
MODSIM III

The Language for Object-Oriented
Programming

Reference Manual

Title: (CACI Logo. eps)
Creator: Adobe Illustrator 88(TM) 1.9.3
CreationDate: (10/8/90) (9:11 AM)

 Products Company
3333 North Torrey Pines Court, La Jolla, California 92037 • (619) 824.5200 • Fax (619) 457-1184
Watchmoor Park, Riverside Way, Camberley, Surrey GU15 3YL, UK • 1276 671 671 • Fax 1276 670 677
1600 Wilson Blvd., 13th Floor, Arlington, Virginia 22209 • (703) 875-2900 • Fax (703) 875-2904

MODSIM Reference Manual

Copyright 1996 CACI Products Co.
December 1996

All rights reserved. No part of this publication may be reproduced by any means without written permission from
CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Watchmoor Park
La Jolla, California 92037 Riverside Way
Phone: (619) 824.5200 Camberley, Surrey
Fax: (619) 457-1184 GU15 3YL, UK

Phone: 1276 671 671
Fax: 1276 670677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the
responsibility for any consequences resulting from the use thereof. The information contained herein is subject to
change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS II and MODSIM III are registered trademarks of CACI Products Company.

iii

Contents

FIGURES... ix

PREFACE... a

WHAT IS MODSIM III?.. a
MODSIM III DOCUMENTATION ... a
FREE TRIAL & TRAINING... b

1. INTRODUCTION ... 1

1.1 OVERVIEW OF MODSIM III ... 2
1.2 OBJECT-ORIENTED FEATURES.. 4
1.3 DISCRETE-EVENT SIMULATION FEATURES.. 4
1.4 MODULES .. 5
1.5 THE MODSIM DEVELOPMENT ENVIRONMENT ... 5

SECTION I. MODSIM III - SYNTAX AND STRUCTURE... 7

2. STRUCTURE OF MODSIM III PROGRAMS.. 9

2.1 PROGRAM LAYOUT ... 9
2.2 IDENTIFIERS, RESERVED WORDS AND STANDARD PROCEDURES.. 11
2.3 BLOCK STRUCTURE AND SCOPE OF VARIABLES.. 13
2.4 NESTING OF BLOCKS... 14
2.5 REDEFINITION OF IDENTIFIERS.. 15
2.6 DELIMITERS ... 15
2.7 SEPARATORS ... 16
2.8 COMMENTS .. 17

3. SIMPLE DATA TYPES AND THEIR OPERATORS... 19

3.1 WHAT IS A DATA TYPE?... 20
3.2 INTERNAL REPRESENTATION OF DATA ... 20

3.2.1 Representation of Numerical Data.. 21
3.2.1.1 Type INTEGER... 21
3.2.1.2 Type REAL ... 21
3.2.2 Representation of Textual Data.. 22
3.2.2.1 Type CHAR .. 22
3.2.2.2 Type STRING ... 23
3.2.3 Representation of TRUE / FALSE or Boolean Data.. 23
3.2.3.1 Type BOOLEAN ... 24

3.3 USER-DEFINED TYPES... 24
3.3.1 Enumerated Types... 24
3.3.2 Ordinal Data Types .. 25
3.3.3 Subrange Types .. 25

3.4 EXTERNAL REPRESENTATION OF DATA.. 26
3.4.1 INTEGER Literals .. 26
3.4.2 REAL Literals... 27
3.4.3 CHARACTER Literals .. 28
3.4.4 STRING Literals... 28
3.4.5 BOOLEAN Literals... 29

MODSIM Reference Manual

3.4.6 Enumerations ...29
3.5 OPERATORS ...29

3.5.1 Assignment Operator..30
3.5.2 Arithmetic Operators ..30
3.5.3 Relational Operators...31
3.5.4 Logical Operators ...32

3.6 BUILT-IN PROCEDURES AND FUNCTIONS ..32

4. DECLARATIONS, EXPRESSIONS AND PRECEDENCE ..35

4.1 DECLARATIONS ...35
4.1.1 CONSTant Declarations ...35
4.1.2 TYPE Declarations ...36
4.1.3 VARiable Declarations..37
4.1.4 PROCEDURE Declarations ..38
4.1.5 PROCEDURE Variable Declarations ..38

4.2 AUTOMATIC INITIALIZATION OF VARIABLES ..38
4.3 EXPRESSIONS...39
4.4 OPERATOR PRECEDENCE ..39
4.5 TYPES OF EXPRESSIONS..40

4.5.1 Evaluating Boolean expressions ...40

5. STRUCTURED DATA TYPES..43

5.1 USING STRUCTURED DATA TYPES...43
5.1.1 Dynamic Versus Fixed Structures...46

5.2 MEMORY MANAGEMENT OF DYNAMIC DATA STRUCTURES..47
5.2.1 The CLONE Function ...50
5.2.2 Orphaned Data...51
5.2.3 The DISPOSE Procedure...51
5.2.4 Hanging References...51

5.3 RECORDS...52
5.3.1 Using NEW to Allocate RECORDs ...52
5.3.2 ANYREC, ANYOBJ and NILOBJ ..55
5.3.3 Operations on RECORDs...56

5.4 ARRAYS ...56
5.4.1 Operations on ARRAYs..59
5.4.2 Using the NEW Procedure to Allocate an ARRAY...59
5.4.3 Ragged ARRAYs..60
5.4.4 The HIGH and LOW Functions...61

5.5 OBJECTS..62
5.6 DECLARATIONS REVISITED ...62

5.6.1 Anonymous Types..63
5.7 FIXED DATA STRUCTURES..63

5.7.1 The FIXED RECORD Type ..64
5.7.1.1 Declaring FIXED RECORD Types ...64
5.7.2 The FIXED ARRAY Type ...64
5.7.2.1 Declaring FIXED ARRAY Types ..65

