

Page 819

Strings and Character Sets Chapter 15

A string is a collection of objects stored in contiguous memory locations. Strings are
usually arrays of bytes, words, or (on 80386 and later processors) double words. The 80x86
microprocessor family supports several instructions specifically designed to cope with
strings. This chapter explores some of the uses of these string instructions.

The 8088, 8086, 80186, and 80286 can process two types of strings: byte strings and
word strings. The 80386 and later processors also handle double word strings. They can
move strings, compare strings, search for a specific value within a string, initialize a string
to a fixed value, and do other primitive operations on strings. The 80x86’s string instruc-
tions are also useful for manipulating arrays, tables, and records. You can easily assign or
compare such data structures using the string instructions. Using string instructions may
speed up your array manipulation code considerably.

15.0 Chapter Overview

This chapter presents a review of the operation of the 80x86 string instructions. Then
it discusses how to process character strings using these instructions. Finally, it concludes
by discussing the string instruction available in the UCR Standard Library. The sections
below that have a “•” prefix are essential. Those sections with a “

o

” discuss advanced
topics that you may want to put off for a while.

• The 80x86 string instructions.
• Character strings.
• Character string functions.
• String functions in the UCR Standard Library.

 o

Using the string instructions on other data types.

15.1 The 80x86 String Instructions

All members of the 80x86 family support five different string instructions:

movs

,

cmps,
scas, lods,

 and

stos

1

. They are the string primitives since you can build most other string
operations from these five instructions. How you use these five instructions is the topic of
the next several sections.

15.1.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of memory. For
example, the

movs

instruction moves a sequence of bytes from one memory location to
another. The

cmps

instruction compares two blocks of memory. The

scas

instruction scans
a block of memory for a particular value. These string instructions often require three
operands, a destination block address, a source block address, and (optionally) an element
count. For example, when using the

movs

instruction to copy a string, you need a source
address, a destination address, and a count (the number of string elements to move).

Unlike other instructions which operate on memory, the string instructions are sin-
gle-byte instructions which don’t have any explicit operands. The operands for the string
instructions include

1. The 80186 and later processor support two additional string instructions, INS and OUTS which input strings of
data from an input port or output strings of data to an output port. We will not consider these instructions in this
chapter.

This document was created with FrameMaker 4.0.2

Chapter 15

Page 820

• the

si

(source index) register,
• the

di

(destination index) register,
• the

cx

(count) register,
• the

ax

register, and
• the direction flag in the FLAGS register.

For example, one variant of the

movs

(move string) instruction copies a string from the
source address specified by

ds:si

to the destination address specified by

es:di

, of length

cx

.
Likewise, the

cmps

instruction compares the string pointed at by

ds:si

, of length

cx

, to the
string pointed at by

es:di

.

Not all instructions have source and destination operands (only

movs

and

cmps

sup-
port them). For example, the

scas

instruction (scan a string) compares the value in the
accumulator to values in memory. Despite their differences, the 80x86’s string instructions
all have one thing in common – using them requires that you deal with two segments, the
data segment and the extra segment.

15.1.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes

The string instructions, by themselves, do not operate on strings of data. The

movs

instruction, for example, will move a single byte, word, or double word. When executed
by itself, the

movs

instruction ignores the value in the

cx

register. The repeat prefixes tell
the 80x86 to do a multi-byte string operation. The syntax for the repeat prefix is:

Field:
Label repeat mnemonic operand ;comment

For MOVS:
rep movs {operands}

For CMPS:
repe cmps {operands}
repz cmps {operands}
repne cmps {operands}
repnz cmps {operands}

For SCAS:
repe scas {operands}
repz scas {operands}
repne scas {operands}
repnz scas {operands}

For STOS:
rep stos {operands}

You don’t normally use the repeat prefixes with the

lods

instruction.

As you can see, the presence of the repeat prefixes introduces a new field in the source
line – the repeat prefix field. This field appears only on source lines containing string
instructions. In your source file:

• the label field should always begin in column one,
• the repeat field should begin at the first tab stop, and
• the mnemonic field should begin at the second tab stop.

When specifying the repeat prefix before a string instruction, the string instruction
repeats

cx

times

2

. Without the repeat prefix, the instruction operates only on a single byte,
word, or double word.

2. Except for the

cmps

instruction which repeats

at most

 the number of times specified in the

cx

register.

Strings and Character Sets

Page 821

You can use repeat prefixes to process entire strings with a single instruction. You can
use the string instructions, without the repeat prefix, as string primitive operations to syn-
thesize more powerful string operations.

The operand field is optional. If present, MASM simply uses it to determine the size of
the string to operate on. If the operand field is the name of a byte variable, the string
instruction operates on bytes. If the operand is a word address, the instruction operates on
words. Likewise for double words. If the operand field is not present, you must append a
“B”, “W”, or “D” to the end of the string instruction to denote the size, e.g.,

movsb

,

movsw

,
or

movsd

.

15.1.3 The Direction Flag

Besides the

si, di, si

, and

ax

registers, one other register controls the 80x86’s string
instructions – the flags register. Specifically, the

direction flag

 in the flags register controls
how the CPU processes strings.

If the direction flag is clear, the CPU increments

si

and

di

after operating upon each
string element. For example, if the direction flag is clear, then executing

movs

will move
the byte, word, or double word at

ds:si

to

es:di

and will increment

si

and

di

by one, two, or
four. When specifying the

rep

prefix before this instruction, the CPU increments

si

and

di

for each element in the string. At completion, the

si

and

di

registers will be pointing at the
first item beyond the string.

 If the direction flag is set, then the 80x86 decrements

si

and

di

after processing each
string element. After a repeated string operation, the

si

and

di

registers will be pointing at
the first byte or word before the strings if the direction flag was set.

The direction flag may be set or cleared using the

cld

(clear direction flag) and

std

(set
direction flag) instructions. When using these instructions inside a procedure, keep in
mind that they modify the machine state. Therefore, you may need to save the direction
flag during the execution of that procedure. The following example exhibits the kinds of
problems you might encounter:

StringStuff:
cld

<do some operations>
call Str2

<do some string operations requiring D=0>

 .
 .
 .

Str2 proc near
std

<Do some string operations>
ret

Str2 endp

This code will not work properly. The calling code assumes that the direction flag is
clear after

Str2

 returns. However, this isn’t true. Therefore, the string operations executed
after the call to

Str2

will not function properly.

There are a couple of ways to handle this problem. The first, and probably the most
obvious, is always to insert the

cld

or

std

instructions immediately before executing a
string instruction. The other alternative is to save and restore the direction flag using the

pushf

and

popf

instructions. Using these two techniques, the code above would look like
this:

Always issuing

cld

or

std

before a string instruction:

StringStuff:
cld

<do some operations>
call Str2
cld

<do some string operations requiring D=0>

Chapter 15

Page 822

 .
 .
 .

Str2 proc near
std

<Do some string operations>
ret

Str2 endp

 Saving and restoring the flags register:

StringStuff:
cld

<do some operations>
call Str2

<do some string operations requiring D=0>

 .
 .
 .

Str2 proc near
pushf
std

<Do some string operations>
popf
ret

Str2 endp

If you use the

pushf

and

popf

instructions to save and restore the flags register, keep in
mind that you’re saving and restoring all the flags. Therefore, such subroutines cannot
return any information in the flags. For example, you will not be able to return an error
condition in the carry flag if you use

pushf

and

popf

.

15.1.4 The MOVS Instruction

The

movs

instruction takes four basic forms.

Movs

moves bytes, words, or double
words,

movsb

moves byte strings,

movsw

moves word strings, and

movsd

moves double
word strings (on 80386 and later processors). These four instructions use the following
syntax:

{REP} MOVSB
{REP} MOVSW
{REP} MOVSD ;Available only on 80386 and later processors
{REP} MOVS Dest, Source

The

movsb

(move string, bytes) instruction fetches the byte at address

ds:si

, stores it at
address

es:di

, and then increments or decrements the

si

and

di

registers by one. If the

rep

prefix is present, the CPU checks

cx

to see if it contains zero. If not, then it moves the byte
from

ds:si

to

es:di

and decrements the

cx

register. This process repeats until

cx

becomes
zero.

The

movsw

(move string, words) instruction fetches the word at address

ds:si

, stores it
at address

es:di

, and then increments or decrements

si

and

di

by two. If there is a

rep

prefix,
then the CPU repeats this procedure as many times as specified in

cx

.

The

 movsd

instruction operates in a similar fashion on double words. Incrementing or
decrementing

si

and

di

by four for each data movement.

MASM automatically figures out the size of the

movs

instruction by looking at the size
of the operands specified. If you’ve defined the two operands with the

byte

(or compara-
ble) directive, then MASM will emit a

movsb

instruction. If you’ve declared the two labels
via

word

(or comparable), MASM will generate a

movws

instruction. If you’ve declared the
two labels with

dword

, MASM emits a

movsd

instruction. The assembler will also check the
segments of the two operands to ensure they match the current assumptions (via the

assume

directive) about the

es

and

ds

registers. You should always use the

movsb

,

movsw

,
and

movsd

forms and forget about the

movs

form.

Strings and Character Sets

Page 823

Although, in theory, the

movs

form appears to be an elegant way to handle the move
string instruction, in practice it creates more trouble than it’s worth. Furthermore, this
form of the move string instruction implies that

movs

has explicit operands, when, in fact,
the

si

and

di

registers implicitly specify the operands. For this reason, we’ll always use the

movsb, movsw,

or

movsd

instructions. When used with the

rep

prefix, the

movsb

instruction
will move the number of bytes specified in the

cx

register. The following code segment
copies 384 bytes from

String1

 to

String2

:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsb

 .
 .
 .

String1 byte 384 dup (?)
String2 byte 384 dup (?)

This code, of course, assumes that

String1

 and

String2

 are in the same segment and
both the

ds

and

es

registers point at this segment. If you substitute

movws

for

movsb

, then
the code above will move 384 words (768 bytes) rather than 384 bytes:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsw

 .
 .
 .

String1 word 384 dup (?)
String2 word 384 dup (?)

Remember, the

cx

register contains the element count, not the byte count. When using
the

movsw

instruction, the CPU moves the number of words specified in the

cx

register.

If you’ve set the direction flag before executing a

movsb/movsw/movsd

instruction, the
CPU decrements the

si

and

di

registers after moving each string element. This means that
the

si

and

di

registers must point at the end of their respective strings before issuing a

movsb, movsw, or movsd

instruction. For example,

std
lea si, String1+383
lea di, String2+383
mov cx, 384

rep movsb

 .
 .
 .

String1 byte 384 dup (?)
String2 byte 384 dup (?)

Although there are times when processing a string from tail to head is useful (see the

cmps

description in the next section), generally you’ll process strings in the forward direc-
tion since it’s more straightforward to do so. There is one class of string operations where
being able to process strings in both directions is absolutely mandatory: processing strings
when the source and destination blocks overlap. Consider what happens in the following
code:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsb

 .
 .
 .

String1 byte ?
String2 byte 384 dup (?)

Chapter 15

Page 824

This sequence of instructions treats

String1

 and

String2

 as a pair of 384 byte strings.
However, the last 383 bytes in the

String1

 array overlap the first 383 bytes in the

String2

array. Let’s trace the operation of this code byte by byte.

When the CPU executes the

movsb

instruction, it copies the byte at

ds:si (String1)

 to the
byte pointed at by

es:di (String2)

. Then it increments

si

and

di

, decrements

cx

by one, and
repeats this process. Now the

si

register points at

String1+1

 (which is the address of

String2

)
and the

di

register points at

 String2+1

. The

movsb

instruction copies the byte pointed at by

si

to the byte pointed at by

di

. However, this is the byte originally copied from location

String1

. So the

movsb

instruction copies the value originally in location

String1

 to both loca-
tions

String2

 and

String2+1

. Again, the CPU increments

si

and

di

, decrements

cx

, and
repeats this operation. Now the

movsb

instruction copies the byte from location

String1+2

(

String2+1

) to location

String2+2

. But once again, this is the value that originally appeared
in location

String1

. Each repetition of the loop copies the next element in

String1

 to the next
available location in the

String2

 array. Pictorially, it looks something like that in
Figure 15.1.

Figure 15.1 Overwriting Data During a Block Move Operation

X A B C D E F G H I J K L

1st move operation:

X X B C D E F G H I J K L

2nd move operation:

X X X C D E F G H I J K L

3rd move operation:

X X X X D E F G H I J K L

4th move operation:

X X X X X X X X X X X X L

nth move operation:

Strings and Character Sets

Page 825

The end result is that

X

 gets replicated throughout the string. The move instruction
copies the source operand into the memory location which will become the source oper-
and for the very next move operation, which causes the replication.

If you really want to move one array into another when they overlap, you should
move each element of the source string to the destination string starting at the end of the
two strings as shown in Figure 15.2.

Setting the direction flag and pointing

si

and

di

at the end of the strings will allow you
to (correctly) move one string to another when the two strings overlap and the source
string begins at a lower address than the destination string. If the two strings overlap and
the source string begins at a higher address than the destination string, then clear the
direction flag and point

si

and

di

at the beginning of the two strings.

If the two strings do not overlap, then you can use either technique to move the
strings around in memory. Generally, operating with the direction flag clear is the easiest,
so that makes the most sense in this case.

You shouldn’t use the

movs

instruction to fill an array with a single byte, word, or
double word value. Another string instruction,

stos

, is much better suited for this purpose.
However, for arrays whose elements are larger than four bytes, you can use the

movs

instruction to initialize the entire array to the content of the first element. See the questions
for additional information.

Figure 15.2 Correct Way to Move Data With a Block Move Operation

X A B C D E F G H I J K L

1st move operation:

X A B C D E F G H I J K K

2nd move operation:

X A B C D E F G H I J J K

3rd move operation:

X A B C D E F G H I I J K

4th move operation:

X A A B C D E F G H I J K

nth move operation:

Chapter 15

Page 826

15.1.5 The CMPS Instruction

The

cmps

instruction compares two strings. The CPU compares the string referenced
by

es:di

to the string pointed at by

ds:si

.

