
  

Summary This application note provides a functional description of VHDL and Verilog source code for a 
UART. The code is used to target the XC95144, XCR3128XL, or XC2C128 CPLDs. The 
functionality of the UART is discussed. To obtain the VHDL (or Verilog) source code described 
in this document, go to section VHDL (or Verilog) Code Download, page 3 for instructions.

Introduction The Universal Asynchronous Receiver Transmitter (UART) is the most widely used serial data 
communication circuit ever. UARTs allow full duplex communication over serial communication 
links as RS232. The reference VHDL and Verilog code implements a UART in Xilinx CPLDs. 
UARTs are available as inexpensive standard products from many semiconductor suppliers, 
making it unlikely that this specific design is useful by itself. 

The basic functions of a UART are a microprocessor interface, double buffering of tranmitter 
data, frame generation, parity generation, parallel to serial conversion, double buffering of 
receiver data, parity checking, serial to parallel conversion. The frame format of used by 
UARTs is a low start bit, 5-8 data bits, optional parity bit, and 1 or 2 stop bits. Some UARTs 
include modem interface signals. These are pass-through signals which are not done in this 
design. 

The organization of this application note is to provide a section on the receiver and then the 
transmitter. 

The frame format for data transmitted/received by a UART is given in Figure 1. It consists of a 
high idle state of the line. A character is from 5-8 data bits. The start bit isLow and the single 
stop bit is High.

Application Note: CPLD

XAPP341 (v1.3) October 1, 2002

UARTs in Xilinx CPLDs
R

Figure 1:  Frame Format for UART Transmitted/Received Data

Stop Bit(s)Data BitsStart Bit
XAPP341 (v1.3) October 1, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other 
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you 
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.



UARTs in Xilinx CPLDs
R

Receiver
The signals used by the receiver are given in Table 1. The receiver interfaces to the data bus 
dout[7:0] with the rdn signal. The controller can generate a rdn strobe if data_ready is true. 
The receiver is double buffered, allowing data to be held in the buffer register rbr[7:0] while 
data is shifted in serially into the receiver shift register rsr[7:0]. This provides the controller 
flexibility with bus read operations.

The receiver detects the character frame and strips the start and stop bits. The no_bits_rcvd 
variable controls the word size. 

The clkdiv[3:0] register is used to control the time at which the data is decoded. The receiver 
uses the 16x local clock and decodes the value of start, data, and stop nits in the center of the 
data cells. To do this, the start bit initializes a count operation using clkdiv[3:0]. After detecting 
the low going edge on the start bit, the receiver counts the 16x clock to 8 and decodes, or 
samples the value of the signal. The clkdiv[3:0] register is then reset to 0, and subsequently 
counts the 16x clock to 16. This provides center sampling for the data and stop bits.

Three error detection signals are commonly used in UARTs. Parity Error indicates whether an 
even or odd number of "1s" are present in a data work. Overrun Error indicates whether the 
receive buffer register is overwritten by the receive shift register prior to the controller reading 
the receiver buffer register. Overrun Error is not implemented in the VHDL/Verilog source. 
Framing Error indicates if the stop bit is not High.

Table  1:  Receiver Signals

Signal Direction Function

rst Input Resets.

clk16x Input 16x input clock.

rdn Input Read strobe.

dout[7:0] Output Output data bus.

framing_error Output Framing error status signal.

parity_error Output Parity error status signal.

rbr[7:0] Internal Receiver buffer register - accepts data from data[7:0] and 
transfers it to rsr[7:0].

rsr[7:0] Internal Receiver shift register - accepts data from rbr[7:0] and 
transfers it to sdo.

no_bits_rcvd Internal Tracks character size and sequences receiver operation.

clk1x_enable Internal Enable signal for registers clocked by clk1x.

clk1x Internal 1x clock used for internal operations.
2 www.xilinx.com XAPP341 (v1.3) October 1, 2002
1-800-255-7778



UARTs in Xilinx CPLDs
R

Transmitter
The signals used by the transmitter are given in the table below. The transmitter interfaces to 
the data bus with the transmitter buffer register empty (tbre) and the wrn signals. The controller 
can generate a wrn strobe if tbre is high. The transmitter is double buffered, allowing data on 
din'7:0] to be written to the buffer register tbr[7:0] while data is being shifted out of the shift 
register tsr[7:0]. The transmitter generates a frame which consists of the idle state (high on 
sdo), low start bit, eight data bits, and a stop bit. 

The no_bits_sent controls the word size and sequences the transmitter operations. To change 
the word size, change the value of no_bits_sent in the verilog source.

VHDL (or 
Verilog) Code 
Download 

VHDL (or Verilog) source code and test benches are available for this design. THE DESIGN IS 
PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO WARRANTIES OR 
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX 
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. This design has not been 
verified on hardware (as opposed to simulations), and it should be used only as an example 
design, not as a fully functional core. XILINX does not warrant the performance, functionality, or 
operation of this Design will meet your requirements, or that the operation of the Design will be 
uninterrupted or error free, or that defects in the Design will be corrected. Furthermore, XILINX 
does not warrant or make any representations regarding use or the results of the use of the 
Design in terms of correctness, accuracy, reliability or otherwise. 

XAPP341 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Revision 
History

The following table shows the revision history for this document.  

Table  2:  Transmitter Signals

Signal Direction Function

rst Input Resets wrn1,wrn2,no_bits_sent, clkdiv[3:0],tbr[7:0],tsr[7:0]

clk16x Input Local reference clock 16X the data rate

wrn Input Control signal which strobes data from din[7:0] to tbr[7:0]

sdo Output Serial data output

tbre Output Status signal indication that the transmitter buffer register is 
empty

no_bits_sent Internal Controls word_size and sequences transmitter operation

clk1x_enable Internal Enables internal clock clk1x.

tbr[7:0] Internal Accepts data from din[7:0] and transfers data to tsr[7:0]

tsr[7:0] Internal Receives data from tbr[7:0] and shifts to sdo

clkdiv[3:0] Internal Used in generation of internal clock

Date Version Revision

03/31/00 1.0 Initial Xilinx release.

04/17/00 1.1 Added VHDL Code Download link.

11/28/00 1.2 Changed XCR3128 to XCR3128XL in Summary.

10/01/02 1.3 Updated device targets
XAPP341 (v1.3) October 1, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm


UARTs in Xilinx CPLDs
R

4 www.xilinx.com XAPP341 (v1.3) October 1, 2002
1-800-255-7778


	Summary
	Introduction
	Receiver
	Transmitter

	VHDL (or Verilog) Code Download
	Revision History

