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Variables and Data Structures Chapter Five

 

Chapter One discussed the basic format for data in memory. Chapter Three covered
how a computer system physically organizes that data. This chapter finishes this discus-
sion by connecting the concept of 

 

data representation

 

 to its actual physical representation.
As the title implies, this chapter concerns itself with two main topics: variables and data
structures. This chapter does not assume that you’ve had a formal course in data struc-
tures, though such experience would be useful.

 

5.0 Chapter Overview

 

This chapter discusses how to declare and access scalar variables, integers, reals, data
types, pointers, arrays, and structures. You must master these subjects before going on to
the next chapter. Declaring and accessing arrays, in particular, seems to present a multi-
tude of problems to beginning assembly language programmers. However, the rest of this
text depends on your understanding of these data structures and their memory represen-
tation. Do not try to skim over this material with the expectation that you will pick it up as
you need it later. You will need it right away and trying to learn this material along with
later material will only confuse you more.

 

5.1 Some Additional Instructions: LEA, LES, ADD, and MUL

 

The purpose of this chapter is not to present the 80x86 instruction set. However, there
are four additional instructions (above and beyond 

 

mov

 

) that will prove handy in the dis-
cussion throughout the rest of this chapter. These are the 

 

load effective address

 

  (

 

lea

 

),  

 

load 

 

es

 

and general purpose register 

 

(

 

les

 

),  

 

addition

 

 (

 

add

 

),  and 

 

multiply

 

 (

 

mul

 

). These instructions,
along with the 

 

mov

 

 instruction, provide all the necessary power to access the different
data types this chapter discusses.

The 

 

lea 

 

instruction takes the form:

 

lea reg

 

16

 

, memory

 

reg

 

16

 

 

 

is a 16 bit general purpose register. 

 

Memory

 

 is a memory location represented by a
mod/reg/rm byte

 

1

 

 (except it must be a memory location, it cannot be a register). 

This instruction loads the 16 bit register with the offset of the location specified by the
memory operand. 

 

lea ax,1000h[bx][si],

 

 for example, would load 

 

ax

 

 with the address of the
memory location pointed at by 

 

1000h[bx][si].

 

 This, of course, is the value

 

 1000h+bx+si.  Lea

 

is also quite useful for obtaining the address of a variable. If you have a variable I some-
where in memory,

 

 lea bx,I 

 

will load the 

 

bx

 

 register with the address (offset) of I. 

The 

 

les

 

 instruction takes the form

 

les reg

 

16

 

, memory

 

32

 

This instruction loads the 

 

es

 

 register and one of the 16 bit general purpose registers
from the specified memory address. Note that any memory address you can specify with
a mod/reg/rm byte is legal but like the 

 

lea

 

 instruction it must be a memory location, not a
register.

The 

 

les

 

 instruction loads the specified general purpose register from the word at the
given address, it loads the 

 

es

 

 register from the following word in memory. This instruc-
tion, and it’s companion 

 

lds

 

 (which loads 

 

ds

 

) are the only instructions on pre-80386
machines that manipulate 32 bits at a time.

 

1. Or by the mod/reg/rm -- sib addressing mode bytes on the 80386.
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The 

 

add

 

 instruction, like it’s x86 counterpart, adds two values on the 80x86. This
instruction takes several forms. There are five forms that concern us here. They are

 

add reg, reg
add reg, memory
add memory, reg
add reg, constant
add memory, constant

 

All these instructions add the second operand to the first leaving the sum in the first oper-
and. For example, 

 

add bx,5 

 

computes

 

 bx := bx + 5.

 

The last instruction to look at is the 

 

mul

 

 (multiply) instruction. This instruction has
only a single operand and takes the form:

 

mul reg/memory

 

There are many important details concerning 

 

mul

 

 that this chapter ignores. For the
sake of the discussion that follows, assume that the register or memory location is a 16 bit
register or memory location. In such a case this instruction computes

 

 dx:ax :=ax*reg/mem

 

2

 

.
Note that there is no immediate mode for this instruction.

 

5.2 Declaring Variables in an Assembly Language Program

 

Although you’ve probably surmised that memory locations and variables are some-
what related, this chapter hasn’t gone out of its way to draw strong parallels between the
two. Well, it’s time to rectify that situation. Consider the following short (and useless) Pas-
cal program:

 

program useless(input,output);
var i,j:integer;
begin

i := 10;
write(‘Enter a value for j:’);
readln(j);
i := i*j + j*j;
writeln(‘The result is ‘,i);

end.

 

When the computer executes the statement

 

  i:=10;

 

3

 

 it makes a copy of the value 10 and
somehow remembers this value for use later on. To accomplish this, the compiler sets
aside a memory location specifically for the exclusive use of the variable 

 

i.

 

 Assuming the
compiler arbitrarily assigned location DS:10h for this purpose it could use the instruction

 

 mov ds:[10h],10  

 

to accomplish this

 

4

 

. If

 

 i 

 

is a 16 bit word, the compiler would probably
assign the variable

 

 j 

 

to the word starting at location 12h or 0Eh. Assuming it’s location 12h,
the second assignment statement in the program might wind up looking like the follow-
ing:

 

mov ax, ds:[10h] ;Fetch value of I
mul ds:[12h] ;Multiply by J
mov ds:[10h], ax ;Save in I (ignore overflow)
mov ax, ds:[12h] ;Fetch J
mul ds:[12h] ;Compute J*J
add ds:[10h], ax ;Add I*J + J*J, store into I

 

2. Any time you multiply two 16 bit values you could get a 32 bit result. The 80x86 places this 32 bit result in 

 

dx:ax

 

with the H.O. word in 

 

dx

 

 and the L.O. word in 

 

ax

 

.
3. Actually, the computer executes the 

 

machine code

 

 emitted by the Pascal compiler for this statement; but you need
not worry about such details here.
4. But don’t try this at home, folks! There is one minor syntactical detail missing from this instruction. MASM will
complain bitterly if you attempt to assemble this particular instruction.
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Although there are a few details missing from this code, it is fairly straightforward
and you can easily see what is going on in this program.

Now imagine a 5,000 line program like this one using variables like ds:[10h], ds:[12h],
ds:[14h

 

], 

 

etc. Would you want to locate the statement where you accidentally stored the
result of a computation into

 

 j 

 

rather than

 

 i

 

? Indeed, why should you even care that the
variable

 

 i 

 

is at location 10h and

 

 j 

 

is at location 12h? Why shouldn’t you be able to use
names like

 

 i 

 

and

 

 j

 

 rather than worrying about these numerical addresses? It seems reason-
able to rewrite the code above as:

 

mov ax, i
mul j
mov i, ax
mov ax, j
mul j
add i, ax

 

Of course you can do this in assembly language! Indeed, one of the primary jobs of an
assembler like MASM is to let you use symbolic names for memory locations. Further-
more, the assembler will even assign locations to the names automatically for you. You
needn’t concern yourself with the fact that variable

 

 i 

 

is really the word at memory location
DS:10h unless you’re curious.

It should come as no surprise that 

 

ds

 

 will point to the dseg segment in the
SHELL.ASM file. Indeed, setting up 

 

ds

 

 so that it points at dseg is one of the first things
that happens in the SHELL.ASM main program. Therefore, all you’ve got to do is tell the
assembler to reserve some storage for your variables in dseg and attach the offset of said
variables with the names of those variables. This is a very simple process and is the sub-
ject of the next several sections.

 

5.3 Declaring and Accessing Scalar Variables

 

Scalar variables hold single values. The variables

 

 i 

 

and

 

 j 

 

in the preceding section are
examples of scalar variables. Examples of data structures that are not scalars include
arrays, records, sets, and lists. These latter data types are made up from scalar values.
They are the 

 

composite types

 

. You’ll see the composite types a little later; first you need to
learn to deal with the scalar types.

To declare a variable in dseg, you would use a statement something like the following:

 

ByteVar byte ?

 

ByteVar

 

 is a 

 

label

 

. It should begin at column one on the line somewhere in the dseg segment
(that is, between the 

 

 dseg  segment

 

 

 

and 

 

 dseg  ends  

 

statements). You’ll find out all about
labels in a few chapters, for now you can assume that most legal Pascal/C/Ada identifiers
are also valid assembly language labels.

If you need more than one variable in your program, just place additional lines in the
dseg segment declaring those variables. MASM will automatically allocate a unique stor-
age location for the variable (it wouldn’t be too good to have

 

 i 

 

and

 

 j 

 

located at the same
address now, would it?). After declaring said variable, MASM will allow you to refer to
that variable 

 

by name

 

 rather than by location in your program. For example, after inserting
the above statement into the data segment (dseg), you could use instructions like

 

mov ByteVar,al

 

 in your program.

The first variable you place in the data segment gets allocated storage at location DS:0.
The next variable in memory gets allocated storage just beyond the previous variable. For
example, if the variable at location zero was a byte variable, the next variable gets allo-
cated storage at DS:1. However, if the first variable was a word, the second variable gets
allocated storage at location DS:2. MASM is always careful to allocate variables in such a
manner that they do not overlap. Consider the following dseg definition:
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dseg segment para public ‘data’
bytevar byte ? ;byte allocates bytes
wordvar word ? ;word allocates words
dwordvar dword ? ;dword allocs dbl words
byte2 byte ?
word2 word ?
dseg ends

 

MASM allocates storage for 

 

bytevar

 

 at location DS:0. Because 

 

bytevar

 

 is one byte long,
the next available memory location is going to be DS:1. MASM, therefore, allocates storage
for 

 

wordvar

 

 at location DS:1. Since words require two bytes, the next available memory
location after 

 

wordvar

 

 is DS:3 which is where MASM allocates storage for 

 

dwordvar

 

. 

 

Dword-
var 

 

is four bytes long, so MASM allocates storage for 

 

byte2

 

 starting at location DS:7. Like-
wise, MASM allocates storage for 

 

word2

 

 at location DS:8. Were you to stick another
variable after 

 

word2

 

, MASM would allocate storage for it at location DS:0A.

Whenever you refer to one of the names above, MASM automatically substitutes the
appropriate offset. For example, MASM would translate the 

 

mov ax,wordvar

 

 

 

instruction
into

 

 mov ax,ds:[1].

 

 So now you can use symbolic names for your variables and completely
ignore the fact that these variables are really memory locations with corresponding offsets
into the data segment.

 

5.3.1 Declaring and using BYTE Variables

 

So what are byte variables good for, anyway? Well you can certainly represent any
data type that has less than 256 different values with a single byte. This includes some
very important and often-used data types including the character data type, boolean data
type, most enumerated data types, and small integer data types (signed and unsigned),
just to name a few.

Characters on a typical IBM compatible system use the eight bit ASCII/IBM character
set (see “A: ASCII/IBM Character Set” on page 1345). The 80x86 provides a rich set of
instructions for manipulating character data. It’s not surprising to find that most byte
variables in a typical program hold character data.

The boolean data type represents only two values: true or false. Therefore, it only
takes a single bit to represent a boolean value. However, the 80x86 really wants to work
with data at least eight bits wide. It actually takes extra code to manipulate a single bit
rather than a whole byte. Therefore, you should use a whole byte to represent a boolean
value. Most programmers use the value zero to represent false and anything else (typi-
cally one) to represent true. The 80x86’s zero flag makes testing for zero/not zero very
easy. Note that this choice of zero or non-zero is mainly for convenience. You could use

 

any

 

 two different values (or two different sets of values) to represent true and false. 

Most high level languages that support enumerated data types convert them (inter-
nally) to unsigned integers. The first item in the list is generally item zero, the second item
in the list is item one, the third is item two, etc. For example, consider the following Pascal
enumerated data type:

 

colors = (red, blue, green, purple, orange, yellow, white, black);

 

Most Pascal compilers will assign the value zero to red, one to blue, two to green, etc.

Later, you will see how to actually create your own enumerated data types in assem-
bly language. All you need to learn now is how to allocate storage for a variable that holds
an enumerated value. Since it’s unlikely there will be more than 256 items enumerated by
the data type, you can use a simple byte variable to hold the value. If you have a variable,
say 

 

color

 

 of type 

 

colors

 

, using the instruction

 

 mov color,2 

 

is the same thing as saying

 

color:=green 

 

in Pascal. (Later, you’ll even learn how to use more meaningful statements
like

 

 mov color,green 

 

to assign the color green to the color variable).

Of course, if you have a small unsigned integer value (0…255) or small signed integer
(-128…127) a single byte variable is the best way to go in most cases. Note that most pro-
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grammers treat all data types except small signed integers as unsigned values. That is,
characters, booleans, enumerated types, and unsigned integers are all usually unsigned
values. In some very special cases you might want to treat a character as a signed value,
but most of the time even characters are unsigned values.

There are three main statements for declaring byte variables in a program. They are

 

identifier

 

db ?

 

identifier

 

byte ?
and

 

identifier

 

sbyte ?