Cx

contains the length of the two strings (when
using the

rep

prefix). Like the

movs

instruction, the MASM assembler allows several differ-
ent forms of this instruction:

{REPE} CMPSB
{REPE} CMPSW
{REPE} CMPSD ;Available only on 80386 and later
{REPE} CMPS dest, source
{REPNE} CMPSB
{REPNE} CMPSW
{REPNE} CMPSD ;Available only on 80386 and later
{REPNE} CMPS dest, source

 Like the

movs

instruction, the operands present in the operand field of the

cmps

instruction determine the size of the operands. You specify the actual operand addresses
in the

si

and

di

registers.

Without a repeat prefix, the

cmps

instruction subtracts the value at location

es:di

from
the value at

ds:si

and updates the flags. Other than updating the flags, the CPU doesn’t
use the difference produced by this subtraction. After comparing the two locations,

cmps

increments or decrements the

si

and

di

registers by one, two, or four (for

cmpsb/cmpsw/cmpsd

, respectively).

Cmps

increments the

si

and

di

registers if the direction
flag is clear and decrements them otherwise.

Of course, you will not tap the real power of the

cmps

instruction using it to compare
single bytes or words in memory. This instruction shines when you use it to compare
whole strings. With

cmps

, you can compare consecutive elements in a string until you find
a match or until consecutive elements do not match.

To compare two strings to see if they are equal or not equal, you must compare corre-
sponding elements in a string until they don’t match. Consider the following strings:

“String1”

“String1”

The only way to determine that these two strings are equal is to compare each charac-
ter in the first string to the corresponding character in the second. After all, the second
string could have been “String2” which definitely is not equal to “String1”. Of course,
once you encounter a character in the destination string which doesn’t equal the corre-
sponding character in the source string, the comparison can stop. You needn’t compare
any other characters in the two strings.

The

repe

prefix accomplishes this operation. It will compare successive elements in a
string as long as they are equal and

cx

is greater than zero. We could compare the two
strings above using the following 80x86 assembly language code:

; Assume both strings are in the same segment and ES and DS
; both point at this segment.

cld
lea si, AdrsString1
lea di, AdrsString2
mov cx, 7

repe cmpsb

After the execution of the

cmpsb

instruction, you can test the flags using the standard
conditional jump instructions. This lets you check for equality, inequality, less than,
greater than, etc.

Character strings are usually compared using

lexicographical ordering

. In lexicographi-
cal ordering, the least significant element of a string carries the most weight. This is in
direct contrast to standard integer comparisons where the most significant portion of the

Strings and Character Sets

Page 827

number carries the most weight. Furthermore, the length of a string affects the compari-
son only if the two strings are identical up to the length of the shorter string. For example,
“Zebra” is less than “Zebras”, because it is the shorter of the two strings, however,
“Zebra” is greater than “AAAAAAAAAAH!” even though it is shorter. Lexicographical
comparisons compare corresponding elements until encountering a character which
doesn’t match, or until encountering the end of the shorter string. If a pair of correspond-
ing characters do not match, then this algorithm compares the two strings based on that
single character. If the two strings match up to the length of the shorter string, we must
compare their length. The two strings are equal if and only if their lengths are equal and
each corresponding pair of characters in the two strings is identical. Lexicographical
ordering is the standard alphabetical ordering you’ve grown up with.

For character strings, use the

cmps

instruction in the following manner:

• The direction flag must be cleared before comparing the strings.
• Use the

cmpsb

instruction to compare the strings on a byte by byte basis.
Even if the strings contain an even number of characters, you cannot use
the

cmpsw

instruction. It does not compare strings in lexicographical
order.

• The

cx

register must be loaded with the length of the smaller string.
• Use the

repe

prefix.
• The

ds:si

and

es:di

registers must point at the very first character in the
two strings you want to compare.

After the execution of the

cmps

instruction, if the two strings were equal, their lengths
must be compared in order to finish the comparison. The following code compares a cou-
ple of character strings:

lea si, source
lea di, dest
mov cx, lengthSource
mov ax, lengthDest
cmp cx, ax
ja NoSwap
xchg ax, cx

NoSwap: repe cmpsb
jne NotEqual
mov ax, lengthSource
cmp ax, lengthDest

NotEqual:

If you’re using bytes to hold the string lengths, you should adjust this code appropriately.

You can also use the

cmps

instruction to compare multi-word integer values (that is,
extended precision integer values). Because of the amount of setup required for a string
comparison, this isn’t practical for integer values less than three or four words in length,
but for large integer values, it’s an excellent way to compare such values. Unlike character
strings, we cannot compare integer strings using a lexicographical ordering. When com-
paring strings, we compare the characters from the least significant byte to the most sig-
nificant byte. When comparing integers, we must compare the values from the most
significant byte (or word/double word) down to the least significant byte, word or double
word. So, to compare two eight-word (128-bit) integer values, use the following code on
the 80286:

std
lea si, SourceInteger+14
lea di, DestInteger+14
mov cx, 8

repe cmpsw

This code compares the integers from their most significant word down to the least
significant word. The

cmpsw

 instruction finishes when the two values are unequal or upon
decrementing

cx

to zero (implying that the two values are equal). Once again, the flags
provide the result of the comparison.

Chapter 15

Page 828

The

repne

prefix will instruct the

cmps

instruction to compare successive string ele-
ments as long as they do not match. The 80x86 flags are of little use after the execution of
this instruction. Either the

cx

register is zero (in which case the two strings are totally dif-
ferent), or it contains the number of elements compared in the two strings until a match.
While this form of the

cmps

instruction isn’t particularly useful for comparing strings, it is
useful for locating the first pair of matching items in a couple of byte or word arrays. In
general, though, you’ll rarely use the

repne

prefix with

cmps

.

One last thing to keep in mind with using the

cmps

instruction – the value in the

cx

register determines the number of elements to process, not the number of bytes. There-
fore, when using

cmpsw

,

cx

specifies the number of words to compare. This, of course, is
twice the number of bytes to compare.

15.1.6 The SCAS Instruction

The

cmps

instruction compares two strings against one another. You cannot use it to
search for a particular element within a string. For example, you could not use the

cmps

instruction to quickly scan for a zero throughout some other string. You can use the

scas

(scan string) instruction for this task.

Unlike the

movs

and

cmps

instructions, the

scas

instruction only requires a destination
string (

es:di

) rather than both a source and destination string. The source operand is the
value in the

al

(

scasb

),

ax

(

scasw

), or

eax

(

scasd)

 register.

The

scas

instruction, by itself, compares the value in the accumulator (

al, ax,

or

eax

)
against the value pointed at by

es:di

and then increments (or decrements)

di

by one, two,
or four. The CPU sets the flags according to the result of the comparison. While this might
be useful on occasion,

scas

is a lot more useful when using the

repe

and

repne

prefixes.

When the

repe

prefix (repeat while equal) is present,

scas

scans the string searching
for an element which does not match the value in the accumulator. When using the

repne

prefix (repeat while not equal),

scas

scans the string searching for the first string element
which is equal to the value in the accumulator.

You’re probably wondering “why do these prefixes do exactly the opposite of what
they ought to do?” The paragraphs above haven’t quite phrased the operation of the

scas

instruction properly. When using the

repe

prefix with

scas

, the 80x86 scans through the
string while the value in the accumulator is equal to the string operand. This is equivalent
to searching through the string for the first element which does not match the value in the
accumulator. The

scas

instruction with

repne

scans through the string while the accumula-
tor is not equal to the string operand. Of course, this form searches for the first value in the
string which matches the value in the accumulator register. The

scas

instruction takes the
following forms:

{REPE} SCASB
{REPE} SCASW
{REPE} SCASD ;Available only on 80386 and later processors
{REPE} SCAS dest
{REPNE} SCASB
{REPNE} SCASW
{REPNE} SCASD ;Available only on 80386 and later processors
{REPNE} SCAS dest

Like the

cmps

and

movs

instructions, the value in the

cx

register specifies the number
of elements to process, not bytes, when using a repeat prefix.

15.1.7 The STOS Instruction

The

stos

instruction stores the value in the accumulator at the location specified by

es:di

. After storing the value, the CPU increments or decrements

di

depending upon the
state of the direction flag. Although the

stos

instruction has many uses, its primary use is

Strings and Character Sets

Page 829

to initialize arrays and strings to a constant value. For example, if you have a 256-byte
array you want to clear out with zeros, use the following code:

; Presumably, the ES register already points at the segment
; containing DestString

cld
lea di, DestString
mov cx, 128 ;256 bytes is 128 words.
xor ax, ax ;AX := 0

rep stosw

This code writes 128 words rather than 256 bytes because a single

stosw

operation is
faster than two

stosb

operations. On an 80386 or later this code could have written 64 dou-
ble words to accomplish the same thing even faster.

The

stos

instruction takes four forms. They are

{REP} STOSB
{REP} STOSW
{REP} STOSD
{REP} STOS dest

The

stosb

instruction stores the value in the

al

register into the specified memory loca-
tion(s), the

stosw

instruction stores the

ax

register into the specified memory location(s)
and the

stosd

instruction stores

eax

into the specified location(s). The

stos

instruction is
either an

stosb, stosw,

or

stosd

instruction depending upon the size of the specified oper-
and.

Keep in mind that the

stos

instruction is useful only for initializing a byte, word, or
dword array to a constant value. If you need to initialize an array to different values, you
cannot use the

stos

instruction. You can use

movs

in such a situation, see the exercises for
additional details.

15.1.8 The LODS Instruction

The

lods

instruction is unique among the string instructions. You will never use a
repeat prefix with this instruction. The

lods

instruction copies the byte or word pointed at
by

ds:si

into the

al, ax,

or

eax

register, after which it increments or decrements the

si

register
by one, two, or four. Repeating this instruction via the repeat prefix would serve no pur-
pose whatsoever since the accumulator register will be overwritten each time the

lods

instruction repeats. At the end of the repeat operation, the accumulator will contain the
last value read from memory.

Instead, use the

lods

instruction to fetch bytes (

lodsb

), words (

lodsw

), or double words
(

lodsd

) from memory for further processing. By using the

stos

instruction, you can synthe-
size powerful string operations.

Like the

stos

instruction, the

lods

instruction takes four forms:

{REP} LODSB
{REP} LODSW
{REP} LODSD ;Available only on 80386 and later
{REP} LODS dest

As mentioned earlier, you’ll rarely, if ever, use the

rep

prefixes with these instructions

3

.
The 80x86 increments or decrements

si

by one, two, or four depending on the direction
flag and whether you’re using the

lodsb

,

lodsw

, or

lodsd

instruction.

3. They appear here simply because they are allowed. They’re not useful, but they are allowed.

Chapter 15

Page 830

15.1.9 Building Complex String Functions from LODS and STOS

The 80x86 supports only five different string instructions:

movs

,

cmps

,

scas

,

lods

, and

stos

4

. These certainly aren’t the only string operations you’ll ever want to use. However,
you can use the

lods

and

stos

instructions to easily generate any particular string operation
you like. For example, suppose you wanted a string operation that converts all the upper
case characters in a string to lower case. You could use the following code:

; Presumably, ES and DS have been set up to point at the same
; segment, the one containing the string to convert.

lea si, String2Convert
mov di, si
mov cx, LengthOfString

Convert2Lower: lodsb ;Get next char in str.
cmp al, ‘A’ ;Is it upper case?
jb NotUpper
cmp al, ‘Z’
ja NotUpper
or al, 20h ;Convert to lower case.

NotUpper: stosb ;Store into destination.
loop Convert2Lower

Assuming you’re willing to waste 256 bytes for a table, this conversion operation can
be sped up somewhat using the

xlat

instruction:

; Presumably, ES and DS have been set up to point at the same
; segment, the one containing the string to be converted.

cld
lea si, String2Convert
mov di, si
mov cx, LengthOfString
lea bx, ConversionTable

Convert2Lower: lodsb ;Get next char in str.
xlat ;Convert as appropriate.
stosb ;Store into destination.
loop Convert2Lower

The conversion table, of course, would contain the index into the table at each location
except at offsets 41h..5Ah. At these locations the conversion table would contain the val-
ues 61h..7Ah (i.e., at indexes ‘A’..’Z’ the table would contain the codes for ‘a’..’z’).

Since the

lods

and

stos

instructions use the accumulator as an intermediary, you can
use any accumulator operation to quickly manipulate string elements.

15.1.10 Prefixes and the String Instructions

The string instructions will accept segment prefixes, lock

prefixes, and repeat prefixes.
In fact, you can specify all three types of instruction prefixes should you so desire. How-
ever, due to a bug in the earlier 80x86 chips (pre-80386), you should never use more than a
single prefix (repeat, lock, or segment override) on a string instruction unless your code
will only run on later processors; a likely event these days. If you absolutely must use two
or more prefixes and need to run on an earlier processor, make sure you turn off the inter-
rupts while executing the string instruction.

4. Not counting INS and OUTS which we’re ignoring here.

Strings and Character Sets

Page 831

15.2 Character Strings

Since you’ll encounter character strings more often than other types of strings, they
deserve special attention. The following sections describe character strings and various
types of string operations.

15.2.1 Types of Strings

At the most basic level, the 80x86’s string instruction only operate upon arrays of
characters. However, since most string data types contain an array of characters as a com-
ponent, the 80x86’s string instructions are handy for manipulating that portion of the
string.

Probably the biggest difference between a character string and an array of characters
is the length attribute. An array of characters contains a fixed number of characters. Never
any more, never any less. A character string, however, has a dynamic run-time length, that
is, the number of characters contained in the string at some point in the program. Charac-
ter strings, unlike arrays of characters, have the ability to change their size during execu-
tion (within certain limits, of course).

To complicate things even more, there are two generic types of strings: statically allo-
cated strings and dynamically allocated strings. Statically allocated strings are given a
fixed, maximum length at program creation time. The length of the string may vary at
run-time, but only between zero and this maximum length. Most systems allocate and
deallocate dynamically allocated strings in a memory pool when using strings. Such
strings may be any length (up to some reasonable maximum value). Accessing such
strings is less efficient than accessing statically allocated strings. Furthermore, garbage
collection

5

 may take additional time. Nevertheless, dynamically allocated strings are
much more space efficient than statically allocated strings and, in some instances, access-
ing dynamically allocated strings is faster as well. Most of the examples in this chapter
will use statically allocated strings.

