLEAN);
SetIsSelected of item. Assumes item is in the graphical set.

 ASK METHOD DisplayIsSelected(IN item : TreeItemObj;
IN isSelected : BOOLEAN);
Selects an item in the tree and updates the tree display. Assumes item is in the
graphical set belonging to the TreeObj and the TreeObj has already been
displayed.

 ASK METHOD SetSize(IN width, height : INTEGER);
Sets the width and height of the tree in font units.

Chapter 8: Controls

123

 ASK METHOD SetMaximized(IN maximized : BOOLEAN);
Sets the tree to become maximized within a ControlWindowObj. This method
only has an effect when the tree is attached to a ControlWindowObj. This
method invalidates any calls to Set/Size.

A TreeItemObj defines the following fields and methods:

 IsSelected : BOOLEAN { TRUE if this item is currently
selected. };

IconName : STRING { Icon name to appear in the
TreeObj adjacent to this TreeItemObj. };

 ASK METHOD SetIconName(IN iconname : STRING)
Sets the resource or file name of the bitmap to be used in the face of the button. In
MS Windows systems, this refers to the name of the resource containing the
bitmap data. On X Window systems, it is the name of the window dump (" .xwd")
file containing the bitmap. A path can be prepended to this file name, but the
extention should NOT be included.

 ASK METHOD SetIsSelected(IN isselected : BOOLEAN);
Notify the parent tree and show this item as either selected or not-selected.

 ASK METHOD SetExpanded(IN expand : BOOLEAN);
Expands or contracts the list of associated child items. There is no effect if the
tree item has no children.

8.16 LabelObj

A LabelObj displays a non-user editable STRING in a dialogbox. You can set the text
of a LabelObj using the SetLabel() method. The position of a label can be set
with the SetTranslation() method; the Translation corresponds to the
location of the upper left corner of the label.

8.17 ComboBoxObj

SIMGRAPHICS II supports a combination box control (figure 8-10). A combo box
resides in a dialog box, and is composed of an editable text field and a drop down list.
When the button to the right of the text field is clicked on, the list of choices for that field
appears allowing the user to make a selection. The selected list item is then displayed in
the text field.

The list of options can be defined programmatically or from within SIMDRAW. This
list can be sorted alphabetically and the text field is optionally editable. A
ComboBoxObj is derived from a TextBoxObj and is described below.

SIMGRAPHICS II User's Manual

124

Figure 8-10. Combo Box

ASK METHOD SetOptions(IN options : OptionListType);
Sets the items in the drop down option list to the text values contained by the
given array of STRINGs.

ASK METHOD SetHeight(IN height : INTEGER);
Sets the number of option items that can be concurrently viewed in the drop down
list. If the number of items exceeds "height" then the list will be scrollable.

ASK METHOD SetEditable(IN editable : BOOLEAN);
Sets whether or not the text shown in the text field can be edited by the user. If
editable is FALSE, then this field can only be set by selecting one of the
displayed options.

ASK METHOD SetSorted(IN sorted : BOOLEAN);
Sorted sets whether of not the items in the option list will appear

alphabetically.

The following TextBoxObj methods are useful for a ComboBoxObj:

ASK METHOD SetWidth(IN width : INTEGER);
ASK METHOD Text() : STRING;
ASK METHOD SetText(IN text : STRING);
ASK METHOD SetReturnSelectable(IN selectWithEnter :

BOOLEAN);
The BeSelected method is called whenever an item in the option list is
selected. The currently selected/displayed item can be retrieved using the
Text() method.

Note: If the ReturnSelectable flag is TRUE, then BeSelected will be called
whenever the user presses the Return key while the text field has input focus.

8.18 MultiLineBoxObj

A fully editable multi-line text box can be created and added to your dialog box. It can
contain any number of lines of readable / writable text. Text box contents can be set by
passing an array of STRINGs to the SetTextBuffer() method. For example:

Chapter 8: Controls

125

Figure 8-11. Multi-line Text Box

FROM GTypes IMPORT TextBufferType;
...
VAR
 buffer : TextBufferType;
 multiLineBox : MultiLineBoxObj;
...
NEW(buffer, 1..3);
buffer[1] := “The quick brown foxes”;
buffer[2] := “jumped over”;
buffer[3] := “lazy dog’s back.”;
ASK multiLineBox TO SetTextBuffer(buffer);
ASK multiLineBox TO Draw;

You can get the current contents of the box with the TextBuffer() method. Do not
DISPOSE of the array returned by this method. Use the CLONE operation if the contents
are to be saved after the multi-line box has been destroyed. For example:

...
buffer := CLONE(ASK multiLineBox TextBuffer());
FOR I := LOW(buffer) TO HIGH(buffer)
 OUTPUT(i, “ : “, buffer[i]);
END FOR;

ASK METHOD SetSize(IN numColumns, numRows : INTEGER)
Sets the width and height (in character units) of the text box. This includes the
size of the scroll bars

ASK METHOD SetTextBuffer(IN lines : TextBufferType)
Sets the entire contents of the Multi-line box. Each element in the given array
corresponds to a line of text.

ASK METHOD TextBuffer() : TextBufferType
Returns the text buffer containing all current text.

CAUTION: The buffer will be DISPOSEd of when this object is disposed. Use
CLONE if this data is to be saved.

SIMGRAPHICS II User's Manual

126

ASK METHOD SetHorizontalScrolling(IN HorzScrolling : BOOLEAN)
Selects between horizontal scrolling or automatic line wrapping. If TRUE, a
horizontal scroll bar will be added to allow viewing long lines. FALSE will cause
long lines to automatically wrap at word boundries.

ASK METHOD SetMaximized(IN maximized : BOOLEAN)
Sets the control to become maximized within a ControlWindowObj when it is
created. This method only has an effect when the parent window is a
ControlWindowObj. This method invalidates any calls to SetSize.

Note: The BeSelected() method is not called when the user presses the Return key.
However, the BeModified() method will be called whenever any change is made to
the text contents by the user. The multi-line text box can be maximized to create a text
edit window, if it has been added to a ControlWindowObj object. This is performed
via the SetMaximized() method.

8.19 TableObj

A “Table” is a two dimensional array of selectable cells or text labels. The number of
columns and rows of cells can be defined both programmatically and through
SIMDRAW. Also definable is the width of each column and the size of the visible
portion. If the table size exceeds its visible size in width or height, the table is
automatically made scrollable in that direction. The left most column is numbered "1"
while the top most row is numbered "1".

Figure 8-12 Table

A table can also have row and/or column headers. Column headers are shown by a row of
cells on top of the table. Column headers scroll in the horizontal direction but remain
fixed vertically (referred to as row 0). The row headers are a column of cells attached to
the left side of the table which scrolls in the vertical direction only (referred to as column
0). Cells for the column and row headers can be selected and defined just like cells in the
table content area.

The user can use the keyboard arrow keys (left, right, up, down) to navigate through a
table. Each time focus is changed to a different cell using the arrow keys, the method will
be called. If the VerticalGrow option is turned on and the DOWN arrow key is
pressed when the focus is on the last row in the table, a new row will automatically be

Chapter 8: Controls

127

added to the table. At this time the BeExpanded method is called to inform the
program that the table has increased in height. If a non-arrow key is pressed when the
focus is on a table cell, the Keypress method is called. This method can then be used to
change focus to a text box allowing you to set the text of the selected cell without the
user having to use the mouse. The following code can be used to aid in implementing a
mechanism for allowing a user to easily set the contents of a table:

 { OVERRIDE the Keypress() method on a TableObj }
 ASK METHOD Keypress(IN in keyPressed : STRING);
 BEGIN
 ASK textbox TO DisplayText(keyPressed);
 ASK textbox TO ReceiveFocus;
 END METHOD;

 { OVERRIDE the BeSelected() method on the TableObj }
 ASK METHOD BeSelected;
 BEGIN
 INHERITED BeSelected;

ASK textbox TO DisplayText(Text(SelectedColumn,
SelectedRow));

 END METHOD;

 { OVERRIDE the BeSelected method on a TextBoxObj
which accepts the text }

 ASK METHOD BeSelected;
 BEGIN
 INHERITED BeSelected;

ASK table TO SetText(Text(), table.SelectedColumn,
table.SelectedRow);

 END METHOD;

Figure 8-13. Table with Headers

SIMGRAPHICS II User's Manual

128

TableObj defines the following ASK METHODs:

SetText(IN text : STRING; IN column, row : INTEGER);
Sets the text shown in the cell at the given column and row.

Text(IN row, column : INTEGER) : STRING;
Returns the text in the cell at the given column and row.

SetSize(IN numColumns, numRows : INTEGER);
Sets the number of columns and rows of cells in the table.

SetVisibleSize(IN width, height : INTEGER);
Sets the size (in font units) of the visible portion of the table (not including
scrollbars).

SetColumnWidth(IN columnNumber, width : INTEGER);
Sets the width (in font units) of the given column number.

ASK METHOD SetColumnAlignment(
IN columnNumber : INTEGER;
IN align : TextHorizType)
Sets the text alignment of all cells in the specified column. Only call this method
after SetSize.

ASK METHOD SetHeadings(
IN haveRowHeadings, haveColumnHeadings : BOOLEAN)
Sets whether special scrolling panes containing row or column headings will be
included with the table. The default is 'no headings'.

ASK METHOD SetVerticalGrow(IN addRowsWithScroll : BOOLEAN)
Sets whether rows will be automatically added to the bottom of the table when the
user attempts to scroll vertically past the last row. The default is 'no headings' .

ASK METHOD Keypress(IN keyPressed : STRING)
Callback for when a key is pressed. Called automatically whenever a character is
typed while focus is set to one of the table cells. A string representing the
activated key is provided. (Generally, this string will be of length '1'.)

ASK METHOD BeExpanded
Called automatically whenever an expandable table is increased in size through the
use of the down arrow key.

ASK METHOD SetMaximized(IN maximized : BOOLEAN)
Sets the table to become maximized within a ControlWindowObj when it is
created. This method only has an effect when the parent window is a
ControlWindowObj. This method invalidates any calls to SetSize.

Chapter 8: Controls

129

The BeSelected method is called whenever a cell is clicked on. The
SelectedColumn and SelectedRow fields can then be used to take the appropriate
action.

8.20 Calling BeSelected for the TextBoxObj, ValueBoxObj and
ComboBoxObj

The BeSelected method of a TextBoxObj, ValueBoxObj, and ComboBoxObj
will be called whenever the Return key is pressed while typing into a field, if the
ReturnSelectable field is set to true. If this behavior is desired, call the
SetReturnSelectable method passing TRUE, or set the ReturnSelectable
checkbox from within SIMDRAW

8.21 Dialog Box

The dialog box is a container for buttons, check boxes, list boxes, radio boxes, and
labels. The size of the dialog box automatically adjusts to just fit its contents. The dialog
box appears centered in its parent window by default.

The dialog box is attached to a window by:

ASK window TO AddGraphic(dialogbox);

After a dialog box is attached to a window and drawn it can receive input from the user.
This is done using the AcceptInput method:

button := ASK dialogbox TO AcceptInput();

After a terminating button is selected the dialog box is erased and the terminating button
is returned.

To receive dialog box selections while a simulation is running perform the following
steps:

1. Create your own dialog box object and override its BeSelected method:

 NEW(MyDialogBox);

2. Ask the dialog box object to load its graphic description from a library:

 ASK MyDialogBox TO LoadFromLibrary(lib, "DialogBox");

3. Attach the dialog box to the window:

 ASK window TO AddGraphic(MyDialogBox);

4. Start the simulation:

 StartSimulation.