 

identifier

 

 represents the name of your byte variable. “

 

db

 

” is an older term that predates
MASM 6.x. You will see this directive used quite a bit by other programmers (especially
those who are not using MASM 6.x or later) but Microsoft considers it to be an obsolete
term; you should always use the

 

 byte 

 

and

 

 sbyte 

 

declarations instead. 

The

 

 byte

 

 declaration declares unsigned byte variables. You should use this declaration
for all byte variables 

 

except

 

 small signed integers. For signed integer values, use the 

 

sbyte

 

(signed byte) directive. 

Once you declare some byte variables with these statements, you may reference those
variables within your program by their names:

 

i db ?
j byte ?
k sbyte ?

  .
  .
  .
mov i, 0
mov j, 245
mov k, -5
mov al, i
mov j, al
etc.

 

Although MASM 6.x performs a small amount of type checking, you should not get
the idea that assembly language is a strongly typed language. In fact, MASM 6.x will only
check the values you’re moving around to verify that they will 

 

fit

 

 in the target location. All
of the following are legal in MASM 6.x:

 

mov k, 255
mov j, -5
mov i, -127

 

Since all of these variables are byte-sized variables, and all the associated constants will fit
into eight bits, MASM happily allows each of these statements. Yet if you look at them,
they are logically incorrect. What does it mean to move -5 into an unsigned byte variable?
Since signed byte values must be in the range -128…127, what happens when you store
the value 255 into a signed byte variable? Well, MASM simply converts these values to
their eight bit equivalents (-5 becomes 0FBh, 255 becomes 0FFh [-1], etc.).

Perhaps a later version of MASM will perform stronger type checking on the values
you shove into these variables, perhaps not. However, you should always keep in mind
that it will always be possible to circumvent this checking. It’s up to you to write your pro-
grams correctly. The assembler won’t help you as much as Pascal or Ada will. Of course,
even if the assembler disallowed these statements, it would still be easy to get around the
type checking. Consider the following sequence:

 

mov al, -5
 .

; Any number of statements which do not affect AL
 .
mov j, al
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There is, unfortunately, no way the assembler is going to be able to tell you that you’re
storing an illegal value into

 

 j

 

5

 

. The registers, by their very nature, are neither signed nor
unsigned. Therefore the assembler will let you store a register into a variable regardless of
the value that may be in that register.

Although the assembler does not check to see if both operands to an instruction are
signed or unsigned, it most certainly checks their size. If the sizes do not agree the assem-
bler will complain with an appropriate error message. The following examples are all ille-
gal:

 

mov i, ax ;Cannot move 16 bits into eight
mov i, 300 ;300 won’t fit in eight bits.
mov k, -130 ;-130 won’t fit into eight bits.

 

You might ask “if the assembler doesn’t really differentiate signed and unsigned val-
ues, why bother with them? Why not simply use

 

 db 

 

all the time?” Well, there are two rea-
sons. First, it makes your programs easier to read and understand if you explicitly state
(by using 

 

byte

 

 and 

 

sbyte

 

) which variables are signed and which are unsigned. Second, who
said anything about the assembler ignoring whether the variables are signed or unsigned?
The 

 

mov

 

 instruction ignores the difference, but there are other instructions that do not. 

One final point is worth mentioning concerning the declaration of byte variables. In
all of the declarations you’ve seen thus far the operand field of the instruction has always
contained a question mark. This question mark tells the assembler that the variable
should be left uninitialized when DOS loads the program into memory

 

6

 

. You may specify
an initial value for the variable, that will be loaded into memory before the program starts
executing, by replacing the question mark with your initial value. Consider the following
byte variable declarations:

 

i db 0
j byte 255
k sbyte -1

 

In this example, the assembler will initialize

 

 i, j,

 

 and

 

 k 

 

to zero, 255, and -1, respectively,
when the program loads into memory. This fact will prove quite useful later on, especially
when discussing tables and arrays. Once again, the assembler only checks the sizes of the
operands. It does not check to make sure that the operand for the

 

  byte  

 

directive is posi-
tive or that the value in the operand field of 

 

sbyte

 

 is in the range -128…127. MASM will
allow any value in the range -128…255 in the operand field of any of these statements.

In case you get the impression that there isn’t a real reason to use byte vs. sbyte in a
program, you should note that while MASM sometimes ignores the differences in these
definitions, Microsoft’s CodeView debugger does not. If you’ve declared a variable as a
signed value, CodeView will display it as such (including a minus sign, if necessary). On
the other hand, CodeView will always display

 

 db 

 

and 

 

byte

 

 variables as positive values.

 

5.3.2 Declaring and using WORD Variables

 

Most 80x86 programs use word values for three things: 16 bit signed integers, 16 bit
unsigned integers, and offsets (pointers). Oh sure, you can use word values for lots of
other things as well, but these three represent most applications of the word data type.
Since the word is the largest data type the 8086, 8088, 80186, 80188, and 80286 can handle,
you’ll find that for most programs, the word is the basis for most computations. Of course,
the 80386 and later allow 32 bit computations, but many programs do not use these 32 bit
instructions since that would limit them to running on 80386 or later CPUs.

You use the

 

 dw, word,

 

 and 

 

sword

 

 statements to declare word variables. The following
examples demonstrate their use:

 

5. Actually, for this simple example you 

 

could

 

 modify the assembler to detect this problem. But it’s easy enough to
come up with a slightly more complex example where the assembler could 

 

not

 

  detect the problem on.
6. DOS actually initializes such variables to zero, but you shouldn’t count on this.
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NoSignedWord dw ?
UnsignedWord word ?
SignedWord sword ?
Initialized0 word 0
InitializedM1 sword -1
InitializedBig word 65535
InitializedOfs dw NoSignedWord

 

Most of these declarations are slight modifications of the byte declarations you saw in
the last section. Of course you may initialize any word variable to a value in the range
-32768…65535 (the union of the range for signed and unsigned 16 bit constants). The last
declaration above, however, is new. In this case a label appears in the operand field (spe-
cifically, the name of the NoSignedWord variable). When a label appears in the operand
field the assembler will substitute the offset of that label (within the variable’s segment). If
these were the only declarations in 

 

dseg

 

 and they appeared in this order, the last declara-
tion above would initialize 

 

InitializedOfs

 

 with the value zero since 

 

NoSignedWord

 

’s offset is
zero within the data segment. This form of initialization is quite useful for initializing

 

pointers

 

. But more on that subject later.

The CodeView debugger differentiates 

 

dw/word

 

 variables and 

 

sword

 

 variables. It
always displays the unsigned values as positive integers. On the other hand, it will dis-
play 

 

sword

 

 variables as signed values (complete with minus sign, if the value is negative).
Debugging support is one of the main reasons you’ll want to use 

 

word

 

 or 

 

sword

 

 as appro-
priate.

 

5.3.3 Declaring and using DWORD Variables    

 

You may use the 

 

dd, dword,

 

 and 

 

sdword

 

 instructions to declare four-byte integers,
pointers, and other variables types. Such variables will allow values in the range
-2,147,483,648…4,294,967,295 (the union of the range of signed and unsigned four-byte
integers). You use these declarations like the 

 

word

 

 declarations:

 

NoSignedDWord dd ?
UnsignedDWord dword ?
SignedDWord sdword ?
InitBig dword 4000000000
InitNegative sdword -1
InitPtr dd InitBig

 

The last example initializes a double word pointer with the segment:offset address of the
InitBig variable.

Once again, it’s worth pointing out that the assembler doesn’t check the types of these
variables when looking at the initialization values. If the value fits into 32 bits, the assem-
bler will accept it. Size checking, however, is strictly enforced. Since the only 32 bit 

 

mov

 

instructions on processors earlier than the 80386 are 

 

les

 

 and 

 

lds

 

, you will get an error if you
attempt to access dword variables on these earlier processors using a 

 

mov

 

 instruction. Of
course, even on the 80386 you cannot move a 32 bit variable into a 16 bit register, you must
use the 32 bit registers. Later, you’ll learn how to manipulate 32 bit variables, even on a 16
bit processor. Until then, just pretend that you can’t.

Keep in mind, of course, that CodeView differentiates between 

 

dd/dword

 

 and 

 

sdword

 

.
This will help you see the actual values your variables have when you’re debugging your
programs. CodeView only does this, though, if you use the proper declarations for your
variables. Always use 

 

sdword

 

 for signed values and 

 

dd

 

 

 

or 

 

dword

 

 (

 

dword

 

 

 

is best) for unsigned
values.
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5.3.4 Declaring and using FWORD, QWORD, and TBYTE Variables

 

MASM 6.x also lets you declare six-byte, eight-byte, and ten-byte variables using the

 

df/fword

 

, 

 

dq/qword

 

, 

 

and 

 

dt/tbyte

 

 statements. Declarations using these statements were origi-
nally intended for floating point and BCD values. There are better directives for the float-
ing point variables and you don’t need to concern yourself with the other data types
you’d use these directives for. The following discussion is for completeness’ sake.

 The 

 

df/fword

 

 statement’s main utility is declaring 48 bit pointers for use in 32 bit pro-
tected mode on the 80386 and later. Although you could use this directive to create an
arbitrary six byte variable, there are better directives for doing that. You should only use
this directive for 48 bit far pointers on the 80386.

 

dq/qword

 

 

 

lets you declare 

 

quadword

 

 (eight byte) variables. The original purpose of this
directive was to let you create 64 bit double precision floating point variables and 64 bit
integer variables. There are better directives for creating floating point variables. As for 64
bit integers, you won’t need them very often on the 80x86 CPU (at least, not until Intel
releases a member of the 80x86 family with 64 bit general purpose registers).

The 

 

dt/tbyte

 

 directives allocate ten bytes of storage. There are two data types indige-
nous to the 80x87 (math coprocessor) family that use a ten byte data type: ten byte BCD
values and extended precision (80 bit) floating point values. This text will pretty much
ignore the BCD data type. As for the floating point type, once again there is a better way to
do it.

 

5.3.5 Declaring Floating Point Variables with REAL4, REAL8, and REAL10

 

These are the directives you should use when declaring floating point variables. Like

 

dd, dq, 

 

and 

 

dt

 

 these statements reserve four, eight, and ten bytes. The operand fields for
these statements may contain a question mark (if you don’t want to initialize the variable)
or it may contain an initial value in floating point form. The following examples demon-
strate their use:

 

x real4 1.5
y real8 1.0e-25
z real10 -1.2594e+10

 

Note that the operand field must contain a valid floating point constant  using either
decimal or scientific notation. In particular, 

 

pure integer constants are not allowed.

 

 The
assembler will complain if you use an operand like the following:

 

x real4 1

 

To correct this, change the operand field to “1.0”.

Please note that it takes special hardware to perform floating point operations (e.g., an
80x87 chip or an 80x86 with built-in math coprocessor). If such hardware is not available,
you must write software to perform operations like floating point addition, subtraction,
multiplication, etc. In particular, you cannot use the 80x86 

 

add

 

 instruction to add two
floating point values. This text will cover floating point arithmetic in a later chapter (see
“Floating Point Arithmetic” on page 771). Nonetheless, it’s appropriate to discuss how to
declare floating point variables in the chapter on data structures.

MASM also lets you use 

 

dd, dq, 

 

and 

 

dt

 

 

 

to declare floating point variables (since these
directives reserve the necessary four, eight, or ten bytes of space). You can even initialize
such variables with floating point constants in the operand field. But there are two major
drawbacks to declaring variables this way. First, as with bytes, words, and double words,
the CodeView debugger will only display your floating point variables properly if you
use the

 

 real4, real8, 

 

or 

 

real10

 

 directives. If you use 

 

dd, dq, 

 

or 

 

dt,

 

 CodeView will display your
values as four, eight, or ten byte unsigned integers. Another, potentially bigger, problem
with using 

 

dd, dq,

 

 and 

 

dt

 

 is that they allow both integer and floating point constant initial-
izers (remember, 

 

real4, real8, 

 

and 

 

real10

 

 do not). Now this might seem like a good feature
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at first glance. However, the integer representation for the value one is 

 

not

 

 the same as the
floating point representation for the value 1.0. So if you accidentally enter the value “1” in
the operand field when you really meant “1.0”, the assembler would happily digest this
and then give you incorrect results. Hence, you should always use the 

 

real4, real8, 

 

and

 

real10

 

 

 

statements to declare floating point variables.

 

5.4 Creating Your Own Type Names with TYPEDEF

 

Let’s say that you simply do not like the names that Microsoft decided to use for
declaring byte, word, dword, real, and other variables. Let’s say that you prefer Pascal’s
naming convention or, perhaps, C’s naming convention. You want to use terms like 

 

inte-
ger, float, double, char, boolean,

 

 or whatever. If this were Pascal you could redefine the names
in the 

 

type

 

 section of the program. With C you could use a “

 

#define

 

” or a 

 

typedef

 

 state-
ment to accomplish the task. Well, MASM 6.x has it’s own 

 

typedef

 

 statement that also lets
you create aliases of these names. The following example demonstrates how to set up
some Pascal compatible names in your assembly language programs:

 

integer typedef sword
char typedef byte
boolean typedef byte
float typedef real4
colors typedef byte

 

Now you can declare your variables with more meaningful statements like:

 

i integer ?
ch char ?
FoundIt boolean ?
x float ?
HouseColor colors ?