A string with a dynamic length needs some way of keeping track of this length. While
there are several possible ways to represent string lengths, the two most popular are
length-prefixed strings and zero-terminated strings. A length-prefixed string consists of a
single byte or word that contains the length of that string. Immediately following this
length value, are the characters that make up the string. Assuming the use of byte prefix
lengths, you could define the string “HELLO” as follows:

HelloStr byte 5,”HELLO”

Length-prefixed strings are often called Pascal strings since this is the type of string
variable supported by most versions of Pascal

6

.

Another popular way to specify string lengths is to use zero-terminated strings. A
zero-terminated string consists of a string of characters terminated with a zero byte. These
types of strings are often called C-strings since they are the type used by the C/C++ pro-
gramming language. The UCR Standard Library, since it mimics the C standard library,
also uses zero-terminated strings.

Pascal strings are much better than C/C++ strings for several reasons. First, comput-
ing the length of a Pascal string is trivial. You need only fetch the first byte (or word) of the
string and you’ve got the length of the string. Computing the length of a C/C++ string is
considerably less efficient. You must scan the entire string (e.g., using the

scasb

instruc-
tion) for a zero byte. If the C/C++ string is long, this can take a long time. Furthermore,
C/C++ strings cannot contain the NULL character. On the other hand, C/C++ strings can
be any length, yet require only a single extra byte of overhead. Pascal strings, however,

5. Reclaiming unused storage.
6. At least those versions of Pascal which support strings.

Chapter 15

Page 832

can be no longer than 255 characters when using only a single length byte. For strings
longer than 255 bytes, you’ll need two bytes to hold the length for a Pascal string. Since
most strings are less than 256 characters in length, this isn’t much of a disadvantage.

An advantage of zero-terminated strings is that they are easy to use in an assembly
language program. This is particularly true of strings that are so long they require multi-
ple source code lines in your assembly language programs. Counting up every character
in a string is so tedious that it’s not even worth considering. However, you can write a
macro which will easily build Pascal strings for you:

PString macro String
local StringLength, StringStart
byte StringLength

StringStart byte String
StringLength = $-StringStart

endm

 .
 .
 .

PString “This string has a length prefix”

As long as the string fits entirely on one source line, you can use this macro to generate
Pascal style strings.

Common string functions like concatenation, length, substring, index, and others are
much easier to write when using length-prefixed strings. So we’ll use Pascal strings unless
otherwise noted. Furthermore, the UCR Standard library provides a large number of
C/C++ string functions, so there is no need to replicate those functions here.

15.2.2 String Assignment

You can easily assign one string to another using the

movsb

instruction. For example,
if you want to assign the length-prefixed string

String1

 to

String2

, use the following:

; Presumably, ES and DS are set up already

lea si, String1
lea di, String2
mov ch, 0 ;Extend len to 16 bits.
mov cl, String1 ;Get string length.
inc cx ;Include length byte.

rep movsb

This code increments

cx

by one before executing

movsb

because the length byte contains
the length of the string exclusive of the length byte itself.

Generally, string variables can be initialized to constants by using the

PString

 macro
described earlier. However, if you need to set a string variable to some constant value, you
can write a

StrAssign

 subroutine which assigns the string immediately following the

call

.
The following procedure does exactly that:

include stdlib.a
includelib stdlib.lib

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; String assignment procedure

MainPgm proc far
mov ax, seg dseg
mov ds, ax
mov es, ax

lea di, ToString
call StrAssign
byte “This is an example of how the “

Strings and Character Sets

Page 833

byte “StrAssign routine is used”,0
nop
ExitPgm

MainPgm endp

StrAssign proc near
push bp
mov bp, sp
pushf
push ds
push si
push di
push cx
push ax
push di ;Save again for use later.
push es
cld

; Get the address of the source string

mov ax, cs
mov es, ax
mov di, 2[bp] ;Get return address.
mov cx, 0ffffh ;Scan for as long as it takes.
mov al, 0 ;Scan for a zero.

repne scasb ;Compute the length of string.
neg cx ;Convert length to a positive #.
dec cx ;Because we started with -1, not 0.
dec cx ;skip zero terminating byte.

; Now copy the strings

pop es ;Get destination segment.
pop di ;Get destination address.
mov al, cl ;Store length byte.
stosb

; Now copy the source string.

mov ax, cs
mov ds, ax
mov si, 2[bp]

rep movsb

; Update the return address and leave:

inc si ;Skip over zero byte.
mov 2[bp], si

pop ax
pop cx
pop di
pop si
pop ds
popf
pop bp
ret

StrAssign endp

cseg ends

dseg segment para public ‘data’
ToString byte 255 dup (0)
dseg ends

sseg segment para stack ‘stack’
word 256 dup (?)

sseg ends
end MainPgm

Chapter 15

Page 834

 This code uses the

scas

instruction to determine the length of the string immediately
following the

call

instruction. Once the code determines the length, it stores this length
into the first byte of the destination string and then copies the text following the

call

to the
string variable. After copying the string, this code adjusts the return address so that it
points just beyond the zero terminating byte. Then the procedure returns control to the
caller.

Of course, this string assignment procedure isn’t very efficient, but it’s very easy to
use. Setting up

es:di

is all that you need to do to use this procedure. If you need fast string
assignment, simply use the

movs

instruction as follows:

; Presumably, DS and ES have already been set up.

lea si, SourceString
lea di, DestString
mov cx, LengthSource

rep movsb

 .
 .
 .

SourceString byte LengthSource-1
byte “This is an example of how the “
byte “StrAssign routine is used”

LengthSource = $-SourceString

DestString byte 256 dup (?)

Using in-line instructions requires considerably more setup (and typing!), but it is
much faster than the

StrAssign

 procedure. If you don’t like the typing, you can always
write a macro to do the string assignment for you.

15.2.3 String Comparison

Comparing two character strings was already beaten to death in the section on the

cmps

instruction. Other than providing some concrete examples, there is no reason to con-
sider this subject any further.

Note: all the following examples assume that

es

and

ds

are pointing at the proper seg-
ments containing the destination and source strings.

Comparing

Str1

 to

Str2

:

lea si, Str1
lea di, Str2

; Get the minimum length of the two strings.

mov al, Str1
mov cl, al
cmp al, Str2
jb CmpStrs
mov cl, Str2

; Compare the two strings.

CmpStrs: mov ch, 0
cld

repe cmpsb
jne StrsNotEqual

; If CMPS thinks they’re equal, compare their lengths
; just to be sure.

cmp al, Str2
StrsNotEqual:

Strings and Character Sets

Page 835

At label

StrsNotEqual

, the flags will contain all the pertinent information about the
ranking of these two strings. You can use the conditional jump instructions to test the
result of this comparison.

15.3 Character String Functions

Most high level languages, like Pascal, BASIC, “C”, and PL/I, provide several string
functions and procedures (either built into the language or as part of a standard library).
Other than the five string operations provided above, the 80x86 doesn’t support any
string functions. Therefore, if you need a particular string function, you’ll have to write it
yourself. The following sections describe many of the more popular string functions and
how to implement them in assembly language.

15.3.1 Substr

The

Substr

 (substring) function copies a portion of one string to another. In a high level
language, this function usually takes the form:

DestStr := Substr(SrcStr,Index,Length);

where:

•

DestStr

 is the name of the string variable where you want to store the sub-
string,

•

SrcStr

 is the name of the source string (from which the substring is to be
taken),

•

Index

 is the starting character position within the string (1..

length

(

SrcStr

)),
and

• Length is the length of the substring you want to copy into

DestStr

.

The following examples show how

Substr

 works.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,11,7);
write(DestStr);

This prints ‘example’. The index value is eleven, so, the

Substr

 function will begin copying
data starting at the eleventh character in the string. The eleventh character is the ‘e’ in
‘example’. The length of the string is seven.

This invocation copies the seven characters ‘example’ to

DestStr

.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,1,10);
write(DestStr);

This prints ‘This is an’. Since the index is one, this occurrence of the

Substr

 function starts
copying 10 characters starting with the first character in the string.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,20,11);
write(DestStr);

This prints ‘of a string’. This call to

Substr

 extracts the last eleven characters in the string.

What happens if the index and length values are out of bounds? For example, what
happens if

Index

 is zero or is greater than the length of the string? What happens if

Index

 is
fine, but the sum of

Index

 and

Length

 is greater than the length of the source string? You
can handle these abnormal situations in one of three ways: (1)ignore the possibility of
error; (2)abort the program with a run-time error; (3)process some reasonable number of
characters in response to the request.

Chapter 15

Page 836

The first solution operates under the assumption that the caller never makes a mistake
computing the values for the parameters to the

Substr

 function. It blindly assumes that the
values passed to the

Substr

 function are correct and processes the string based on that
assumption. This can produce some bizarre effects. Consider the following examples,
which use length-prefixed strings:

SourceStr :=’1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ’;
DestStr := Substr(SourceStr,0,5);
Write(‘DestStr’);

prints ‘$1234’. The reason, of course, is that

SourceStr

 is a length-prefixed string. Therefore
the length, 36, appears at offset zero within the string. If

Substr

 uses the illegal index of
zero then the length of the string will be returned as the first character. In this particular
case, the length of the string, 36, just happened to correspond to the ASCII code for the ‘$’
character.

The situation is considerably worse if the value specified for

Index

 is negative or is
greater than the length of the string. In such a case, the

Substr

 function would be returning
a substring containing characters appearing before or after the source string. This is not a
reasonable result.

Despite the problems with ignoring the possibility of error in the

Substr

 function, there
is one big advantage to processing substrings in this manner: the resulting

Substr

 code is
more efficient if it doesn’t have to perform any run-time checking on the data. If you know
that the index and length values are always within an acceptable range, then there is no
need to do this checking within

Substr

 function. If you can guarantee that an error will not
occur, your programs will run (somewhat) faster by eliminating the run-time check.

Since most programs are rarely error-free, you’re taking a big gamble if you assume
that all calls to the

Substr

 routine are passing reasonable values. Therefore, some sort of
run-time check is often necessary to catch errors in your program. An error occurs under
the following conditions:

• The index parameter (

Index

) is less than one.
•

Index

 is greater than the length of the string.
• The

Substr

 length parameter (

Length

) is greater than the length of the
string.

• The sum of

Index

 and

Length

 is greater than the length of the string.

An alternative to ignoring any of these errors is to abort with an error message. This is
probably fine during the program development phase, but once your program is in the
hands of users it could be a real disaster. Your customers wouldn’t be very happy if they’d
spent all day entering data into a program and it aborted, causing them to lose the data
they’ve entered. An alternative to aborting when an error occurs is to have the

Substr

 func-
tion return an error condition. Then leave it up to the calling code to determine if an error
has occurred. This technique works well with the third alternative to handling errors: pro-
cessing the substring as best you can.

The third alternative, handling the error as best you can, is probably the best alterna-
tive. Handle the error conditions in the following manner:

• The index parameter (

Index

) is less than one. There are two ways to han-
dle this error condition. One way is to automatically set the

Index

 parame-
ter to one and return the substring beginning with the first character of
the source string. The other alternative is to return the

empty string

, a
string of length zero, as the substring. Variations on this theme are also
possible. You might return the substring beginning with the first charac-
ter if the index is zero and an empty string if the index is negative.
Another alternative is to use unsigned numbers. Then you’ve only got to
worry about the case where

Index

 is zero. A negative number, should the
calling code accidentally generate one, would look like a large positive
number.

Strings and Character Sets

Page 837

• The index is greater than the length of the string. If this is the case, then
the

Substr

 function should return an empty string. Intuitively, this is the
proper response in this situation.

• The

Substr

 length parameter (

Length

) is greater than the length of the
string. -or-

• The sum of

Index

 and

Length

 is greater than the length of the string. Points
three and four are the same problem, the length of the desired substring
extends beyond the end of the source string. In this event,

Substr

 should
return the substring consisting of those characters starting at

Index

through the end of the source string.

The following code for the

Substr

 function expects four parameters: the addresses of
the source and destination strings, the starting index, and the length of the desired sub-
string.

Substr

 expects the parameters in the following registers:

ds:si

- The address of the source string.

es:di

- The address of the destination string.

ch

- The starting index.

cl

- The length of the substring.

Substr returns the following values:

• The substring, at location

es:di

.
•

Substr

 clears the carry flag if there were no errors.

Substr

 sets the carry flag
if there was an error.

•

Substr

 preserves all the registers.

If an error occurs, then the calling code must examine the values in

si, di

and

cx

to
determine the exact cause of the error (if this is necessary). In the event of an error, the

Substr

 function returns the following substrings:

• If the

Index

 parameter (

ch

) is zero,

Substr

 uses one instead.
• The

Index

 and

Length

 parameters are both unsigned byte values, therefore
they are never negative.

• If the

Index

 parameter is greater than the length of the source string,

Substr

returns an empty string.
• If the sum of the

Index

 and

Length

 parameters is greater than the length of
the source string,

Substr

 returns only those characters from

Index

 through
the end of the source string. The following code realizes the substring
function.

; Substring function.
;
; HLL form:
;
;procedure substring(var Src:string;
; Index, Length:integer;
; var Dest:string);
;
; Src- Address of a source string.
; Index- Index into the source string.
; Length- Length of the substring to extract.
; Dest- Address of a destination string.
;
; Copies the source string from address [Src+index] of length
; Length to the destination string.
;
; If an error occurs, the carry flag is returned set, otherwise
; clear.
;
; Parameters are passed as follows:
;
; DS:SI- Source string address.
; ES:DI- Destination string address.

Chapter 15

Page 838

; CH- Index into source string.
; CL- Length of source string.
;
; Note: the strings pointed at by the SI and DI registers are
; length-prefixed strings. That is, the first byte of each
; string contains the length of that string.

Substring proc near
push ax
push cx
push di
push si
clc ;Assume no error.
pushf ;Save direction flag status.

; Check the validity of the parameters.

cmp ch, [si] ;Is index beyond the length of
ja ReturnEmpty ; the source string?
mov al, ch ;See if the sum of index and
dec al ; length is beyond the end of the
add al, cl ; string.
jc TooLong ;Error if > 255.
cmp al, [si] ;Beyond the length of the source?
jbe OkaySoFar

; If the substring isn’t completely contained within the source
; string, truncate it:

TooLong: popf
stc ;Return an error flag.
pushf
mov al, [si] ;Get maximum length.
sub al, ch ;Subtract index value.
inc al ;Adjust as appropriate.
mov cl, al ;Save as new length.