SIMGRAPHICS II User's Manual

130

5. The BeSelected method of MyDialogBox will be called whenever there is a
control selection, and the LastPicked field of the dialog box will point to the
control which was selected. The BeSelected method should be overridden to
look something like this.

 ASK METHOD BeSelected;
 VAR
 control : ControlVObj;
 BEGIN
 control := LastPicked;
 CASE ASK control ReferenceName
 WHEN "MyCheckbox" :
 ...
 WHEN "MyRadioBox" :
 ...
 OTHERWISE
 END CASE;
 END METHOD;

Dialog boxes are positionable independently of their parent window's position. It is not
necessary to use dummy windows to position dialog boxes at various screen positions.
DialogBoxObj has the following method:

ASK METHOD SetPositioning (IN align : DBPositionType) ;
{ Sets the Positioning field.

Centered -> Dialog box is centered within its
 parent window.
Other values -> Dialog box is positioned relative
 to its Translation.

 BottomLeft positioning means the bottom left corner
will be located at the position of the screen specified by
the Translation. Note that the Translation is specified
in screen coordinates, as is done for WindowObj's; that
is, (25.0, 75.0) would refer to the point on the display
1/4 of the screen width right of and 3/4 of the screen
height up of the bottom left corner of the screen.

Positioning default value = Centered. }

Use methods SetTranslation and SetPositioning to specify a reference point
on the screen and an alignment relative to that point, respectively. Note that the units
used in SetTranslation are screen units, as used when positioning WindowObjs.

Chapter 8: Controls

131

8.21.1 User-controlled Dialog Box Fonts

Microsoft Windows users can specify the font used for dialog box labels and controls,
using a command line argument of the form:

-font [<size> [bold]]

where is a string (quoted with double quotes if it contains embedded
spaces), <size> is an optional integer point size and bold is optional. It is currently
not possible to specify bold without specifying the point size also. The following are all
valid examples:

-font "MS Sans Serif"
-font "MS Sans Serif" 14
-font "MS Sans Serif" 12 bold

8.21.2 Tabbed Dialogs

An application can define multiple logical pages or sections of information within a single
dialog by using fonts. This will help reduce the clutter in a dialog, and also cut down on
the multiple levels of dialog nesting otherwise needed. Pages of controls in a Tabbed
Dialog can be brought to the front by selecting its tab at the top of the page.

Figure 8-14. Tabbed Dialog

Tabbed Dialogs can be created in SIMDRAW or programatically. In SIMGRAPHICS II a
tab page is implemented through a TabObj object found in the module GTab. TabObj
objects are added directly to the DialogBoxObj while controls are added to the
appropriate TabObj. The tab area of the dialog box is always positioned at the top left
hand corner and cannot be moved. However, the tab area’s size can be changed using the
following method of the DialogBoxObj:

SIMGRAPHICS II User's Manual

132

ASK METHOD SetTabSize(IN width : REAL; IN height :
REAL);
Sets the height and width in font units of the tab area.

Fields and methods of the TabObj (found in the module Gtab) are defined as follows:

IconName : STRING;
Name of the bitmap shown in tab part of the page.

 ASK METHOD SetIconName (IN Name : STRING);
Sets the name of the icon that appears to the left of the text in the tab. In MS
Windows systems, this refers to the name of the resource containing the bitmap
data. On X Window systems, it is the name of the window dump (".xwd") file
containing the bitmap. A path can be prepended to this file name, but the
extention should NOT be included. (Path names will be ignored on MS
Windows).

The SetLabel method is used to set the text appearing in the tab.

8.21.3 Dialog Box Example Program

The next example accepts input from a dialog box created by SIMDRAW. The dialog
box contains OK and Cancel buttons. It is displayed until one of the buttons is selected.
"Ok was selected" or "Cancel was selected" is output.

MAIN MODULE Example7;
 { Simple dialog box. }

FROM Window IMPORT WindowObj;
FROM Graphic IMPORT GraphicLibObj;
FROM Form IMPORT DialogBoxObj;
FROM Button IMPORT ButtonObj;
FROM Value IMPORT ValueBoxObj;

VAR
 window : WindowObj;
 dialog : DialogBoxObj;
 button : ButtonObj;
 library : GraphicLibObj;

valuebox : ValueBoxObj;

BEGIN

Chapter 8: Controls

133

 { Initialize graphics and create a window. }
 NEW(window);
 ASK window TO Draw;

 { Load description of menu bar from the library. }
 NEW(library);
 ASK library TO ReadFromFile("Example7.sg2");
 NEW(dialog);
 ASK window TO AddGraphic(dialog);

ASK dialog TO LoadFromLibrary(library,
 "DialogBox");

valuebox := ASK dialog Child("capacity ", 0);
 ASK valuebox TO SetValue(47.3);

 { Wait for terminating button to be selected
before exiting. }

 button := ASK dialog TO AcceptInput();

 CASE ASK button ReferenceName
 WHEN "ok" :

OUTPUT("Capacity : ", valuebox.Value());
OUTPUT("Ok was selected);

 WHEN "cancel" :
 OUTPUT("Cancel was selected");
 OTHERWISE
 END CASE;

 DISPOSE(window);

END MODULE.

8.21.4 System File Browser Dialogs

The System File Browser dialog boxes take on the look and feel of the underlying
graphical environment. It provides an easy method for saving and loading files, allowing
the user to browse the file system. Below are the detailed descriptions of this object.

SysFormVObj = OBJECT(FormVObj)
 ASK METHOD AcceptSysInput() : BOOLEAN;
{ Accepts input on a system dialog box. Control will not
be returned until the user selects the OK or CANCEL
buttons on the form. TRUE is returned on selection of the

SIMGRAPHICS II User's Manual

134

OK button, FALSE means that the CANCEL button was pressed.
}

FileDialogBoxObj = OBJECT(SysFormVObj)
 File : STRING { Name of file selected during last
 interaction. }

 FilterList : NameListType { List of filter groups };

ASK METHOD SetFilterList (IN filterList : NameListType)
 { Set a list of filter strings. Supplies an optional

list of filters and associated descriptive text. The
effect is system-dependant. For Example:

NEW(list, 1..3);
list[1] := “Windows bitmap,*.bmp”;
list[2] := “Windows metafile,*.wmf”;
list[3] := “AutoCAD dxf,*.dxf”;

ASK fileDialog TO SetFilterList(list);
 }

Path : STRING; { Path to selected file }
 Filter :STRING;{ File name selection mask for browse}

 ASK METHOD SetFilter(IN filterOrDefaultFile :STRING);
{ Sets the string that will be used as an initial file
name "filter" for browsing through the file system. The
'*' can generally be used as a wild card, but some systems
may also support regular expressions. A default file name
can be given instead of the filter. }

Notice that a method, AcceptSysInput, is provided in module form for use with both
System Save and Load Dialog boxes, and Font Browser Dialog boxes. Use this routine,
instead of AcceptInput; it returns a boolean value indicating whether OK or Cancel
was selected.

8.21.5 System Font Dialog

The standard system font selection dialog is available. On Motif and OPEN LOOK a
generic font specification dialog is provided. The FontDialogBoxObj is included in
the module Form:

SysFormVObj = OBJECT(FormVObj)
 ASK METHOD AcceptSysInput() : BOOLEAN;

Chapter 8: Controls

135

{ Accepts input on a system dialog box. Control will
not be returned until the user selects the OK or CANCEL
buttons on the form. TRUE is returned on selection of
the OK button, FALSE means that the CANCEL button was
pressed.
}

FontDialogBoxObj = OBJECT(SysFormVObj)
{ This object represents a system-specific font
browser dialog box. Family, Size, Weight and Slant
can be set using the SetInitialFont method before
asking the dialog box to AcceptSysInput; the dialog
box selection listboxes will be positioned to these
values when it appears initially. If Family is a nil
string, the dialog box listboxes will come up in a
default configuration.

When interaction is completed, the Family, Weight,
Size and Slant fields be used in the TextObj method
SetSysFont. }

 Family : STRING ; { System font family }
 Size : INTEGER ; { System font size, in points }
 Weight : INTEGER ; { System font weight;
 0 = lightest,
 50 = normal; 100 = boldest }
 Slant : INTEGER ; { System font slant; 0 = normal;
 1 = italics }

 ASK METHOD SetInitialFont (IN family : STRING ;
 IN size : INTEGER ; IN weight : INTEGER ;
 IN slant : INTEGER) ;

{Use this method to set the initial font to be
displayed in the browser when it is next drawn. }

Notice that the method AcceptSysInput is provided for use with both System Save,
Load Dialog, and Font Browser dialog boxes. Use this routine, instead of
AcceptInput; it returns a boolean indicating whether OK or Cancel was selected.

8.22. Alert Boxes

SIMGRAPHICS II supports interfaces to the standard built -in alert, information, and

SIMGRAPHICS II User's Manual

136

question message boxes found under the MS Windows and X Windows toolkits. These
are implemented through the MessageDialogBoxObj. The message box can be of
the OK only, OK/Cancel, Yes/No, Yes/No/Cancel, Retry/Cancel, or Abort/Retry/Ignore
variety. Any of the buttons on a message box can be the default button. The
AcceptSysInput() method should be used to display the dialog and wait for a reply.
This method will return TRUE if either the Ok, Yes or Retry buttons are clicked. A
Selected Button field contains the enumeration value of the selected button after returning
from AcceptSysInput(). Message dialogs are modal, thereby requiring a response
before mouse or keyboard interaction with any other objects can proceed. Figure 8-15 is
an example of a MessageDialogBoxObj.

Figure 8-15. Alert Dialog Box

MessageStyleType = { use the “SetStyle” method to set which box to
display } (PlainMessage, StopMessage, QuestionMessage, AlertMessage,
 InformationMessage);

MessageResponseType = { use the “SetResponses” method to set buttons
to show } (OkResponse, OkCancelResponse, YesNoCancelResponse,
YesNoResponse,
RetryCancelResponse, AbortRetryIgnoreResponse);

MessageButtonType = { use the “SetDefaultButton” method to set
default } (OkButton, CancelButton, YesButton, NoButton, AbortButton,
 RetryButton, IgnoreButton);

MessageDialogBoxObj defines the following ASK METHODs:

ASK METHOD SetText (IN message : STRING)
Sets the message to be displayed in the dialog.

ASK METHOD SetTextBuffer (IN messageLines :
TextBufferType)

Sets the message to be displayed in the dialog. The message is provided as an
array of text. Each element is a line of text in the message.

Chapter 8: Controls

137

ASK METHOD SetStyle (IN style : MessageStyleType)
Sets the nature of the message. An icon may be subsequently shown with the
dialog alerting the user as to this nature. Appearance is system dependant.

ASK METHOD SetResponses (IN buttonSet :
MessageResponseType);

Defines the set of response buttons on dialog.

ASK METHOD SetDefaultButton (IN defButton :
MessageButtonType);

Defines which of the buttons is default. The default button can be activate d by
pressing Return.

EXAMPLE:

The following code will show how to create and display a simple Yes/No/Cancel
box, possibly responding to a user’s request to exit the application.