 

If you are an Ada, C, or FORTRAN programmer (or any other language, for that mat-
ter), you can pick type names you’re more comfortable with. Of course, this doesn’t
change how the 80x86 or MASM reacts to these variables one iota, but it does let you cre-
ate programs that are easier to read and understand since the type names are more indica-
tive of the actual underlying types.

Note that CodeView still respects the underlying data type. If you define 

 

integer

 

 to be
an 

 

sword

 

 type, CodeView will display variables of type integer as signed values. Likewise,
if you define 

 

float

 

 to mean 

 

real4

 

, CodeView will still properly display 

 

float 

 

variables as
four-byte floating point values.

 

5.5 Pointer Data Types

 

Some people refer to pointers as scalar data types, others refer to them as composite
data types. This text will treat them as scalar data types even though they exhibit some
tendencies of both scalar and composite data types (for a complete description of compos-
ite data types, see “Composite Data Types” on page 206).

Of course, the place to start is with the question “What is a pointer?” Now you’ve
probably experienced pointers first hand in the Pascal, C, or Ada programming languages
and you’re probably getting worried right now. Almost everyone has a real bad experi-
ence when they first encounter pointers in a high level language. Well, fear not! Pointers
are actually 

 

easier

 

 to deal with in assembly language. Besides, most of the problems you
had with pointers probably had nothing to do with pointers, but rather with the linked list
and tree data structures you were trying to implement with them. Pointers, on the other
hand, have lots of uses in assembly language that have nothing to do with linked lists,
trees, and other scary data structures. Indeed, simple data structures like arrays and
records often involve the use of pointers. So if you’ve got some deep-rooted fear about
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pointers, well forget everything you know about them. You’re going to learn how 

 

great

 

pointers really are.

Probably the best place to start is with the definition of a pointer. Just exactly what is a
pointer, anyway? Unfortunately, high level languages like Pascal tend to hide the simplic-
ity of pointers behind a wall of abstraction. This added complexity (which exists for good
reason, by the way) tends to frighten programmers because 

 

they don’t understand what’s
going on

 

.

Now if you’re afraid of pointers, well, let’s just ignore them for the time being and
work with an array. Consider the following array declaration in Pascal:

 

M: array [0..1023] of integer;

 

Even if you don’t know Pascal, the concept here is pretty easy to understand. M is an
array with 1024 integers in it, indexed from

 

 M[0] 

 

to

 

 M[1023].

 

 Each one of these array 

 

ele-
ments

 

 can hold an integer value that is independent of all the others. In other words, this
array gives you 1024 different integer variables each of which you refer to by number (the
array index) rather than by name.

If you encountered a program that had the statement

 

 M[0]:=100

 

 you probably
wouldn’t have to think at all about what is happening with this statement. It is storing the
value 100 into the first element of the array M. Now consider the following two state-
ments:

 

i := 0; (* Assume “i” is an integer variable *)
M [i] := 100;

 

You should agree, without too much hesitation, that these two statements perform the
same exact operation as

 

 M[0]:=100;

 

. Indeed, you’re probably willing to agree that you can
use any integer expression in the range 0…1023 as an index into this array. The following
statements 

 

still

 

 perform the same operation as our single assignment to index zero:

 

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i*j-k] := 100;

 

“Okay, so what’s the point?” you’re probably thinking. “Anything that produces an inte-
ger in the range 0…1023 is legal. So what?” Okay, how about the following:

 

M [1] := 0;
M [ M [1] ] := 100;

 

Whoa! Now that takes a few moments to digest. However, if you take it slowly, it makes
sense and you’ll discover that these two instructions perform the exact same operation
you’ve been doing all along. The first statement stores zero into array element 

 

M[1]

 

. The
second statement fetches the value of 

 

M[1]

 

, which is an integer so you can use it as an array
index into M, and uses that value (zero) to control where it stores the value 100.

If you’re willing to accept the above as reasonable, perhaps bizarre, but usable none-
theless, then you’ll have no problems with pointers. 

 

Because 

 

m[1] 

 

is a pointer!

 

  Well, not
really, but if you were to change “M” to “memory” and treat this array as all of memory,
this is the exact definition of a pointer.

A pointer is simply a memory location whose value is the address (or index, if you
prefer) of some other memory location. Pointers are very easy to declare and use in an
assembly language program. You don’t even have to worry about array indices or any-
thing like that. In fact, the only complication you’re going to run into is that the 80x86 sup-
ports two kinds of pointers: 

 

near

 

 pointers and 

 

far

 

 pointers.

A near pointer is a 16 bit value that provides an offset into a segment. It could be any
segment but you will generally use the data segment (

 

dseg

 

 in SHELL.ASM). If  you have a
word variable 

 

p

 

 that contains 1000h, then 

 

p

 

 

 

“points” at memory location 1000h in 

 

dseg

 

. To
access the word that 

 

p

 

 points at, you could use code like the following:

 

mov bx, p ;Load BX with pointer.
mov ax, [bx] ;Fetch data that p points at.
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By loading the value of 

 

p

 

 into 

 

bx

 

 this code loads the value 1000h into 

 

bx

 

 (assuming 

 

p

 

contains 1000h and, therefore, points at memory location 1000h in 

 

dseg

 

). The second
instruction above loads the 

 

ax

 

 register with the word starting at the location whose offset
appears in 

 

bx

 

. Since 

 

bx

 

 now contains 1000h, this will load 

 

ax

 

 from locations DS:1000 and
DS:1001.

Why not just load 

 

ax

 

 directly from location 1000h using an instruction like

 

mov ax,ds:[1000h]

 

? Well, there are lots of reasons. But the primary reason is that this single
instruction 

 

always

 

 loads 

 

ax

 

 from location 1000h. Unless you are willing to mess around
with self-modifying code, you cannot change the location from which it loads 

 

ax

 

. The pre-
vious two instructions, however, always load 

 

ax

 

 from the location that 

 

p

 

 points at. This is
very easy to change under program control, without using self-modifying code. In fact,
the simple instruction 

 

mov p,2000h

 

 will cause those two instructions above to load 

 

ax

 

 from
memory location DS:2000 the next time they execute. Consider the following instructions:

 

lea bx, i ;This can actually be done with
mov p, bx ; a single instruction as you’ll
 . ; see in Chapter Eight.
 .

< 

 

Some code that skips over the next two instructions

 

 >

lea bx, j ;Assume the above code skips these
mov p, bx ; two instructions, that you get
 . ; here by jumping to this point from
 . ; somewhere else.
mov bx, p ;Assume both code paths above wind
mov ax, [bx] ; up down here.

 

This short example demonstrates two execution paths through the program. The first
path loads the variable 

 

p

 

 with the address of the variable 

 

i

 

 (remember, 

 

lea

 

 loads 

 

bx

 

 with the
offset of the second operand). The second path through the code loads 

 

p

 

 with the address
of the variable

 

 j

 

. Both execution paths converge on the last two 

 

mov

 

 instructions that load

 

ax

 

 with 

 

i

 

 or 

 

j

 

 depending upon which execution path was taken. In many respects, this is
like a 

 

parameter

 

 to a procedure in a high level language like Pascal. Executing the same
instructions accesses different variables depending on whose address (

 

i

 

 

 

or

 

 

 

j

 

) winds up in

 

p

 

.

Sixteen bit near pointers are small, fast, and the 80x86 provides efficient access using
them. Unfortunately, they have one very serious drawback – you can only access 64K of
data (one segment) when using near pointers

 

7

 

. Far pointers overcome this limitation at
the expense of being 32 bits long. However, far pointers let you access any piece of data
anywhere in the memory space. For this reason, and the fact that the UCR Standard
Library uses far pointers exclusively, this text will use far pointers most of the time. But
keep in mind that this is a decision based on trying to keep things simple. Code that uses
near pointers rather than far pointers will be shorter and faster.

To access data referenced by a 32 bit pointer, you will need to load the offset portion
(L.O. word) of the pointer into 

 

bx, bp, si,

 

 or 

 

di

 

 and the segment portion into a segment reg-
ister (typically 

 

es

 

). Then you could access the object using the register indirect addressing
mode. Since the 

 

les

 

 instruction is so convenient for this operation, it is the perfect choice
for loading 

 

es

 

 and one of the above four registers with a pointer value. The following sam-
ple code stores the value in 

 

al

 

 into the byte pointed at by the far pointer

 

 

 

p

 

:

 

les bx, p ;Load p into ES:BX
mov es:[bx], al ;Store away AL

 

Since near pointers are 16 bits long and far pointers are 32 bits long, you could simply
use the 

 

dw/word 

 

and 

 

dd/dword

 

 directives to allocate storage for your pointers (pointers are
inherently unsigned, so you wouldn’t normally use 

 

sword

 

 or 

 

sdword

 

 to declare a pointer).

 

7. Technically, this isn’t true. A single pointer is limited to accessing data in one particular segment at a time, but
you could have several near pointers each pointing at data in different segments. Unfortunately, you need to keep
track of all this yourself and it gets out of hand very quickly as the number of pointers in your program increases.
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However, there is a much better way to do this by using the 

 

typedef

 

 statement. Consider
the following general forms:

 

typename

 

typedef near ptr 

 

basetype
typename

 

typedef far ptr 

 

basetype

 

In these two examples 

 

typename

 

 represents the name of the new type you’re creating while

 

basetype

 

 is the name of the type you want to create a pointer for. Let’s look at some specific
examples:

 

nbytptr typedef near ptr byte
fbytptr typedef far ptr byte
colorsptr typedef far ptr colors
wptr typedef near ptr word
intptr typedef near ptr integer
intHandle typedef near ptr intptr

 

(these declarations assume that you’ve previously defined the types 

 

colors

 

 and 

 

integer 

 

with
the 

 

typedef

 

 

 

statement). The 

 

typedef

 

 statements with the 

 

near ptr

 

  operands produce 16 bit
near pointers. Those with the 

 

far ptr

 

 operands produce 32 bit far pointers. MASM 6.x
ignores the base type supplied after the 

 

near ptr

 

 or 

 

far ptr

 

. However, CodeView uses the
base type to display the object a pointer refers to in its correct format.

Note that you can use 

 

any

 

 type as the base type for a pointer. As the last example
above demonstrates, you can even define a pointer to another pointer (a 

 

handle

 

). Code-
View would properly display the object a variable of type intHandle points at as an
address.

With the above types, you can now generate pointer variables as follows:

 

bytestr nbytptr ?
bytestr2 fbytptr ?
CurrentColor colorsptr ?
CurrentItem wptr ?
LastInt intptr ?

 

Of course, you can initialize these pointers at assembly time if you know where they
are going to point when the program first starts running. For example, you could initialize
the 

 

bytestr

 

 variable above with the offset of 

 

MyString

 

 using the following declaration:

 

bytestr nbytptr MyString

 

5.6 Composite Data Types

 

Composite data types are those that are built up from other (generally scalar) data
types. An array is a good example of a composite data type – it is an aggregate of elements
all the same type. Note that a composite data type need not be composed of scalar data
types, there are arrays of arrays for example, but ultimately you can decompose a com-
posite data type into some primitive, scalar, types.

This section will cover two of the more common composite data types: arrays and
records. It’s a little premature to discuss some of the more advanced composite data types. 

 

5.6.1 Arrays

 

Arrays are probably the most commonly used composite data type. Yet most begin-
ning programmers have a very weak understanding of how arrays operate and their asso-
ciated efficiency trade-offs. It’s surprising how many novice (and even advanced!)
programmers view arrays from a completely different perspective once they learn how to
deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements) are all the
same type. Selection of a member from the array is by an integer index

 

8

 

. Different indices
select unique elements of the array. This text assumes that the integer indices are contigu-
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ous (though it is by no means required). That is, if the number x is a valid index into the
array and 

 

y

 

 is also a valid index, with x < y, then all

 

 i

 

 such that x < i < y are valid indices
into the array.

Whenever you apply the indexing operator to an array, the result is the specific array
element chosen by that index. For example, 

 

A[i]

 

 

 

chooses the 

 

i

 

th

 

 element from array 

 

A

 

. Note
that there is no formal requirement that element 

 

i

 

 

 

be anywhere near element 

 

i+1

 

 in mem-
ory. As long as 

 

A[i]

 

 always refers to the same memory location and 

 

A[i+1]

 

 always refers to
its corresponding location (and the two are different), the definition of an array is satis-
fied.

In this text, arrays occupy contiguous locations in memory. An array with five ele-
ments will appear in memory as shown in Figure 5.1. 