OkaySoFar: mov es:[di], cl ;Save destination string length.
inc di
mov al, ch ;Get index into source.
mov ch, 0 ;Zero extend length value into CX.
mov ah, 0 ;Zero extend index into AX.
add si, ax ;Compute address of substring.
cld

rep movsb ;Copy the substring.

popf
SubStrDone: pop si

pop di
pop cx
pop ax
ret

; Return an empty string here:

ReturnEmpty: mov byte ptr es:[di], 0
popf
stc
jmp SubStrDone

SubString endp

15.3.2 Index

The

Index

string function searches for the first occurrence of one string within another
and returns the offset to that occurrence. Consider the following HLL form:

Strings and Character Sets

Page 839

SourceStr := ‘Hello world’;
TestStr := ‘world’;
I := INDEX(SourceStr, TestStr);

The

Index

function scans through the source string looking for the first occurrence of
the test string. If found, it returns the index into the source string where the test string
begins. In the example above, the

Index

function would return seven since the substring
‘world’ starts at the seventh character position in the source string.

The only possible error occurs if

Index

cannot find the test string in the source string.
In such a situation, most implementations return zero. Our version will do likewise. The

Index

function which follows operates in the following fashion:

1) It compares the length of the test string to the length of the source string. If the test
string is longer,

Index

immediately returns zero since there is no way the test string will be
found in the source string in this situation.

2) The

index

function operates as follows:

i := 1;
while (i < (length(source)-length(test)) and

 test <> substr(source, i, length(test)) do
i := i+1;

When this loop terminates, if (i < length(source)-length(test)) then it contains the
index into source where test begins. Otherwise test is not a substring of source. Using the
previous example, this loop compares test to source in the following manner:

i=1
test: world No match
source: Hello world

i=2
test: world No match
source: Hello world

i=3
test: world No match
source: Hello world

i=4
test: world No match
source: Hello world

i=5
test: world No match
source: Hello world

i=6
test: world No match
source: Hello world

i=7
test: world Match
source: Hello world

There are (algorithmically) better ways to do this comparison

7

, however, the algo-
rithm above lends itself to the use of 80x86 string instructions and is very easy to under-
stand.

Index

’s code follows:

; INDEX- computes the offset of one string within another.
;
; On entry:
;

7. The interested reader should look up the Knuth-Morris-Pratt algorithm in “Data Structure Techniques” by Tho-
mas A. Standish. The Boyer-Moore algorithm is another fast string search routine, although somewhat more com-
plex.

Chapter 15

Page 840

; ES:DI- Points at the test string that INDEX will search for
; in the source string.
; DS:SI- Points at the source string which (presumably)
; contains the string INDEX is searching for.
;
; On exit:
;
; AX- Contains the offset into the source string where the
; test string was found.

INDEX proc near
push si
push di
push bx
push cx
pushf ;Save direction flag value.
cld

mov al, es:[di] ;Get the length of the test string.
cmp al, [si] ;See if it is longer than the length
ja NotThere ; of the source string.

; Compute the index of the last character we need to compare the
; test string against in the source string.

mov al, es:[di] ;Length of test string.
mov cl, al ;Save for later.
mov ch, 0
sub al, [si] ;Length of source string.
mov bl, al ;# of times to repeat loop.
inc di ;Skip over length byte.
xor ax, ax ;Init index to zero.

CmpLoop: inc ax ;Bump index by one.
inc si ;Move on to the next char in source.
push si ;Save string pointers and the
push di ; length of the test string.
push cx

rep cmpsb ;Compare the strings.
pop cx ;Restore string pointers
pop di ; and length.
pop si
je Foundindex ;If we found the substring.
dec bl
jnz CmpLoop ;Try next entry in source string.

; If we fall down here, the test string doesn’t appear inside the
; source string.

NotThere: xor ax, ax ;Return INDEX = 0

; If the substring was found in the loop above, remove the
; garbage left on the stack

FoundIndex: popf
pop cx
pop bx
pop di
pop si
ret

INDEX endp

15.3.3 Repeat

The

Repeat

string function expects three parameters– the address of a string, a length,
and a character. It constructs a string of the specified length containing “length” copies of

Strings and Character Sets

Page 841

the specified character. For example,

Repeat(STR,5,’*’)

 stores the string ‘*****’ into the

STR

string variable. This is a very easy string function to write, thanks to the

stosb

instruction:

; REPEAT- Constructs a string of length CX where each element
; is initialized to the character passed in AL.
;
; On entry:
;
; ES:DI- Points at the string to be constructed.
; CX- Contains the length of the string.
; AL- Contains the character with which each element of
; the string is to be initialized.

REPEAT proc near
push di
push ax
push cx
pushf ;Save direction flag value.
cld
mov es:[di], cl ;Save string length.
mov ch, 0 ;Just in case.
inc di ;Start string at next location.

rep stosb
popf
pop cx
pop ax
pop di
ret

REPEAT endp

15.3.4 Insert

The

Insert

string function inserts one string into another. It expects three parameters, a
source string, a destination string, and an index.

Insert

inserts the source string into the
destination string starting at the offset specified by the index parameter. HLLs usually call
the

Insert

procedure as follows:

source := ‘ there’;
dest := ‘Hello world’;
INSERT(source,dest,6);

The call to

Insert

above would change source to contain the string ‘Hello there world’.
It does this by inserting the string ‘ there’ before the sixth character in ‘Hello world’.

The insert procedure using the following algorithm:

Insert(Src,dest,index);

1) Move the characters from location

dest+index

 through the end of the destination
string

length

 (

Src

) bytes up in memory.

2) Copy the characters from the

Src

 string to location

 dest+index

.

3) Adjust the length of the destination string so that it is the sum of the destination
and source lengths. The following code implements this algorithm:

; INSERT- Inserts one string into another.
;
; On entry:
;
; DS:SI Points at the source string to be inserted
;
; ES:DI Points at the destination string into which the source
; string will be inserted.
;
; DX Contains the offset into the destination string where the

Chapter 15

Page 842

; source string is to be inserted.
;
;
; All registers are preserved.
;
; Error condition-
;
; If the length of the newly created string is greater than 255,
; the insert operation will not be performed and the carry flag
; will be returned set.
;
; If the index is greater than the length of the destination
; string,
; then the source string will be appended to the end of the destin- ; ation
string.

INSERT proc near
push si
push di
push dx
push cx
push bx
push ax
clc ;Assume no error.
pushf
mov dh, 0 ;Just to be safe.

; First, see if the new string will be too long.

mov ch, 0
mov ah, ch
mov bh, ch
mov al, es:[di] ;AX = length of dest string.
mov cl, [si] ;CX = length of source string.
mov bl, al ;BX = length of new string.
add bl, cl
jc TooLong ;Abort if too long.
mov es:[di], bl ;Update length.

; See if the index value is too large:

cmp dl, al
jbe IndexIsOK
mov dl, al

IndexIsOK:

; Now, make room for the string that’s about to be inserted.

push si ;Save for later.
push cx

mov si, di ;Point SI at the end of current
add si, ax ; destination string.
add di, bx ;Point DI at the end of new str.
std

rep movsb ;Open up space for new string.

; Now, copy the source string into the space opened up.

pop cx
pop si
add si, cx ;Point at end of source string.

rep movsb
jmp INSERTDone

TooLong: popf
stc
pushf

INSERTDone: popf

Strings and Character Sets

Page 843

pop ax
pop bx
pop cx
pop dx
pop di
pop si
ret

INSERT endp

15.3.5 Delete

The

Delete

string removes characters from a string. It expects three parameters – the
address of a string, an index into that string, and the number of characters to remove from
that string. A HLL call to

Delete

usually takes the form:

 Delete(Str,index,length);

For example,

Str := ‘Hello there world’;
Delete(str,7,6);

This call to

Delete

will leave str containing ‘Hello world’. The algorithm for the delete
operation is the following:

 1) Subtract the length parameter value from the length of the destination string and
update the length of the destination string with this new value.

2) Copy any characters following the deleted substring over the top of the deleted
substring.

There are a couple of errors that may occur when using the delete procedure. The
index value could be zero or larger than the size of the specified string. In this case, the

Delete

procedure shouldn’t do anything to the string. If the sum of the index and length
parameters is greater than the length of the string, then the

Delete

procedure should delete
all the characters to the end of the string. The following code implements the

Delete

proce-
dure:

; DELETE - removes some substring from a string.
;
; On entry:
;
; DS:SI Points at the source string.
; DX Index into the string of the start of the substring
; to delete.
; CX Length of the substring to be deleted.
;
; Error conditions-
;
; If DX is greater than the length of the string, then the
; operation is aborted.
;
; If DX+CX is greater than the length of the string, DELETE only
; deletes those characters from DX through the end of the string.

DELETE proc near
push es
push si
push di
push ax
push cx
push dx
pushf ;Save direction flag.
mov ax, ds ;Source and destination strings
mov es, ax ; are the same.
mov ah, 0

Chapter 15

Page 844

mov dh, ah ;Just to be safe.
mov ch, ah

; See if any error conditions exist.

mov al, [si] ;Get the string length
cmp dl, al ;Is the index too big?
ja TooBig
mov al, dl ;Now see if INDEX+LENGTH
add al, cl ;is too large
jc Truncate
cmp al, [si]
jbe LengthIsOK

; If the substring is too big, truncate it to fit.

Truncate: mov cl, [si] ;Compute maximum length
sub cl, dl
inc cl

; Compute the length of the new string.

LengthIsOK: mov al, [si]
sub al, cl
mov [si], al

; Okay, now delete the specified substring.

add si, dx ;Compute address of the substring
mov di, si ; to be deleted, and the address of
add di, cx ; the first character following it.
cld

rep movsb ;Delete the string.

TooBig: popf
pop dx
pop cx
pop ax
pop di
pop si
pop es
ret

DELETE endp

15.3.6 Concatenation

The concatenation operation takes two strings and appends one to the end of the
other. For example,

Concat(‘Hello ‘,’world’)

produces the string ‘Hello world’. Some high
level languages treat concatenation as a function call, others as a procedure call. Since in
assembly language everything is a procedure call anyway, we’ll adopt the procedural syn-
tax. Our

Concat

procedure will take the following form:

 Concat(source1,source2,dest);

 This procedure will copy

source1

 to

dest

, then it will concatenate

source2

 to the end of

dest

.

Concat

follows:

; Concat- Copies the string pointed at by SI to the string
; rointed at byDI and then concatenates the string;
; pointed at by BX to the destination string.
;
; On entry-
;
; DS:SI- Points at the first source string
; DS:BX- Points at the second source string
; ES:DI- Points at the destination string.

Strings and Character Sets

Page 845

;
; Error condition-
;
; The sum of the lengths of the two strings is greater than 255.
; In this event, the second string will be truncated so that the
; entire string is less than 256 characters in length.

CONCAT proc near
push si
push di
push cx
push ax
pushf

; Copy the first string to the destination string:

mov al, [si]
mov cl, al
mov ch, 0
mov ah, ch
add al, [bx] ;Compute the sum of the string’s
adc ah, 0 ; lengths.
cmp ax, 256
jb SetNewLength
mov ah, [si] ;Save original string length.
mov al, 255 ;Fix string length at 255.

SetNewLength: mov es:[di], al ;Save new string length.
inc di ;Skip over length bytes.
inc si

rep movsb ;Copy source1 to dest string.

; If the sum of the two strings is too long, the second string
; must be truncated.

mov cl, [bx] ;Get length of second string.
cmp ax, 256
jb LengthsAreOK
mov cl, ah ;Compute truncated length.
neg cl ;CL := 256-Length(Str1).

LengthsAreOK: lea si, 1[bx] ;Point at second string and
; ; skip the string length.

cld
rep movsb ;Perform the concatenation.

popf
pop ax
pop cx
pop di
pop si
ret

CONCAT endp

15.4 String Functions in the UCR Standard Library

The UCR Standard Library for 80x86 Assembly Language Programmers provides a
very rich set of string functions you may use. These routines, for the most part, are quite
similar to the string functions provided in the C Standard Library. As such, these functions
support zero terminated strings rather than the length prefixed strings supported by the
functions in the previous sections.

Because there are so many different UCR StdLib string routines and the sources for all
these routines are in the public domain (and are present on the companion CD-ROM for
this text), the following sections will not discuss the implementation of each routine.
Instead, the following sections will concentrate on how to

use

 these library routines.

Chapter 15

Page 846

The UCR library often provides several variants of the same routine. Generally a suf-
fix of “l”, “m”, or “ml” appears at the end of the name of these variant routines. The “l”
suffix stands for “literal constant”. Routines with the “l” (or “ml”) suffix require two
string operands. The first is generally pointed at by

es:di

and the second immediate fol-
lows the

call

 in the code stream.

Most StdLib string routines operate on the specified string (or one of the strings if the
function has two operands). The “m” (or “ml”) suffix instructs the string function to allo-
cate storage on the heap (using

malloc

, hence the “m” suffix) for the new string and store
the modified result there rather than changing the source string(s). These routines always
return a pointer to the newly created string in the

es:di

registers. In the event of a memory
allocation error (insufficient memory), these routines with the “m” or “ml” suffix return
the carry flag set. They return the carry clear if the operation was successful.

15.4.1 StrBDel, StrBDelm

These two routines delete leading spaces from a string.

StrBDel

 removes any leading
spaces from the string pointed at by

es:di

. It actually modifies the source string.

StrBDelm

makes a copy of the string on the heap with any leading spaces removed. If there are no
leading spaces, then the

StrBDel

 routines return the original string without modification.
Note that these routines only affect

leading

 spaces (those appearing at the beginning of the
string). They do not remove trailing spaces and spaces in the middle of the string. See

Strtrim

if you want to remove trailing spaces. Examples:

MyString byte “ Hello there, this is my string”,0
MyStrPtr dword MyString

 .
 .
 .

les di, MyStrPtr
strbdelm ;Creates a new string w/o leading spaces,
jc error ; pointer to string is in ES:DI on return.
puts ;Print the string pointed at by ES:DI.
free ;Deallocate storage allocated by strbdelm.

 .
 .
 .

; Note that “MyString” still contains the leading spaces.
; The following printf call will print the string along with
; those leading spaces. “strbdelm” above did not change MyString.

printf
byte “MyString = ‘%s’\n”,0
dword MyString

 .
 .
 .

les di, MyStrPtr
strbdel

; Now, we really have removed the leading spaces from “MyString”

printf
byte “MyString = ‘%s’\n”,0
dword MyString

 .
 .
 .