VAR
messageBox : MessageDialogBoxObj;

NEW(messageBox);
ASK messageBox TO SetText(“Save changes to file
“”junker.dat”””?);
ASK messageBox TO SetStyle(QuestionMessage);
ASK messageBox TO SetResponses(YesNoCancelResponse);
ASK messageBox TO SetDefaultButton(CancelButton);
ASK window TO AddGraphic(messageBox);

bool := ASK messageBox TO AcceptSysInput();
CASE messageBox.SelectedButton

WHEN YesButton : OUTPUT(“Exit and save the
changes!”);
WHEN NoButton : OUTPUT(“Exit, but dont save the
changes!”);
WHEN CancelButton: OUTPUT(“Forget it. Don’t
exit”);

END CASE;

8.23 Menu Bar, Menu, Menu Item

The menu bar (figure 8-16) is a container for menus. Menus are containers for menu
options. Selecting a menu causes the menu options to appear. The menu bar is attached
to a window by:

ASK window TO AddGraphic(menubar);

SIMGRAPHICS II User's Manual

138

Figure 8-16. Menu Bar

After a menu bar is attached to a window and drawn it can receive input. This is done
using the AcceptInput method:

item := ASK menubar TO AcceptInput();

AcceptInput returns the menu option which was picked. You may perform various
actions depending on which item was selected.

CASE ASK item ReferenceName

 WHEN "Exit" : HALT;
 WHEN "Redo" : GoAgain;
 ...
 OTHERWISE
END CASE;

To receive a menu selection while a simulation is running you can do the following:

1. Create your own menu bar object and override the menu bar's BeSelected
method:

 NEW(MyMenuBar);

2. Ask the menu bar object to load its graphic description from the library:

 ASK MyMenuBar TO LoadFromLibrary(lib, "MenuBar");

3. Attach the menu bar to the window:

 ASK window TO AddGraphic(MyMenuBar);

4. Start the simulation:

 StartSimulation.

Chapter 8: Controls

139

5. The BeSelected method of MyMenuBar will be called whenever there is a
menu selection, and the LastPicked field of the menu bar will point to the
item which was selected. The BeSelected method should be overridden to
look something like this:

 ASK METHOD BeSelected;
 VAR
 BEGIN
 CASE ASK LastPicked ReferenceName
 WHEN "Exit" : HALT;
 WHEN "Redo" : GoAgain;
 ...
 END CASE;
 END METHOD;

8.23.1 Mnemonics

Mnemonics are one character keystrokes that enable you to pull down a menu, or select a
menu option, using the keyboard while the menu or menu option is visible. On most
systems, the mnemonic that activates a menu or menu option is displayed by underlining
the mnemonic character in the menu string. On most systems, you would press Alt plus
the mnemonic to pull down a menu, and then another mnemonic to select one of the
items in the menu. Both MenuObj and MenuItemObj can be assigned mnemonics,
either using SIMDRAW or using the SIMGRAPHIC’s method, SetMnemonic(). Of
course, no two MenuItemObjs in the same MenuObj should be assigned the same
mnemonic. If your toolkit does not support mnemonics, then assigning them has no
effect. The following code assigns the File menu the mnemonic "f", and the Save item in
the File menu the mnemonic "s":

ASK FileMenu TO SetMnemonic("f");
ASK SaveItem TO SetMnemonic("s");

8.23.2 Check/Uncheck Menu options

A small check mark can be displayed next to the right of the label on a menu option.
This is useful for indicating to the user whether an option in your program is currently
“on” or “off”. Check marks are displayed and hidden using the SetCheck and
DisplayCheck methods. The following code puts a check mark next to a menu
option label:

ASK menuItem TO DisplayCheck(TRUE);

SIMGRAPHICS II User's Manual

140

8.23.3 Accelerators

MenuItemObj can be assigned an Accelerator, a set of keys that selects a menu choice
even when the choice is not visible. Of course, no two MenuItemObjs in the same
MenuBarObj should be assigned the same accelerator. Accelerators are usually
displayed in a menu option by displaying a descriptive string to the right of the menu
string. If your toolkit does not support accelerators, then assigning them has no effect.

The key press that makes up the accelerator can be any combination of the Alt key, the
Ctrl key, and a printable ascii character or one of the function keys, written as f1, f2, etc.
You must also specify the descriptive string that appears to the right of a menu string.
The following code assigns an accelerator for item1 and item2; to activate item1, you
would hold down the Ctrl key while typing a; to activate item2 you would press f 2.

ASK item1

 TO SetAccelerator(FALSE, TRUE, "a", "ctrl+a");
ASK item2
 TO SetAccelerator(FALSE, FALSE, "f2", "funkey 2");

8.23.4 Menu Bar Example Program

The following example accepts input using a menu bar created by SIMDRAW. When
print is chosen "Print was selected" is output. Selecting exit terminates the
program.

MAIN MODULE Example6;

 { Simple menu bar. }

FROM Window IMPORT WindowObj;
FROM Graphic IMPORT GraphicLibObj;
FROM Menu IMPORT MenuBarObj, MenuItemObj;

VAR
 window : WindowObj;
 menubar : MenuBarObj;
 item : MenuItemObj;
 library : GraphicLibObj;
 Done : BOOLEAN;

BEGIN

 { Initialize graphics and create a window. }
 NEW(window);
 ASK window TO Draw;

Chapter 8: Controls

141

 { Load description of menu bar from the library.}
 NEW(library);
 ASK library TO ReadFromFile("Example6.sg2");
 NEW(menubar);
 ASK menubar TO LoadFromLibrary(library, "MenuBar");

 { Add menubar to window and display it. }
 ASK window TO AddGraphic(menubar);
 ASK menubar TO Draw;

 { Wait until exit is selected before exiting. }
 WHILE NOT Done
 item := ASK menubar TO AcceptInput();
 CASE ASK item ReferenceName
 WHEN "Exit" : Done := TRUE;
 WHEN "Print" : OUTPUT("print selected");
 OTHERWISE
 END CASE;
 END WHILE;

 { Dispose window and all attached objects. }
 DISPOSE(window);

END MODULE.

8.23.5 Cascadable Menus

Menus in SIMGRAPHICS II can be arranged hierarchically with an unbounded depth.
In other words, a MenuObj can contain menu options and other menus. A menu
contained in another menu will usually be shown with a small arrow (==>) and can be
brought down by dragging the mouse over this arrow and to the right. When a menu
option contained by one of the menus is selected, the BeSelected methods for all
container menus will be called in a bottom up fashion. Cascadable menus can be created
programmatically with the AddGraphic and AddChild methods, or by using
SIMDRAW.

8.23.6 Popup Menus

A single-click on an object in the canvas of a WindowObj can bring up a pop-up context
menu containing commands that apply to the object. Examples for commands appearing
on this menu would be Print, Cut, Copy, Paste, Delete, Rename and Properties. A popup
menu is implemented through a PopupMenuObj object (found in the Menu module) and

SIMGRAPHICS II User's Manual

142

contains MenuItemObj objects. A popup menu can be displayed allowing user
interaction with the AcceptInput() method. This menu will be displayed until the
user either selects a menu option or clicks in the background. A popup menu in a window
is shown in figure 8-17:

Figure 8-17. Pop-Up Menu Example

Here is an example of how to use a popup menu:

{ override ImageObj BeSelected() method }
ASK METHOD BeSelected;
VAR

popupMenu : PopupMenuObj;
cutItem, copyItem, pasteItem, pickedItem : MenuItemObj;

BEGIN
 IF window.Button > 1 { only respond to right mouse button }

NEW(popupMenu);
NEW(cutItem); NEW(copyItem); NEW(pasteItem);

{ set the labels appearing in the menu; build the
menu }

ASK cutItem TO SetLabel(“Cut”);
ASK copyItem TO SetLabel(“Copy”);

Chapter 8: Controls

143

ASK pasteItem TO SetLabel(“Paste”);
ASK popupMenu TO AddChild(cutItem, “cut”, 0);
ASK popupMenu TO AddChild(copyItem, “copy”, 0);
ASK popupMenu TO AddChild(pasteItem, “paste”, 0);

ASK window TO AddGraphic(popupMenu);
pickedItem := ASK popupMenu TO AcceptInput();
CASE pickedItem.ReferenceName

WHEN “cut” : ASK SELF TO Cut;
WHEN “copy” : ASK SELF TO Copy;
WHEN “delete” : DISPOSE(SELF);

END CASE;

 DISPOSE(popupMenu);
 END IF;
END METHOD;

8.24 Palettes, Pallette Buttons, Palette Separators

Palettes (PaletteObj) can be created and attached to the sides of a SIMGRAPHICS II
window. A palette contains rows and columns of selectable square palette buttons
(PaletteButtonObj). Each palette button shows a bitmap icon on its face. On MS
Windows systems, palettes can be dockable. At runtime you can reattach a dockable
palette to a different side of its window. Palettes not docked to any edge of the window
are called floating and behave like modeless dialog boxes. Figure 8-18 shows a window
containing two palettes docked on the top and left, a menu bar and a status bar.

A palette can be created in SIMDRAW or programmatically. To use a palette, define a
new type of object derived from PaletteObj and override the BeSelected()
method. This method will be invoked whenever the user presses one of the palette
buttons. The LastPicked field will point to the last palette button selected.

To receive palette selections while a simulation is running do the following:

1. Create an instance of your own palette object:

 NEW(MyPalette);

2. Ask the palette to load its description from the library:

ASK MyPalette TO LoadFromLibrary(lib,
“PaletteLibName”);

3. Attach the palette to the window:

ASK window TO AddGraphic(MyPalette);

4. Draw the window (or the palette) to display the palette:

ASK window TO Draw;

SIMGRAPHICS II User's Manual

144

Figure 8-18. Palette Example

PALETTE EXAMPLE PROGRAM:

MAIN MODULE Example8;
 { Simple Palette }

FROM Window IMPORT WindowObj;
FROM GPalet IMPORT PaletteObj;
FROM GProcs IMPORT HandleEvents;
FROM Graphic IMPORT GraphicLibObj;

TYPE
 MyPaletteObj = OBJECT(PaletteObj)
 OVERRIDE
 ASK METHOD BeSelected;
 END OBJECT;

VAR
 myPalette : MyPaletteObj;
 window : WindowObj;
 library : GraphicLibObj;

Chapter 8: Controls

145

 done : BOOLEAN;

OBJECT MyPaletteObj;
 ASK METHOD BeSelected;
 BEGIN
 CASE ASK LastPicked ReferenceName
 WHEN “cut” : OUTPUT(“Cut operation selected”);
 WHEN “copy” : OUTPUT(“Copy operation selected”);
 WHEN “paste” : OUTPUT(“Paste operation

selected”);
 WHEN “quit” : done := TRUE;
 END CASE;
 END METHOD;
END OBJECT;

BEGIN
 { Init graphics and create window }
 NEW(window);
 ASK window TO Draw;

 { load description of palette from the library file
created by SIMDRAW }
 NEW(library);
 ASK library TO ReadFromFile(“Example8.sg2”);
 NEW(myPalette);
 ASK myPalette TO LoadFromLibrary(library, “Palette”);

 { Add palette to the window and display it. }
 ASK window TO AddGraphic(myPalette);
 ASK myPalette TO Draw;

 { Get input from the palette }
 WHILE NOT(done)
 HandleEvents(TRUE);
 END WHILE;
END MODULE.

SIMGRAPHICS II User's Manual

146

147

Appendices

SIMGRAPHICS II User's Manual

148

149

Appendix A: Common Pitfalls

The following is a list of DOs and DON'Ts to keep in mind when programming a
SIMGRAPHICS II application. Violating these rules may result in crashes which are
difficult to diagnose.

DO NOT:

Attempt to draw a graphical object that is not attached to an image tree or window.