5.8 REFERENCING THE ARRAY AND RECORD...66

6. STATEMENTS AND TYPE COMPATIBILITY ..69

6.1 TYPE COMPATIBILITY ...70
6.1.1 Type Conversion ..71

6.2 THE ASSIGNMENT STATEMENT..73
6.3 PROGRAM FLOW CONTROL ..73
6.4 THE IF STATEMENT ...73

Contents

v

6.4.1 Comparing REAL Values in a Boolean Expression ... 74
6.5 THE CASE STATEMENT .. 76
6.6 ITERATIVE STATEMENTS .. 77

6.6.1 The WHILE Statement ... 77
6.6.2 The REPEAT Statement .. 78
6.6.3 The FOR Statement... 78
6.6.4 The FOREACH Statement ... 79
6.6.5 The EXIT Statement .. 81
6.6.6 The LOOP Statement .. 81
6.6.7 The Other Control Statements ... 81

7. PROCEDURES AND FUNCTIONS.. 83

7.1 FORMAL PARAMETER QUALIFIERS: IN, OUT, INOUT... 84
7.2 INVOKING PROCEDURES .. 85
7.3 DECLARING PROCEDURES ... 86
7.4 RETURN STATEMENT.. 86
7.5 THE FORWARD QUALIFIER ... 87
7.6 PROCEDURES WITH EMPTY PARAMETER LISTS .. 88

8. MODULES... 89

8.1 FACTS ABOUT MODULES ... 89
8.2 THE IMPORT STATEMENT .. 90
8.3 MAIN MODULE .. 92
8.4 DEFINITION MODULE ... 92

8.4.1 Cycle Dependencies .. 93
8.5 IMPLEMENTATION MODULE.. 93
8.6 THE MODINIT PROCEDURE .. 94
8.7 FILE NAMING CONVENTIONS FOR MODULES... 94
8.8 INCLUDING C/C++ CODE IN A MODSIM PROGRAM .. 95

SECTION II. OBJECT-ORIENTED PROGRAMMING.. 99

9. OBJECTS IN MODSIM III .. 101

9.1 OBJECT TYPE VERSUS OBJECT INSTANCE... 102
9.2 SCOPE OF AN OBJECT'S FIELDS ... 102
9.3 OBJECT TYPE DECLARATION / OBJECT DECLARATION... 102
9.4 METHOD DECLARATIONS .. 104
9.5 SCOPE OF FIELDS AND VARIABLES IN OBJECTS .. 105
9.6 OBJECT REFERENCE VARIABLES .. 105
9.7 CLASS VARIABLES (FIELDS) AND METHODS ... 107
9.8 OBJECT TYPE CHECKING AND THE ANYOBJ TYPE ... 108
9.9 ALLOCATING AND DEALLOCATING OBJECTS.. 109
9.10 OBJINIT & OBJTERMINATE ... 110
9.11 OBJCLONE ... 110
9.12 PROTO OBJECTS .. 111

10. METHODS AND FIELDS OF OBJECTS ... 115

10.1 INVOKING AN OBJECT'S ASK AND TELL METHODS .. 115
10.2 BUILT-IN REFERENCE CONSTANT SELF .. 118
10.3 REFERENCING AN OBJECT'S FIELDS.. 118
10.3.1 MONITORING OF FIELDS OR VARIABLES ... 120

10.4.1 Example of Static Monitoring.. 121
10.4.2 Defining Monitoring Objects ... 121

MODSIM Reference Manual

10.4.3 Syntax..121
10.4.4 Semantics ..122

10.5 IMPLEMENTATION FEATURES FOR MONITOR METHODS ..122
10.5.1 Syntax..122
10.5.2 Semantics ..122

10.6 ATTACHING A MONITOR OBJECT TO A VARIABLE OR FIELD..123
10.6.1 Syntax for Simple Fields ...123
10.6.2 Syntax for Monitor Types..123
10.6.3 Semantics ..123
10.6.4 Dynamic Monitors...124

11. INHERITANCE ...125

11.1 HIERARCHICAL OBJECT TYPES ...125
11.2 COERCION OF OBJECTS ...127
11.3 OBJECT INHERITANCE ..128
11.4 OVERRIDING METHODS ..129
11.5 EXTENDING INHERITED BEHAVIORS..130

11.5.1 Overriding the ObjInit Method ...131
11.6 MULTIPLE INHERITANCE..132

11.6.1 Declaring Multiple Base Types..132
11.7 RESOLVING CONFLICTING FIELD NAMES ...132
11.8 RESOLVING CONFLICTING METHOD NAMES...133

11.8.1 Combining Multiple Inherited Methods ..135
11.8.2 Overriding the ObjInit Method in Multiple Inheritance ..135

11.9 CONFLICTING FIELD AND METHOD NAMES ..136

12. DATA HIDING AND DATA SHARING..137

12.1 PRIVATE FIELDS AND METHODS ...137

SECTION III. SIMULATION ...139

13. PROCESS-BASED DISCRETE-EVENT SIMULATION ..141

13.1 SIMULATION TIME ..141
13.2 THE SYSTEM'S PENDING LIST - OBJECTS' ACTIVITY LISTS..142
13.3 PROCESS-ORIENTED VS EVENT-ORIENTED SIMULATION ...142
13.4 TIME ELAPSING METHODS - THE WAIT STATEMENT..144
13.4.1 THE WAIT STATEMENT ..144
13.5 THE ASYNCHRONOUS TELL AND WAITFOR CALLS ...145
13.6 SYNCHRONIZING ACTIVITIES ...148

13.6.1 The Terminate Statement ...149
13.7 ARBITRARY SYNCHRONIZATION WITH TRIGGER OBJS...150
13.8 MULTIPLE PROCESS ACTIVITIES ..151
13.9 ACTIVITY TIE-BREAKING ...151
13.10 INTERRUPTING ACTIVITIES ..153

13.10.1 Interrupting Methods and ACTID ..154

14. GROUPING OBJECTS ..157

14.1 USING GROUP OBJECTS ..157
14.2 THE QUEUE GROUP ..158
14.3 THE STACK GROUP ...159
14.4 THE RANKED GROUP...159
14.5 STATISTICAL GROUPS..160
14.6 ITERATING THROUGH A GROUP...161