Output from this code fragment:

Hello there, this is my string
MyString = ‘ Hello there, this is my string’
MyString = ‘Hello there, this is my string’

Strings and Character Sets

Page 847

15.4.2 Strcat, Strcatl, Strcatm, Strcatml

The

strcat(xx)

 routines perform string concatenation. On entry,

es:di

points at the first
string, and for

strcat/strcatm

dx:si

points at the second string. For

strcatl

 and

strcatlm

 the sec-
ond string follows the call in the code stream. These routines create a new string by
appending the second string to the end of the first. In the case of

strcat

 and

strcatl

, the sec-
ond string is directly appended to the end of the first string (

es:di

) in memory. You must
make sure there is sufficient memory at the end of the first string to hold the appended
characters.

Strcatm

 and

strcatml

 create a new string on the heap (using

malloc

) holding the
concatenated result. Examples:

String1 byte “Hello “,0
byte 16 dup (0) ;Room for concatenation.

String2 byte “world”,0

; The following macro loads ES:DI with the address of the
; specified operand.

lesi macro operand
mov di, seg operand
mov es, di
mov di, offset operand
endm

; The following macro loads DX:SI with the address of the
; specified operand.

ldxi macro operand
mov dx, seg operand
mov si, offset operand
endm

 .
 .
 .

lesi String1
ldxi String2
strcatm ;Create “Hello world”
jc error ;If insufficient memory.
print
byte “strcatm: “,0
puts ;Print “Hello world”
putcr
free ;Deallocate string storage.

 .
 .
 .

lesi String1 ;Create the string
strcatml ; “Hello there”
jc error ;If insufficient memory.
byte “there”,0
print
byte “strcatml: “,0
puts ;Print “Hello there”
putcr
free

 .
 .
 .

lesi String1
ldxi String2
strcat ;Create “Hello world”
printf
byte “strcat: %s\n”,0

 .
 .
 .

; Note: since strcat above has actually modified String1,
; the following call to strcatl appends “there” to the end
; of the string “Hello world”.

lesi String1

Chapter 15

Page 848

strcatl
byte “there”,0
printf
byte “strcatl: %s\n”,0

 .
 .
 .

The code above produces the following output:

strcatm: Hello world
strcatml: Hello there
strcat: Hello world
strcatl: Hello world there

15.4.3 Strchr

Strchr searches for the first occurrence of a single character within a string. In opera-
tion it is quite similar to the

scasb

instruction. However, you do not have to specify an
explicit length when using this function as you would for

scasb

.

On entry,

es:di

points at the string you want to search through,

al

contains the value to
search for. On return, the carry flag denotes success (C=1 means the character was

not

present in the string, C=0 means the character was present). If the character was found in
the string,

cx

contains the index into the string where strchr located the character. Note
that the first character of the string is at index zero. So

strchr

 will return zero if al matches
the first character of the string. If the carry flag is set, then the value in

cx

has no meaning.
Example:

; Note that the following string has a period at location
; “HasPeriod+24”.

HasPeriod byte “This string has a period.”,0

 .
 .
 .

lesi HasPeriod ;See strcat for lesi definition.
mov al, “.” ;Search for a period.
strchr
jnc GotPeriod
print
byte “No period in string”,cr,lf,0
jmp Done

; If we found the period, output the offset into the string:

GotPeriod: print
byte “Found period at offset “,0
mov ax, cx
puti
putcr

Done:

This code fragment produces the output:

Found period at offset 24

15.4.4 Strcmp, Strcmpl, Stricmp, Stricmpl

These routines compare strings using a lexicographical ordering. On entry to

strcmp or
stricmp

,

es:di

points at the first string and

dx:si

points at the second string.

Strcmp

 compares
the first string to the second and returns the result of the comparison in the flags register.

Strcmpl

 operates in a similar fashion, except the second string follows the call in the code
stream. The

stricmp

 and

stricmpl

 routines differ from their counterparts in that they ignore
case during the comparison. Whereas

strcmp

 would return ‘not equal’ when comparing
“Strcmp” with “strcmp”, the

stricmp

 (and

stricmpl

) routines would return “equal” since the

Strings and Character Sets

Page 849

only differences are upper vs. lower case. The “i” in

stricmp

 and

stricmpl

 stands for “ignore
case.” Examples:

String1 byte “Hello world”, 0
String2 byte “hello world”, 0
String3 byte “Hello there”, 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
ldxi String2 ;See strcat for ldxi definition.
strcmp
jae IsGtrEql
printf
byte “%s is less than %s\n”,0
dword String1, String2
jmp Tryl

IsGtrEql: printf
byte “%s is greater or equal to %s\n”,0
dword String1, String2

Tryl: lesi String2
strcmpl
byte “hi world!”,0
jne NotEql
printf
byte “Hmmm..., %s is equal to ‘hi world!’\n”,0
dword String2
jmp Tryi

NotEql: printf
byte “%s is not equal to ‘hi world!’\n”,0
dword String2

Tryi: lesi String1
ldxi String2
stricmp
jne BadCmp
printf
byte “Ignoring case, %s equals %s\n”,0
dword String1, String2
jmp Tryil

BadCmp: printf
byte “Wow, stricmp doesn’t work! %s <> %s\n”,0
dword String1, String2

Tryil: lesi String2
stricmpl
byte “hELLO THERE”,0
jne BadCmp2
print
byte “Stricmpl worked”,cr,lf,0
jmp Done

BadCmp2: print
byte “Stricmp did not work”,cr,lf,0

Done:

15.4.5 Strcpy, Strcpyl, Strdup, Strdupl

The

strcpy

 and

strdup

 routines copy one string to another. There is no

strcpym

 or

strcpyml

 routines.

Strdup

 and

strdupl

 correspond to those operations. The UCR Standard
Library uses the names

strdup

 and

strdupl

 rather than

strcpym

 and

strcpyml

 so it will use the
same names as the C standard library.

Chapter 15

Page 850

Strcpy

 copies the string pointed at by

es:di

to the memory locations beginning at the
address in

dx:si

. There is no error checking; you must ensure that there is sufficient free
space at location

dx:si

before calling

strcpy

.

Strcpy

 returns with

es:di

pointing at the destina-
tion string (that is, the original

dx:si

value).

Strcpyl

 works in a similar fashion, except the
source string follows the call.

Strdup

 duplicates the string which

es:di

points at and returns a pointer to the new
string on the heap.

Strdupl

 works in a similar fashion, except the string follows the call. As
usual, the carry flag is set if there is a memory allocation error when using

strdup

 or

strdupl

.
Examples:

String1 byte “Copy this string”,0
String2 byte 32 dup (0)
String3 byte 32 dup (0)
StrVar1 dword 0
StrVar2 dword 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
ldxi String2 ;See strcat for ldxi definition.
strcpy

ldxi String3
strcpyl
byte “This string, too!”,0

lesi String1
strdup
jc error ;If insufficient mem.
mov word ptr StrVar1, di ;Save away ptr to
mov word ptr StrVar1+2, es ; string.

strdupl
jc error
byte “Also, this string”,0
mov word ptr StrVar2, di
mov word ptr StrVar2+2, es

printf
byte “strcpy: %s\n”
byte “strcpyl: %s\n”
byte “strdup: %^s\n”
byte “strdupl: %^s\n”,0
dword String2, String3, StrVar1, StrVar2

15.4.6 Strdel, Strdelm

Strdel

 and

strdelm

 delete characters from a string.

Strdel

 deletes the specified characters
within the string,

strdelm

 creates a new copy of the source string without the specified
characters. On entry,

es:di

points at the string to manipulate,

cx

contains the index into the
string where the deletion is to start, and

ax

contains the number of characters to delete
from the string. On return,

es:di

points at the new string (which is on the heap if you call
strdelm). For

strdelm

 only, if the carry flag is set on return, there was a memory allocation
error. As with all UCR StdLib string routines, the index values for the string are
zero-based. That is, zero is the index of the first character in the source string. Example:

String1 byte “Hello there, how are you?”,0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
mov cx, 5 ;Start at position five (“ there”)
mov ax, 6 ;Delete six characters.
strdelm ;Create a new string.
jc error ;If insufficient memory.
print
byte “New string:”,0
puts

Strings and Character Sets

Page 851

putcr

lesi String1
mov ax, 11
mov cx, 13
strdel
printf
byte “Modified string: %s\n”,0
dword String1

This code prints the following:

New string: Hello, how are you?
Modified string: Hello there

15.4.7 Strins, Strinsl, Strinsm, Strinsml

The

strins(xx)

functions insert one string within another. For all four routines

es:di

points at the source string into you want to insert another string.

Cx

contains the insertion
point (0..length of source string). For

strins

 and

strinsm

,

dx:si

points at the string you wish to
insert. For

strinsl

 and

strinsml

, the string to insert appears as a literal constant in the code
stream.

Strins

 and

strinsl

 insert the second string directly into the string pointed at by

es:di

.

Strinsm

 and

strinsml

 make a copy of the source string and insert the second string into that
copy. They return a pointer to the new string in

es:di

. If there is a memory allocation error
then

strinsm/strinsml

 sets the carry flag on return. For

strins

 and

strinsl

, the first string must
have sufficient storage allocated to hold the new string. Examples:

InsertInMe byte “Insert >< Here”,0
byte 16 dup (0)

InsertStr byte “insert this”,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

lesi InsertInMe ;See strcat for lesi definition.
ldxi InsertStr ;See strcat for ldxi definition.
mov cx, 8 ;Însert

before

 “<“
strinsm
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi InsertInMe
mov cx, 8
strinsml
byte “insert that”,0
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

lesi InsertInMe
mov cx, 8
strinsl
byte “ “,0 ;Two spaces

lesi InsertInMe
ldxi InsertStr
mov cx, 9 ;In front of first space from above.
strins

printf
byte “First string: %^s\n”
byte “Second string: %^s\n”
byte “Third string: %s\n”,0
dword StrPtr1, StrPtr2, InsertInMe

Note that the

strins

 and

strinsl

 operations above both insert strings into the same destina-
tion string. The output from the above code is

Chapter 15

Page 852

First string: Insert >insert this< here
Second string: Insert >insert that< here
Third string: Insert > insert this < here

15.4.8 Strlen

Strlen

 computes the length of the string pointed at by

es:di

. It returns the number of
characters up to, but not including, the zero terminating byte. It returns this length in the

cx

register. Example:

GetLen byte “This string is 33 characters long”,0

 .
 .
 .

lesi GetLen ;See strcat for lesi definition.
strlen
print
byte “The string is “,0
mov ax, cx ;Puti needs the length in AX!
puti
print
byte “ characters long”,cr,lf,0

15.4.9 Strlwr, Strlwrm, Strupr, Struprm

Strlwr

 and

Strlwrm

 convert any upper case characters in a string to lower case.

Strupr

and

Struprm

 convert any lower case characters in a string to upper case. These routines do
not affect any other characters present in the string. For all four routines,

es:di

points at the
source string to convert.

Strlwr

 and

strupr

 modify the characters directly in that string.

Strl-
wrm

 and

struprm

 make a copy of the string to the heap and then convert the characters in
the new string. They also return a pointer to this new string in

es:di

. As usual for UCR
StdLib routines,

strlwrm

 and

struprm

 return the carry flag set if there is a memory allocation
error. Examples:

String1 byte “This string has lower case.”,0
String2 byte “THIS STRING has Upper Case.”,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
struprm ;Convert lower case to upper case.
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi String2
strlwrm ;Convert upper case to lower case.
jc error
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

lesi String1
strlwr ;Convert to lower case, in place.

lesi String2
strupr ;Convert to upper case, in place.

printf
byte “struprm: %^s\n”
byte “strlwrm: %^s\n”
byte “strlwr: %s\n”
byte “strupr: %s\n”,0
dword StrPtr1, StrPtr2, String1, String2

Strings and Character Sets

Page 853

The above code fragment prints the following:

struprm: THIS STRING HAS LOWER CASE
strlwrm: this string has upper case
strlwr: this string has lower case
strupr: THIS STRING HAS UPPER CASE

15.4.10 Strrev, Strrevm

These two routines reverse the characters in a string. For example, if you pass

strrev

the string “ABCDEF” it will convert that string to “FEDCBA”. As you’d expect by now,
the

strrev

 routine reverse the string whose address you pass in

es:di

;

strrevm

 first makes a
copy of the string on the heap and reverses those characters leaving the original string
unchanged. Of course

strrevm

 will return the carry flag set if there was a memory alloca-
tion error. Example:

Palindrome byte “radar”,0
NotPaldrm byte “x + y - z”,0
StrPtr1 dword 0

 .
 .
 .

lesi Palindrome ;See strcat for lesi definition.
strrevm
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi NotPaldrm
strrev

printf
byte “First string: %^s\n”
byte “Second string: %s\n”,0
dword StrPtr1, NotPaldrm

The above code produces the following output:

First string: radar
Second string: z - y + x

15.4.11 Strset, Strsetm

Strset

 and

strsetm

 replicate a single character through a string. Their behavior, how-
ever, is not quite the same. In particular, while

strsetm

 is quite similar to the

repeat

 function
(see “Repeat” on page 840),

strset

 is not. Both routines expect a single character value in
the

al

register. They will replicate this character throughout some string.

Strsetm

 also
requires a count in the

cx

register. It creates a string on the heap consisting of

cx

 characters
and returns a pointer to this string in

es:di

(assuming no memory allocation error).

Strset

,
on the other hand, expects you to pass it the address of an existing string in

es:di

. It will
replace each character in that string with the character in

al

. Note that you do not specify a
length when using the

strset

 function, strset uses the length of the existing string. Exam-
ple:

String1 byte “Hello there”,0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
mov al, ‘*’
strset

mov cx, 8
mov al, ‘#’
strsetm

print

Chapter 15

Page 854

byte “String2: “,0
puts
printf
byte “\nString1: %s\n“,0
dword String1

The above code produces the output:

String2: ########
String1: ***********

15.4.12 Strspan, Strspanl, Strcspan, Strcspanl

These four routines search through a string for a character which is either in some
specified character set (

strspan

,

strspanl

) or not a member of some character set (

strcspan

,

strcspanl

). These routines appear in the UCR Standard Library only because of their
appearance in the C standard library. You should rarely use these routines. The UCR Stan-
dard Library includes some other routines for manipulating character sets and perform-
ing character matching operations. Nonetheless, these routines are somewhat useful on
occasion and are worth a mention here.