The 

 

base address

 

 of an array is the address of the first element on the array and always
appears in the lowest memory location. The second array element directly follows the first
in memory, the third element follows the second, etc. Note that there is no requirement
that the indices start at zero. They may start with any number as long as they are contigu-
ous. However, for the purposes of discussion, it’s easier to discuss accessing array ele-
ments if the first index is zero. This text generally begins most arrays at index zero unless
there is a good reason to do otherwise. However, this is for consistency only. There is no
efficiency benefit one way or another to starting the array index at some value other than
zero.

To access an element of an array, you need a function that converts an array index into
the address of the indexed element. For a single dimension array, this function is very sim-
ple. It is

 

Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

 

where 

 

Initial_Index

 

 is the value of the first index in the array (which you can ignore if zero)
and the value

 

 Element_Size

 

 is the size, in bytes, of an individual element of the array.

 

5.6.1.1 Declaring Arrays in Your Data Segment

 

Before you access elements of an array, you need to set aside storage for that array.
Fortunately, array declarations build on the declarations you’ve seen so far. To allocate 

 

n

 

elements in an array, you would use a declaration like the following:

 

arrayname basetype n

 

 dup (?)

 

Arrayname 

 

is the name of the array variable

 

 

 

and 

 

basetype

 

 is the type of an element of that
array. This sets aside storage for the array. To obtain the base address of the array, just use

 

arrayname

 

.

The

 

  n dup (?) 

 

operand tells the assembler to duplicate the object inside the parenthe-
ses 

 

n

 

 times. Since a question mark appears inside the parentheses, the definition above

 

8. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

 

Figure 5.1 Single Dimension Array Implementation

A[0]    A[1]     A[2]     A[3]     A[4]

A: array [0..4] of sometype;

Low memory
addresses

High memory
addressesBase address of A
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would create 

 

n

 

 occurrences of an uninitialized value. Now let’s look at some specific
examples:

 

CharArray char 128 dup (?) ;array[0..127] of char
IntArray integer 8 dup (?) ;array[0..7] of integer
BytArray byte 10 dup (?) ;array[0..9] of byte
PtrArray dword 4 dup (?) ;array[0..3] of dword

 

The first two examples, of course, assume that you’ve used the 

 

typedef

 

 statement to define
the 

 

char

 

 and 

 

integer

 

 data types.

These examples all allocate storage for uninitialized arrays. You may also specify that
the elements of the arrays be initialized to a single value using declarations like the fol-
lowing:

 

RealArray real4 8 dup (1.0)
IntegerAry integer 8 dup (1)

 

These definitions both create arrays with eight elements. The first definition initializes
each four-byte real value to 1.0, the second declaration initializes each integer element to
one.

This initialization mechanism is fine if you want each element of the array to have the
same value. What if you want to initialize each element of the array with a (possibly) dif-
ferent value? Well, that is easily handled as well. The variable declaration statements
you’ve seen thus far offer yet another initialization form:

 

name type value

 

1

 

, value

 

2

 

, value

 

3

 

, …, value

 

n

 

This form allocates 

 

n

 

 variables of type 

 

type

 

. It initializes the first item to 

 

value

 

1

 

, the sec-
ond item to 

 

value

 

2

 

, etc. So by simply enumerating each value in the operand field, you can
create an array with the desired initial values. In the following integer array, for example,
each element contains the square of its index:

 

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

 

If your array has more elements than will fit on one line, there are several ways to con-
tinue the array onto the next line. The most straight-forward method is to use another
integer statement 

 

but without a label

 

:

 

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
integer 121, 144, 169, 196, 225, 256, 289, 324
integer 361, 400

 

Another option, that is better in some circumstances, is to use a backslash at the end of
each line to tell MASM 6.x to continue reading data on the next line:

 

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \
121, 144, 169, 196, 225, 256, 289, 324, \
361, 400

 

Of course, if your array has several thousand elements in it, typing them all in will not
be very much fun. Most arrays initialized this way have no more than a couple hundred
entries, and generally far less than 100.

You need to learn about one final technique for initializing single dimension arrays
before moving on. Consider the following declaration:

 

BigArray word 256 dup (0,1,2,3)

 

This array has 1024 elements, not 256. The 

 

n dup (xxxx)

 

 

 

operand tells MASM to dupli-
cate 

 

xxxx

 

 

 

n

 

 times, not create an array with 

 

n

 

 elements. If 

 

xxxx

 

 consists of a single item, then
the 

 

dup

 

 operator will create an 

 

n

 

 element array. However, if 

 

xxxx

 

 contains two items sepa-
rated by a comma, the 

 

dup

 

 operator will create an array with 2*

 

n

 

 elements. If 

 

xxxx

 

 contains
three items separated by commas, the 

 

dup

 

 operator creates an array with 3*

 

n

 

 items, and so
on. Since there are four items in the parentheses above, the 

 

dup

 

 operator creates 256*4 or
1024 items in the array. The values in the array will initially be 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
...
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You will see some more possibilities with the 

 

dup

 

 operator when looking at multidi-
mensional arrays a little later.

 

5.6.1.2 Accessing Elements of a Single Dimension Array

 

To access an element of a zero-based array, you can use the simplified formula:

Element_Address = Base_Address + index * Element_Size

For the 

 

Base_Address

 

 entry you can use the name of the array (since MASM associates
the address of the first operand with the label). The 

 

Element_Size 

 

entry is the number of
bytes for each array element. If the object is an array of bytes, the 

 

Element_Size

 

 field is one
(resulting in a very simple computation). If each element of the array is a word (or integer,
or other two-byte type) then

 

 

 

Element_Size is

 

 two. And so on. To access an element of the

 

Squares

 

 array in the previous section, you’d use the formula:

Element_Address = Squares + index*2

The 80x86 code equivalent to the statement 

 

AX:=Squares[index]

 

 is

 

mov bx, index
add bx, bx ;Sneaky way to compute 2*bx
mov ax, Squares [bx]

 

There are two important things to notice here. First of all, this code uses the 

 

add

 

instruction rather than the 

 

mul

 

 instruction to compute 2*index. The main reason for choos-
ing 

 

add

 

 is that it was more convenient (remember, 

 

mul

 

 doesn’t work with constants and it
only operates on the 

 

ax

 

 register). It turns out that 

 

add

 

 is a 

 

lot 

 

faster than 

 

mul

 

 

 

on many pro-
cessors, but since you probably didn’t know that, it wasn’t an overriding consideration in
the choice of this instruction.

The second thing to note about this instruction sequence is that it does not explicitly
compute the sum of the base address plus the index times two. Instead, it relies on the
indexed addressing mode to implicitly compute this sum. The instruction

 

mov ax, Squares[bx]  

 

loads 

 

ax

 

 from location 

 

Squares+bx 

 

which is the base address plus
index*2 (since 

 

bx

 

 contains index*2). Sure, you could have used

 

lea ax, Squares
add bx, ax
mov ax, [bx]

 

in place of the last instruction, but why use three instructions where one will do the same
job? This is a good example of why you should know your addressing modes inside and
out. Choosing the proper addressing mode can reduce the size of your program, thereby
speeding it up.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a sin-
gle dimension array. Indeed, it’s syntax even suggests an array access. The only thing to
keep in mind is that you must remember to multiply the index by the size of an element.
Failure to do so will produce incorrect results.

If you are using an 80386 or later, you can take advantage of the scaled indexed
addressing mode to speed up accessing an array element even more. Consider the follow-
ing statements:

 

mov ebx, index ;Assume a 32 bit value.
mov ax, Squares [ebx*2]

 

This brings the instruction count down to two instructions. You’ll soon see that two
instructions aren’t necessarily faster than three instructions, but hopefully you get the
idea. Knowing your addressing modes can surely help.

Before moving on to multidimensional arrays, a couple of additional points about
addressing modes and arrays are in order. The above sequences work great if you only
access a single element from the 

 

Squares

 

 array. However, if you access several different
elements from the array within a short section of code, and you can afford to dedicate
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another register to the operation, you can certainly shorten your code and, perhaps, speed
it up as well. The 

 

mov ax,Squares[BX]

 

 

 

instruction is four bytes long (assuming you need a
two-byte displacement to hold the offset to 

 

Squares

 

 in the data segment). You can reduce
this to a two byte instruction by using the base/indexed addressing mode as follows:

 

lea bx, Squares
mov si, index
add si, si
mov ax, [bx][si]

 

Now 

 

bx

 

 contains the base address and 

 

si

 

 contains the index*2 value. Of course, this
just replaced a single four-byte instruction with a three-byte and a two-byte instruction,
hardly a good trade-off. However, you do not have to reload 

 

bx

 

 with the base address of

 

Squares

 

 for the next access. The following sequence is one byte shorter than the compara-
ble sequence that doesn’t load the base address into 

 

bx

 

:

 

lea bx, Squares
mov si, index
add si, si
mov ax, [bx][si]
 .
 . ;Assumption: BX is left alone 
 . ; through this code.
mov si, index2
add si, si
mov cx, [bx][si]

 

Of course the more accesses to 

 

Squares

 

 you make without reloading 

 

bx

 

, the greater
your savings will be. Tricky little code sequences such as this one sometimes pay off hand-
somely. However, the savings depend entirely on which processor you’re using. Code
sequences that run faster on an 8086 might actually run 

 

slower

 

 on an 80486 (and vice
versa). Unfortunately, if speed is what you’re after there are no hard and fast rules. In fact,
it is very difficult to predict the speed of most instructions on the simple 8086, even more
so on processors like the 80486 and Pentium/80586 that offer pipelining, on-chip caches,
and even superscalar operation. 

 

5.6.2 Multidimensional Arrays

 

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is
no magic addressing mode that lets you easily access elements of multidimensional
arrays. That’s going to take some work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a
good idea to figure out how to implement them in memory. The first problem is to figure
out how to store a multi-dimensional object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form 

 

A:array[0..3,0..3] of char

 

. This array
contains 16 bytes organized as four rows of four characters. Somehow you’ve got to draw
a correspondence with each of the 16 bytes in this array and 16 contiguous bytes in main
memory. Figure 5.2 shows one way to do this. 

The actual mapping is not important as long as two things occur: (1) each element
maps to a unique memory location (that is, no two entries in the array occupy the same
memory locations) and (2) the mapping is consistent. That is, a given element in the array
always maps to the same memory location. So what you really need is a function with two
input parameters (row and column) that produces an offset into a linear array of sixteen
bytes.

Now any function that satisfies the above constraints will work fine. Indeed, you
could randomly choose a mapping as long as it was unique. However, what you really
want is a mapping that is efficient to compute at run time and works for any size array
(not just 4x4 or even limited to two dimensions). While there are a large number of possi-
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ble functions that fit this bill, there are two functions in particular that most programmers
and most high level languages use: 

 

row major ordering

 

 and 

 

column major ordering.

 

5.6.2.1 Row Major Ordering

 

Row major ordering assigns successive elements, moving across the rows and then
down the columns, to successive memory locations. The mapping is best described in
Figure 5.3. 

Row major ordering is the method employed by most high level programming lan-
guages including Pascal, C, Ada, Modula-2, etc. It is very easy to implement and easy to
use in machine language (especially within a debugger such as CodeView). The conver-
sion from a two-dimensional structure to a linear array is very intuitive. You start with the

 

Figure 5.2 Mapping a 4 x 4 Array to Memory
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Figure 5.3 Row Major Element Ordering
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Memory

15  A[3,3]
14  A[3,2]
13  A[3,1]
12  A[3,0]
11  A[2,3]
10  A[2,2]
9    A[2,1]
8     A[2,0]
7     A[1,3]
6     A[1,2]
5     A[1,1]
4     A[1,0]
3     A[0,3]
2     A[0,2]
1     A[0,1]
0     A[0,0]

A:array [0..3,0..3] of char;
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first row (row number zero) and then concatenate the second row to its end. You then con-
catenate the third row to the end of the list, then the fourth row, etc. (see Figure 5.4).

For those who like to think in terms of program code, the following nested Pascal loop
also demonstrates how row major ordering works:

 

index := 0;
for colindex := 0 to 3 do

for rowindex := 0 to 3 do 
begin

memory [index] := rowmajor [colindex][rowindex];
index := index + 1;

end;

 

The important thing to note from this code, that applies across the board to row major
order no matter how many dimensions it has, is that the rightmost index increases the
fastest. That is, as you allocate successive memory locations you increment the rightmost
index until you reach the end of the current row. Upon reaching the end, you reset the
index back to the beginning of the row and increment the next successive index by one
(that is, move down to the next row.). This works equally well for any number of dimen-
sions

 

9

 

. The following Pascal segment demonstrates row major organization for a 4x4x4
array:

 

index := 0;
for depthindex := 0 to 3 do

for colindex := 0 to 3 do
   for rowindex := 0 to 3 do begin

memory [index] := rowmajor [depthindex][colindex][rowindex];
index := index + 1;

   end;

 

The actual function that converts a list of index values into an offset doesn’t involve
loops or much in the way of fancy computations. Indeed, it’s a slight modification of the
formula for computing the address of an element of a single dimension array. The formula
to compute the offset for a two-dimension row major ordered array declared as

 

 A:array [0..3,0..3] of integer  

 

is

 

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

 

As usual, 

 

Base_Address

 

 is the address of the first element of the array (

 

A[0][0]

 

 in this
case) and 

 

Element_Size

 

 is the size of an individual element of the array, in bytes. 