Contents

vii

15. STATISTICAL DISTRIBUTIONS: RANDOMOBJ ... 163

16. RESOURCE OBJECTS ... 167

16.1 ACQUIRING RESOURCES.. 167
16.1.1 Difference Between Requesting Methods... 168

16.2 CHANGING THE SET OF RESOURCES ... 169
16.3 STATISTICS OF RESOURCES... 170

SECTION IV. INPUT/OUTPUT .. 171

17. INPUT / OUTPUT .. 173

17.1 INPUT & OUTPUT STATEMENTS ... 173
17.2 STREAM I/O USING STREAMOBJ .. 175
17.3 ASK METHODS OF STREAMOBJ... 175
17.4 PROCEDURES OF IOMOD .. 176

18. GRAPHICS AND ANIMATION... 179

APPENDICES... 181

APPENDIX A. GLOSSARY ... 183

APPENDIX B. RESERVED WORDS ... 187

APPENDIX C. BUILT-IN PROCEDURES .. 205

APPENDIX D. STANDARD LIBRARY MODULES .. 213

D.1 MODULE NAME: DEBUG .. 214
D.2 MODULE NAME: GRPMOD ... 216
D.3 MODULE NAME: IOMOD .. 218
D.4 MODULE NAME: LISTMOD ... 220
D.5 MODULE NAME: MATHMOD ... 221
D.6 MODULE NAME: OSMOD... 224
D.7 MODULE NAME: RANDMOD ... 234
D.8 MODULE NAME: RESMOD ... 235
D.9 MODULE NAME: SIMMOD .. 236
D.10 MODULE NAME: STATMOD .. 240
D.11 MODULE NAME: UTILMOD ... 242
D.12 MODULE NAME: VERSION .. 245

APPENDIX E. OBJECTS... 247

INDEX... 339

MODSIM Reference Manual

ix

Figures
Figure 2-1. Syntax of an Identifier.. 12
Figure 2-2. Syntax of a Program Block .. 13
Figure 2-3. Delimiters .. 16
Figure 3-1. Simple Data Types.. 19
Figure 3-2. Syntax of an INTEGER Literal ... 26
Figure 3-3. Syntax of REAL Literals... 27
Figure 3-4. Character Literals .. 28
Figure 3-5. Syntax of String Literals... 29
Figure 3-6. Arithmetic Operators ... 31
Figure 3-7. Relational Operators.. 31
Figure 3-8. Logical Operators .. 32
Figure 4-1. Syntax of a Constant Declaration .. 36
Figure 4-2. Syntax of a Type Declaration... 37
Figure 4-3. Operator Precedence .. 40
Figure 4-4. Short Circuit Logic ... 41
Figure 5-1. Memory Before Assignments... 49
Figure 5-2. Memory After Assignments ... 49
Figure 5-3. Memory Before CLONE & Assignment .. 50
Figure 5-4. Memory After CLONE & Assignment... 51
Figure 5-5. Linked List of RECORDs ... 54
Figure 5-6. Syntax of an Array Type Declaration ... 57
Figure 5-7. An Array.. 58
Figure 5-8. A Ragged Array... 61
Figure 5-9. FIXED ARRAY Type Declaration... 65
Figure 6-1. Type Conversion Procedures / Functions .. 72
Figure 6-2. Examples of Type Conversions ... 72
Figure 6-3. Syntax of the IF...END IF Statement. .. 74
Figure 6-4: Syntax of the CASE .. END CASE Statement.. 76
Figure 6-5. Syntax of the WHILE .. END WHILE Statement... 77
Figure 6-6. Syntax of the REPEAT...UNTIL Statement. ... 78
Figure 6-7. Syntax of the FOR ... END FOR Statement... 79
Figure 6-8. The FOREACH Statement .. 80
Figure 7-1. Syntax of a Procedure Declaration .. 86
Figure 7-2. A Right Triangle .. 87
Figure 7-3. Syntax of the Procedure Block .. 87
Figure 7-4. Empty Parameter Lists .. 88
Figure 8-1. Syntax of an IMPORT Statement .. 91
Figure 8-2. Syntax of a MAIN Module.. 92
Figure 8-3. Syntax of a DEFINITION Module... 93
Figure 8-4. Syntax of an IMPLEMENTATION Module ... 94
Figure 8-5. File Naming Conventions for Modules .. 95
Figure 8-6. MODSIM Types vs C/C++ Types .. 96
Figure 9-1. Syntax of an Object Type Declaration.. 103
Figure 9-2. Syntax of an Object Declaration .. 104
Figure 9-3. Syntax for Substituting a Replaceable Type... 111
Figure 9-4. Syntax for 'inherit spec'.. 112
Figure 10-1. Method Invocation ... 115
Figure 10-2. Syntax of the ASK Statement .. 116
Figure 10-3. Syntax of the TELL Statement... 117
Figure 10-4. Syntax for a Monitor Object Inherited from a Monitor Object 121
Figure 10-5. Syntax for Declaring a Monitor Type.. 122

MODSIM Reference Manual

x

Figure 10-6. Syntax for Simple Fields ...123
Figure 10-7. Syntax for Monitor Types ..123
Figure 11-1. Object Type Hierarchy ...126
Figure 11-2. Multiple-path Inheritance. ...132
Figure 11-3. Common Ancestor ...134
Figure 13-1. The Pending List ..142
Figure 13-2. Syntax of the WAIT Statement...145
Figure 13-3. Syntax of the TELL call ..146
Figure 14-1. Built-in Groups...157

a

Preface

What Is MODSIM III?

MODSIM III is a general-purpose, modular, block-structured high-level programming
language which provides direct support for object-oriented programming and discrete-
event simulation. It can be used to build large process-based simulation models through
modular and object-oriented development techniques.

MODSIM III is supported on a variety of machine architectures and operating systems.
MODSIM III programs are highly portable from one machine to another.

MODSIM III Documentation

These documents pertain to MODSIM III:

• MODSIM III Reference Manual - (This document) The language reference.
Contains information about the syntax and structure of MODSIM III as a pro-
gramming language. Also covers object-oriented programming, simulation,
and I/O.

• MODSIM III User's Manual - Contains information about: release-specific
features; use of the compilation manager; use of the MODSIM development
environment, and MODSIM compiler options; and debugging MODSIM.

• MODSIM III Tutorial - Provides a broad overview of the language features
of MODSIM and then concentrates on the object-oriented programming and
simulation capabilities in MODSIM.

• SIMGRAPHICS II User’s Manual for MODSIM III - Contains information
about SIMGRAPHICS II, the companion to MODSIM III that provides easy
access to presentation graphics and animation.