These routines expect you to pass them the addresses of two strings: a source string
and a character set string. They expect the address of the source string in

es:di

.

Strspan

 and

strcspan

 want the address of the character set string in

dx:si

; the character set string follows
the call with

strspanl

 and

strcspanl

. On return,

cx

contains an index into the string, defined
as follows:

strspan, strspanl:

Index of first character in source found in the character set.

strcspan, strcspanl:

Index of first character in source

not

 found in the character set.

If all the characters are in the set (or are not in the set) then

cx

contains the index into the
string of the zero terminating byte.

Example:

Source byte “ABCDEFG 0123456”,0
Set1 byte “ABCDEFGHIJKLMNOPQRSTUVWXYZ”,0
Set2 byte “0123456789”,0
Index1 word ?
Index2 word ?
Index3 word ?
Index4 word ?

 .
 .
 .

lesi Source ;See strcat for lesi definition.
ldxi Set1 ;See strcat for ldxi definition.
strspan ;Search for first ALPHA char.
mov Index1, cx ;Index of first alphabetic char.

lesi Source
lesi Set2
strspan ;Search for first numeric char.
mov Index2, cx

lesi Source
strcspanl
byte “ABCDEFGHIJKLMNOPQRSTUVWXYZ”,0
mov Index3, cx

lesi Set2
strcspnl
byte “0123456789”,0
mov Index4, cx

printf
byte “First alpha char in Source is at offset %d\n”
byte “First numeric char is at offset %d\n”

Strings and Character Sets

Page 855

byte “First non-alpha in Source is at offset %d\n”
byte “First non-numeric in Set2 is at offset %d\n”,0
dword Index1, Index2, Index3, Index4

This code outputs the following:

First alpha char in Source is at offset 0
First numeric char is at offset 8
First non-alpha in Source is at offset 7
First non-numeric in Set2 is at offset 10

15.4.13 Strstr, Strstrl

Strstr

 searches for the first occurrence of one string within another.

es:di

contains the
address of the string in which you want to search for a second string.

dx:si

contains the
address of the second string for the

strstr

 routine; for

strstrl

 the search second string imme-
diately follows the call in the code stream.

On return from

strstr

 or

strstrl

, the carry flag will be set if the second string is not
present in the source string. If the carry flag is clear, then the second string is present in the
source string and

cx

will contain the (zero-based) index where the second string was
found. Example:

SourceStr byte “Search for ‘this’ in this string”,0
SearchStr byte “this”,0

 .
 .
 .

lesi SourceStr ;See strcat for lesi definition.
ldxi SearchStr ;See strcat for ldxi definition.
strstr
jc NotPresent
print
byte “Found string at offset “,0
mov ax, cx ;Need offset in AX for puti
puti
putcr

lesi SourceStr
strstrl
byte “for”,0
jc NotPresent
print
byte “Found ‘for’ at offset “,0
mov ax, cx
puti
putcr

NotPresent:

The above code prints the following:

Found string at offset 12
Found ‘for’ at offset 7

15.4.14 Strtrim, Strtrimm

These two routines are quite similar to

strbdel

 and

strbdelm

. Rather than removing
leading spaces, however, they trim off any trailing spaces from a string.

Strtrim

 trims off
any trailing spaces directly on the specified string in memory.

Strtrimm

 first copies the
source string and then trims and space off the copy. Both routines expect you to pass the
address of the source string in

es:di

.

Strtrimm

 returns a pointer to the new string (if it could
allocate it) in

es:di

. It also returns the carry set or clear to denote error/no error. Example:

Chapter 15

Page 856

String1 byte “Spaces at the end “,0
String2 byte “ Spaces on both sides “,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

; TrimSpcs trims the spaces off both ends of a string.
; Note that it is a little more efficient to perform the
; strbdel first, then the strtrim. This routine creates
; the new string on the heap and returns a pointer to this
; string in ES:DI.

TrimSpcs proc
strbdelm
jc BadAlloc ;Just return if error.
strtrim
clc

BadAlloc: ret
TrimSpcs endp

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
strtrimm
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi String2
call TrimSpcs
jc error
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

printf
byte “First string: ‘%s’\n”
byte “Second string: ‘%s’\n”,0
dword StrPtr1, StrPtr2

This code fragment outputs the following:

First string: ‘Spaces at the end’
Second string: ‘Spaces on both sides’

15.4.15 Other String Routines in the UCR Standard Library

In addition to the “

strxxx

” routines listed in this section, there are many additional
string routines available in the UCR Standard Library. Routines to convert from numeric
types (integer, hex, real, etc.) to a string or vice versa, pattern matching and character set
routines, and many other conversion and string utilities. The routines described in this
chapter are those whose definitions appear in the “strings.a” header file and are specifi-
cally targeted towards generic string manipulation. For more details on the other string
routines, consult the UCR Standard Library reference section in the appendices.

15.5 The Character Set Routines in the UCR Standard Library

The UCR Standard Library provides an extensive collection of character set routines.
These routines let you create sets, clear sets (set them to the empty set), add and remove
one or more items, test for set membership, copy sets, compute the union, intersection, or
difference, and extract items from a set. Although intended to manipulate sets of charac-
ters, you can use the StdLib character set routines to manipulate any set with 256 or fewer
possible items.

Strings and Character Sets

Page 857

The first unusual thing to note about the StdLib’s sets is their storage format. A 256-bit
array would normally consumes 32 consecutive bytes. For performance reasons, the UCR
Standard Library’s set format packs eight separate sets into 272 bytes (256 bytes for the
eight sets plus 16 bytes overhead). To declare set variables in your data segment you
should use the

set

 macro. This macro takes the form:

set SetName1, SetName2, ..., SetName8

SetName1..SetName8

 represent the names of up to eight set variables. You may have fewer
than eight names in the operand field, but doing so will waste some bits in the set array.

The

CreateSets

 routine provides another mechanism for creating set variables. Unlike
the set macro, which you would use to create set variables in your data segment, the

CreateSets

 routine allocates storage for up to eight sets dynamically at run time. It returns
a pointer to the first set variable in

es:di

. The remaining seven sets follow at locations

es:di+1

,

es:di+2

, ...,

es:di+7

. A typical program that allocates set variables dynamically
might use the following code:

Set0 dword ?
Set1 dword ?
Set2 dword ?
Set3 dword ?
Set4 dword ?
Set5 dword ?
Set6 dword ?
Set7 dword ?

 .
 .
 .

CreateSets
mov word ptr Set0+2, es
mov word ptr Set1+2, es
mov word ptr Set2+2, es
mov word ptr Set3+2, es
mov word ptr Set4+2, es
mov word ptr Set5+2, es
mov word ptr Set6+2, es
mov word ptr Set7+2, es

mov word ptr Set0, di
inc di
mov word ptr Set1, di
inc di
mov word ptr Set2, di
inc di
mov word ptr Set3, di
inc di
mov word ptr Set4, di
inc di
mov word ptr Set5, di
inc di
mov word ptr Set6, di
inc di
mov word ptr Set7, di
inc di

This code segment creates eight different sets on the heap, all empty, and stores pointers to
them in the appropriate pointer variables.

The SHELL.ASM file provides a commented-out line of code in the data segment that
includes the file STDSETS.A. This include file provides the bit definitions for eight com-
monly used character sets. They are

alpha

 (upper and lower case alphabetics),

lower

 (lower
case alphabetics),

upper

 (upper case alphabetics),

digits

 (“0”..”9”),

xdigits

 (“0”..”9”,
“A”..”F”, and “a”..”f”),

alphanum

 (upper and lower case alphabetics plus the digits),

whitespace

 (space, tab, carriage return, and line feed), and

delimiters

 (whitespace plus com-
mas, semicolons, less than, greater than, and vertical bar). If you would like to use these
standard character sets in your program, you need to remove the semicolon from the
beginning of the

include

 statement in the SHELL.ASM file.

Chapter 15

Page 858

The UCR Standard Library provides 16 character set routines:

CreateSets

,

EmptySet

,

RangeSet

,

AddStr

,

AddStrl

,

RmvStr

,

RmvStrl

,

AddChar

,

RmvChar

,

Member

,

CopySet

,

SetUnion

,

SetIntersect

,

SetDifference

,

NextItem

, and

RmvItem

. All of these routines except

CreateSets

require a pointer to a character set variable in the

es:di

 registers. Specific routines may
require other parameters as well.

The

EmptySet

 routine clears all the bits in a set producing the empty set. This routine
requires the address of the set variable in the

es:di

. The following example clears the set
pointed at by

Set1

:

les di, Set1
EmptySet

RangeSet

 unions in a range of values into the set variable pointed at by

es:di

. The

al

register contains the lower bound of the range of items,

ah

 contains the upper bound.
Note that

al

 must be less than or equal to

ah

. The following example constructs the set of
all control characters (ASCII codes one through 31, the null character [ASCII code zero] is
not allowed in sets):

les di, CtrlCharSet ;Ptr to ctrl char set.
mov al, 1
mov ah, 31
RangeSet

AddStr

 and

AddStrl

 add all the characters in a zero terminated string to a character set.
For

AddStr

, the

dx:si

 register pair points at the zero terminated string. For

AddStrl

, the zero
terminated string follows the call to

AddStrl

 in the code stream. These routines union each
character of the specified string into the set. The following examples add the digits and
some special characters into the

FPDigits

 set:

Digits byte “0123456789”,0
set FPDigitsSet

FPDigits dword FPDigitsSet

 .
 .
 .

ldxi Digits ;Loads DX:SI with adrs of Digits.
les di, FPDigits
AddStr

 .
 .
 .

les di, FPDigits
AddStrL
byte “Ee.+-”,0

RmvStr

 and

RmvStrl

remove

 characters from a set. You supply the characters in a zero
terminated string. For

RmvStr

,

dx:si

 points at the string of characters to remove from the
string. For

RmvStrl

, the zero terminated string follows the call. The following example uses
RmvStrl to remove the special symbols from FPDigits above:

les di, FPDigits
RmvStrl
byte “Ee.+-”,0

The

AddChar

 and

RmvChar

 routines let you add or remove individual characters. As
usual,

es:di

 points at the set; the

al

 register contains the character you wish to add to the set
or remove from the set. The following example adds a space to the set FPDigits and
removes the “,” character (if present):

les di, FPDigits
mov al, ‘ ‘
AddChar

 .
 .
 .

les di, FPDigits
mov al, ‘,’
RmvChar

Strings and Character Sets

Page 859

The

Member

 function checks to see if a character is in a set. On entry,

es:di

 must point
at the set and

al

 must contain the character to check. On exit, the zero flag is set if the char-
acter is a member of the set, the zero flag will be clear if the character is not in the set. The
following example reads characters from the keyboard until the user presses a key that is
not a whitespace character:

SkipWS: get ;Read char from user into AL.
lesi WhiteSpace ;Address of WS set into es:di.
member
je SkipWS

The

CopySet

,

SetUnion

,

SetIntersect

, and

SetDifference

 routines all operate on two sets of
characters. The

es:di

 register points at the destination character set, the

dx:si

 register pair
points at a source character set.

CopySet

 copies the bits from the source set to the destina-
tion set, replacing the original bits in the destination set.

SetUnion

 computes the union of
the two sets and stores the result into the destination set.

SetIntersect

 computes the set
intersection and stores the result into the destination set. Finally, the

SetDifference

 routine
computes DestSet := DestSet - SrcSet.

The

NextItem

 and

RmvItem

 routines let you extract elements from a set. NextItem
returns in

al

 the ASCII code of the first character it finds in a set.

RmvItem

 does the same
thing except it also removes the character from the set. These routines return zero in

al

 if
the set is empty (StdLib sets cannot contain the NULL character). You can use the

RmvItem

routine to build a rudimentary iterator for a character set.

The UCR Standard Library’s character set routines are very powerful. With them, you
can easily manipulate character string data, especially when searching for different pat-
terns within a string. We will consider this routines again when we study pattern match-
ing later in this text (see “Pattern Matching” on page 883).

15.6 Using the String Instructions on Other Data Types

The string instructions work with other data types besides character strings. You can
use the string instructions to copy whole arrays from one variable to another, to initialize
large data structures to a single value, or to compare entire data structures for equality or
inequality. Anytime you’re dealing with data structures containing several bytes, you may
be able to use the string instructions.

15.6.1 Multi-precision Integer Strings

The

cmps

instruction is useful for comparing (very) large integer values. Unlike char-
acter strings, we cannot compare integers with

cmps

from the L.O. byte through the H.O.
byte. Instead, we must compare them from the H.O. byte down to the L.O. byte. The fol-
lowing code compares two 12-byte integers:

lea di, integer1+10
lea si, integer2+10
mov cx, 6
std

repe cmpsw

After the execution of the

cmpsw

instruction, the flags will contain the result of the com-
parison.

You can easily assign one long integer string to another using the

movs

instruction.
Nothing tricky here, just load up the

si, di,

and

cx

registers and have at it. You must do
other operations, including arithmetic and logical operations, using the extended preci-
sion methods described in the chapter on arithmetic operations.

Chapter 15

Page 860

15.6.2 Dealing with Whole Arrays and Records

The only operations that apply, in general, to all array and record structures are
assignment and comparison (for equality/inequality only). You can use the

movs

and

cmps

instructions for these operations.

Operations such as scalar addition, transposition, etc., may be easily synthesized
using the

lods

and

stos

instructions. The following code shows how you can easily add the
value 20 to each element of the integer array A:

lea si, A
mov di, si
mov cx, SizeOfA
cld

AddLoop: lodsw
add ax, 20
stosw
loop AddLoop

You can implement other operations in a similar fashion.

15.7 Sample Programs

In this section there are three sample programs. The first searches through a file for a
particular string and displays the line numbers of any lines containing that string. This
program demonstrates the use of the

strstr

 function (among other things). The second pro-
gram is a demo program that uses several of the string functions available in the UCR
Standard Library’s string package. The third program demonstrates how to use the 80x86

cmps

 instruction to compare the data in two files. These programs (find.asm, strdemo.asm,
and fcmp.asm) are available on the companion CD-ROM.

