SHORTREF.TXT

CHARSETS

Createsets

Creates a set on the heap

Emptyset

Cleans out set

Rangeset

Add a range of values to a set

Addstr

Add a group of characters to a set

Rmvstr

Remove a string from a set

AddChar

Add a single character to a set

Rmvchar

Remove a single character to a set

Member

Find if a character is in a set

CopySet

Makes a verbatim copy of a set to another

SetUnion

Computes the union of two sets

SetIntersect
Computes the intersection of two sets into a third

SetDifference
Removes items in second set which are in first

Nextitem

Searches the first character (item) in the set

pointing to its mask byte

Rmvitem

Removes an item from a set

UTIL

ISize

Calculate number of spaces needed to print signed integer

USize

Calculate number of spaces needed to print unsigned integer

LSize

Calculate number of spaces needed to print signed long integer

ULSize
Calculate number of spaces needed to print unsigned long integer

IsAlNum
Checks to see if AL is in the range of A-Z, a-z, 0-9

IsXDigit
Checks to see if AL is in the range of A-F, a-f, 0-9

IsDigit
Checks to see if AL is in the range of 0-9

IsAlpha
Checks to see if AL is in the range of A-Z, a-z

IsLower
Checks to see if AL is in the range of a-z

IsUpper
Checks to see if AL is in the range of A-Z

DATE TIME

Date

Converts DOS system date into string (mm/dd/yy)

Date2

Converts DOS system date into string, not preserving DI

Datem

Converts DOS system date into string allocated from heap

xDate

Converts current DOS system date into string

xDate2
Converts current DOS system date into string, killing DI

xDatem
Converts current DOS system date to string with memory from heap

lDate

Converts DOS date into string (mmm, dd, yyyy)

lDate2
Converts DOS date into string killing DI

lDatem
Converts DOS date into string, memory allocated from heap

xlDate
Converts current DOS date into string

xlDate2
Converts current DOS date into string killing DI

xlDatem
Converts current DOS date into string allocated from heap

atod

Converts string (mm/dd/yy or mm-dd-yy) into DOS date

atod2

Converts string into DOS date, killing DI

atot

Converts string (hh:mm:ss or hh:mm:ss.xxx) into DOS time

atot2

Converts string into DOS time killing DI

time

Converts DOS time to string

time2

Converts DOS time to string, killing DI

timem

Converts DOS time to string, allocated from heap

xtime

Converts current DOS time to string

xtime2
Converts current DOS time to string, killing DI

xtimem
Converts current DOS time to string, allocated from heap

STRINGS

The following string routines take as many as four different forms: strxxx,

strxxxl, strxxxm, and strxxxlm. These routines differ in how they store

the destination string into memory and where they obtain their source strings.

Routines of the form strxxx generally expect a single source string address

in ES:DI or a source and destination string in ES:DI & DX:SI. If these

routines produce a string, they generally store the result into the buffer

pointed at by ES:DI upon entry. They return with ES:DI pointing at the

first character of the destination string.

Routines of the form strxxxl have a "literal source string". A literal

source string follows the call to the routine in the code stream. E.g.,

strcatl

db
"Add this string to ES:DI",0

Routines of the form strxxxm automatically allocate storage for a source

string on the heap and return a pointer to this string in ES:DI.

Routines of the form strxxxlm have a literal source string in the code

stream and allocate storage for the destination string on the heap.

Strcpy
Copies string.

Strcpyl
Copies string literal

StrDup
Copies string to newly allocated memory

StrDupl
Copies string to newly allocated memory from literal

Strlen
Calculate length of string

Strcat
Concatenate two strings

Strcatm
Concatenate two strings, allocating enough memory for the final

resulting string on the heap

Strcatl
Concatenate string from literal

Strcatml
Concatenate string from literal to allocated memory

Strchr
Searches for first occurence of a character in a string

Strstr
Searches for the position of a substring within another string

Strcmp
Compares one string to another

Strcmpl
Compares one string to literal string

Stricmp
Compares one string to another disregarding case

Strupr
Converts a string to uppercase

Struprm
Copies string to heap, then converts to upper and returns address

Strlwr
Convert string to lower case

Strlwrm
Copies string to heap, converts, then returns new string

Strset
Overwrites data on input string with character in AL

Strsetm
Allocates new strings, then overwrites with character in AL

Strspan
Compares strings, returning 1st position not equal

Strspanl
Compares strings, returning 1st position not equal, literal

Strcspan
Compares strings, returning 1st position that _IS_ equal

Strcplanl
Compares strings, returning 1st position that _IS_ equal,literal

StrIns
Inserts one string into another

StrInsl
Inserts one string into another, literal

StrInsm
Inserts one string into another after allocating memory

StrInsml
Inserts one string into another after allocating memory, literal

StrDel
Deletes characters from a string

StrDelm
Deletes characters from a copy of a string

StrTrim
Removes trailing spaces from a string

StrTrimm
Removes trailing spaces from a copy of a string

StrBlkDel
Removes leading spaces from a string

StrBlkDelm
Removes leading spaces from a copy of a string

Strrev
Reverses the characters in a string. ie: "BLAH" -> "HALB"