This manual is organized to give you a quick overview of each of MODSIM III's fea-
tures, followed by a comprehensive discussion of each.

The first chapter of this Reference Manual contains several self-explanatory MODSIM
III programs which illustrate the basic structure of the language and its use in simulation.
The remainder of the manual is organized into four sections:

I. MODSIM III - Syntax & Structure: Lexical structure, procedures, func-
tions and flow of control. MODSIM III's automated compilation manager
and other project management support facilities.

MODSIM Reference Manual

b

II. Object-Oriented Programming: Objects, their fields and methods. Encap-
sulation and polymorphism. Inheritance and multiple inheritance.

III. Simulation: Object-oriented, process-based, discrete-event simulation. A
review of MODSIM III's facilities for simulation.

IV. Input / Output: MODSIM III's stream oriented, random access and indexed
I/O facilities. Formatted I/O. Object oriented I/O features.

Appendices

A. Glossary
B. Reserved Words
C. Built-in Procedures
D. Standard Library Modules
E. Standard Library Objects

Index

Free Trial & Training

MODSIM III is available exclusively from CACI Products Company. MODSIM III can
be sent to your organization for a free trial. We provide everything needed for a com-
plete evaluation on your computer: software, documentation, sample models, and imme-
diate support when you need it.

Training courses in MODSIM III are scheduled on a recurring basis at the following lo-
cations:

La Jolla, California
Washington, D.C.
London, United Kingdom

For information on free trials or training, please contact any of our offices.

1

1. Introduction

MODSIM III is a modular, object-oriented, strongly typed, block-structured simulation
language. This description touches on the several ways in which MODSIM III differs
from traditional languages.

• Modular: MODSIM III programs may be (but are not required to be) divided
into “modules”. Each module is stored in a separate file. The advantages of this
approach are that these modules may be compiled separately, saving time when
only one of them is edited, and that a single module may serve multiple pro-
grams. This is because modules can import constructs and definitions from each
other. Readers familiar with Modula-2 and Ada will recognize this approach.
The modular concept formalizes the notion of libraries of reusable code.

MODSIM III, itself, makes use of this feature. Many commonly-used features of
the language, such as Input/Output and simulation, are described in “library mod-
ules” and are imported for use by a program.

MODSIM III modules may be compiled separately. This means that if you alter
one module in a program, only that module needs to be recompiled. This is a
powerful time-saving feature which greatly speeds program development and
evolution. Separate compilation is distinct from independent compilation in that
dependencies between modules are checked. As a result, any module which re-
quires re-compilation as a result of edits to another module can be identified and
also scheduled for compilation. The C/C++ language allows independent compi-
lation of files, but offers no assistance in analyzing the effects of an editing
change to one module. Even in Modula-2, it is the user's responsibility to assess
the consequences of a change to one module.

• Object-oriented. An "object" is an encapsulation of a data record which de-
scribes the state of the object and procedures called methods which describe its
behaviors. Objects are more concrete than most programming constructs. They
interact through a clearly defined protocol and the fields of an object instance are
private. A new object type can inherit the attributes of an existing object type and
elaborate on the fields and methods of its ancestor type. Finally, objects are ca-
pable of polymorphism. A group of objects which share common ancestry can
also share a method, yet each implements it differently. Thus, if we take a col-
lection of objects which share Vehicle Object as their ancestor and ask each to re-
fuel, the Car Object might take on unleaded gas, the Truck Object diesel fuel and
the Mule Object would eat hay.

• Strongly typed: Every expression, assignment statement and parameter is type
checked at compile time for consistency. This eliminates errors which can go un-

MODSIM Reference Manual

2

discovered until runtime in untyped languages. The concept of types also allows
users to define their own types and to then declare variables of those types.

• Block-structured: Pascal, Modula-2 and Ada are examples of block-structured
languages. A block is made up of declarations and executable statements. It may
contain smaller blocks. The important feature of block-structured languages is
that the scope or visibility of variables is restricted to the block in which they are
declared and any subsidiary blocks. This control of scope of variables is funda-
mental to contemporary software engineering practices.

• Simulation: Simulation capabilities are provided both in library modules and di-
rectly through the language. These modules provide direct support for all capa-
bilities needed to program discrete-event simulation models. All MODSIM III
objects have the capability of using Process methods. A "Process" method is a
method which can elapse simulation time. This is the meaning used throughout
the manual. A process might WAIT in simulation time and interact at specific
simulation times with other processes.

Each of these issues is discussed in greater depth in this Reference Manual. The topics of
object-oriented programming and simulation are additionally covered in detail in the
MODSIM III Tutorial.

1.1 Overview of MODSIM III

MODSIM is the result of evolutionary language development. It combines the best fea-
tures which have emerged from contemporary programming language design and soft-
ware engineering research and development. It serves as a complete development envi-
ronment for large software projects.

Before proceeding into a detailed description of MODSIM's syntax and structure, it will
be useful to provide a short sample of MODSIM code. The general structure and syntax
should look familiar to anyone who has had contact with Algol, Pascal, Modula-2 or
Ada. Indeed, anyone who has used a contemporary procedural language should have no
problem understanding what this program does and how it works.

MAIN MODULE Sample1;

VAR
 sum, number : REAL;
 count : INTEGER;

BEGIN
 OUTPUT("This program computes the average of a sequence
of");
 OUTPUT("positive numbers. Enter a sequence of numbers...");
 OUTPUT("Terminate the sequence with a negative number:");
 INPUT(number);

Chapter 1: Introduction

3

 WHILE number >= 0.0
 INC(count); { increment the count }
 sum := sum + number;
 INPUT(number);
 END WHILE;
 IF count > 0
 OUTPUT(count, " numbers were entered");
 OUTPUT("Average is ", sum / FLOAT(count));
 ELSE
 OUTPUT("Nothing was entered.");
 END IF;
END MODULE.

We see from this code:

• MODSIM programs can consist of just one main module.

• All variables used in a MODSIM program or module must be declared by type.

• There are INPUT and OUTPUT statements to support simple, free-form I/O.

• Sequences of statements are delimited by the control and choice statements such
as the IF / END IF instead of a BEGIN / END (Algol, Pascal) or { / } (C).