15.7.1 Find.asm

; Find.asm
;
; This program opens a file specified on the command line and searches for
; a string (also specified on the command line).
;
; Program Usage:
;
; find "string" filename

.xlist
include stdlib.a
includelib stdlib.lib
.list

wp textequ <word ptr>

dseg segment para public 'data'

StrPtr dword ?
FileName dword ?
LineCnt dword ?

FVar filevar {}

InputLine byte 1024 dup (?)
dseg ends

Strings and Character Sets

Page 861

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Readln- This procedure reads a line of text from the input
; file and buffers it up in the "InputLine" array.

ReadLn proc
push es
push ax
push di
push bx

lesi FVar ;Read from our file.
mov bx, 0 ;Index into InputLine.

ReadLp: fgetc ;Get next char from file.
jc EndRead ;Quit on EOF

cmp al, cr ;Ignore carriage returns.
je ReadLp
cmp al, lf ;End of line on line feed.
je EndRead

mov InputLine[bx], al
inc bx
jmp ReadLp

; If we hit the end of a line or the end of the file,
; zero-terminate the string.

EndRead: mov InputLine[bx], 0
pop bx
pop di
pop ax
pop es
ret

ReadLn endp

; The following main program extracts the search string and the
; filename from the command line, opens the file, and then searches
; for the string in that file.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

argc
cmp cx, 2
je GoodArgs
print
byte "Usage: find 'string' filename",cr,lf,0
jmp Quit

GoodArgs: mov ax, 1 ;Get the string to search for
argv ; off the command line.
mov wp StrPtr, di
mov wp StrPtr+2, es

mov ax, 2 ;Get the filename from the
argv ; command line.
mov wp Filename, di
mov wp Filename+2, es

; Open the input file for reading

mov ax, 0 ;Open for read.
mov si, wp FileName

Chapter 15

Page 862

mov dx, wp FileName+2
lesi Fvar
fopen
jc BadOpen

; Okay, start searching for the string in the file.

mov wp LineCnt, 0
mov wp LineCnt+2, 0

SearchLp: call ReadLn
jc AtEOF

; Bump the line number up by one. Note that this is 8086 code
; so we have to use extended precision arithmetic to do a 32-bit
; add. LineCnt is a 32-bit variable because some files have more
; that 65,536 lines.

add wp LineCnt, 1
adc wp LineCnt+2, 0

; Search for the user-specified string on the current line.

lesi InputLine
mov dx, wp StrPtr+2
mov si, wp StrPtr
strstr
jc SearchLp;Jump if not found.

; Print an appropriate message if we found the string.

printf
byte "Found '%^s' at line %ld\n",0
dword StrPtr, LineCnt
jmp SearchLp

; Close the file when we're done.

AtEOF: lesi FVar
fclose
jmp Quit

BadOpen: printf
byte "Error attempting to open %^s\n",cr,lf,0
dword FileName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.7.2 StrDemo.asm

This short demo program just shows off how to use several of the string routines
found in the UCR Standard Library strings package.

; StrDemo.asm- Demonstration of some of the various UCR Standard Library
; string routines.

Strings and Character Sets

Page 863

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

MemAvail word ?
String byte 256 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax

MemInit
mov MemAvail, cx
printf
byte "There are %x paragraphs of memory available."
byte cr,lf,lf,0
dword MemAvail

; Demonstration of StrTrim:

print
byte "Testing strtrim on 'Hello there '",cr,lf,0
strdupl

HelloThere1 byte "Hello there ",0
strtrim
mov al, "'"
putc
puts
putc
putcr
free

;Demonstration of StrTrimm:

print
byte "Testing strtrimm on 'Hello there '",cr,lf,0
lesi HelloThere1
strtrimm
mov al, "'"
putc
puts
putc
putcr
free

; Demonstration of StrBdel

print
byte "Testing strbdel on ' Hello there '",cr,lf,0
strdupl

HelloThere3 byte " Hello there ",0
strbdel
mov al, "'"
putc
puts
putc
putcr
free

Chapter 15

Page 864

; Demonstration of StrBdelm

print
byte "Testing strbdelm on ' Hello there '",cr,lf,0
lesi HelloThere3
strbdelm
mov al, "'"
putc
puts
putc
putcr
free

; Demonstrate StrCpyl:

ldxi string
strcpyl
byte "Copy this string to the 'String' variable",0

printf
byte "STRING = '%s'",cr,lf,0
dword String

; Demonstrate StrCatl:

lesi String
strcatl
byte ". Put at end of 'String'",0

printf
byte "STRING = ",'"%s"',cr,lf,0
dword String

; Demonstrate StrChr:

lesi String
mov al, "'"
strchr

print
byte "StrChr: First occurrence of ", '"', "'"
byte '" found at position ',0
mov ax, cx
puti
putcr

; Demonstrate StrStrl:

lesi String
strstrl
byte "String",0

print
byte 'StrStr: First occurrence of "String" found at ‘
byte ‘position ',0

mov ax, cx
puti
putcr

; Demo of StrSet

lesi String
mov al, '*'
strset

printf
byte "Strset: '%s'",cr,lf,0
dword String

Strings and Character Sets

Page 865

; Demo of strlen

lesi String
strlen

print
byte "String length = ",0
puti
putcr

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk db 256 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.7.3 Fcmp.asm

This is a file comparison program. It demonstrates the use of the 80x86 cmps instruc-
tion (as well as blocked I/O under DOS).

; FCMP.ASM- A file comparison program that demonstrates the use
; of the 80x86 string instructions.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

Name1 dword ? ;Ptr to filename #1
Name2 dword ? ;Ptr to filename #2
Handle1 word ? ;File handle for file #1
Handle2 word ? ;File handle for file #2
LineCnt word 0 ;# of lines in the file.

Buffer1 byte 256 dup (0) ;Block of data from file 1
Buffer2 byte 256 dup (0) ;Block of data from file 2

dseg ends

wp equ <word ptr>

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Error- Prints a DOS error message depending upon the error type.

Error proc near
cmp ax, 2
jne NotFNF
print
byte "File not found",0
jmp ErrorDone

NotFNF: cmp ax, 4
jne NotTMF

Chapter 15

Page 866

print
byte "Too many open files",0
jmp ErrorDone

NotTMF: cmp ax, 5
jne NotAD
print
byte "Access denied",0
jmp ErrorDone

NotAD: cmp ax, 12
jne NotIA
print
byte "Invalid access",0
jmp ErrorDone

NotIA:
ErrorDone: putcr

ret
Error endp

; Okay, here's the main program. It opens two files, compares them, and
; complains if they're different.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax
meminit

; File comparison routine. First, open the two source files.

argc
cmp cx, 2 ;Do we have two filenames?
je GotTwoNames
print
byte "Usage: fcmp file1 file2",cr,lf,0
jmp Quit

GotTwoNames: mov ax, 1 ;Get first file name
argv
mov wp Name1, di
mov wp Name1+2, es

; Open the files by calling DOS.

mov ax, 3d00h ;Open for reading
lds dx, Name1
int 21h
jnc GoodOpen1
printf
byte "Error opening %^s:",0
dword Name1
call Error
jmp Quit

GoodOpen1: mov dx, dseg
mov ds, dx
mov Handle1, ax

mov ax, 2 ;Get second file name
argv
mov wp Name2, di
mov wp Name2+2, es

mov ax, 3d00h ;Open for reading
lds dx, Name2
int 21h
jnc GoodOpen2
printf

Strings and Character Sets

Page 867

byte "Error opening %^s:",0
dword Name2
call Error
jmp Quit

GoodOpen2: mov dx, dseg
mov ds, dx
mov Handle2, ax

; Read the data from the files using blocked I/O
; and compare it.

mov LineCnt, 1
CmpLoop: mov bx, Handle1 ;Read 256 bytes from

mov cx, 256 ; the first file into
lea dx, Buffer1 ; Buffer1.
mov ah, 3fh
int 21h
jc FileError
cmp ax, 256 ;Leave if at EOF.
jne EndOfFile

mov bx, Handle2 ;Read 256 bytes from
mov cx, 256 ; the second file into
lea dx, Buffer2 ; Buffer2
mov ah, 3fh
int 21h
jc FileError
cmp ax, 256 ;If we didn't read 256 bytes,
jne BadLen ; the files are different.

; Okay, we've just read 256 bytes from each file, compare the buffers
; to see if the data is the same in both files.

mov ax, dseg
mov ds, ax
mov es, ax
mov cx, 256
lea di, Buffer1
lea si, Buffer2
cld

repe cmpsb
jne BadCmp
jmp CmpLoop

FileError: print
byte "Error reading files: ",0
call Error
jmp Quit

BadLen: print
byte "File lengths were different",cr,lf,0

BadCmp: print
byte 7,"Files were not equal",cr,lf,0

mov ax, 4c01h ;Exit with error.
int 21h

; If we reach the end of the first file, compare any remaining bytes
; in that first file against the remaining bytes in the second file.

EndOfFile: push ax ;Save final length.
mov bx, Handle2
mov cx, 256
lea dx, Buffer2
mov ah, 3fh

Chapter 15

Page 868

int 21h
jc BadCmp

pop bx ;Retrieve file1's length.
cmp ax, bx ;See if file2 matches it.
jne BadLen

mov cx, ax ;Compare the remaining
mov ax, dseg ; bytes down here.
mov ds, ax
mov es, ax
lea di, Buffer2
lea si, Buffer1

repe cmpsb
jne BadCmp

Quit: mov ax, 4c00h ;Set Exit code to okay.
int 21h

Main endp
cseg ends

; Allocate a reasonable amount of space for the stack (2k).

sseg segment para stack 'stack'
stk byte 256 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

15.8 Laboratory Exercises

These exercises use the Ex15_1.asm, Ex15_2.asm, Ex15_3.asm, and Ex15_4.asm files
found on the companion CD-ROM. In this set of laboratory exercises you will be measur-
ing the performance of the 80x86

movs

 instructions and the (hopefully) minor perfor-
mance differences between length prefixed string operations and zero terminated string
operations.

15.8.1 MOVS Performance Exercise #1

The

movsb, movsw,

and

movsd

 instructions operate at different speeds, even when
moving around the same number of bytes. In general, the

movsw

 instruction is twice as
fast as

movsb

 when moving the same number of bytes. Likewise,

movsd

 is about twice as
fast as

movsw

 (and about four times as fast as

movsb

) when moving the same number of
bytes. Ex15_1.asm is a short program that demonstrates this fact. This program consists of
three sections that copy 2048 bytes from one buffer to another 100,000 times. The three sec-
tions repeat this operation using the

movsb, movsw,

and

movsd

 instructions. Run this pro-
gram and time each phase.

For your lab report:

 present the timings on your machine. Be
sure to list processor type and clock frequency in your lab report. Discuss why the timings
are different between the three phases of this program. Explain the difficulty with using
the

movsd

 (versus

movsw

 or

movsb

) instruction in any program on an 80386 or later proces-
sor. Why is it not a general replacement for

movsb

, for example? How can you get around
this problem?

; EX15_1.asm
;
; This program demonstrates the proper use of the 80x86 string instructions.

.386
option segment:use16

Strings and Character Sets

Page 869

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 2048 dup (0)
Buffer2 byte 2048 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Demo of the movsb, movsw, and movsd instructions

print
byte "The following code moves a block of 2,048 bytes "
byte "around 100,000 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the movsw instruction; "
byte "the third phase does",cr,lf
byte "this using the movsd instruction.",cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc
putcr

mov edx, 100000

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 100000

movswLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 1024

rep movsw
dec edx
jnz movswLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc

Chapter 15

Page 870

putcr

mov edx, 100000

movsdLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 512

rep movsd
dec edx
jnz movsdLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.8.2 MOVS Performance Exercise #2

In this exercise you will once again time the computer moving around blocks of 2,048
bytes. Like Ex15_1.asm in the previous exercise, Ex15_2.asm contains three phases; the
first phase moves data using the

movsb

 instruction; the second phase moves the data
around using the

lodsb

 and

stosb

 instructions; the third phase uses a loop with simple

mov

instructions. Run this program and time the three phases.

For your lab report:

 include the
timings and a description of your machine (CPU, clock speed, etc.). Discuss the timings
and explain the results (consult Appendix D as necessary).

; EX15_2.asm
;
; This program compares the performance of the MOVS instruction against
; a manual block move operation. It also compares MOVS against a LODS/STOS
; loop.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 2048 dup (0)
Buffer2 byte 2048 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

Strings and Character Sets

Page 871

; MOVSB version done here:

print
byte "The following code moves a block of 2,048 bytes "
byte "around 100,000 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the lods/stos instructions; "
byte "the third phase does",cr,lf
byte "this using a loop with MOV “
byte “instructions.",cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc
putcr

mov edx, 100000

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 100000

LodsStosLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

lodsstoslp2: lodsb
stosb
loop LodsStosLp2
dec edx
jnz LodsStosLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc
putcr

mov edx, 100000

MovLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

MovLp2: mov al, ds:[si]
mov es:[di], al
inc si
inc di
loop MovLp2
dec edx
jnz MovLp

Chapter 15

Page 872

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.8.3 Memory Performance Exercise

In the previous two exercises, the programs accessed a maximum of 4K of data. Since
most modern on-chip CPU caches are at least this big, most of the activity took place
directly on the CPU (which is very fast). The following exercise is a slight modification
that moves the array data in such a way as to destroy cache performance. Run this pro-
gram and time the results.

For your lab report:

 based on what you learned about the
80x86’s cache mechanism in Chapter Three, explain the performance differences.

; EX15_3.asm
;
; This program compares the performance of the MOVS instruction against
; a manual block move operation. It also compares MOVS against a LODS/STOS
; loop. This version does so in such a way as to wipe out the on-chip CPU
; cache.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 16384 dup (0)
Buffer2 byte 16384 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; MOVSB version done here:

print
byte "The following code moves a block of 16,384 bytes "
byte "around 12,500 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the lods/stos instructions; "
byte "the third phase does",cr,lf
byte "this using a loop with MOV instructions."
byte cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc

Strings and Character Sets

Page 873

putcr

mov edx, 12500

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 12500

LodsStosLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

lodsstoslp2: lodsb
stosb
loop LodsStosLp2
dec edx
jnz LodsStosLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc
putcr

mov edx, 12500

MovLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

MovLp2: mov al, ds:[si]
mov es:[di], al
inc si
inc di
loop MovLp2
dec edx
jnz MovLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 15

Page 874

15.8.4 The Performance of Length-Prefixed vs. Zero-Terminated Strings

The following program (Ex15_4.asm on the companion CD-ROM) executes two mil-
lion string operations. During the first phase of execution, this code executes a sequence of
length-prefixed string operations 1,000,000 times. During the second phase it does a com-
parable set of operation on zero terminated strings. Measure the execution time of each
phase.