 

Colindex

 

 is
the leftmost index, 

 

rowindex 

 

is the rightmost index into the array. 

 

Row_size

 

 is the number of

 

9. By the way, the number of dimensions of an array is its 

 

arity

 

. 

 

Figure 5.4 Another View of Row Major Ordering for a 4x4 Array
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elements in one row of the array (four, in this case, since each row has four elements).
Assuming  

 

Element_Size

 

 is one, This formula computes the following offsets from the base
address:

Column Index        Row Index Offset into Array

 

0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

 

For a three-dimensional array, the formula to compute the offset into memory is the
following:

 

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * 
Element_Size

 

Col_size 

 

is the number of items in a column,

 

 

 

row_size

 

 is the number of items in a row. In
Pascal, if you’ve declared the array as “

 

A:array [i..j] [k..l] [m..n] of 

 

type

 

;

 

” then 

 

row_size

 

 is equal
to

 

 n-m+1 

 

and 

 

col_size

 

 is equal to 

 

l-k+1

 

.

For a four dimensional array, declared as “

 

A:array [g..h] [i..j] [k..l] [m..n] of 

 

type

 

;

 

” the for-
mula for computing the address of an array element is

 

Address = 
Base + (((LeftIndex * depth_size + depthindex)*col_size+colindex) * row_size + 
rowindex) * Element_Size

 

Depth_size 

 

is equal to

 

 i-j+1

 

, 

 

col_size 

 

and 

 

row_size 

 

are the same as before.  

 

LeftIndex

 

 repre-
sents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic formula that
will compute the offset into memory for an array with 

 

any

 

 number of dimensions, how-
ever, you’ll rarely use more than four.

Another convenient way to think of row major arrays is as arrays of arrays. Consider
the following 

 

single dimension 

 

array definition:

 

A: array [0..3] of 

 

sometype

 

;

 

Assume that 

 

sometype

 

 is the type “

 

sometype = array [0..3] of char;

 

”.

 

A

 

 is a single dimension array. Its individual elements happen to be arrays, but you can
safely ignore that for the time being. The formula to compute the address of an element of
a single dimension array is

 

Element_Address = Base + Index * Element_Size

 

In this case 

 

Element_Size

 

 happens to be four since each element of 

 

A

 

 is an array of four
characters. So what does this formula compute? It computes the base address of each row
in this 4x4 array of characters (see Figure 5.5).

Of course, once you compute the base address of a row, you can reapply the single
dimension formula to get the address of a particular element. While this doesn’t affect the
computation at all, conceptually it’s probably a little easier to deal with several single
dimension computations rather than a complex multidimensional array element address
computation.
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Consider a Pascal array defined as “

 

A:array [0..3] [0..3] [0..3] [0..3] [0..3] of char;

 

” You can
view this five-dimension array as a single dimension array of arrays:

 

type
OneD = array [0..3] of char;
TwoD = array [0..3] of OneD;
ThreeD = array [0..3] of TwoD;
FourD = array [0..3] of ThreeD;

var
A : array [0..3] of FourD;

 

The size of 

 

OneD

 

 is four bytes. Since 

 

TwoD

 

 contains four 

 

OneD

 

 arrays, its size is 16
bytes. Likewise, 

 

ThreeD

 

 is four 

 

TwoDs

 

, so it is 64 bytes long. Finally, 

 

FourD

 

 is four 

 

ThreeDs

 

,
so it is 256 bytes long. To compute the address of “

 

A [b] [c] [d] [e] [f]

 

” you could use the fol-
lowing steps:

• Compute the address of A [b] as “Base + b * size”. Here size is 256 bytes.
Use this result as the new base address in the next computation.

• Compute the address of A [b] [c] by the formula “Base + c*size”, where
Base is the value obtained immediately above and size is 64. Use the
result as the new base in the next computation.

• Compute the address of A [b] [c] [d] by “Base + d*size” with Base coming
from the above computation and size being 16.

• Compute the address of A [b] [c] [d] [e] with the formula “Base + e*size”
with Base from above and size being four. Use this value as the base for
the next computation.

• Finally, compute the address of A [b] [c] [d] [e] [f] using the formula “Base
+ f*size” where base comes from the above computation and size is one
(obviously you can simply ignore this final multiplication). The result you
obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae from above, but it
is easier to compute (using a single loop) as well. Suppose you have two arrays initialized
as follows

A1 = {256, 64, 16, 4, 1} and A2 = {b, c, d, e, f}

then the Pascal code to perform the element address computation becomes:

 

for i := 0 to 4 do
base := base + A1[i] * A2[i];

 

Presumably 

 

base

 

 contains the base address of the array before executing this loop. Note
that you can easily extend this code to any number of dimensions by simply initializing

 

A1

 

 and 

 

A2

 

 appropriately and changing the ending value of the for loop.

 

Figure 5.5 Viewing a 4x4 Array as an Array of Arrays
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As it turns out, the computational overhead for a loop like this is too great to consider
in practice. You would only use an algorithm like this if you needed to be able to specify
the number of dimensions at run time. Indeed, one of the main reasons you won’t find
higher dimension arrays in assembly language is that assembly language displays the
inefficiencies associated with such access. It’s easy to enter something like “

 

A [b,c,d,e,f]

 

”
into a Pascal program, not realizing what the compiler is doing with the code. Assembly
language programmers are not so cavalier – they see the mess you wind up with when
you use higher dimension arrays. Indeed, good assembly language programmers try to
avoid two dimension arrays and often resort to tricks in order to access data in such an
array when its use becomes absolutely mandatory. But more on that a little later.

 

5.6.2.2 Column Major Ordering

 

Column major ordering is the other function frequently used to compute the address
of an array element. FORTRAN and various dialects of BASIC (e.g., Microsoft) use this
method to index arrays.

In row major ordering the rightmost index increased the fastest as you moved
through consecutive memory locations. In column major ordering the leftmost index
increases the fastest. Pictorially, a column major ordered array is organized as shown in
Figure 5.6. 

The formulae for computing the address of an array element when using column
major ordering is very similar to that for row major ordering. You simply reverse the
indexes and sizes in the computation:

For a two-dimension column major array:

 

Element_Address = Base_Address + (rowindex * col_size + colindex) * Element_Size

 

For a three-dimension column major array:

 

Address = Base + ((rowindex*col_size+colindex) * depth_size + depthindex) * 
Element_Size

 

For a four-dimension column major array:

 

Address = Base + (((rowindex * col_size + colindex)*depth_size+depthindex) * 
Left_size + Leftindex) * Element_Size

 

Figure 5.6  Column Major Element Ordering
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A:array [0..3,0..3] of char;



 

Chapter 05

Page 216

 

The single Pascal loop provided for row major access remains unchanged (to access

 

A [b] [c] [d] [e] [f]

 

):

 

for i := 0 to 4 do
base := base + A1[i] * A2[i];

 

Likewise, the initial values of the 

 

A1

 

 array remain unchanged:

 

A1 = {256, 64, 16, 4, 1}

 

The only thing that needs to change is the initial values for the 

 

A2

 

 array, and all you have
to do here is reverse the order of the indices:

 

A2 = {f, e, d, c, b}

 

5.6.2.3 Allocating Storage for Multidimensional Arrays

 

If you have an 

 

m

 

 x 

 

n 

 

array, it will have 

 

m * n

 

 elements and require 

 

m*n*Element_Size

 

bytes of storage. To allocate storage for an array you must reserve this amount of memory.
As usual, there are several different ways of accomplishing this task. This text will try to
take the approach that is easiest to read and understand in your programs.

Reconsider the 

 

dup

 

 operator for reserving storage. 

 

n dup (xxxx) 

 

replicates 

 

xxxx

 

 

 

n

 

 times.
As you saw earlier, this 

 

dup

 

 operator allows not just one, but several items within the
parentheses and it duplicates everything inside the specified number of times. In fact, the

 

dup

 

 operator allows 

 

anything

 

  that you might normally expect to find in the operand field
of a 

 

byte

 

 statement 

 

including additional occurrences of the 

 

DUP

 

 operator. 

 

Consider the follow-
ing statement:

 

A byte 4 dup (4 dup (?))

 

The first 

 

dup

 

 operator repeats everything inside the parentheses four times. Inside
the parentheses the

 

 

 

4 DUP (?) 

 

operation tells MASM to set aside storage for four bytes.
Four copies of four bytes yields 16 bytes, the number necessary for a 4 x 4 array. Of course,
to reserve storage for this array you could have just as easily used the statement:

 

A byte 16 dup (?)

 

Either way the assembler is going to set aside 16 contiguous bytes in memory. As far as the
80x86 is concerned, there is no difference between these two forms. On the other hand, the
former version provides a better indication that 

 

A

 

 is a 4 x 4 array than the latter version.
The latter version looks like a single dimension array with 16 elements.

You can very easily extend this concept to arrays of higher arity as well. The declara-
tion for a three dimension array, 

 

 A:array [0..2, 0..3, 0..4] of integer 

 

might be

 

A integer 3 dup (4 dup (5 dup (?)))

 

(of course, you will need the

 

 

 

integer typedef word 

 

statement in your program for this to
work.)

As was the case with single dimension arrays, you may initialize every element of the
array to a specific value by replacing the question mark (?) with some particular value. For
example, to initialize the above array so that each element contains one you’d use the
code:

 

A integer 3 dup (4 dup (5 dup (1)))

 

If you want to initialize each element of the array to a different value, you’ll have to
enter each value individually. If the size of a row is small enough, the best way to
approach this task is to place the data for each row of an array on its own line. Consider
the following 4x4 array declaration:

 

A integer 0,1,2,3
integer 1,0,1,1
integer 5,7,2,2
integer 0,0,7,6
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Once again, the assembler doesn’t care where you split the lines, but the above is much
easier to identify as a 4x4 array than the following that emits the exact same data:

 

A integer 0,1,2,3,1,0,1,1,5,7,2,2,0,0,7,6

 

Of course, if you have a large array, an array with really large rows, or an array with
many dimensions, there is little hope for winding up with something reasonable. That’s
when comments that carefully explain everything come in handy.

 

5.6.2.4 Accessing Multidimensional Array Elements in Assembly Language

 

Well, you’ve seen the formulae for computing the address of an array element. You’ve
even looked at some Pascal code you could use to access elements of a multidimensional
array. Now it’s time to see how to access elements of those arrays using assembly lan-
guage.

The

 

 mov, add,

 

 and 

 

mul

 

 instructions make short work of the various equations that com-
pute offsets into multidimensional arrays. Let’s consider a two dimension array first:

 

; Note: TwoD’s row size is 16 bytes.

TwoD integer 4 dup (8 dup (?))
i integer ?
j integer ?

 . .
 . .
 . .

; To peform the operation TwoD[i,j] := 5; you’d use the code:

mov ax, 8 ;8 elements per row
mul i
add ax, j
add ax, ax ;Multiply by element size (2)
mov bx, ax ;Put in a register we can use
mov TwoD [bx], 5

 

Of course, if you have an 80386 chip (or better), you could use the following code

 

10

 

:

 

mov eax, 8 ;Zeros H.O. 16 bits of EAX.
mul i
add ax, j
mov TwoD[eax*2], 5

 

Note that this code does 

 

not

 

 require the use of a two register addressing mode on the
80x86. Although an addressing mode like 

 

TwoD [bx][si] 

 

looks like it should be a natural for
accessing two dimensional arrays, that isn’t the purpose of this addressing mode.

Now consider a second example that uses a three dimension array:

 

ThreeD integer 4 dup (4 dup (4 dup (?)))
i integer ?
j integer ?
k integer ?

 . .
 . .
 . .

; To peform the operation ThreeD[i,j,k] := 1; you’d use the code:

mov bx, 4 ;4 elements per column
mov ax, i
mul bx
add ax, j

 

10. Actually, there is an even 

 

better 

 

80386 instruction sequence than this, but it uses instructions yet to be dis-
cussed.
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mul bx ;4 elements per row
add ax, k
add ax, ax ;Multiply by element size (2)
mov bx, ax ;Put in a register we can use
mov ThreeD [bx], 1

 

Of course, if you have an 80386 or better processor, this can be improved somewhat by
using the following code:

 

mov ebx, 4
mov eax, ebx
mul i
add ax, j
mul bx
add k
mov ThreeD[eax*2], 1

 

5.6.3 Structures

 

The second major composite data structure is the Pascal 

 

record

 

 or C 

 

structure

 

11

 

. The
Pascal terminology is probably better, since it tends to avoid confusion with the more gen-
eral term 

 

data structure

 

. However, MASM uses “structure” so it doesn’t make sense to
deviate from this. Furthermore, MASM uses the term 

 

record

 

 to denote something slightly
different, furthering the reason to stick with the term structure.