Strrevm
Reverses the characters in a copy of a string

StrBDel
Removes leading spaces from a string

StrBDelm
Removes leading spaces from a copy of a string

ToHex

Converts a stream of binary vaues into Intel Hex format

STDIN

Getc

Gets a character from STDIN

GetcStdIn
Gets a character from STDIN

GetcBIOS
Gets a character using BIOS. Redirection is not allowed

SetInAdrs
Sets the address to the routine which you want to use for input

GetInAdrs
Gets the address which is being used to take input

PushInAdrs
Pushes the address of the input routine to an internal stack

PopInAdrs
Pop the address of the input routine from an internal stack

Gets

Get a string from STDIN

Getsm

Get a string in STDIN and stuff into newly alloacted buffer

Scanf

Gets string from STDIN using C library type formatters

STDOUT

Putc

Print a character out to stdout

PutCR

Print a CR/LF to stdout

PucStdOut
Print a character to stdout

PutcBIOS
Use BIOS to print a character to the _SCREEN_

GetOuAdrs
Get the address of the current output routine

SetOutAdrs
Redirects calls to output routine to user defined

PushOutAdrs
Pushes current output address to internal stack

PopOutAdrs
Pops output address from internal stack and sets

Puts

Print a string to stdout

Puth

Print a value out in hex format

Putw

Print a value out in word hex format

Puti

Print a value out in signed integer format

Putu

Print a value out in unsigned integer format

Putl

Print a value out in signed long integer format

Putul

Print a value out in unsigned long integer format

PutISize
Print a value out in signed integer format using minimum spaces

PutUSize
Print a value out in unsigned integer format using minimum spaces

PutLSize
Print a value out in signed long format using minimum spaces

PutULSize
Print a value out in unsigned long fomat using minimum spaces

Print

Print out a literal string

Printf
Print out a literal string using C library type formatters

Printff
Print out a literal string using C library type formatters. Also

supports printout out floating point values

SERIAL PORT STUFF

ComBaud
Inits the seral port to a user defined speed

ComStop
Inits number of stop bits to use in transmission

ComSize
Inits number of data bits to use in transmission

ComParity
Inits the serial port as to whether or not to use parity checking

ComRead
Reads character from serial port

ComWrite
Transmits character to serial port

ComTstIn
Checks to see if character is availble in buffer. Does not read.

ComTstOut
Checks if character can be transmitted

ComGetLSR
Reads current status of Line Status Register

ComGetMSR
Reads current status of Modem Status Regster

ComGetMCR
Reads current status of Modem Control Register

ComGetLCR
Reads current status of Line Control Regiter

ComGetIIR
Reads current status of Interrupt Identification Register

ComGetIER
Reads current status of Interupt Enable Register

ComSetMCR
Writes value to Modem Control Register

ComSetLCR
Writes value to Line Control Register

ComSetIER
Writes value to Interrupt Enable Register

ComInitIntr
Sets up interrupts and progams to control serial chip

ComDisIntr
Untinstalls all programs installed with ComInitIntr

ComIn

Reads chracter from serial port. Will wait if none available.

ComOut
Writes character to serial port, waiting if port is busy.

PROCESS

Prcsinit
Starts the process manager

Prcsquit
Shutsdown the process manager

Fork

Spawns a new process

Die

Kills the current process

Kill

Lets one process terminate another

Yield

Forces context switch, surrendering rest of current time slice

CoInit
Inits the CoRoutine package

CoCall
Switches context between two coroutines

CoCalll
Switches context between two coroutines, passing info another way

WaitSemaph
Protects critical regions in memory

RlsSemaPh
Releases a semaphore that the current process has aquired

PATTERN

Spancset
Match any number of characters belonging to a character set

Brkcset
Match any number of characters which are *not* in a character set

MatchStr
Matches a specified string

MatchToStr
Match characters in string until specified substring

MatchChar
Matches a single character

MatchChars
Matches zero or more occurrences of the same character

MatchToChar
Matches characters up to and including specified character

MatchToPat
Matches all characters up to specified characters

Anycset
Matches single character from a character set

NotAnycset
Match single character which is not in character set

EOS

Matches end of string

ARB

Matches arbitary number of characters

ARBNUM
Matches arbitary number of strings

Skip

Matches "n" arbitary characters.

POS

Matches at position "n" in the string

RPOS

Matches at position "n" from the end of the string

GOTOpos
Moves to position in string

RGOTOpos
Moves to position "n" from end of string

MISC

Random
Generate a random number

Randomize
Reseed random number generator based on time of day

cpuid

Identifies CPU

Argc

Return number of command line parameters

Argv

Returns address to string of command line parameter specified

GetEnv
Returns address of environment table information

DOS

Invokes DOS INT 21h interrupt

ExitPgm
Exits current program and returns to DOS

MEMORY

MemInit
Initializes memory manager. Must be called first.