Attempt to draw a control that is not attached to a control tree or window.

Set an attribute of an ancestor, and then ask one of its descendants in the tree to Draw
without first asking the ancestor to Draw. The results of this type of operation are ill-
defined. However, it is OK to set an attribute of a child and then ask its parent to
Draw.

Set the RotationSpeed or other speed methods of dynamic image objects to
extremely high values such as 999999999.9 or a floating point exception call will be
generated.

Set any of the attributes of a graphical object directly. Always invoke the correct Set
method to set any attribute.

DO:

Remember to invoke the INHERITED behavior of any graphical object's method you
have overridden, especially the ObjInit method.

Remember that the default behavior of the BeSelected method is to invoke an
object's parent's BeSelected method.

Remember that when a graphical object is disposed of, all of the child objects in its list
are automatically disposed of.

SIMGRAPHICS II User's Manual

150

151

Appendix B: SIMGRAPHICS II - 3D

B.1 Lights, Cameras, Action!!

Note: 3-D is presently available on Windows NT Revision 3.51 or higher.

SIMGRAPHICS II - 3D is capable of real-time 3-D solids animation with multiple light
sources and cameras. It takes advantage of 3-D hardware accelerators to animate 3-D
simulation objects.

The interface to 3-D graphics is similar to the 2-D interface. 3-D image objects provide
roughly the same capabilities as their 2-D counterparts. Primitives including polygons,
polylines, text, and triangular meshes can also be created within a program and added to a
3-D window.

Camera objects provide an intuitive interface to viewing. They can be positioned and
aimed at objects or in specified directions. In addition, cameras can be attached to 3-D
images and move with their parent.

B.2 Building a 3-D Model

Constructing a simulation using 3-D is similar to building it using 2-D graphics. Like the
2-D library, the 3-D interface is provided through objects. You must create 3-D objects,
add at least one light to make the objects visible, and add a camera to view the scene. The
following is a summary of the steps and objects involved in creating a 3-D simulation
model:

1. Create objects for background and animation using SIMDRAW in 3-D mode.

2. Create a 3-D window object: Window3dObj

3. Create a library object and load the file created by SIMDRAW:

GraphicLibObj

4. Create static and dynamic 3-D images and load their graphic representations from
the library. Add them to the 3-D window:

Image3dObj, DynImage3dObj

5. Create and position a light to illuminate the 3-D world: LightObj

6. Create and position a camera and direct it to look at a location or object in the 3-D
world. Add it to the 3-D window: CameraObj

7. Ask the 3-D window to draw.

8. Start the simulation.

SIMGRAPHICS II User's Manual

152

To animate the 3-D objects, give them a speed, and then ask them to:

1. Move to a specific coordinate:

ASK obj TO MoveTo(x, y, z)

2. Follow a path defined by an array of 3-D points:

ASK obj TO FollowPath(points)

3. Rotate to an angle:

ASK obj TO RotateTo(xangle, yangle, zangle)

4. Scale to a size:

ASK obj TO ScaleTo(xsize, ysize, zsize)

B.3 Objects Used

Window3dObj

The 3-D Window object acts as a container for all 3-D images, dynamic images and
primitives. The 3-D window is created, positioned and sized identically to the 2-D
window object. The rendering mode for all graphics drawn in the window can be set to
wireframe, solid, or solid with shading modes. The 3-D window object also controls the
lighting equation by setting the amount of ambient, diffuse, and specular reflection. The
defaults for the lighting equation work for most situations.

Note: Not all lighting and shading options are supported on all 3-D platforms.

Image3dObj and DynImage3dObj

3-D Images are similar to the 2-D images. They can be positioned, rotated, and scaled.
They can also be instructed to aim at a point, or to track another 3-D object. Like 2-D
images, 3-D images can be hierarchical. A 3-D image can contain sub-images which in
turn contain sub-images. For example, a 3-D tank can have a 3-D turret attached to it as a
separate object, which moves, rotates, and scales along with the tank. Dynamic 3-D
images can move to a 3-D point in the modelling space, scale to any size, and rotate to any
angle over simulation time. It can also follow a path defined by an array of 3-D points.

CameraObj

A least one camera must be Cued to view the 3-D world. Cameras are positioned in 3-D
space and are oriented either by rotation, or by aiming at a location. Cameras can also
Track 3-D objects. A tracking camera will automatically adjust itself to point at the
tracked object whenever the tracked object changes location. Cameras can be attached to
any moving or rotating 3-D object, enabling you to see from the object's vantage point.

Appendix B: SIMGRAPHICS II 3-D

153

Any number of cameras can simultaneously view a scene. The output of each camera goes
to a section of the 3-D window described by the camera's “view port.”

Cameras also have a depth of field and can zoom in and out. The depth of field for the
camera controls the near and far viewing limits. Objects and parts of objects which lie
closer than the near distance or greater than the far distance are not displayed.

The camera's zoom factor controls the viewing angle. You may zoom in or out. Zooming
in decreases the viewing angle and enlarges the scene. Zooming out decreases the vie wing
angle and reduces the scene.

LightObj

Light objects can be created to help illuminate a scene. Light objects can be positioned
and oriented in 3-D space. Any number of lights up to the maximum allowed by the 3-D
hardware can be created. 3-D images are automatically shaded using the lights' color and
position.

The three different types of lights available are directional, positional, and spot lights.

Directional lights are similar to sunlight and are often the only lights used to illuminate a
3-D scene. Directional lights shine on all objects with the same intensity regardless of the
object's location. The light's position and its aim point determine a vector which repr esents
the light's direction.

Positional lights are similar to uncovered light bulbs. They illuminate in all directions with
intensity diminishing with distance. A positional light will illuminate an object di fferently
depending upon the position of the object and the light source. The attenuation field
determines how the light will fade with distance.

Spot lights are similar to a covered lights. They produce cones of illumination which
diminish with distance. The spot light's position and aim point determine the line of
maximum illumination. Its spread angle determines the width of the illumination cone and
its concentration determines how the light varies as distance is increased from the center
of the illumination cone. Attenuation determines how the light fades with distance. Spot
lights can also track 3-D objects to keep maximum illumination focussed on the tracked
object.

Lights can be oriented through rotation, or can be asked to aim at a point. Like cameras,
a light can be attached to a hierarchy of 3-D images, and automatically moves and rotates
with its parent.

B.4 Combining 2-D and 3-D Graphics

One application can have both 2-D and 3-D graphics windows, but only 2-D graphic
objects can be displayed in the 2-D window and only 3-D objects can be displayed in the
3-D window.

SIMGRAPHICS II User's Manual

154

B.5 3-D Primitives

There are three 3-D primitives available: Polyline3dObj, Polygon3dObj, and
TriangularMeshObj. SIMDRAW builds objects using only Polyline3dObj and
Polygon3dObj's. However, all three primitives can be created programmatically.

Polyline3dObj

The 3-D polyline object allows a line with an arbitrary number of line segments to be
drawn. The number of points that a polyline can contain is limited only by the display
hardware.

Polygon3dObj

The 3-D polygon primitive allows a polygon with an arbitrary number of vertices to be
drawn. The points in the polygon must be planar. (i.e all points should line up in a plane.)
The polygon3d object can be used build complex objects by adding polygons to a 3-D
image or dynamic image objects.

TriangularMeshObj

The triangular mesh primitive is the most efficient primitive in terms of rendering speed
and memory usage. Each new point in the points array for the triangular mesh defines a
new triangle using itself and the two points immediately preceding it in the array. See
figure B-1.

Figure B-1. New Triangle Formed by Point 4 in the Triangular Mesh Array

B.6 Tips for 3-D Simulation

Setting up a 3-D simulation model is a little more difficult than it is for two dimensions,
because there are cameras and lights to consider. It is easy to overlook a detail and not
get anything to appear on the screen. If this happens make sure a CameraObj has been
created and added to the either the window or the graphics hierarchy. The camera's depth
of field must be set so that the objects being viewed are between the near and far clipping

Appendix B: SIMGRAPHICS II 3-D

155

planes (see figure B-2). Also make sure the camera is pointing toward the objects you are
viewing.

Figure B-2. The Camera Can See the Palm Trees, but not the Lunar Module

SIMGRAPHICS II User's Manual

156

157

Appendix C: Canvas and System Cursors

A window can optionally have a system or canvas cursor. A canvas cursor is an object
derived from ImageObj that tracks with the mouse. A system cursor can be the normal
system pointer, or a busy cursor such as an hourglass or watch.

C.1 Using Canvas Cursors

Since a canvas cursor is an object derived from ImageObj, any object can be used as a
cursor. If a window's MoveMonitoring flag is set, this cursor will automatically move
with the mouse pointer. If the MonitoringClicks flag is set the cursor will appear at
the pointer position every time the mouse button is pressed. The SetCursor method is
used to set the cursor of a window.

Any object derived from ImageObj can be used as a cursor. However, the Cursor
module contains several predefined cursor objects derived from PolylineObj that
provide for efficient rubberband cursors . The line cursor is the simplest of them. It draws
a line from an anchor point to the current cursor position. The following code sets the
anchor point for the line cursor and initiates tracking:

 FROM Cursor IMPORT LineCursorObj;
 ...
 VAR linecursor : LineCursorObj;
 ...
 NEW(linecursor);
 ASK linecursor TO SetAnchor(WorldXlo, WorldYlo);
 ASK window TO SetCursor(linecursor);
 ...

Note: User-defined cursors must be attached to a window or image tree before being set
as the window's cursor. However, the special predefined cursors should NOT be attached
to a window or image tree. This is because the special cursors bypass the standard
graphics library to perform drawing and therefore can not be safely added to an image
tree.
If you do not want the ImageObj or rubber band cursor to be displayed exactly at the
current cursor position, you can specify an x,y offset from the mouse position to where it
will be drawn. This is done using the SetCursorOffset method. The following code
fragment causes any cursor attached to the window to be drawn at (pointer x coordinate)
+ 5000.0 , (pointer y coordinate) + 2000.0 .

...
ASK window TO SetCursorOffset(5000.0, 2000.0);
...

SIMGRAPHICS II User's Manual

158

There are five cursor objects which provide efficient rubber band cursors. These are
LineCursorObj, RectCursorObj, FixedAspCursorObj,
FixedCursorObj and DualLineCursorObj. Each of these has an anchor point
from which the base of the rubber band line is drawn. The SetAnchor method sets the
anchor point. Here is a description of each:

LineCursorObj—The LineCursorObj is used to draw a rubber band line
from an anchor point to the current mouse position.

RectCursorObj—The RectCursorObj is used to draw a rubber band rectangle
from an anchor point to the current mouse position.

FixedAspCursorObj—The FixedAspCursorObj is used to draw a rubber
band square or other rectangle with a fixed aspect ratio from the anchor point to the
current mouse position. The aspect ratio of the cursor remains constant by using the
maximum of the horizontal or vertical distances from the anchor point as the
dimension for the side of the rectangle. The ratio is specified using the SetRatio
ASK method. The ratio is given as width / height.

...
ASK fixedcursor TO SetRatio(2.0);
...

FixedCursorObj—The FixedCursorObj is used to draw a fixed rectangle
with its lower left corner placed at the current mouse position. The size of the
rectangle is specified using the SetSize method:

...
ASK fixedcursor TO SetSize(width, height);
...

DualLineCursorObj—The DualLineCursorObj is used to draw two rubber
band lines from two anchor points to the current pointer position. The second anchor
point is specified using the SetDualAnchor method:

 ...
 ASK duallinecursor TO SetDualAnchor(x, y);
 ...