Whereas an array is homogeneous, whose elements are all the same, the elements in a
structure can be of any type. Arrays let you select a particular element via an integer
index. With structures, you must select an element (known as a 

 

field

 

) by name.

The whole purpose of a structure is to let you encapsulate different, but logically
related, data into a single package. The Pascal record declaration for a student is probably
the most typical example:

 

student = record
Name: string [64];
Major: integer;
SSN:   string[11];
Midterm1: integer;
Midterm2: integer;
Final: integer;
Homework: integer;
Projects: integer;

   end;

 

Most Pascal compilers allocate each field in a record to contiguous memory locations.
This means that Pascal will reserve the first 65 bytes for the name

 

12

 

, the next two bytes
hold the major code, the next 12 the Social Security Number, etc.

In assembly language, you can also create structure types using the MASM 

 

struct

 

statement. You would encode the above record in assembly language as follows:

 

student struct
Name char 65 dup (?)
Major integer ?
SSN char 12 dup (?)
Midterm1 integer ?
Midterm2 integer ?
Final integer ?
Homework integer ?
Projects integer ?
student ends

 

11. It also goes by some other names in other languages, but most people recognize at least one of these names.
12. Strings require an extra byte, in addition to all the characters in the string, to encode the length.
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Note that the structure ends with the 

 

ends

 

 (for 

 

end structure

 

) statement. The label on the

 

ends

 

 statement must be the same as on the 

 

struct

 

 statement.

The field names within the structure must be unique. That is, the same name may not
appear two or more times in the same structure. However, all field names are local to that
structure. Therefore, you may reuse those field names elsewhere in the program

 

13

 

.

The 

 

struct

 

 directive only defines a structure type. It does 

 

not

 

 reserve storage for a struc-
ture variable. To actually reserve storage you need to declare a variable using the structure
name as a MASM statement, e.g.,

 

John student {}

 

The braces must appear in the operand field. Any initial values must appear between the
braces. The above declaration allocates memory as shown in Figure 5.7. :

If the label 

 

John

 

 corresponds to the 

 

base address

 

 of this structure, then the 

 

Name

 

 field is at
offset

 

 John+0

 

, the 

 

Major

 

 field is at offset

 

 

 

John+65

 

, the 

 

SSN

 

 field is at offset

 

 John+67

 

, etc.

To access an element of a structure you need to know the offset from the beginning of
the structure to the desired field. For example, the 

 

Major

 

 field in the variable 

 

John

 

 is at off-
set 65 from the base address of 

 

John

 

. Therefore, you could store the value in 

 

ax

 

 into this
field using the instruction

 

  mov John[65], ax

 

. Unfortunately, memorizing all the offsets to
fields in a structure defeats the whole purpose of using them in the first place. After all, if
you’ve got to deal with these numeric offsets why not just use an array of bytes instead of
a structure?

Well, as it turns out, MASM lets you refer to field names in a structure using the same
mechanism C and Pascal use: the dot operator. To store 

 

ax

 

 into the 

 

Major

 

 field, you could
use 

 

mov John.Major,ax

 

 instead of the previous instruction. This is much more readable and
certainly easier to use.

Note that the use of the dot operator does 

 

not

 

 introduce a new addressing mode. The
instruction 

 

mov John.Major,ax

 

 still uses the displacement only addressing mode. MASM
simply adds the base address of 

 

John

 

 with the offset to the 

 

Major

 

 field (65) to get the actual
displacement to encode into the instruction.

You may also specify default initial values when creating a structure. In the previous
example, the fields of the student structure were given indeterminate values by specifying
“?” in the operand field of each field’s declaration. As it turns out, there are two different
ways to specify an initial value for structure fields. Consider the following definition of a
“point” data structure:

 

Point struct
x word 0
y word 0
z word 0
Point ends

 

Whenever you declare a variable of type point using a statement similar to

 

CurPoint Point {}

 

13. You 

 

cannot 

 

redefine a fieldname as an equate or macro label. You may, however, reuse a field name as a state-
ment label. Also, note that versions of MASM prior to 6.0 do not support the ability to reuse structure field names.

 

Figure 5.7 Student Data Structure Storage in Memory
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MASM automatically initializes the 

 

CurPoint.x

 

, 

 

CurPoint.y

 

, and 

 

CurPoint.z

 

 variables to zero.
This works out great in those cases where your objects usually start off with the same ini-
tial values

 

14

 

. Of course, it might turn out that you would like to initialize the 

 

X, Y,

 

 and 

 

Z

 

fields of the points you declare, but you want to give each point a different value. That is
easily accomplished by specifying initial values inside the braces:

 

Point1 point {0,1,2}
Point2 point {1,1,1}
Point3 point {0,1,1}

 

MASM fills in the values for the fields in the order that they appear in the operand field.
For 

 

Point1

 

 above, MASM initializes the 

 

X

 

 field with zero, the 

 

Y

 

 field with one, and the 

 

Z

 

field with two.

The type of the initial value in the operand field must match the type of the corre-
sponding field in the structure definition. You cannot, for example, specify an integer con-
stant for a 

 

real4 

 

field, nor could you specify a value greater than 255 for a 

 

byte 

 

field. 

MASM does not require that you initialize all fields in a structure. If you leave a field
blank, MASM will use the specified default value (undefined if you specify “?” rather
than a default value). 

 

5.6.4 Arrays of Structures and Arrays/Structures as Structure Fields

 

Structs may contain other structures or arrays as fields. Consider the following defini-
tion:

 

Pixel struct
Pt point {}
Color dword ?
Pixel ends

 

The definition above defines a single point with a 32 bit color component. When initializ-
ing an object of type Pixel, the first initializer corresponds to the 

 

Pt

 

 field, 

 

not the x-coordi-
nate field

 

. 

 

The following definition is incorrect:

 

ThisPt Pixel {5,10}

 

The value of the first field (“5”) is not an object of type 

 

point

 

. Therefore, the assembler gen-
erates an error when encountering this statement. MASM will allow you to initialize the
fields of 

 

ThisPt

 

 using declarations like the following:

 

ThisPt Pixel {,10}

ThisPt Pixel {{},10}

ThisPt Pixel {{1,2,3}, 10}

ThisPt Pixel {{1,,1}, 12}

 

The first and second examples above use the default values for the 

 

Pt

 

 field (

 

x

 

=0, 

 

y

 

=0, 

 

z

 

=0)
and set the 

 

Color

 

 field to 10. Note the use of braces to surround the initial values for the
point type in the second, third, and fourth examples. The third example above initializes
the 

 

x

 

, 

 

y

 

, and 

 

z

 

 fields of the 

 

Pt

 

 field to one, two, and three, respectively. The last example
initializes the 

 

x

 

 and 

 

z

 

 fields to one and lets the 

 

y

 

 field take on the initial value specified by
the 

 

Point

 

 structure (zero).

Accessing Pixel fields is very easy. Like a high level language you use a single period
to reference the 

 

Pt

 

 field and a second period to access the 

 

x

 

, 

 

y

 

, and 

 

z

 

 fields of point:

 

14. Note, of course, that the initial values for the x, y , and z fields need not all be zero. You could have initialized
the fields to 1, 2, and 3 just as easily.
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mov ax, ThisPt.Pt.X
 .
 .
 .
mov ThisPt.Pt.Y, 0
 .
 .
 .
mov ThisPt.Pt.Z, di
 .
 .
 .
mov ThisPt.Color, EAX

 

You can also declare 

 

arrays

 

 as structure fields. The following structure creates a data
type capable of representing an object with eight points (e.g., a cube):

 

Object8 struct
Pts point 8 dup (?)
Color dword 0
Object8 ends

 

This structure allocates storage for eight different points. Accessing an element of the 

 

Pts

 

array requires that you know the size of an object of type point (remember, you must mul-
tiply the index into the array by the size of one element, six in this particular case). Sup-
pose, for example, that you have a variable 

 

CUBE

 

 of type 

 

Object8

 

. You could access
elements of the 

 

Pts

 

 array as follows:

 

; CUBE.Pts[i].X := 0;

mov ax, 6
mul i ;6 bytes per element.
mov si, ax
mov CUBE.Pts[si].X, 0

 

The one unfortunate aspect of all this is that you must know the size of each element
of the 

 

Pts

 

 array. Fortunately, MASM provides an operator that will compute the size of an
array element (in bytes) for you, more on that later.

 

5.6.5 Pointers to Structures

 

During execution, your program may refer to structure objects directly or indirectly
using a pointer. When you use a pointer to access fields of a structure, you must load one
of the 80x86’s pointer registers (

 

si, di, bx,

 

 or 

 

bp

 

 on processors less than the 80386) with the
offset and 

 

es, ds, ss,

 

 or 

 

cs

 

15

 

 with the segment of the desired structure. Suppose you have
the following variable declarations (assuming the 

 

Object8

 

 structure from the previous sec-
tion):

 

Cube Object8 {}
CubePtr dword Cube

 

CubePtr

 

 contains the address of (i.e., it is a pointer to) the 

 

Cube

 

 object. To access the 

 

Color

 

field of the 

 

Cube

 

 object, you could use an instruction like 

 

mov eax,Cube.Color

 

. When access-
ing a field via a pointer you need to load the address of the object into a segment:pointer
register pair, such as 

 

es:bx

 

. The instruction 

 

les bx,CubePtr

 

 will do the trick. After doing so,
you can access fields of the 

 

Cube

 

 object using the

 

 

 

disp+bx

 

 addressing mode. The only
problem is “How do you specify which field to access?” Consider briefly, the following

 

incorrect

 

 code:

 

les bx, CubePtr
mov eax, es:[bx].Color

 

15. Add FS or GS to this list for the 80386 and later.
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There is one major problem with the code above. Since field names are local to a structure
and it’s possible to reuse a field name in two or more structures, how does MASM deter-
mine which offset 

 

Color

 

 represents? When accessing structure members directly (.e.g.,

 

mov eax,Cube.Color

 

) there is no ambiguity since 

 

Cube

 

 has a specific type that the assembler
can check. 

 

es:bx

 

, on the other hand, can point at 

 

anything

 

. In particular, it can point at any
structure that contains a 

 

Color

 

 field. So the assembler cannot, on its own, decide which off-
set to use for the 

 

Color

 

 symbol.

MASM resolves this ambiguity by requiring that you explicitly supply a type in this
case. Probably the easiest way to do this is to specify the structure name as a 

 

pseudo-field

 

:

 

les bx, CubePtr
mov eax, es:[bx].Object8.Color

 

By specifying the structure name, MASM knows which offset value to use for the 

 

Color

 

symbol

 

16

 

.

 

5.7 Sample Programs

 

The following short sample programs demonstrate many of the concepts appearing in
this chapter.

 

5.7.1 Simple Variable Declarations

 

; Sample variable declarations
; This sample file demonstrates how to declare and access some simple
; variables in an assembly language program.
;
; Randall Hyde
;
;
; Note: global variable declarations should go in the "dseg" segment:

dseg segment para public 'data'

; Some simple variable declarations:

character byte ? ;"?" means uninitialized.
UnsignedIntVar word ?
DblUnsignedVar dword ?

;You can use the typedef statement to declare more meaningful type names:

integer typedef sword
char typedef byte
FarPtr typedef dword

; Sample variable declarations using the above types:

J integer ?
c1 char ?
PtrVar FarPtr ?

; You can tell MASM & DOS to initialize a variable when DOS loads the
; program into memory by specifying the initial value in the operand

 

16. Users of MASM 5.1 and other assemblers should keep in mind that field names are 

 

not

 

 local to the structure.
Instead, they must all be unique within a source file. As a result, such programs do not require the structure name
in the “dot path” for a particular field. Keep this in mind when converting older code to MASM 6.x.
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; field of the variable's declaration:

K integer 4
c2 char 'A'
PtrVar2 FarPtr L ;Initializes PtrVar2 with the

; address of L.

; You can also set aside more than one byte, word, or double word of
; storage using these directives.  If you place several values in the
; operand field, separated by commas, the assembler will emit one byte,
; word, or dword for each operand:

L integer 0, 1, 2, 3
c3 char 'A', 0dh, 0ah, 0
PtrTbl FarPtr J, K, L

; The BYTE directive lets you specify a string of characters byte enclosing
; the string in quotes or apostrophes.  The directive emits one byte of data
; for every character in the string (not including the quotes or apostrophes
; that delimit the string):

string byte "Hello world",0dh,0ah,0

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Some simple instructions that demonstrate how to access memory:

lea bx, L ;Point bx at first word in L.
mov ax, [bx];Fetch word at L.
add ax, 2[bx];Add in word at L+2 (the "1").
add ax, 4[bx];Add in word at L+4 (the "2").
add ax, 6[bx];Add in word at L+6 (the "3").
mul K ;Compute (0+1+2+3)*123.
mov J, ax ;Save away result in J.

les bx, PtrVar2;Loads es:di with address of L.
mov di, K ;Loads 4 into di
mov ax, es:[bx][di];Fetch value of L+4.