• Control statements are symmetric... IF / END IF, WHILE / END WHILE.

• In mathematical expressions, as in Pascal and Ada, all type conversion is speci-
fied explicitly by the programmer.

• MODSIM has basic built-in types such as REAL and INTEGER.

Not apparent from this example, MODSIM also supports built-in BOOLEAN, CHAR and
STRING types. In addition to the built-in scalar and STRING types, MODSIM supports
the structured types ARRAY and RECORD, OBJECT types, subrange types, enumerated
types and user defined types.

MODSIM III, like Pascal and Ada, is a strongly typed language. This means that ex-
pressions, assignments statements and parameters passed to procedures and methods are
checked for type consistency. Inconsistent usage of variables is discovered and flagged
at compile time. This leads to more reliable code and speedier development since errors
are caught sooner. For example, if a procedure is expecting an INTEGER as an incoming
argument and it is passed a STRING, the compiler will flag this as an error. If this were
not caught at compile time, then, when the program was run, the STRING would be in-
terpreted as if it were an INTEGER and the program would behave incorrectly. Errors
such as this are often difficult to track down. Indeed, they may not show up in testing.

MODSIM Reference Manual

4

MODSIM III is a general-purpose, procedural programming language which can be used
to write traditional style computer programs. But there is obviously more to it than that.
Its distinction is as an object-oriented language and as a discrete-event simulation lan-
guage. Finally, it is modular and provides support for large-scale software development.

1.2 Object-oriented Features

Objects are dynamically allocated data structures coupled with routines, called methods.
The fields in the object's data structure define its state at any instant in time while its
methods describe the actions which the object can perform. The values of the fields of
an object are modified only by its own methods.

The utility of an object is that it is analogous to an object in the real world. It has a set of
attributes, its fields, and a set of behaviors, its methods. There is a well-defined interface
to each object type. The objects methods, or behaviors, are invoked by sending a mes-
sage to the object. We can define new object types based on existing object types. Fi-
nally, we can give disparate objects a behavior, or method, with the same name. Each
object, when asked to perform the behavior which goes with that name, can perform a
unique behavior. This powerful concept, which is known as polymorphism, allows
“generic” calls.

1.3 Discrete-event Simulation Features

All modern simulation languages support some construct for keeping track of simulation
time and scheduling events relative to that simulation time. Simulation time is the clock
which a simulation language uses to keep track of events and the ordering of these
events.

In MODSIM III, simulation is supported by a library module which contains a number of
objects and support procedures. All objects are allowed to perform actions which elapse
simulation time. A method of one object might include a statement to WAIT until some
future time before proceeding to the next statement, or it might send a message to an-
other object so that the message arrives at that object at a specific simulation time.

The simulation paradigm supported by MODSIM is that of the process. The process is
capable of carrying on multiple, concurrent activities each of which can elapse simula-
tion time. The activities can operate autonomously or they can synchronize their opera-
tion. Any or all activities of a process can be interrupted, if necessary.

The process approach elaborates on the traditional technique of discrete-event simulation
in a very important way. It allows a related group of activities to be coded in one rou-
tine. When it is necessary to elapse simulation time, the routine suspends execution until
the stated amount of simulation time has elapsed and then the routine resumes execution.
The traditional approach requires a separate routine for each event which can occur. This
process-based view of simulation is similar to that supported by SIMSCRIPT II.5.

Chapter 1: Introduction

5

1.4 Modules

MODSIM III programs can be divided into library modules, each of which supports
some particular functionality. Any module can import data constructs or procedures
from other modules. A library module can be shared by many programs. New, more
elaborate objects can be built from objects imported from library modules.

Any module can be compiled separately. This means that it is not necessary to re-
compile a whole program after changes have been made to a module. Only affected
modules need be re-compiled. This capability is known as separate compilation.

1.5 The MODSIM Development Environment

The MODSIM III development environment consists of a suite of tools which include a
compilation manager, interactive debugger, graphics drawing package (SIMDRAW) and
a comprehensive help system.

The MODSIM debugger is a fully functional interactive source level debugger which in-
cludes the ability to set break points, step through MODSIM code and browse MODSIM
data structures. In addition, the debugger is aware of the simulation features of the
MODSIM language.

SIMDRAW is an interactive graphics package which is used to create graphics files for
use with SIMGRAPHICS II. SIMDRAW can be used to design the Graphical User In-
terface (GUI) to your MODSIM program, including specification of menus, dialog
boxes, palettes, charts, graphs and images.

MODSIM III source and object code management is supported by a compilation man-
ager. The compilation manager provides a variety of services to assist in the manage-
ment of large and small projects. At the simplest level it manages the automatic compi-
lation of programs. Given the name of a MAIN program module, the compilation man-
ager will assess the status of each module which comprises the program. It will then
compile each module which requires compilation because it has been edited or because it
is dependent on another module which must be re-compiled. It links the resultant object
modules and produces an executable.

The MODSIM development environment is fully documented in the MODSIM III User's
Manual.

MODSIM Reference Manual

6

7

Section I. MODSIM III - Syntax and Structure

MODSIM Reference Manual

8

9

2. Structure of MODSIM III Programs

In this chapter we will describe the general layout of a MODSIM III program. For sim-
plicity, we will treat a MODSIM program as a single module contained in one file. Most
large programs will consist of a number of library modules in separate files. However
the discussion of library modules in MODSIM will be deferred until Chapter 7 to allow
more elementary language concepts to be covered first.

By program structure we mean the layout of the component parts of a program such as
type and variable declarations, procedure declarations and actual program code. Also
implied in this topic is the concept of scope, locality and visibility of variables and the
related concept of blocks.

Lexical components such as identifiers, literal constants and operators are the most basic
parts of a program. The term which describes all of these components is token. A pro-
gram consists of a sequence of tokens. As the compiler examines the tokens it finds that
some are reserved words such as IF and ELSE, others are operators such as * and +,
some are literal constants such as 5 or 67.32, some are delimiters such as BEGIN and
END and, finally, some are separators such as the comma, space or semicolon.

Tokens are used to build statements. Statements are used to construct larger lexical com-
ponents such as declaration blocks or procedure bodies. These larger lexical components
are then used to build modules. Finally, a program is built from one or more modules.