C.2 Using System Cursors

An hour glass, stop watch, etc., can be displayed instead of the system cursor . See the
modules Form and Window. The following field and method are new in both the
WindowObj and DialogBoxObj objects:

SysCursor : SysCursorType ; { Current system cursor
 type }

Appendix C: Cursors

159

ASK METHOD SetSysCursor (IN cursorType :SysCursorType);

{ Changes the system cursor used when the pointer is
within this window or dialogbox. See GTypes for a list
of supported cursor types. }

To use the system cursor, ask each window or dialog box to SetSysCursor:

FROM GTypes IMPORT ALL SysCursorType ;
...
ASK win TO SetSysCursor(BusyCursor) ;
ASK db TO SetSysCursor(BusyCursor) ;
...
ASK win TO SetSysCursor(NormalCursor) ;
ASK db TO SetSysCursor(NormalCursor) ;

SIMGRAPHICS II User's Manual

160

161

Appendix D: Creating Images at Runtime

Although images can be created within SIMDRAW, a user may occasionally want to
create them dynamically at runtime. This can be done for all primitives . Doing this
involves performing a NEW on the object, setting its attributes, and then drawing the
object. All attributes of a visible object can be reset at runtime with changes being seen at
the time a Draw is done.

Creating primitives dynamically is quite simple. It involves setting the fields of the
primitive, and then adding it to a window or image.

Note: Fields of a primitive are always initialized to an appropriate default value.

D.1 Objects

PrimitiveVObj

All primitives are derived from this object. Primitives include polylines , polygons
polymarks, text, arcs, circles and sectors. Primitives are not hierarchical: you should not
ask a primitive to AddGraphic another primitive or ImageObj. The only attribute of
a PrimitiveVObj is its Points array. The Points field is of type PointArrayType
which is a one dimensional array of PointType records. (These types are found in the
GTypes module.) The points of a primitive define what its shape will be. The
SetPoints method sets the points of a primitive. The number of points defining the
primitive is determined by the size of the given points array . All primitives are drawn
using the color attributes derived from ImageObj. Primitives cannot hold other
primitives. Do not try to add to polygons, polylines, arcs, circles, snapshots, etc.

PolylineObj

A polyline; is a line that connects the points of the Points array. One of the attributes used
in drawing a line is its Style, which determines the line style to be used in drawing. This
attribute's type is LineStyleType, which is defined in the GTypes module and can
take on the following values:

LineStyleType = (SolidLine, LongDashedLine, DottedLine,
DashDottedLine, DashedLine, DashDotDottedLine,
ShortDashedLine, AlternateLine);

Two more attributes of a polyline are its Width and PctWidth. The Width attribute
determines the line's width in terms of real world x,y coordinate space . If a line's Width
is set, then the line width will be scaled whenever the line or one of its ancestor images is
scaled. The PctWidth attribute determines a line's width in terms of percentage of
window size. When you set the PctWidth attribute of a line, its width is NOT scaled
when the line is scaled or an ancestor is scaled ; the line will stay the same width regardless
of what its size is.

SIMGRAPHICS II User’s Manual

162

ArcObj

Since ArcObj and PolylineObj are derived from a common object LineVObj, an
arc contains the same style and width attributes as a polyline. An arc is defined by 3
points in the points array. The first point identifies the center of the arc. The second
point, a point on the circumference, is the beginning of the arc. The arc is drawn
counterclockwise to the third point (also on the circumference). Any points after the third
are ignored.

PolygonObj

The real world points in the points array describe the boundaries of an area to be filled.
Fill primitives (polygons, sectors, and circles) have a Style attribute identifying the fill
style used in drawing. This attribute is of type FillStyleType which is defined in the
GTypes module as follows:

FillStyleType = (HollowFill, SolidFill,
NarrowDiagonalFill,MediumDiagonalFill, WideDiagonalFill,
NarrowCrosshatchFill, MediumCrosshatchFill,
WideCrosshatchFill);

CircleObj

A circle is described by the first two points in the points array. The first point is the center
of the circle, and the second is any point on its circumference.

SectorObj

A sector is a sector of a circle. It is a fill primitive like a circle, but is described in the
same way as an arc.

TextObj

A TextObj primitive is a graphical display of a text string. It has attributes describing its
alignment, size, font, and the string value displayed. The font attribute is the font in which
the text value will be drawn. The following fonts are available:

TextFontType = (SystemFont, SimpleFont, RomanFont,
BoldRomanFont, ItalicFont, ScriptFont, GreekFont,
GothicFont, SystemText);

Appendix D: Creating Images at Runtime

163

D.2 System Text

Previously only vector-based fonts could be displayed in a graphics window. System text
provides access to all system fonts available on the underlying graphics system. An
optional translation file provides the capability to remap fonts when the application is
moved to a different graphical environment. See the libraary module Text. These are the
TextObj fields and methods relating to system text:

 Family : STRING ; { System font family }
Weight : INTEGER ;{ System font weight, 0 = lightest,
 50 = normal; 100 = boldest }
Size : INTEGER ; { System font size; in points }
Slant : INTEGER ; { System font slant; 0 = normal; 1 =
 italics }
SysFontStatus : INTEGER ; { 0 = bad system font spec;
 1 = found font }

PROCEDURE LoadSFontFile (IN filename: STRING)
 : FileStatusType ;
{ Attempts to load the specified file of system text font
name translations. Each entry in this file consists of a
pair of double-quoted (") strings on each line - the
first is a name to be translated, the second is the
translation. The intent is that font names for one
platform will be translated to an appropriate name on
another. Note that there are built-in translations; any
translations loaded by LoadSFontFile will be searched
before the built-in translations. }

ASK METHOD SetSysFont(IN Family : STRING ;
 IN Size : INTEGER ; IN Weight : INTEGER ;
 IN Slant : INTEGER) ;
{ Sets the system text font to use if the Font field is
SystemText. An appropriate font specification can be
obtained from the Form module FontDialogBoxObj object.}

ASK METHOD SetNoFontError(IN ignoreSysFontErrors
 : BOOLEAN);
{ If ignoreSysFontErrors is TRUE, the 'SysFontStatus'
variable will be set without a runtime error being
generated whenever the specified font can't be loaded.
Default is TRUE. }

SIMGRAPHICS II User’s Manual

164

D.3 Using System Text

Here are the steps involved in using system text:

1. Set the font to SystemText (SetFont).

2. Set the font alignments (SetAlignment). This determines the position of the
text relative to the reference point and translation.

3. SetTranslation to move the text to the desired position. Note that the text
will be positioned relative to the specified point according to the alignments
selected.

4. Set the Family, Size, Weight and Slant fields using SetSysFont. The
most direct way to get these is by using the system font browser dialog box. Note
that, by default, if the specified font cannot be found, a default system font will be
used. Using method SetNoFontError, this behavior can be changed so that an
error will occur if the font cannot be found.

EXAMPLE:

NEW(text);
ASK text TO SetFont(SystemText)
ASK text TO SetTranslation(6000.0, 8000.0)
ASK text TO SetAlignment(HorizLeft, VertMiddle)
ASK text TO SetSysFont("Times Roman", 12, 100,0);

D.4 Portability Issues

1. For Unix/X Windows platforms the Family field can be a complete X11 font name,
as might be obtained from the xfontsel or xlsfonts programs usually
included with the X Windows release. In this case, the size, weight and slant fields
will be ignored. If only the foundry and font family names are used (separated by a
hyphen), the size, slant and weight fields will be used to construct a standard X11
font specification. The following are all possible Family strings for X11 platforms:

"fixed"

"adobe-new century schoolbook"

"-adobe-times-medium-i-*-*-*-140-*-*-*-*-iso8859-1"

2. Any rotation can be specified; the text will be rendered at the nearest increment of
PI/2.

3. The size of system text is determined by the font selected, and so, unlike stroked
text, does not change with resizing of windows or setting the scaling factor of

Appendix D: Creating Images at Runtime

165

ancestors in the image tree. Therefore, when the window is resized, the bounding
box (in Normalized Display Coordinates or NDCs) will change. See the note on
bounding boxes above.

4. To enhance portability, a font translation file can be created, which provides aliases
for the font's Family field. This file is read in using the Text module procedure
LoadSFontFile. This is a text file consisting of pairs of strings, enclosed in
double quotes and separated by white space; the first is a string that may be
specified as the Family field of a TextObj, the second is a translation that will be
substituted by the graphics library when searching for fonts to use to render the
text. Note that the aliases are substituted and searched for until a valid font is
found, and there can more than one translation for a given alias, so that a single
translation file can be used on more than one platform. For example, loading a
translation file containing these lines:

"Times" "adobe-times"

"Times" "Times Roman"

and setting Family to "Times" will match an Adobe Times font on an X11
platform, and a Times Roman font on Microsoft Windows.

The SetAlignment method specifies how the text is to be aligned upon its position.
Text can be aligned horizontally and vertically. Vertical text alignment is based on a
character cell which extends both above and below the actual character. Horizontal
alignment is done with respect to the length of the entire string. The alignments available
are:

TextHorizType = (HorizLeft, HorizCentered, HorizRight);

TextVertType = (VertBottom, VertMiddle, VertTop,

VertCellBottom, VertCellTop);

Text sizing can be specified in one of two ways. You can use the SetSize method to
specify a “box” to fit the text string into. This box's width and height are given in real
world coordinate space. Text with sizing specified in this manner will be scaled in size
whenever the object is scaled. The SetPctHeight method is another way of giving
text size. This method specifies text height as a percentage of window height. Text with
this type of sizing is not scaled; therefore it will always appear the same size.

Text can be rotated using the SetRotation method.

D.5 Markers

PolymarkObj

SIMGRAPHICS II User’s Manual

166

A polymarker is a set of small graphical markers drawn at every point in the points array.
The markers have both a size and style. The style of a marker identifies what shape the
marker has. The following styles are available:

MarkStyleType = (DotMark, CrossMark, StarMark,
SquareMark, XMark, DiamondMark);

Marker size is specified much the same way as text size. The SetSize specifies a size in
real world x,y coordinates. This method will scale marker size with the object it's attached
to. SetPctSize method gives a percentage of window height. After this method is
called, a marker will not scale in size. These methods have the following format:

ASK METHOD SetSize(IN heightOfMarker : REAL);
ASK METHOD SetPctSize(IN pctOfWindow : PctType);
 { 0.0 to 100.0 }

D.6 SnapShot Object

The SnapShotObj is a bitmapped graphic primitive that can be attached to an image
like any other primitive. The file containing bitmap data (files with extensions “ .xwd” on
XWindows and “.bmp” on MS Windows) is given using the SetFile method. The first
point in the Points array field is the lower left hand corner of the bitmap and the second
point is its upper left hand corner. If the bitmap is non-scalable these points will be
defined automatically by SIMGRAPHICS II. For scalable bitmaps the programmer must
define these points. See chapter 5 for more information on using the SnapShotObj.