; Examples of some byte accesses:

mov c1, ' ' ;Put a space into the c1 var.
mov al, c2 ;c3 := c2
mov c3, al
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Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.2 Using Pointer Variables

 

; Using Pointer Variables in an Assembly Language Program
;
; This short sample program demonstrates the use of pointers in
; an assembly language program.
;
; Randall Hyde

dseg segment para public 'data'

; Some variables we will access indirectly (using pointers):

J word 0, 0, 0, 0
K word 1, 2, 3, 4
L word 5, 6, 7, 8

; Near pointers are 16-bits wide and hold an offset into the current data
; segment (dseg in this program).  Far pointers are 32-bits wide and hold
; a complete segment:offset address.  The following type definitions let
; us easily create near and far pointers

nWrdPtr typedef near ptr word
fWrdPtr typedef far ptr word

; Now for the actual pointer variables:

Ptr1 nWrdPtr ?
Ptr2 nWrdPtr K ;Initialize with K's address.
Ptr3 fWrdPtr L ;Initialize with L's segmented adrs.

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.
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; Initialize Ptr1 (a near pointer) with the address of the J variable.

lea ax, J
mov Ptr1, ax

; Add the four words in variables J, K, and L together using pointers to
; these variables:

mov bx, Ptr1 ;Get near ptr to J's 1st word.
mov si, Ptr2 ;Get near ptr to K's 1st word.
les di, Ptr3 ;Get far ptr to L's 1st word.

mov ax, ds:[si] ;Get data at K+0.
add ax, es:[di] ;Add in data at L+0.
mov ds:[bx], ax ;Store result to J+0.

add bx, 2 ;Move to J+2.
add si, 2 ;Move to K+2.
add di, 2 ;Move to L+2.

mov ax, ds:[si] ;Get data at K+2.
add ax, es:[di] ;Add in data at L+2.
mov ds:[bx], ax ;Store result to J+2.

add bx, 2 ;Move to J+4.
add si, 2 ;Move to K+4.
add di, 2 ;Move to L+4.

mov ax, ds:[si] ;Get data at K+4.
add ax, es:[di] ;Add in data at L+4.
mov ds:[bx], ax ;Store result to J+4.

add bx, 2 ;Move to J+6.
add si, 2 ;Move to K+6.
add di, 2 ;Move to L+6.

mov ax, ds:[si] ;Get data at K+6.
add ax, es:[di] ;Add in data at L+6.
mov ds:[bx], ax ;Store result to J+6.

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main
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5.7.3 Single Dimension Array Access

 

; Sample variable declarations
; This sample file demonstrates how to declare and access some single
; dimension array variables in an assembly language program.
;
; Randall Hyde

.386 ;Need to use some 80386 
option segment:use16 ; addressing modes.

dseg segment para public 'data'

J word ?
K word ?
L word ?
M word ?

JD dword 0
KD dword 1
LD dword 2
MD dword 3

; Some simple uninitialized array declarations:

ByteAry byte 4 dup (?)
WordAry word 4 dup (?)
DwordAry dword 4 dup (?)
RealAry real8 4 dup (?)

; Some arrays with initialized values:

BArray byte 0, 1, 2, 3
WArray word 0, 1, 2, 3
DWArray dword 0, 1, 2, 3
RArray real8 0.0, 1.0, 2.0, 3.0

; An array of pointers:

PtrArray dword ByteAry, WordAry, DwordAry, RealAry

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Initialize the index variables.  Note that these variables provide
; logical indices into the arrays.  Don't forget that we've got to
; multiply these values by the element size when accessing elements of
; an array.
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mov J, 0
mov K, 1
mov L, 2
mov M, 3

; The following code shows how to access elements of the arrays using
; simple 80x86 addressing modes:

mov bx, J ;AL := ByteAry[J]
mov al, ByteAry[bx]

mov bx, K ;AX := WordAry[K]
add bx, bx ;Index*2 since this is a word array.
mov ax, WordAry[bx]

mov bx, L ;EAX := DwordAry[L]
add bx, bx ;Index*4 since this is a double
add bx, bx ; word array.
mov eax, DwordAry[bx]

mov bx, M ;BX := address(RealAry[M])
add bx, bx ;Index*8 since this is a quad
add bx, bx ; word array.
add bx, bx
lea bx, RealAry[bx];Base address + index*8.

; If you have an 80386 or later CPU, you can use the 386's scaled indexed
; addressing modes to simplify array access.

mov ebx, JD
mov al, ByteAry[ebx]

mov ebx, KD
mov ax, WordAry[ebx*2]

mov ebx, LD
mov eax, DwordAry[ebx*4]

mov ebx, MD
lea bx, RealAry[ebx*8]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.4 Multidimensional Array Access

 

; Multidimensional Array declaration and access
;
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; Randall Hyde

.386 ;Need these two statements to
option segment:use16 ; use the 80386 register set.

dseg segment para public 'data'

; Indices we will use for the arrays.

J word 1
K word 2
L word 3

; Some two-dimensional arrays.
; Note how this code uses the "dup" operator to suggest the size
; of each dimension.

B2Ary byte 3 dup (4 dup (?))
W2Ary word 4 dup (3 dup (?))
D2Ary dword 2 dup (6 dup (?))

; 2D arrays with initialization.
; Note the use of data layout to suggest the sizes of each array.

B2Ary2 byte 0, 1, 2, 3
byte 4, 5, 6, 7
byte 8, 9, 10, 11

W2Ary2 word 0,  1,  2
word 3,  4,  5
word 6,  7,  8
word 9, 10, 11

D2Ary2 dword 0,  1,  2,  3,  4,  5
dword 6,  7,  8,  9, 10, 11

; A sample three dimensional array.

W3Ary word 2 dup (3 dup (4 dup (?)))

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; AL := B2Ary2[j,k]

mov bx, J ;index := (j*4+k)
add bx, bx ;j*2
add bx, bx ;j*4
add bx, K ;j*4+k
mov al, B2Ary2[bx]
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; AX := W2Ary2[j,k]

mov ax, J ;index := (j*3 + k)*2
mov bx, 3
mul bx ;(j*3)-- This destroys DX!
add ax, k ;(j*3+k)
add ax, ax ;(j*3+k)*2
mov bx, ax
mov ax, W2Ary2[bx]

; EAX := D2Ary[i,j]

mov ax, J ;index := (j*6 + k)*4
mov bx, 6
mul bx ;DX:AX := j*6, ignore overflow in DX.
add ax, k ;j*6 + k
add ax, ax ;(j*6 + k)*2
add ax, ax ;(j*6 + k)*4
mov bx, ax
mov eax, D2Ary[bx]

; Sample access of a three dimensional array.
;
; AX := W3Ary[J,K,L]

mov ax, J ;index := ((j*3 + k)*4 + l)*2
mov bx, 3
mul bx ;j*3
add ax, K ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
mov bx, ax
mov ax, W3Ary[bx]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.5 Simple Structure Access

 

; Sample Structure Definitions and Accesses.
;
; Randall Hyde
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dseg segment para public 'data'

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?
rm byte ?
mode ends

Instr1Adrs mode {};All fields uninitialized.
Instr2Adrs mode {}

; Some structures with initialized fields.

axbx mode {11b, 000b, 000b} ;"ax, ax" adrs mode.
axdisp mode {00b, 000b, 110b} ;"ax, disp" adrs mode.
cxdispbxsi mode {01b, 001b, 000b} ;"cx, disp8[bx][si]" mode.

; Near pointers to some structures:

sPtr1 word axdisp
sPtr2 word Instr2Adrs

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; To access fields of a structure variable directly, just use the "."
; operator like you would in Pascal or C:

mov al, axbx.modbits
mov Instr1Adrs.modbits, al

mov al, axbx.reg
mov Instr1Adrs.reg, al

mov al, axbx.rm
mov Instr1Adrs.rm, al

; When accessing elements of a structure indirectly (that is, using a
; pointer) you must specify the structure type name as the first
; "field" so MASM doesn't get confused:

mov si, sPtr1
mov di, sPtr2

mov al, ds:[si].mode.modbits
mov ds:[di].mode.modbits, al
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mov al, ds:[si].mode.reg
mov ds:[di].mode.reg, al

mov al, ds:[si].mode.rm
mov ds:[di].mode.rm, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.6 Arrays of Structures

 

; Arrays of Structures
;
; Randall Hyde

dseg segment para public 'data'

; A structure that defines an (x,y) coordinate.
; Note that the Point data type requires four bytes.

Point struct
X word ?
Y word ?
Point ends

; An uninitialized point:

Pt1 Point {}

; An initialized point:

Pt2 Point {12,45}

; A one-dimensional array of uninitialized points:

PtAry1 Point 16 dup ({}) ;Note the "{}" inside the parens.

; A one-dimensional array of points, all initialized to the origin.

PtAry1i Point 16 dup ({0,0})
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; A two-dimensional array of points:

PtAry2 Point 4 dup (4 dup ({}))

; A three-dimensional array of points, all initialized to the origin.

PtAry3 Point 2 dup (3 dup (4 dup ({0,0})))

; A one-dimensional array of points, all initialized to different values:

iPtAry Point {0,0}, {1,2}, {3,4}, {5,6}

; Some indices for the arrays:

J word 1
K word 2
L word 3

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; PtAry1[J] := iPtAry[J]

mov bx, J ;Index := J*4 since there are four
add bx, bx ; bytes per array element (each
add bx, bx ; element contains two words).

mov ax, iPtAry[bx].X
mov PtAry1[bx].X, ax

mov ax, iPtAry[bx].Y
mov PtAry1[bx].Y, ax

; CX := PtAry2[K,L].X;  DX := PtAry2[K,L].Y

mov bx, K ;Index := (K*4 + J)*4
add bx, bx ;K*2
add bx, bx ;K*4
add bx, J ;K*4 + J
add bx, bx ;(K*4 + J)*2
add bx, bx ;(K*4 + J)*4

mov cx, PtAry2[bx].X
mov dx, PtAry2[bx].Y

; PtAry3[j,k,l].X := 0
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mov ax, j ;Index := ((j*3 +k)*4 + l)*4
mov bx, 3
mul bx ;j*3
add ax, k ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
add ax, ax ;((j*3 + k)*4 + l)*4
mov bx, ax
mov PtAry3[bx].X, 0

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.7 Structures and Arrays as Fields of Another Structure

 

; Structures Containing Structures as fields
; Structures Containing Arrays as fields
;
; Randall Hyde

dseg segment para public 'data'

Point struct
X word ?
Y word ?
Point ends

; We can define a rectangle with only two points.
; The color field contains an eight-bit color value.
; Note: the size of a Rect is 9 bytes.

Rect struct
UpperLeft Point {}
LowerRight Point {}
Color byte ?
Rect ends

; Pentagons have five points, so use an array of points to
; define the pentagon.  Of course, we also need the color
; field.
; Note: the size of a pentagon is 21 bytes.

Pent struct
Color byte ?
Pts Point 5 dup ({})
Pent ends
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; Okay, here are some variable declarations:

Rect1 Rect {}
Rect2 Rect {{0,0}, {1,1}, 1}

Pentagon1 Pent {}
Pentagons Pent {}, {}, {}, {}

Index word 2

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Rect1.UpperLeft.X := Rect2.UpperLeft.X

mov ax, Rect2.Upperleft.X
mov Rect1.Upperleft.X, ax

; Pentagon1 := Pentagons[Index]

mov ax, Index;Need Index*21
mov bx, 21
mul bx
mov bx, ax

; Copy the first point:

mov ax, Pentagons[bx].Pts[0].X
mov Pentagon1.Pts[0].X, ax

mov ax, Pentagons[bx].Pts[0].Y
mov Pentagon1.Pts[0].Y, ax

; Copy the second point:

mov ax, Pentagons[bx].Pts[2].X
mov Pentagon1.Pts[4].X, ax

mov ax, Pentagons[bx].Pts[2].Y
mov Pentagon1.Pts[4].Y, ax

; Copy the third point:

mov ax, Pentagons[bx].Pts[4].X
mov Pentagon1.Pts[8].X, ax

mov ax, Pentagons[bx].Pts[4].Y
mov Pentagon1.Pts[8].Y, ax

; Copy the fourth point:

mov ax, Pentagons[bx].Pts[6].X
mov Pentagon1.Pts[12].X, ax
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mov ax, Pentagons[bx].Pts[6].Y
mov Pentagon1.Pts[12].Y, ax

; Copy the fifth point:

mov ax, Pentagons[bx].Pts[8].X
mov Pentagon1.Pts[16].X, ax

mov ax, Pentagons[bx].Pts[8].Y
mov Pentagon1.Pts[16].Y, ax

; Copy the Color:

mov al, Pentagons[bx].Color
mov Pentagon1.Color, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

 

5.7.8 Pointers to Structures and Arrays of Structures

 

; Pointers to structures
; Pointers to arrays of structures
;
; Randall Hyde

.386 ;Need these two statements so 
option segment:use16 ; we can use 80386 registers

dseg segment para public 'data'

; Sample structure.
; Note: size is seven bytes.