For your lab report:

 report the differences in execution times and comment on the
relative efficiency of length prefixed vs. zero terminated strings. Note that the relative per-
formances of these sequences will vary depending upon the processor you use. Based on
what you learned in Chapter Three and the cycle timings in Appendix D, explain some
possible reasons for relative performance differences between these sequences among dif-
ferent processors.

; EX15_4.asm
;
; This program compares the performance of length prefixed strings versus
; zero terminated strings using some simple examples.
;
; Note: these routines all assume that the strings are in the data segment
; and both ds and es already point into the data segment.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

LStr1 byte 17,"This is a string."
LResult byte 256 dup (?)

ZStr1 byte "This is a string",0
ZResult byte 256 dup (?)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; LStrCpy: Copies a length prefixed string pointed at by SI to
; the length prefixed string pointed at by DI.

LStrCpy proc
push si
push di
push cx

cld

mov cl, [si] ;Get length of string.
mov ch, 0
inc cx ;Include length byte.

rep movsb

pop cx
pop di
pop si
ret

LStrCpy endp

; LStrCat- Concatenates the string pointed at by SI to the end
; of the string pointed at by DI using length
; prefixed strings.

LStrCat proc

Strings and Character Sets

Page 875

push si
push di
push cx

cld

; Compute the final length of the concatenated string

mov cl, [di] ;Get orig length.
mov ch, [si] ;Get 2nd Length.
add [di], ch ;Compute new length.

; Move SI to the first byte beyond the end of the first string.

mov ch, 0 ;Zero extend orig len.
add di, cx ;Skip past str.
inc di ;Skip past length byte.

; Concatenate the second string (SI) to the end of the first string (DI)

rep movsb ;Copy 2nd to end of orig.

pop cx
pop di
pop si
ret

LStrCat endp

; LStrCmp- String comparison using two length prefixed strings.
; SI points at the first string, DI points at the
; string to compare it against.

LStrCmp proc
push si
push di
push cx

cld

; When comparing the strings, we need to compare the strings
; up to the length of the shorter string. The following code
; computes the minimum length of the two strings.

mov cl, [si] ;Get the minimum of the two lengths
mov ch, [di]
cmp cl, ch
jb HasMin
mov cl, ch

HasMin: mov ch, 0

repe cmpsb ;Compare the two strings.
je CmpLen
pop cx
pop di
pop si
ret

; If the strings are equal through the length of the shorter string,
; we need to compare their lengths

CmpLen: pop cx
pop di
pop si

mov cl, [si]
cmp cl, [di]
ret

LStrCmp endp

; ZStrCpy- Copies the zero terminated string pointed at by SI

Chapter 15

Page 876

; to the zero terminated string pointed at by DI.

ZStrCpy proc
push si
push di
push ax

ZSCLp: mov al, [si]
inc si
mov [di], al
inc di
cmp al, 0
jne ZSCLp

pop ax
pop di
pop si
ret

ZStrCpy endp

; ZStrCat- Concatenates the string pointed at by SI to the end
; of the string pointed at by DI using zero terminated
; strings.

ZStrCat proc
push si
push di
push cx
push ax

cld

; Find the end of the destination string:

mov cx, 0FFFFh
mov al, 0 ;Look for zero byte.

repne scasb

; Copy the source string to the end of the destination string:

ZcatLp: mov al, [si]
inc si
mov [di], al
inc di
cmp al, 0
jne ZCatLp

pop ax
pop cx
pop di
pop si
ret

ZStrCat endp

; ZStrCmp- Compares two zero terminated strings.
; This is actually easier than the length
; prefixed comparison.

ZStrCmp proc
push cx
push si
push di

; Compare the two strings until they are not equal
; or until we encounter a zero byte. They are equal
; if we encounter a zero byte after comparing the
; two characters from the strings.

ZCmpLp: mov al, [si]

Strings and Character Sets

Page 877

inc si
cmp al, [di]
jne ZCmpDone
inc di
cmp al, 0
jne ZCmpLp

ZCmpDone: pop di
pop si
pop cx
ret

ZStrCmp endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "The following code does 1,000,000 string "
byte "operations using",cr,lf
byte "length prefixed strings. Measure the amount "
byte "of time this code",cr,lf
byte "takes to run.",cr,lf,lf
byte "Press any key to begin:",0

getc
putcr

mov edx, 1000000
LStrCpyLp: lea si, LStr1

lea di, LResult
call LStrCpy
call LStrCat
call LStrCat
call LStrCat
call LStrCpy
call LStrCmp
call LStrCat
call LStrCmp

dec edx
jne LStrCpyLp

print
byte "The following code does 1,000,000 string "
byte "operations using",cr,lf
byte "zero terminated strings. Measure the amount "
byte "of time this code",cr,lf
byte "takes to run.",cr,lf,lf
byte "Press any key to begin:",0

getc
putcr

mov edx, 1000000
ZStrCpyLp: lea si, ZStr1

lea di, ZResult
call ZStrCpy
call ZStrCat
call ZStrCat
call ZStrCat
call ZStrCpy
call ZStrCmp
call ZStrCat
call ZStrCmp

dec edx

Chapter 15

Page 878

jne ZStrCpyLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.9 Programming Projects

1) Write a

SubStr

 function that extracts a substring from a zero terminated string. Pass a
pointer to the string in

ds:si

, a pointer to the destination string in

 es:di

, the starting position
in the string in

ax

, and the length of the substring in

cx

. Follow all the rules given in sec-
tion 15.3.1 concerning degenerate conditions.

2) Write a word

iterator

 (see “Iterators” on page 663) to which you pass a string (by reference,
on the stack). Each each iteration of the corresponding foreach loop should extract a word
from this string, malloc sufficient storage for this string on the heap, copy that word (sub-
string) to the malloc’d location, and return a pointer to the word. Write a main program
that calls the iterator with various strings to test it.

3) Modify the

find.asm

 program (see “Find.asm” on page 860) so that it searches for the
desired string in several files using ambiguous filenames (i.e., wildcard characters). See
“Find First File” on page 729 for details about processing filenames that contain wildcard
characters. You should write a loop that processes all matching filenames and executes the
find.asm core code on each filename that matches the ambiguous filename a user supplies.

4) Write a

strncpy

 routine that behaves like

strcpy

 except it copies a maximum of n characters
(including the zero terminating byte). Pass the source string’s address in

es:di

, the destina-
tion string’s address in

dx:si

, and the maximum length in

cx

.

5) The

movsb

 instruction may not work properly if the source and destination blocks overlap
(see “The MOVS Instruction” on page 822). Write a procedure “

bcopy

” to which you pass
the address of a source block, the address of a destination block, and a length, that will
properly copy the data even if the source and destination blocks overlap. Do this by
checking to see if the blocks overlap and adjusting the source pointer, destination pointer,
and direction flag if necessary.

6) As you discovered in the lab experiments, the

movsd

 instruction can move a block of data
much faster than

movsb

 or

movsw

 can move that same block. Unfortunately, it can only
move a block that contains an even multiple of four bytes. Write a “

fastcopy

” routine that
uses the

movsd

 instruction to copy all but the last one to three bytes of a source block to the
destination block and then manually copies the remaining bytes between the blocks. Write
a main program with several boundary test cases to verify correct operation. Compare the
performance of your fastcopy procedure against the use of the

movsb

 instruction.

15.10 Summary

The 80sx86 provides a powerful set of string instructions. However, these instructions
are very primitive, useful mainly for manipulating blocks of bytes. They do not corre-
spond to the string instructions one expects to find in a high level language. You can, how-
ever, use the 80x86 string instructions to synthesize those functions normally associated
with HLLs. This chapter explains how to construct many of the more popular string func-

Strings and Character Sets

Page 879

tions. Of course, it’s foolish to constantly reinvent the wheel, so this chapter also describes
many of the string functions available in the UCR Standard Library.

The 80x86 string instructions provide the basis for many of the string operations
appearing in this chapter. Therefore, this chapter begins with a review and in-depth dis-
cussion of the 80x86 string instructions: the repeat prefixes, and the direction flag. This
chapter discusses the operation of each of the string instructions and describes how you
can use each of them to perform string related tasks. To see how the 80x86 string instruc-
tions operate, check out the following sections:

• “The 80x86 String Instructions” on page 819
• “How the String Instructions Operate” on page 819
• “The REP/REPE/REPZ and REPNZ/REPNE Prefixes” on page 820
• “The Direction Flag” on page 821
• “The MOVS Instruction” on page 822
• “The CMPS Instruction” on page 826
• “The SCAS Instruction” on page 828
• “The STOS Instruction” on page 828
• “The LODS Instruction” on page 829
• “Building Complex String Functions from LODS and STOS” on page 830
• “Prefixes and the String Instructions” on page 830

Although Intel calls them “string instructions” they do not actually work on the
abstract data type we normally think of as a character string. The string instructions sim-
ply manipulate arrays of bytes, words, or double words. It takes a little work to get these
instructions to deal with true character strings. Unfortunately, there isn’t a single defini-
tion of a character string which, no doubt, is the reason there aren’t any instructions spe-
cifically for character strings in the 80x86 instruction set. Two of the more popular
character string types include length prefixed strings and zero terminated strings which
Pascal and C use, respectively. Details on string formats appear in the following sections:

• “Character Strings” on page 831
• “Types of Strings” on page 831

Once you decide on a specific data type for you character strings, the next step is to
implement various functions to process those strings. This chapter provides examples of
several different string functions designed specifically for length prefixed strings. To learn
about these functions and see the code that implements them, look at the following sec-
tions:

• “String Assignment” on page 832
• “String Comparison” on page 834
• “Character String Functions” on page 835
• “Substr” on page 835
• “Index” on page 838
• “Repeat” on page 840
• “Insert” on page 841
• “Delete” on page 843
• “Concatenation” on page 844

The UCR Standard Library provides a very rich set of string functions specifically
designed for zero germinated strings. For a description of many of these routines, read the
following sections:

• “String Functions in the UCR Standard Library” on page 845
• “StrBDel, StrBDelm” on page 846
• “Strcat, Strcatl, Strcatm, Strcatml” on page 847
• “Strchr” on page 848
• “Strcmp, Strcmpl, Stricmp, Stricmpl” on page 848
• “Strcpy, Strcpyl, Strdup, Strdupl” on page 849

Chapter 15

Page 880

• “Strdel, Strdelm” on page 850
• “Strins, Strinsl, Strinsm, Strinsml” on page 851
• “Strlen” on page 852
• “Strlwr, Strlwrm, Strupr, Struprm” on page 852
• “Strrev, Strrevm” on page 853
• “Strset, Strsetm” on page 853
• “Strspan, Strspanl, Strcspan, Strcspanl” on page 854
• “Strstr, Strstrl” on page 855
• “Strtrim, Strtrimm” on page 855
• “Other String Routines in the UCR Standard Library” on page 856

As mentioned earlier, the string instructions are quite useful for many operations
beyond character string manipulation. This chapter closes with some sections describing
other uses for the string instructions. See

• “Using the String Instructions on Other Data Types” on page 859
• “Multi-precision Integer Strings” on page 859
• “Dealing with Whole Arrays and Records” on page 860

The set is another common abstract data type commonly found in programs today. A
set is a data structure which represent membership (or lack thereof) of some group of
objects. If all objects are of the same underlying base type and there is a limited number of
possible objects in the set, then we can use a

bit vector

 (array of booleans) to represent the
set. The bit vector implementation is very efficient for small sets. The UCR Standard
Library provides several routines to manipulate character sets and other sets with a maxi-
mum of 256 members. For more details,

• “The Character Set Routines in the UCR Standard Library” on page 856

Strings and Character Sets

Page 881

15.11 Questions

1) What are the repeat prefixes used for?

2) Which string prefixes are used with the following instructions?

a) MOVS b) CMPS c) STOS d) SCAS

3) Why aren’t the repeat prefixes normally used with the LODS instruction?

4) What happens to the SI, DI, and CX registers when the MOVSB instruction is executed
(without a repeat prefix) and:

a) the direction flag is set. b) the direction flag is clear.

5) Explain how the MOVSB and MOVSW instructions work. Describe how they affect mem-
ory and registers with and without the repeat prefix. Describe what happens when the
direction flag is set and clear.

6) How do you preserve the value of the direction flag across a procedure call?

7) How can you ensure that the direction flag always contains a proper value before a string
instruction without saving it inside a procedure?

 8) What is the difference between the “MOVSB”, “MOVSW”, and “MOVS oprnd1,oprnd2”
instructions?

9) Consider the following Pascal array definition:

a:array [0..31] of record
a,b,c:char;
i,j,k:integer;

 end;

Assuming A[0] has been initialized to some value, explain how you can use the MOVS
instruction to initialize the remaining elements of A to the same value as A[0].

10) Give an example of a MOVS operation which requires the direction flag to be:

a) clear b) set

11) How does the CMPS instruction operate? (what does it do, how does it affect the registers
and flags, etc.)

12) Which segment contains the source string? The destination string?

13) What is the SCAS instruction used for?

14) How would you quickly initialize an array to all zeros?

15) How are the LODS and STOS instructions used to build complex string operations?

16) How would you use the SUBSTR function to extract a substring of length 6 starting at off-
set 3 in the StrVar variable, storing the substring in the NewStr variable?

17) What types of errors can occur when the SUBSTR function is executed?

18) Give an example demonstrating the use of each of the following string functions:

a) INDEX b) REPEAT c) INSERT d) DELETE e) CONCAT

19) Write a short loop which multiplies each element of a single dimensional array by 10. Use
the string instructions to fetch and store each array element.

20) The UCR Standard Library does not provide an STRCPYM routine. What is the routine
which performs this task?

21) Suppose you are writing an “adventure game” into which the player types sentences and
you want to pick out the two words “GO” and “NORTH”, if they are present, in the input
line. What (non-UCR StdLib) string function appearing in this chapter would you use to
search for these words? What UCR Standard Library routine would you use?

22) Explain how to perform an extended precision integer comparison using CMPS

Chapter 15

Page 882