D.7 Example Program

The following example creates a small “cart” dynamically:

Appendix D: Creating Images at Runtime

167

MAIN MODULE Example7;

{ This module creates a 2 level 'Cart' and displays it on
the screen. Its first wheel is then removed, then its
second wheel is removed. }

FROM GTypes IMPORT PointArrayType,
 FillStyleType(SolidFill, MediumDiagonalFill),
 ColorType(Green, Yellow);
FROM Window IMPORT WindowObj;
FROM Fill IMPORT CircleObj, PolygonObj;
FROM Image IMPORT ImageObj;

VAR
 window : WindowObj;
 wheel1, wheel2 : CircleObj;
 cart : ImageObj;
 body : PolygonObj;
 wheelpoints : PointArrayType;
 bodypoints : PointArrayType;

BEGIN
 { bring up the window }
 NEW(window);
 ASK window TO Draw();

 { assign points for all wheels }
 NEW(wheelpoints, 0..1);
 wheelpoints[0].x := 0.0;
 wheelpoints[0].y := 0.0;
 wheelpoints[1].x := 1500.0;
 wheelpoints[1].y := 0.0;

 { assign points for body image }
 NEW(bodypoints, 0..3);
 bodypoints[0].x := 0.0;
 bodypoints[0].y := 0.0;
 bodypoints[1].x := 10000.0;

SIMGRAPHICS II User’s Manual

168

 bodypoints[1].y := 0.0;
 bodypoints[2].x := 10000.0;
 bodypoints[2].y := 6000.0;
 bodypoints[3].x := 0.0;
 bodypoints[3].y := 6000.0;

 { create a body primitive }
 NEW(body);
 ASK body TO SetPoints(bodypoints);
 ASK body TO SetColor(Yellow);
 ASK body TO SetStyle(SolidFill);

 { create a wheel primitive }
 NEW(wheel1);
 ASK wheel1 TO SetColor(Green);
 ASK wheel1 TO SetStyle(MediumDiagonalFill);
 ASK wheel1 TO SetPoints(wheelpoints);

 { make a copy of it }
 wheel2 := ASK wheel1 TO Copy();

 { now build the tree, and add it to the root }
 NEW(cart);
 ASK window TO AddGraphic(cart);
 ASK cart TO AddGraphic(body);
 ASK cart TO AddGraphic(wheel1);
 ASK cart TO AddGraphic(wheel2);

 { set position of wheels in }
 { relation to their parent. }
 ASK wheel1 TO SetTranslation(2000.0, 0.0);
 ASK wheel2 TO SetTranslation(8000.0, 0.0);

 { Draw the cart }
 ASK cart TO DisplayAt(16383.0, 16383.0);

 LOOP
 END LOOP;
END MODULE.

169

Appendix E: Animation Speed Optimization

SIMGRAPHICS II is designed for fast and smooth animation. It contains some features
that can be used to obtain even faster animation. Certain rules can also be followed to
obtain maximum performance.

E.1 Real-time Animation Mode

A real-time animation mode adds faster, smoother animation during a simulation. The
time taken for each animation movement is compared to the elapsed wall-clock time ; if the
simulation begins to fall behind, graphical updates are skipped as required to keep up. To
invoke real-time animation:

FROM Dynamic IMPORT RealTimeAnimation;

BEGIN
RealTimeAnimation := TRUE;
. . .
StartSimulation;
. . .

E.2 SetSnapShot

A snapshot can be taken of an image and used for animation. This snapshot can be drawn
to the window faster than the vector representation of the image . A complicated snapshot
is drawn in the same time as a simple snapshot. The SetSnapShot method marks an
image so that snapshots are taken automatically.

...
ASK truck TO SetSnapShot(TRUE);
...

SnapShot should only be used on images whose appearance remains static. An image
that is continually scaled and rotated or an image whose children are continually modified
or repositioned should not set snapshot. (When the description of an image changes, the
library must throw away its snapshot and construct a new one. This can be expensive if
the image's description is continually changing.)

E.3 SetRedrawable

When the Redrawable flag of an image is set, it will be automatically repainted if
another image on top of it is erased. This is why you need not worry about redrawing
images that have been “run-over” by another image. Images are created with the
Redrawable flag set to TRUE, but this flag can be cleared using the SetRedrawable
method. Images that will never be run over by another image can have the Redrawable
flag set to FALSE and some animation speed improvement may be seen. For example,

SIMGRAPHICS II User’s Manual

170

suppose you had an image named shoreLine that could never be obscured by another
image:

...
ASK shoreLine TO SetRedrawable(FALSE);
...

This flag could also be cleared if you wanted to see an image be eaten away by another
image.

E.4 Exclusive OR Drawing Mode

SIMGRAPHICS II provides an “exclusive-or” drawing mode . When using this mode the
graphics library does not have to “repair” parts of the scene that are run over by a moving
image, thus leading to faster animation. This mode is recommended only for simple scenes
and is best suited for images that are composed of polylines. The WindowObj method
SetFastDraw sets the exclusive-or drawing mode. Note that the mode applies to ALL
objects in the window.

E.5 Miscellaneous Tips on Faster Animation

Remember that the time it takes to draw an image is proportional to the size of the
bounding box (the smallest rectangle that encloses the image). A big image takes much
longer to draw than a small one. Therefore, if you had an image whose children were
positioned far apart from each other, this image would take a long time to draw, since the
bounding box of the image is huge. In this case it is advisable to draw the children of the
image instead of the image itself. For example, suppose bigImage was composed of the
two images farChild1 and farChild2 and that these children were translated to
opposite corners of the window. The code:

ASK farChild1 TO Draw();
 { farChild1 at (0.0, 0.0) }
ASK farChild2 TO Draw();
 { farChild2 at (32767.0, 32767.0) }

is preferable to:

ASK bigImage TO Draw();

E.6 Command Line Options

Two command line options may be passed to SIMGRAPHICS II executables:

-nograp This option causes your executable to run without displaying any graphics,
including user input dialog boxes and menu bars.

Appendix E: Animation Speed Optimization

171

-noimage This option causes the executable to run without displaying animation,
but it will display dialog boxes and menu bars to allow user input.

In both cases, TimeScale is set to run the simulation as fast as possible.

SIMGRAPHICS II User’s Manual

172

173

Appendix F: Complete Solar System Example

Title:
Creator:
CreationDate:

Figure F-1. Solar System

MAIN MODULE Example3;

{ Example3 -- Complete model of solar system.

 The following example graphically models the solar system
and the rotating planets. Planets spin on their axis while
rotating around the sun. Every earth hour, the planet
positions and rotational spins are updated. }
FROM GTypes IMPORT WorldXhi, WorldYhi;
FROM Graphic IMPORT GraphicLibObj;
FROM Window IMPORT WindowObj;
FROM Icon IMPORT IconVObj;
FROM Image IMPORT ImageObj;

CONST
 MercuryYear = 87.784;
 { # earth days in a mercury year }
 VenusYear = 224.013;
 { # earth days in a venus year }
 EarthYear = 365.25;
 { # earth days in an earth year }

SIMGRAPHICS II User’s Manual

174

 MarsYear = 685.15;
 { # earth days in a mars year }

 MercuryDay = 1416.0;
 { # earth hours in a mercury day }
 VenusDay = 6000.0;
 { # earth hours in a venus day }
 EarthDay = 24.0;
 { # earth hours in an earth day }
 MarsDay = 24.616;
 { # earth hours in a mars day }

 MercDist = 3.217;
 { mercury light minutes from sun }
 VenusDist = 6.011;
 { venus light minutes from sun }
 EarthDist = 8.310;
 { earth light minutes from sun }
 MarsDist = 12.662;
 { mars light minutes from sun }

 SystSize = 15.0;
 { radius in light minutes of this model }

VAR
 library : GraphicLibObj;
 window : WindowObj;
 solarSystem : ImageObj;
 sun, mercury, venus, earth, mars : ImageObj;
 mercuryOrbit, venusOrbit, earthOrbit,
 marsOrbit : ImageObj;
 mercuryRot, venusRot, earthRot, marsRot : INTEGER;
 mercuryOrbitRot, venusOrbitRot, earthOrbitRot,
 marsOrbitRot : INTEGER;
 earthHours : REAL;

BEGIN
 { create a window for the solar system, and
 bring it up on the screen }
 NEW(window);
 ASK window TO Draw();

Appendix E: Animation Speed Optimization

175

 { create a library and have it read the saved
 library "Example3.sg2" }
 NEW(library);
 ASK library TO ReadFromFile("Example3.sg2");
 { get planets from the library. Assume they have
 been saved using the names "SUN", "MERCURY",
 "VENUS", "EARTH" and "MARS" in SIMDRAW }

 NEW(sun);
 NEW(mercury);
 NEW(venus);
 NEW(earth);
 ASK sun TO LoadFromLibrary(library, "SUN");
 ASK mercury TO LoadFromLibrary(library, "MERCURY");
 ASK venus TO LoadFromLibrary(library, "VENUS");
 ASK earth TO LoadFromLibrary(library, "EARTH");
 ASK mars TO LoadFromLibrary(library, "MARS");
 { Build the solar system. Special 'Orbit
 images' are added as parents of the planets.
 Rotating these will cause the planets to
 rotate around the sun. Rotating the planets
 themselves causes them to spin on their axes }

 NEW(solarSystem);
 { create the solar system }
 NEW(mercuryOrbit);
 { create new orbit images }
 NEW(venusOrbit);
 NEW(earthOrbit);
 NEW(marsOrbit);
 ASK solarSystem TO AddGraphic(mercuryOrbit);
 { add the orbit images to the }
 ASK solarSystem TO AddGraphic(venusOrbit);
 { solar system }
 ASK solarSystem TO AddGraphic(earthOrbit);
 ASK solarSystem TO AddGraphic(marsOrbit);
 ASK solarSystem TO AddGraphic(sun);
 ASK mercuryOrbit TO AddGraphic(mercury);
 { add the planets to their orbit }
 ASK venusOrbit TO AddGraphic(venus);

SIMGRAPHICS II User’s Manual

176

 { images }
 ASK earthOrbit TO AddGraphic(earth);
 ASK marsOrbit TO AddGraphic(mars);
 { add solar system to the universe }
 ASK universe TO AddGraphic(solarSystem);
 { Now set the world coordinate system of the
 solar system. Positioning of the solar system
 is then given with respect to to the default
 world, and positioning of planets is given
 with respect to the solar system world. }

 ASK solarSystem TO SetWorld(-SystSize, -SystSize,
 SystSize, SystSize);
 ASK solarSystem TO SetTranslation(WorldXhi/2.0,
 WorldYhi/2.0);
 ASK mercury TO SetTranslation(MercDist, 0.0);
 ASK venus TO SetTranslation(VenusDist, 0.0);
 ASK earth TO SetTranslation(EarthDist, 0.0);
 ASK mars TO SetTranslation(MarsDist, 0.0);

 { draw the entire solar system }
 ASK solarSystem TO Draw();

 { Each earth hour, compute the amount of
 rotation of each planet and planet orbit, then
 rotate planets and orbits }
 LOOP
 { compute rotations of planets }
 mercuryRot := TRUNC((earthHours / MercuryDay) *
 360.0);
 venusRot := TRUNC((earthHours / VenusDay) *
 360.0);
 earthRot := TRUNC((earthHours / EarthDay) *
 360.0);
 marsRot := TRUNC((earthHours / MarsDay) * 360.0);

 { compute rotations of orbits of planets }
 mercuryOrbitRot := TRUNC((earthHours / (EarthDay *
 MercuryYear)) * 360.0);
 venusOrbitRot := TRUNC((earthHours / (EarthDay *
 VenusYear)) * 360.0);

Appendix E: Animation Speed Optimization

177

 earthOrbitRot := TRUNC((earthHours / (EarthDay *
 EarthYear)) * 360.0);
 marsOrbitRot := TRUNC((earthHours / (EarthDay *
 MarsYear)) * 360.0);

 { rotate the planets }
 ASK mercury TO SetRotation(mercuryRot);
 ASK venus TO SetRotation(venusRot);
 ASK earth TO SetRotation(earthRot);
 ASK mars TO SetRotation(marsRot);

 { rotate the planets around the sun }
 ASK mercuryOrbit TO Rotate(mercuryOrbitRot);
 ASK venusOrbit TO Rotate(venusOrbitRot);
 ASK earthOrbit TO Rotate(earthOrbitRot);
 ASK marsOrbit TO Rotate(marsOrbitRot);

 { update every 6 earth hours }
 earthHours := earthHours + 6.0;
 END LOOP;
END MODULE.