In discussing program structure we will necessarily use terms which may not be com-
pletely familiar to readers who have no previous exposure to languages of this type such
as Algol, Pascal, or Ada. If you fall into this category, it might be worth skipping ahead
to Chapter 3 at this point to scan the information about types, variables, constants and
literals.

Finally, MODSIM is a strongly typed language. This means that all variables which are
used in a program must be declared by type and that variables passed into procedures are
checked for type consistency. This reduces errors in user code and ensures that they are
caught at compile time instead of showing up later as run-time errors which can be very
hard to find.

2.1 Program Layout

Although large MODSIM programs are usually organized into a number of separate
modules, the simplest MODSIM program can be completely self-contained in one MAIN
MODULE.

Constant, type, variable and procedure declarations come at the beginning of the MAIN
MODULE followed by the actual program code. The following sample of MODSIM code
illustrates how a program is structured. MODSIM is a case sensitive language. Note

MODSIM Reference Manual

10

also that reserved words and built-in procedures in the language are all capitalized so
they stand out from the user's identifiers.

MAIN MODULE Sample2;
{ This is a comment } (* So is this *)
{ Comments can be nested and can continue on
 as many lines as needed. { This is a nested
 comment. } }

{ declaration sections start here }
CONST { constant declarations }
 NumberOfTrucks = 45;

TYPE { user-defined type declarations }
 DayOfWeekType = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 WorkDayType = [Mon .. Fri];

VAR { variable declarations }
 sum, number : REAL;
 count : INTEGER;
 WorkDay : WorkDayType;

PROCEDURE foo(IN x : REAL); { procedure declaration }
BEGIN
 {.. procedure code here }
END PROCEDURE; { foo }

BEGIN { program "sample2" execution starts here
 i.e the "main" routine }
 ...
 foo(47.83);
 ...
END MODULE. { program "sample2" ends here }

There are sections for constant, type, variable and procedure declarations. These are all
optional and appear only if the program requires them. In fact a simple program could
have no declarations.

MAIN MODULE hello;
BEGIN
 OUTPUT("Hello, world!");
END MODULE.

Every module has a name. A MODSIM program takes its name from the MAIN
MODULE. This one is called hello. The executable produced by the compiler will be
called hello. Module names are case sensitive as are the names of executables.

There can be any number of constant, type, variable and procedure declaration sections.
The declaration sections can appear in any order. The only restriction to the ordering,
and it is an important one, is that declarations build one upon the other. In other words,

 Chapter 2: Program
Structure

11

if a user-defined type is used to declare a variable, the type's declaration must precede its
use in a variable declaration.

In general, MODSIM, like other languages of this type expects each thing it sees to have
been previously defined. There are several areas in which this requirement has been re-
laxed as a convenience to the programmer, but the principle is important. If the compiler
can not recognize something it sees, it draws attention to the potential error. This helps
ensure that code is correct and error free by identifying errors at compile time.

Once all of the declarations have been made, a BEGIN statement marks the end of the
declarations and the beginning of the program's executable code. In actual practice it is
desirable to have all declarations grouped together to enhance program readability. Usu-
ally the declaration sections are organized in the following order:

CONST
TYPE
VAR
PROCEDURE

The reason for this ordering becomes obvious quickly. We use the constant definitions
in declaring types, and then use the type definitions in declaring variables and finally use
all of these pieces in coding the procedures. However, the language does not require this
ordering provided everything is declared before it is referenced.

2.2 Identifiers, Reserved Words and Standard Procedures

Every statement in the language is comprised of a number of tokens. These include
identifiers, literals, operators, delimiters and separators. Identifiers are names the pro-
grammer supplies to refer to such user-defined constructs as variables, types, constants,
procedures, and modules.

Discussion of literals, operators, delimiters and separators will be deferred, but because
they are so basic, identifiers are introduced here.

An identifier must begin with an alphabetic character optionally followed by any number
of alphabetic or numeric characters. MODSIM is a case-sensitive language, so upper and
lower case letters are distinct.

MODSIM Reference Manual

12

letter

letter

digit

Figure 2-1. Syntax of an Identifier

Following are examples of identifiers:

numberOfTrucks, A32, a32, x, count, Count

Note: The identifiers count and Count are different because MODSIM is case sensi-
tive.

Here are a few illegal identifiers:

A_32, 3beanSalad, $JCL, Improvement%, zot.com

Identifiers are used to name the following elements of MODSIM programs:

Modules, Procedures, Constants, Types, Variables, Enumerations, Records,
Record Fields, Objects, Object Fields, Object Methods

The definitions of these language elements will be covered later in this manual but the
common thread is that identifiers are used to name each of these constructs.

There is a simple rule about the use of identifiers:

Identifiers must be unique within a scope.

If the programmer has used an identifier called numberOfTrucks to name a procedure,
the same identifier cannot be used in the same scope for another purpose, for instance, to
name a variable. However, when the concept of scope is discussed shortly, we will see
how identifiers can be reused for a different purpose within a particular scope.

Reserved words are identifiers such as BEGIN, IF, THEN, etc. which the MODSIM lan-
guage itself has already used to define its syntax. These reserved words, which are listed
in Appendix B, cannot be used as identifiers, as variables, or as any other user defined
name by the programmer for obvious reasons. Although the compiler might be able to
keep reserved words distinct from user's identifiers because of their context, it would lead
to code which is difficult to read and maintain.

MODSIM also has defined a number of standard procedures such as MAXOF, DISPOSE,
OUTPUT, etc. whose identifiers also can not be used by the programmer. These are listed
in Appendix C. The identifiers used for the reserved words and standard procedures in

 Chapter 2: Program
Structure

13

MODSIM are all in upper-case letters. By convention, MODSIM programmers should
avoid composing identifiers in all upper-case. This helps the reader of the code to distin-
guish user-defined items from reserved words.

Finally, there is no limit on the length of an identifier in MODSIM, but the computers on
which MODSIM runs may have linkers which truncate long names. See the discussion at
the end of Chapter 8 for more information on this subject.

2.3 Block Structure and Scope of Variables

The block is the main structural unit of a MODSIM III program. A block is made up of
constant, type, variable, and procedure declarations followed by executable code.