MemInit2
Initializes another part of memory manager

Malloc
Dynamically allocate memory

Realloc
Resize a block of memory already allocated with Malloc

Free

Deallocate a chunk of memory allocated with Malloc

DupPtr
Replicate a pointer to a chunk of memory so free won't deallocate

it until all the pointers are taken care of

IsInHeap
Tells you if ES:DI points somewhere in the heap

IsPtr

Tells you if ES:DI points to a properlly allocated chunk of heap

BlockSize
Returns size of block currently pointed to in the heap

MemAvail
Returns size of largest free block on the heap

MemFree
Returns size of total bytes free on the heap

LIST

CreateList
Allocates storage for a list variable on the head

AppendLast
Add a node to the list

Remove1st
Removes the first item from a list

Peek1st
Looks at the first item from a list

Insert1st
Inserts a node at the first node from a list

RemoveLast
Removes the last node from a list

PeekLast
Looks at the last item from a list

InsertCur
Inserts a node into the list

InsertmCur
Builds a node on the heap, then inserts that into the list

AppendCur
Inserts a node into the list after the current node pointed to

AppendmCur
Builds node on heap, then inserts that after current node

RemoveCur
Removes current node from the list

Peek

Looks at current node on the list

SetCur
Sets the specified node as the current node

Insert
Inserts a new node before a specified node in the list

Append
Inserts a new node after a specified node in the list

Remove
Removes the specified node from the list

FLOATING POINT (FP)

lsfpa

Load single percision float value into internal accumulator

ssfpa

Store single percision float value from accumulator to memory

ldfpa

Load double percision float value into internal accumulator

sdfpa

Store double percision float value from accumulator to memory

lefpa

Load extended percision float value into internal accumulator

lefpal
lefpa with a literal value after it in the code

sefpa

Store extended percision float value from accumulator to memory

lsfpo

lsfpa a value, then convert to extended percision

ldfpo

ldfpa a value, then convert to extended percision

lefpo

lefpa a value, then convert to extended percision

lefpol
lefpo a value, with the value being literal in the code

itof

Convert a 16bit signed integer to float

utof

Convert a 16bit unsigned integer to float

ultof

Convert a 32bit unsigned integer to float

ltof

Convert a 32bit signed integer to float

ftoi

Convert float number to signed 16bit integer format

ftou

Convert float number to unsigned 16bit integer format

ftol

Convert float number to signed 32bit integer format

ftoul

Convert float number to unsigned 32bit integer format

fpadd

Add float accumulator to float operand

fpsub

Subtract float operand from the float accumulator

fpsmp

Compare float accumulator to operand and set flags accordingly

fpmul

Multiply float operand to float accumulator

fpdiv

Divides float accumulator by operand

ftoa

Converts float number into string, preserving DI

ftoa2

Converts float number into string, not preserving DI

ftoam

Converts float to string, allocating enough space for string

etoa

Convert float to string using scientific notation

etoa2

Works like etoa, except not preserving DI

etoam

Works like etoa, this time allocing space on the heap for string

atof

Converts string into float

CONVERSION

atol

Converts string of numbers to signed 32bit integer

atoul

Converts string of numbers to unsigned 32bit integer

atou

Converts string of numbers to unsigned 16bit integer

atoh

Converts string of hex numbers to unsigned 16bit integer

atoh2

Converts string of hex numbers to unsigned 16bit int killing DI

atolh

Converts string of hex numbers to unsigned 32bit int

atolh2
Converts string of hex numbers to unsigned 32bit int killing DI

atoi

Converts string of numbers to signed 16bit integer

itoa

Converts signed integer to string

itoam

Converts signed integer to string, allocting space from heap

itoa2

Converts signed integer to string, killing DI

utoa

Converts unsigned integer to string

utoam

Converts unsigned integer to string, allocating space from heap

utoa2

Converts unsigned integer to string, killing DI

htoa

Converts 8bit hex value to string

htoa2

Converts 8bit hex value to string, killing DI

htoam

Converts 8bit hex value to string, allocating space from heap

wtoa

Converts 16bit hex value to string

wtoa2

Converts 16bit hex value to string, killing DI

wtoam

Converts 16bit hex value to string, allocating space from heap

ltoa

Converts 32bit signed integer to string

ltoa2

Converts 32bit signed integer to string, killing DI

ltoam

Converts 32bit signed integer to string, getting space from heap

ultoa

Converts 32bit unsigned int to string

ultoa2
Converts 32bit unsigned int to string, killing DI

ultoam
Converts 32bit unsigned int to string, getting space from heap

sprintf
In memory print formatting

sprintf2
In memory print formatting, killing DI

sprintfm
In memory print formatting, getting space from heap

sscanf
In memory input formatting

sscanf2
In memory input formatting, killing DI

sscanfm
In memory input formatting, getting space from heap

tolower
Converts character to lowercase

toupper
Converts character to uppercase

By: Steve Shah

sshah@ucrengr.ucr.edu

sshah@watserv.ucr.edu

sshah@mozart.ucr.edu

Pick one -- any one.......

Current version:

UCRASM 31

Compiled 1.0 -- June 7, 1993 10:40a

6
5