SIMGRAPHICS II User’s Manual

178

179

Appendix G: Utility Procedures

G. 1 Utilities
There are some procedures available to perform various functions regarding graphical
objects. These procedures are found in the module GProcs and are listed below:

PROCEDURE HandleEvents (IN waitForEvent : BOOLEAN);
This procedure calls the low level event handler for a system. It is used to detect
mouse clicks, mouse movement, image selection and form input. It is called
automatically if you perform an AcceptInput method or are running a
simulation. It must be called at least four times a second to receive mouse input
from the user if waitForEvent is FALSE.

PROCEDURE GetRGBColor
 (IN color : ColorType;
 OUT r,g,b : PctType);

Given a predefined color, its red, green, and blue triple is computed and returned.

PROCEDURE ScreenRatio() : REAL;
Returns the ratio of screen width to screen height on a given system.

PROCEDURE Transform
 (IN sourceImage, destImage : ImageObj;
 IN sourceX, sourceY : REAL;
 OUT destX, destY : REAL);

This procedure transforms a point given under sourceImage's world coordinate
system to one given in destImage's coordinate system. If NILOBJ is given as
the source or destination image, the DefaultWorld is used as the coordinate
system for this image. Both images must be attached to the same tree at the time
this procedure is called. Referring to the solar system example of Appendix F,
suppose we had a point in Earth coordinate system units that we wanted to
transform into Mars coordinates:

 ...
 Transform(earth, mars, earthPt.x,
 earthPt.y, marsPt.x, marsPt.y);
 ...

Or to transform a default world coordinate into Earth coordinates:
 ...
 Transform(NILOBJ, earth, mouseX, mouseY,
 earthPt.x, earthPt.y);
 ...

SIMGRAPHICS II User's Manual

180

PROCEDURE SnapShotFileExtension() : STRING
Returns the extension of a SnapShot (raster) file in the form .xwd, .bmp, etc.
depending on which toolkit the host machine is running under.

PROCEDURE Is3DGraphicsAvailable() : BOOLEAN
Returns TRUE if 3-Dimensional Graphics is available. The machine must support
the OpenGL Graphics library in order for SIMGRAPHICS II 3-D support to
function.

PROCEDURE SetFrameTitle(IN title : STRING);
Sets the title displayed on the frame window. This procedure will reset the title
displayed on the header bar of the frame window. The procedure can be called
before or after the frame window has been made visible, and will automatically
update the title.

PROCEDURE SetFrameIconNames(IN smallIconName,
largeIconName : STRING);
Sets the icons used when the frame window is minimized. If the application
contains a frame and sub-windows, this procedure will identify either the resource
or bitmap file names of the icons representing the minimized application.

PROCEDURE SetFrameTranslation(IN tx, ty : PctType)
If the application contains a frame and sub-windows, this procedure will specify
the initial position of the lower left hand corner of the frame window. Position is
specified in "screen" coordinates (where the lower left hand corner of the
computer screen is (0,0) and the upper right corner is (100,100). This procedure
must be called before the first sub-window is drawn.

PROCEDURE SetFrameSize(IN width, height : PctType)
If the application contains a frame and sub-windows, this procedure will specify
the initial size in "screen" coordinates ([0,100], [0,100]) of the frame window.
This procedure must be called before the first sub-window is drawn.

PROCEDURE GetFrameTranslation(OUT tx, ty : PctType)
If the application contains a frame and sub-windows, this procedure will retrieve
the current position of the lower left hand corner of the frame window. Position is
specified in "screen" coordinates [0,100], [0,100].

PROCEDURE GetFrameSize(OUT width, height : PctType)
Gets the current size of the frame window. If a sub-windowed style application is
being used, this procedure will retrieve the current size in "screen" coordinates
([0,100], [0,100]) of the frame window.

181

Appendix H: Runtime Graphics Errors

GRAPHICS ERROR 200: Unexpected NIL arg to method

Make sure you have created an instance of a graphic object before adding it.

GRAPHICS ERROR 201: Replacement must involve object of
 same type

Only objects of the same type may be replaced.

GRAPHICS ERROR 202: Attempt to update or draw a control
 which has not been attached to a
 container control

Check to see if a control has been added to a container control such as a dialog
box, menu bar, list box, or radio box before asking it to update or draw.

GRAPHICS ERROR 203: Attempt to update or draw a control
 whose parent control has not been
 drawn

The dialog box or menu bar must be drawn before attempting to draw a control it
contains. The same is true for list boxes and radio boxes.

GRAPHICS ERROR 204: Attempt to attach an object to a
 non-container control

There are restrictions on the type of objects which can be attached. Menu bars can
add menus only, menus can add menu items only, etc.

GRAPHICS ERROR 205: Attempt to attach a control which
 is already attached

You must remove a control before you can add it again.

GRAPHICS ERROR 206: Attempt to reset course while
 moving to a destination

You must stop motion before changing the course.

SIMGRAPHICS II User's Manual

182

GRAPHICS ERROR 207: Attempt to 'MoveTo' while moving to
 a destination

You must stop motion before changing course.

GRAPHICS ERROR 208: Attempt to 'FollowPath' while moving to
a destination.

You must stop motion before changing the destination.

GRAPHICS ERROR 209: Path array must contain at least 2
 points

Make sure at least two points that have been defined in the array passed to
FollowPath.

GRAPHICS ERROR 210: Attempt to perform 'RotateTo' while
 rotating to an angle

You must stop motion before changing the angle to rotate to.

GRAPHICS ERROR 211: Attempt to perform 'ScaleTo' while
 scaling to a factor

You must stop motion before changing the size you are scaling to.

GRAPHICS ERROR 212: Form must be attached to a visible
 window before updating or drawing
 it

You must add the menu bar or dialog box to a window before drawing it.

GRAPHICS ERROR 213: Attempt to add invalid object to
 dialog box

Make sure the dialog box is a container for the type of object you are trying to add
to it.

GRAPHICS ERROR 214: Graph not attached to tree

You must attach the graph to a window or an image object before drawing or
updating.

GRAPHICS ERROR 215: Attempt to replace a NIL object

Only non-nil objects may be replaced.

183

GRAPHICS ERROR 216: Attempt to re-associate object

You must disassociate an object before associating it again.

GRAPHICS ERROR 217: Object not associated

Object which you are trying to disassociate has not been associated.

GRAPHICS ERROR 218: Attempt to save to a NIL library

You must create an instance of the library by performing a NEW before saving it.

GRAPHICS ERROR 219: Attempt to load from a NIL library

You must create an instance of the library by performing a NEW before saving it.

GRAPHICS ERROR 220: Object not found in library

Make sure the object name you pass to LoadFromLibrary is in the library.

GRAPHICS ERROR 221: Library object of wrong type

Make sure the type of object asked to LoadFromLibrary matches the type of
object created in SIMDRAW. Also make sure that you perform the INHERITED
ObjInit for any graphic objects which have ObjInit overridden, otherwise
the object type is not defined.

GRAPHICS ERROR 222: Image's tree not attached to window

An icon's parent or ancestor must be attached to a window before the icon is
drawn or updated.

GRAPHICS ERROR 223: Image not attached to tree

An icon must be attached to a window or an image before drawing or updating it.

GRAPHICS ERROR 224: Image's window not drawn

An image must be attached to a window that is visible before drawing or updating
the icon.

GRAPHICS ERROR 225: Low world boundary equal to high

Make sure the SetWorld call for the image does not set the low values equal to the
high values.

SIMGRAPHICS II User's Manual

184

GRAPHICS ERROR 226: Attempt to add non-icon to an Image

Only images and their derived types may be added to an image.

GRAPHICS ERROR 227: Attempt to add icon already in tree

You must remove the image before adding it again.

GRAPHICS ERROR 228: Attempt to add non-list box item to
 listbox

Only list box items may be added to a list box.

GRAPHICS ERROR 229: Attempt to add non-menu items to
 menu bar

Only menus may be added to a menu bar.

GRAPHICS ERROR 230: Attempt to add non-menu item to
 menu

Only menu items may be added to a menu.

GRAPHICS ERROR 231: Slice number not found

Pie slice numbers start at 1. Make sure you have created as many slices in
SIMDRAW as you are trying to access from the program.

GRAPHICS ERROR 232: Data set number not found

Data set numbers start at 1. Make sure you have created as many data sets in
SIMDRAW as you are trying to access from the program.

GRAPHICS ERROR 233: Attempt to add non-radio button
 object to radio box

Only radio buttons may be added to a radio box object.

GRAPHICS ERROR 234: Non-existent library file <file
 name>

You tried to read in a library file that does not exist. This error does not occur if
the library is asked to SetNoError(TRUE).

GRAPHICS ERROR 235: Bad version library file

You tried to read in a library file created by a version of the editor newer than the
runtime library you are using.

185

GRAPHICS ERROR 236: Snap shot file “filename” could not be
read

An attempt was made to load in a bitmap file that was either non-existant, read
protected, or of the wrong format. To disable printing of this error, use the
SnapShotObj.SetNoError method, or set the IgnoreSSLoadErrors
variable in the module GSnap to TRUE. In this case, the FileStatus field will
contain the status of the last “Read” attempt.

GRAPHICS ERROR 237: Attempt to add a control to a file
dialog box.

The structure of the file, font, and message dialog boxes is defined by the toolkit.
You are not allowed to add controls to these objects.

GRAPHICS ERROR 238: System font family <family name> size:
<pt_size> weight: <weight> could not be found

A font matching the given font desciption could not be found on the server. The
TextObj.SetNoFontError method can be used to disable printing of this
error message. In this case the SysFontStatus field will contain the status of
the last attempt to display the text. See appendix D.

GRAPHICS ERROR 239: Object to convert not a WindowObj or
ImageObj

Only objects deririved from ImageObj can be converted to EPS PostScript.
Dialogs, menus and palettes cannot be converted.

GRAPHICS ERROR 240: Pane number exceeds total number of
status panes

When using the ShowStatus or SetPaneWidth methods of WindowObj,
the given pane number must be 0 and the number of panes - 1.

GRAPHICS ERROR 241: Button face icon <path_nam> could not be
loaded

An attempt was made to load in a bitmap file for a palette button that was either non-
existant, read protected, or of the wrong format. To disable printing of this error, use the
PaletteButtonObj.SetNoError method, or set the IgnoreSSLoadErrors
variable in the module GSnap to TRUE. In this case, the FileStatus field will contain
the status of the last “Read” attempt.