BEGIN END
statement
sequence

declaration

Figure 2-2. Syntax of a Program Block

A simple MODSIM program can consist simply of a block inserted inside a heading for a
MAIN MODULE. We can see this clearly in Sample2:

MAIN MODULE Sample2;
 block
END MODULE.

The block is used in several other ways as well. A PROCEDURE, which is equivalent to a
routine, sub-routine, sub-program or function in other languages, consists of a procedure
heading and a block. Later, when the concept of modules is covered in more detail, we
will see that modules are also built from blocks.

There are three important characteristics about blocks:

• The identifiers which name constants, types, variables and procedures in a block
are known or “visible” only within that block. We say that their scope is limited
to that block.

• Memory for variables declared in a block is allocated automatically upon entry to
a block and deallocated automatically when leaving a block. Since the block
which defines a module is never entered or left, the variables defined in the mod-
ule remain in place throughout the execution of the program.

When the concept of strong typing is combined with the concept of scope several impor-
tant benefits are realized:

MODSIM Reference Manual

14

• Program reliability is enhanced since many more errors in coding can be now
detected by the compiler.

• Memory management is improved since memory is allocated for variables only
when needed.

• Access to types, variables and procedures is more tightly controlled since they
cannot be accessed from outside of their scope.

2.4 Nesting of Blocks

Since in MODSIM III one block can be placed within another, we have explicit control
over the scope or visibility of identifiers. As an example, we can examine a program
skeleton. The blocks in this example are numbered, but there is no corresponding ability
or need in the language to give a name to a block.

 MAIN MODULE Sample3;
 VAR
 x, y: REAL;

 PROCEDURE foo;
 VAR

 a, b: REAL;
 x : INTEGER;

2 BEGIN
 x := 5;

 OUTPUT("Second time x=", x);
 ...

 END PROCEDURE;

 BEGIN { main program code starts here }

 ...
 1 x := 12.34;
 OUTPUT("First time x=", x);

foo;
 OUTPUT("Third time x=", x);

 ...
 END MODULE.

In Sample3 the REAL type variables x and y and procedure foo are visible throughout
the entire program, in this case block 1. We say that their scope is global. The REAL
type variables a and b are visible only within procedure foo, i.e. block 2.

 Chapter 2: Program
Structure

15

2.5 Redefinition of Identifiers

The code in Sample3 illustrates another important point about the scope of identifiers
and, consequently, the entities to which they provide a name. Note that the identifier for
the REAL type global variable x, which is defined in block 1, is reused to name an
INTEGER type within block 2. The original variable called x is visible everywhere in the
program except within block 2 where the new variable called x has been defined. Note
that the local definition of a new variable called x in block 2 does not affect the global
variable called x. Within block 2 the local definition applies. Outside of block 2, the
original definition applies. If we run Sample3, it outputs the following:

First time x = 12.34
Second time x = 5
Third time x = 12.34

The point to note is that the local definition of x in block 2 temporarily overrides the
original definition. Although the global variable called x is not visible within block 2,
the value stored in that global variable is secure and will once again be available when
the program exits from block 2.

It is important to note that the uniqueness and reuse of identifiers is applicable across all
identifiers, regardless of the kind of construct they are identifying. Thus, if a globally
visible procedure called foo exists, it is possible to use foo to name an INTEGER vari-
able within a block. Within that block, the procedure would not be visible since its name
had been usurped to name a variable.

Within a block any attempt to reuse an identifier already defined in that block will be
flagged as an error.

2.6 Delimiters

A delimiter is a programming element which marks the beginning or end of some part or
component of a program. Following is a complete list of symbols which serve as delim-
iters:

MODSIM Reference Manual

16

Delimiter Meaning

BEGIN marks start of a block
END ... Marks end of a construct

() start and end of parameter lists
and list of enumerated constants

[] array index brackets
[] subrange brackets
{ } comments

(* *) comments
. marks end of a module

" " string delimiter
' ' character delimiter

Figure 2-3. Delimiters

2.7 Separators

A separator is a token which separates two other tokens. For instance:

IF SomeStatus <carriage return>
OUTPUT("Status was TRUE.");<carriage return>
OUTPUT();<carriage return>

END IF;

In the code above, spaces, tabs, and a carriage return were used to separate the elements
of an IF statement. A space was used to separate the reserved word “IF” from the identi-
fier “SomeStatus”, so that it would not be mistaken for “IFSomeStatus”. Finally, a
semicolon at the end of the statement separates it from the following statement.

Any number of the following separators may be inserted between tokens anywhere in a
program to disambiguate the meaning, or to improve readability:

• A space character
• A carriage return or new line character
• A tab character
• A comment (discussed below).

Statements must be separated by semicolons. Any number of semicolons may be placed
before or after any statement, and have no effect, but at least one must be placed between
any two statements to separate them.

 Chapter 2: Program
Structure

17

2.8 Comments

A comment is an arbitrary sequence of characters which serves to document or comment
on the code, but is ignored by the compiler. Comments are delimited by either the curly
bracket or brace symbols “{“ and “}”, or by “(*” and “*)”. MODSIM allows nested
comments. That is, the following:

{{ This is a comment } within a comment! }

 or
{(* This is a comment *) within a comment! }

will all be treated as a comment. Comments may extend over any number of lines.
Comments may be nested to any depth. The symbols used to delimit any one level of
comment must match. In other words, the delimiters used on either end of a comment
cannot be mixed. Nested comments are particularly useful when it is desired to comment
out a section of code which might already contain comments.

MODSIM Reference Manual

18

19

3. Simple Data Types and Their Operators

In this chapter we discuss the simple data types. These are characterized by one common
trait. They are used to hold a single unit of data. This data might be a number, a char-
acter, a text string, a Boolean flag or one value chosen from an enumeration of values. In
Chapter 5 we will discuss the more complex structured data types which are used to hold
multiple units or aggregates of data.

MODSIM III supports the following built-in simple data types:

INTEGER, REAL, BOOLEAN, CHAR, STRING

There are also two user-defined simple data types:

enumeration, subrange

Using these simple data types, it is possible to declare structured data types, arrays, rec-
ords and objects, which are based on these built-in types.