Sample struct
b byte ?
w word ?
d dword ?
Sample ends

; Some variable declarations:

OneSample Sample {}
SampleAry Sample 16 dup ({})

; Pointers to the above
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OnePtr word OneSample ;A near pointer.
AryPtr dword SampleAry

; Index into the array:

Index word 8

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; AryPtr^[Index] := OnePtr^

mov si, OnePtr ;Get pointer to OneSample
les bx, AryPtr ;Get pointer to array of samples
mov ax, Index ;Need index*7
mov di, 7
mul di
mov di, ax

mov al, ds:[si].Sample.b
mov es:[bx][di].Sample.b, al

mov ax, ds:[si].Sample.w
mov es:[bx][di].Sample.w, ax

mov eax, ds:[si].Sample.d
mov es:[bx][di].Sample.d, eax

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main
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5.8 Laboratory Exercises

 

In these laboratory exercises you will learn how to step through a program using
CodeView and observe the results. Knowing how to trace through a program is an impor-
tant skill to posses. There is no better way to learn assembly language than to single step
through a program and observe the actions of each instruction. Even if you already know
assembly language, tracing through a program with a debugger like CodeView is one of
the best ways to verify that your program is working properly.

In these lab exercises you will assemble the sample program provided in the previous
section. Then you will run the assembled program under CodeView and step through
each instruction in the program. 

 

For your lab report:

 

 you will include a listing of each pro-
gram and describe the operation of each statement including data loaded into any affected
registers or values stored away into memory.

The following paragraphs describe one experimental run – stepping through the
pgm5_1.asm program. Your lab report should contain similar information for all eight
sample programs.

To assemble your programs, use the ML command with the /Zi option. For example,
to assemble the first sample program you would use the following DOS command:

 

ml /Zi pgm5_1.asm

 

This command produces the pgm5_1.exe file that contains CodeView debugging informa-
tion. You can load this program into the CodeView debugger using the following com-
mand:

 

cv pgm5_1

 

Once you are inside CodeView, you can single step through the program by repeatedly
pressing the F8 key. Each time you press the F8 key, CodeView executes a single instruc-
tion in the program.

To better observe the results while stepping through your program, you should open
the register window. If it is not open already, you can open it by pressing the F2 key. As the
instructions you execute modify the registers, you can observe the changes.

All the sample programs begin with a three-instruction sequence that initializes the
DS and ES registers; pressing the F8 key three times steps over these instructions and (on
one system) loads the AX, ES, and DS registers with the value 1927h (this value will
change on different systems).

Single stepping over the 

 

lea bx, L

 

 instruction loads the value 0015h into 

 

bx

 

. Single step-
ping over the group of instructions following the 

 

lea

 

 produces the following results:

 

mov ax, [bx] ;AX = 0
add ax, 2[bx] ;AX = 1
add ax, 4[bx] ;AX = 3
add ax, 6[bx] ;AX = 6
mul K ;AX = 18 (hex)
mov J, ax ;J is now equal to 18h.

 

Comments on the above instructions: this code loads bx with the base address of array 

 

L

 

and then proceeds to compute the sum of 

 

L[i]

 

, i=0..3 (0+1+2+3). It then multiples this sum
by K (4) and stores the result into J. Note that you can use the “dw J” command in the
command window to display J’s current value (the “J” must be upper case because Code-
View is case sensitive).

 

les bx, PtrVar2 ;BX = 0015, ES = 1927
mov di, K ;DI = 4
mov ax, es:[bx][di] ;AX = 2
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Comments on the above code: The 

 

les

 

 instruction loads 

 

es:bx

 

 with the pointer variable

 

PtrVar2

 

. This variable contains the address of the 

 

L

 

 variable. Then this code loads 

 

di

 

 with
the value of 

 

K

 

 and completes by loading the second element of 

 

L

 

 into 

 

ax

 

.

 

mov c1, ' '
mov al, c2
mov c3, al

 

These three instructions simply store a space into byte variable c1 (verify with a “da c1”
command in the command window) and they copy the value in 

 

c2

 

 (“A”) into the AL reg-
ister and the 

 

c3

 

 variable (verified with “da c3” command).

 

For your lab report: 

 

assemble and step through pgm5_2.asm, pgm5_3.asm,
pgm5_4.asm, pgm5_5.asm, pgm5_6.asm, pgm5_7.asm, and pgm5_8.asm. Describe the
results in a fashion similar to the above.

 

5.9 Programming Projects

 

1) The PC’s video display is a 

 

memory mapped I/O device

 

. That is, the display adapter maps
each character on the text display to a word in memory. The display is an 80x25 array of
words declared as follows:

 

display:array[0..24,0..79] of word;

 

Display[0,0] corresponds to the upper left hand corner of the screen, display[0,79] is the
upper right hand corner, display[24,0] is the lower left hand corner, and display[24,79] is
the lower right hand corner of the display. 
The L.O. byte of each word holds the ASCII code of the character to appear on the screen.
The H.O. byte of each word contains the 

 

attribute

 

 byte (see “The PC Video Display” on
page 1247 for more details on the attribute byte). The base address of this array is B000:0
for monochrome displays and B800:0 for color displays.
The Chapter Five subdirectory contains a file named PGM5_1.ASM. This file is a skeletal
program that manipulates the PC’s video display. This program, when complete, writes a
series of period to the screen and then it writes a series of blues spaces to the screen. It con-
tains a main program that uses several instructions you probably haven’t seen yet. These
instructions essentially execute a 

 

for

 

 loop as follows:

 

for i:= 0 to 79 do
for j := 0 to 24 do

putscreen(i,j,value);

 

Inside this program you will find some comments that instruct you to supply the code
that stores the value in AX to location display[i,j]. Modify this program as described in its
comments and test the result.
For this project, you need to declare two word variables, I and J, in the data segment. Then
you will need to modify the “PutScreen” procedure. Inside this procedure, as directed by
the comments in the file, you will need to compute the index into the screen array and
then store the value in the 

 

ax

 

 register to location 

 

es:[bx+0]

 

 (assuming you’ve computed the
index into 

 

bx

 

). Note that es:[0] is the base address of the video display in this procedure.
Check your code carefully before attempting to run it. If your code malfunctions, it may
crash the system and you will have to reboot. This program, if operating properly, will fill
the screen with periods and wait until you press a key. Then it will fill the screen with blue
spaces. You should probably execute the DOS “CLS” (clear screen) command after this
program executes properly. Note that there is a working version of this program named
p5_1.exe in the Chapter Five directory. You can run this program to check out it’s opera-
tion if you are having problems.

2) The Chapter Five subdirectory contains a file named PGM5_2.ASM. This file is a program
(except for two short subroutines) that generates mazes and solves them on the screen.
This program requires that you complete two subroutines: MazeAdrs and ScrnAdrs.
These two procedures appear at the beginning of the file; you should ignore the remainder
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of this program. When the program calls the MazeAdrs function, it passes an X coordinate
in the 

 

dx

 

 register and a Y-coordinate in the 

 

cx

 

 register. You need to compute the index into
an 27x82 array defined as follows: 

 

maze:array[0..26, 0..81] of word;

 

Return the index in the 

 

ax

 

 register. 

 

Do not access the maze array; the calling code will do that for
you.

 

The ScrnAdrs function is almost identical to the MazeAdrs function except it computes an
index into a 25x80 array rather than a 27x82 array. As with MazeAdrs, the X-coordinate
will be in the 

 

dx

 

 register and the Y-coordinate will be in the 

 

cx

 

 register.

Complete these two functions, assemble the program, and run it. Be sure to check your
work over carefully. If you make any mistakes you will probably crash the system.

3) Create a program with a single dimension array of structures. Place at least four fields
(your choice) in the structure. Write a code segment to access element “i” (“i” being a
word variable) in the array.

4) Write a program which copies the data from a 3x3 array and stores the data into a second
3x3 array. For the first 3x3 array, store the data in row major order. For the second 3x3
array, store the data in column major order. Use nine sequences of instructions which fetch
the word at location (i,j) (i=0..2, j=0..2).

5) Rewrite the code sequence above just using MOV instructions. Read and write the array
locations directly, do not perform the array address computations.

 

5.10 Summary

 

This chapter presents an 80x86-centric view of memory organization and data struc-
tures. This certainly isn’t a complete course on data structures. This chapter discussed the
primitive and simple composite data types and how to declare and use them in your pro-
gram. Lots of additional information on the declaration and use of simple data types
appears later in this text.

One of the main goals of this chapter is to describe how to declare and use 

 

variables

 

 in
an assembly language program. In an assembly language program you can easily create
byte, word, double word, and other types of variables. Such scalar data types support
boolean, character, integer, real, and other single data types found in typical high level
languages. See:

• “Declaring Variables in an Assembly Language Program” on page 196
• “Declaring and using BYTE Variables” on page 198
• “Declaring and using WORD Variables” on page 200
• “Declaring and using DWORD Variables” on page 201
• “Declaring and using FWORD, QWORD, and TBYTE Variables” on

page 202
• “Declaring Floating Point Variables with REAL4, REAL8, and REAL10”

on page 202

For those who don’t like using variable type names like 

 

byte

 

, 

 

word

 

, etc., MASM lets
you create your own type names. You want to call them 

 

Integers

 

 rather than 

 

Words

 

? No
problem, you can define your own type names use the 

 

typedef

 

 statement. See:

• “Creating Your Own Type Names with TYPEDEF” on page 203

Another important data type is the 

 

pointer

 

. Pointers are nothing more than memory
addresses stored in variables (word or double word variables). The 80x86 CPUs support
two types of pointers – near and far pointers. In real mode, near pointers are 16 bits long
and contain the offset into a known segment (typically the data segment). Far pointers are
32 bits long and contain a full segment:offset logical address. Remember that you must
use one of the register indirect or indexed addressing modes to access the data referenced
by a pointer. For those who want to create their own pointer types (rather than simply
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using 

 

word

 

 and 

 

dword

 

 to declare near and far pointers), the 

 

typedef

 

 instruction lets
you create named pointer types. See:

• “Pointer Data Types” on page 203

A 

 

composite data type

 

 is one made up from other data types. Examples of composite
data types abound, but two of the more popular composite data types are arrays and
structures (records). An array is a group of variables, all the same type. A program selects
an element of an array using an integer index into that array. Structures, on the other
hand, may contain fields whose types are different. In a program, you select the desired
field by supplying a field name with the 

 

dot operator

 

. See:

• “Arrays” on page 206
• “Multidimensional Arrays” on page 210
• “Structures” on page 218
• “Arrays of Structures and Arrays/Structures as Structure Fields” on

page 220
• “Pointers to Structures” on page 221
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5.11 Questions

 

1) In what segment (8086) would you normally place your variables?

2) Which segment in the SHELL.ASM file normally corresponds to the segment containing
your variables?

3) Describe how to declare byte variables. Give several examples. What would you normally
use byte variables for in a program?

4) Describe how to declare word variables. Give several examples. Describe what you would
use them for in a program.

5) Repeat question 21 for double word variables.

6) Explain the purpose of the TYPEDEF statement. Give several examples of its use.

7) What is a pointer variable?

8) What is the difference between a 

 

near

 

 and a 

 

far

 

 pointer?

9) How do you access the object pointed at by a far pointer. Give an example using 8086
instructions.

10) What is a composite data type?

11) How do you declare arrays in assembly language? Give the code for the following arrays:

a) A two dimensional 4x4 array of bytes b) An array containing 128 double words

c) An array containing 16 words d) A 4x5x6 three dimensional array of words

12) Describe how you would access a single element of each of the above arrays. Provide the
necessary formulae and 8086 code to access said element (assume variable I is the index
into single dimension arrays, I & J provide the index into two dimension arrays, and I, J, &
K provide the index into the three dimensional array). Assume row major ordering, where
appropriate.

13) Provide the 80386 code, using the scaled indexing modes, to access the elements of the
above arrays.

14) Explain the difference between row major and column major array ordering.

15) Suppose you have a two-dimensional array whose values you want to initialize as fol-
lows:

Provide the variable declaration to accomplish this. Note: Do not use 8086 machine
instructions to initialize the array. Initialize the array in your data segment.

 

Date= Record
Month:integer;
Day:integer;
Year:integer;

end;

Time= Record
Hours:integer;
Minutes:integer;
Seconds:integer;

end;

VideoTape = record
Title:string[25];
ReleaseDate:Date;
Price:Real; (* Assume four byte reals *)

 

0 1 2

3 4 5

6 7 8
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Length: Time;
Rating:char;

end;

TapeLibrary : array [0..127] of VideoTape; (*This is a variable!*)

 

17) Suppose ES:BX points at an object of type VideoTape. What is the instruction that properly
loads the 

 

Rating

 

 field into AL?