SIMGRAPHICS II User's Manual

186

187

183

Index

3
3-D polygon...150
3-D polyline...150
3-D Primitives ...150

A
animation...166
Arcs...12
Accelerator ..136
AcceptInput..................... 71, 109, 110, 134, 137, 175
AcceptSysInput.....................................129, 131, 133
activate ..111
AddChild...46
AddDataSet ...105
AddGraphic... 2, 77, 115
Adding an Object...7
Adding an Object to the Library...............................7
Alert ..131
align and distribute, shapes....................................16
Alignment, bitmap...74
AnalogClockObj.. 83, 89
ancestors..63
animation mode ...165
animation speed...165
ArcObj...158
array of text ...132
array of variables ...95
aspect ratio .. a, 2, 53
Asynchronous notification......................................57
attribute, chart ...19

B
Bar chart..86
BeActivated...60
BeClosed...57
BeExpanded...124
BeSelected..48, 77, 110-111, 120- 125, 135, 139, 145
bitmap ...162
bitmap icon..117
Bitmaps ... 13, 72
Bounding Boxes...72
browse...129
buffer...121
button .. 28, 45, 113
ButtonObj..107

C
camera.. 147-148
Camera objects ..147

CameraObj..148-150, 185
canvas cursor... 153
Clipboard .. 10
Color palette.. 9
center point, shape... 15
Changing the Name of an Object............................. 7
chart...95, 96
Chart Fields... 103
ChartObj ..83, 85
Charts ... 19
check box...30, 45, 113
CheckBoxObj..107-109
Child... 46
Circles..12, 157
ClearDataSet... 105
ClickMonitoring.. 54
Clipboard .. 28
clipping... 52
Clocks... 24
ClockVObj...83, 88
color...18, 45
ColorType... 63
combination box.. 31
ComboBoxObj..107, 119
Command Line Arguments...................................... 8
command line options.. 166
Continuous Surface.. 22
control... 28
Control, deactivate... 112
controls ..35, 107
Controls, Updating.. 112
ControlVObj..108-109
ControlWindowObj..................................59, 60, 119
Convert ... 75
coordinate space.. 157
coordinate system............................... 51, 52, 72, 175
coordinate system units.. 69
coordinate units... 84
Copy...10, 45
cursor ... 153
Cut...10, 45

D
data point .. 92
data set.. 22
Data Set options.. 101
Dialog Box Fonts... 127
deactivate.. 111
Delete ... 10
depth of field...149-150
Descendant.. 77
descendants... 63
dial...24, 45

SIMGRAPHICS II User's Manual

184

DialObj.. 83, 90
dialog box.................................33, 45, 113, 125, 128
Dialog Box, tabbed..34
dialog boxes...126
Dialog Editor...5
DialogBoxObj... 2, 107-110
digital display.. 25, 45
DigitalClockObj... 83, 89
DigitalDisplayObj.. 83, 91
dimension.. 17, 45
Discrete Surface...22
DisplayAt...47
DisplayAt(IN x,y

REAL) 77
DisplaySelectedItem...116
DisplaySlice...88
disposed...145
dockable ..139
Draw.. 2, 47, 49, 112
Draw()...77
drawing mode..166
DualLineCursorObj..154
DynAClockObj.. 79, 89
DynamicUpdate...78
DynClockObj...79
DynClockVObj..79
DynDClockObj.. 79, 89
DynImageObj...2, 78

E
Editing Objects..6
Editor, Palette..40
Editor. Dialog..26
EPSObj..75
Erase ...3, 49
Erase()...77
errors ... 177, 185
Example1...3
Example2...68
Example5...96
Example6... 80, 136

F
FieldWidth...91
FixedAspCursorObj...154
FixedCursorObj...154
flip...16
FollowPath... 78, 185
font.. 127, 130
font browser...131
FormVObj.. 108-111
frame window..58

G
GEPS...74
GetBoundingBox...72

GetFrameSize.. 59
GetFrameTranslation... 59
GETMONITOR... 94
Graph Editor ... 5, 18
graph component... 98
graphic library... 45
GraphicLibObj.. 3
GraphicSetObj... 115
GraphicVObj... 111
GraphVObj.. 83
grid ... 35
grid lines ... 16
group box.. 31
grouping ... 67
Gtree... 117
GTypes...51, 69, 157

H
hierarchy... 63
Histogram...22, 45, 85, 92

I
IDataPtMObj... 92
Image Editor... 8-10, 18
image .. 70
Image Editor.. 8
ImageObj... 2, 72
Images..14, 45
ImageObj... 86
Inheritance Tree for Controls............................... 109
IsSelected.. 118

K
Keypress ... 124

L
label ...31, 45
LabelObj..107, 119
LastPicked..71, 126, 135
Layout/Group.. 14
level meter ...25, 45
LevelMeterObj...83, 90
Library file.. 3, 45
LightObj...149, 185
Lights.. 149
lights, directional... 149
lights, positional.. 149
lights, spot... 149
line wrapping .. 122
LineCursorObj... 154
LineStyleType... 157
list box... 30, 45, 115, 117
ListBoxItemObj... 107
ListBoxMultObj...60, 107
ListBoxObj.. 107

Index

185

Listing Objects...7
Layout Editor...7
LoadFromLibrary...77
Loading and Saving..6

M
MainEx4..55
Making a Duplicate of an Object..............................7
mask..72
menu bar.. 36, 37, 133
Menu Item...39
MenuBarObj.. 2, 107- 109
MenuItemObj.. 107-108
MenuObj .. 107-108
MessageButtonType...132
MessageDialogBoxObj...132
MessageResponseType...132
MessageStyleType...132
MeterVObj .. 83, 89
Menubar Editor..5
monitor variables...92
monitored ..92
monitored variables..93
monitoring...96
MonitoringClicks...153
mouse movement...61
MouseClick ...54
MouseMove...54
MoveMonitoring.. 54, 153
MoveTo... 78, 178, 185
MovingObj..78
multi-line text box ...31
MultiLineBoxObj... 60, 120
multivariable monitoring..93

N
Natural Order...8
NEW ...3
nograp..166
noimage...167
windows, non-square..52
Normalized Display Coordinates..........................160

O
ObjInit...145
Order, Typed..8
OutputLine ..75

P
Palette ...140
Palette Button..43
Palette separators...44
Palette, Color...8
Palette, Color...18
Palette, Mode...8

Palette, Mode.. 40
Palette, Style... 8, 18
PaletteObj ... 139
pan...17, 36
Panes... 56
parent.. 63
Paste ... 10
PctWidth... 157
pie chart ...23, 45, 88, 95
pie slice numbering ... 94
PiechartObj ..83, 87
Plot ..85, 93
Plot Type... 22
Plot, 2-D.. 19
PlotLabel... 86
PointArrayType... 157
points array ... 157
Polygon3dObj...150, 185
Polygons...11, 45
Polyline3dObj..150, 185
PolylineObj... 157
Polylines ..11, 45, 157
pop-up... 137
Postscript ...58, 74, 145
Palette Editor .. 5
points array ... 158
Precision ... 91
Presentation graphics......................................a, 2, 83
Primitives...10, 157
print .. 58
Program Access... 18

R
radians .. 63
radio box..30, 45, 117
radio buttons ... 117
RadioBoxObj...107-109
RadioButtonObj..108-109
raster file, importing.. 13
RDataPtMObj ... 92
ReadFromFile.. 3
real world coordinates... 69
real world x,y coordinates.................................... 161
real-time.. 165
RectCursorObj... 154
RemoveChild... 46
RemoveDataSet... 105
RemoveGraphic... 115
RemoveThisGraphic.......................................77, 115
Representation... 22
resize... 60
ReturnSelectable ..120, 139
RGB.. 63
RGBColor... 175
root image ... 14
rotate... 16
RotateTo ..78, 185
RotatingObj... 78

SIMGRAPHICS II User's Manual

186

Rotation.. 63-65, 185
rubberband cursors...153
Running SIMDRAW..5

S
scalable... 72-73, 79- 85, 162
scalable..157
scalable..161
ScaleTo.. 79, 185
Scaling... 63, 185
ScalingObj...79
scrolling...122
SDataPtMObj..92
Sectors... 12, 45, 157
Selectable ..71
Selecting, Moving, and Resizing............................10
selection ..71
Set ...47
Set/Size ...119
SetAutoGeometry...60
SetBackground...75
SetCheck ...135
SetClickMonitoring..54
SetColor...50
SetColumnWidth... 124, 139
SetCoordinate.. 97, 106
SetCopies...75
SetCourse .. 78, 185
SetCursor...153
SetDataSet...93
SetDefaultButton...133
SetDSInterval...105
SetDSTitle...105
SetDSTitle(..105
SetEditable .. 120, 139
SetElement ..94
SetExpanded..119
SetFile...75
SetFrameIconNames..59
SetFrameSize...59
SetFrameTitle..59
SetFrameTranslation..59
SetGraph..92
SetHeadings...124
SetHeight... 120, 139
SetHorizontalScrolling..122
SetIconName.. 119, 128
SetIconNames...60
SetInitialState..59
SetLabel ..128
SetLabel()..119
SetMappingMode...52
SetMaximized.. 122, 124
SetMnemonic...135
SetMoveMonitoring...54
SetNumPanes...56
SetOffset..75
SetOptions... 120, 139

SetOrientation... 75
SetPaneWidth.. 56
SetPoints..157, 185
SetPSFont ... 76
SetPSTarget .. 76
SetResponses... 133
SetRGBColor.. 50
SetRotationSpeed.. 78
SetScaleSpeed... 79
SetScaling..106, 185
SetSelectedItem... 116
SetShowWindow... 76
SetSize............................50, 121, 124, 139, 154, 185
SetSizes... 75
SetSorted..120, 139
SetSpeed ..78, 185
SetSubWindow.. 59
SetTabSize.. 128
SetText... 124, 132, 139
SetTextBuffer...121, 132
SetTranslation()... 119
SetVerticalGrow.. 124
SetVisibleSize..124, 139
SetWindowName... 76
SetWorld... 69
SetY2AxisTitle.. 105
ShowStatus.. 56
ShowWorld..51, 56
SnapShotObj... 72
solar system... 68
Style palette .. 9
stacking... 86
stacking order.. 15
StartMotion... 78
StartSimulation ... 125
status bar..49, 56
StopMotion... 78
STRINGs... 120
sub-windows... 58
system cursor...154-155
System File Browser.. 129
system fonts... 158
system text font... 159

T
Tabbed Dialog... 127
table ... 32, 45, 122, 139
TableObj................................. 60, 108-109, 124, 139

alignment 161
sizing 161

Text boxe.. 29
Text Meter .. 26
text primitive... 13
TextBoxObj...........................108, 109, 119, 120, 139
TextBuffer... 121
TextBuffer().. 121
TextDisplayObj..83, 91, 95
Time Scaling... 80

Index

187

TimeScale..167
Timescale scale..80
ToggleVObj... 108, 109
Tools, Flip...16
trace plots ..93
Transferring a menu or menu item..........................37
transformation..70
Translation...119
translations ..159
tree structure..64
Tree view control...117
TreeItemObj..117
TreeObj ... 60, 117
TriangularMeshObj...................................... 150, 185
Tab Field ...34
Tabbed Dialog...33

U
Update...48

V
Value... 110, 111
value box... 29, 45, 114
ValueBox... 110, 111
ValueBoxObj... 108, 109
variable monitoring..92
vertices defining a primitive...................................15
virtual object..45
visibl ...53

W
WAIT..80
wall-clock time..165
Width ..157
Window...60
Window object...148
Window, control..60
WindowObj.. 2, 49-50, 59
windows .. a, 2, 49
world coordinate space...70
WorldXhi... 51, 69
WorldXlo... 51, 69
WorldYhi... 51, 69
WorldYlo... 51, 69
wrap ..122

X
X-axis..20
xwd ...72

Y
Y-axis..20

Z
zoom.. 17, 35, 73, 149

SIMGRAPHICS II User's Manual

188

Index

189