A subset of the simple data types can be referred to as scalar types because they can be
used to scale or measure things. A further subset of the scalar types are known as ordinal
types because they have a particular ordering and a known sequence. The figure below
shows the relationships.

 Enumeration

 INTEGER CHAR REAL STRING

 BOOLEAN Subrange

Ordinal Types

Scalar Types

Figure 3-1. Simple Data Types

MODSIM Reference Manual

20

To store data in a program, the programmer must declare a storage area called a vari-
able. This is done by supplying an identifier which names the variable and by specifying
the data type. All units of data which can be manipulated in a program are either these
variables or literal constants such as “7” or “93.57”.

This chapter starts by discussing what a data type is and how it is represented in the com-
puter's memory. Later we describe how each data type is represented externally; for in-
stance when it is written or printed out.

For each simple data type the language defines a set of operators which can be used to
manipulate variables and constants of that data type. These operators are discussed in
this chapter. The chapter finishes by giving a brief description of the built-in procedures
which allow more elaborate manipulation of data.

3.1 What is a Data Type?

The term type describes the nature of data and how it will be represented internally in the
computer's random-access memory. Data which is stored and manipulated in digital
computers typically can be placed into one of three categories:

• Numbers

• Textual information

• Flags or Switches which are TRUE or FALSE

MODSIM defines a number of built-in data types which can be used to represent each of
these categories of data. First we will discuss how these data types are influenced by the
way in which a computer internally represents each category of data. Then we will show
how each category of data is expressed in MODSIM.

3.2 Internal Representation of Data

Hardware and memory limitations in earlier computer systems strongly influenced early
language design in the representation of data. The tendency was to provide several alter-
natively sized representations of each category of data so the programmer could mini-
mize the amount of memory used to store numerical data. This concern for minimizing
memory use often led to the use of storage representations which lacked the accuracy to
support precise mathematical computation.

In contemporary digital computers, data are typically represented internally using the bi-
nary number system. Unfortunately, the binary number system cannot exactly represent
real or fractional numbers from the base 10 number system. When a real number is
translated into the binary system, only an approximate value can be represented. How-

Chapter 3: Simple Data Types

21

ever, the greater the number of binary digits, or bits, used to represent the number, the
greater the accuracy of representation.

When a smaller number of binary digits is being used in the computer to represent a
number, the approximation error will be greater. Large accumulative errors can creep
into repetitive calculations. These are known as approximation errors or round off
errors.

Earlier languages typically represented real numbers in 32 bits and provided “double pre-
cision” 64 bit representations where accuracy was more important. Similarly there were
a number of different ways to represent whole or integer numbers. MODSIM had the
advantage of being designed at a time when computer hardware was more mature. The
designers decided to specify a larger number of binary digits to represent both real and
integer numbers and to do away with alternative ways of expressing the same data type.
This means that MODSIM provides accurate numerical representation while simplifying
program design since there is only one way to represent each category of data.

3.2.1 Representation of Numerical Data

MODSIM III provides two built-in data types which can be used to represent numerical
information:

INTEGER and REAL

The INTEGER type is used to represent whole numbers. The REAL type is used to repre-
sent fractional or floating point numbers.

3.2.1.1 Type INTEGER

The INTEGER type provides an exact representation of each whole number. All imple-
mentations of MODSIM use at least 32 bits to represent each integer. This means that
base 10 numbers in the range -2,147,483,648 to 2,147,483,647 can be exactly repre-
sented. This capability is equivalent to a type often called “long integer“ in many lan-
guages.

3.2.1.2 Type REAL

The REAL type is used to represent fractional or floating point numbers. MODSIM uses
at least 64 bits to represent each real number. Although the handling of real numbers can
be hardware specific, this typically means that real numbers in the range -1.7E308 to
+1.7E308 can be represented. This is equivalent to a type often called “double precision
floating point” in many languages. The capability afforded by this 64-bit representation
becomes apparent when compared to 32-bit representations which can typically represent
numbers in the range +3.4E38 to -3.4E38. Not only is the range of values which can be
represented larger, but the accuracy with which they can be represented is also greater.

MODSIM Reference Manual

22

There are two built-in functions called MAX and MIN which determine the largest and
smallest possible values for each type on a given machine. On typical machines which
implement type INTEGER in 32 bits, MAX(INTEGER) would return a value of
2,147,483,647. Likewise MAX(REAL) would yield 1.7E308.

3.2.2 Representation of Textual Data

MODSIM provides two built-in data types which can be used to represent textual infor-
mation:

CHAR and STRING

3.2.2.1 Type CHAR

The CHAR type is used to represent a single character. Each character is stored in one
byte, which is 8 bits. This means that the CHAR type can represent 256 possible character
values. The ASCII (American Standard Code for Information Interchange) character set
is used in all implementations of MODSIM. This means that the characters from 0 to
127 are as defined by the ASCII standard. The characters from 128 through 255, how-
ever were not included in the original ASCII standard, so their interpretation and appear-
ance will vary from computer to computer and printer to printer. The ASCII character
set is sometimes referred to as the ANSI (American National Standards Institute) char-
acter set. For some time ANSI has considered a draft standard for the upper 128 charac-
ters, but has not taken any action.

Although the ASCII character set is in very wide use throughout the world, the interna-
tional standard is the “ISO 646” (International Standards Organization) character set.
Unfortunately it is not possible to easily use this character set with MODSIM. It is a
subset of the ASCII character set and lacks the following characters which are used in the
language:

[] ^ { }

Although its native character set is ASCII, MODSIM can be used with katakana or kanji
I/O devices and with devices which output the Chinese character set. This is because it
supports eight bits in the CHAR type in all situations where the hardware and operating
system allow this type of support.

Pre-defined MODSIM functions associated with the type CHAR include CAP, CHR, DEC,
INC, ORD, MAX, MIN, and VAL. A brief description of these functions follows at the end
of this chapter. A full description of these functions is provided in Appendix C.

Chapter 3: Simple Data Types

23

3.2.2.2 Type STRING

The STRING type is used to represent any sequence of characters. The STRING type is
fully dynamic. This means that the programmer does not need to specify the size, in
number of characters, of the text string to be stored in a STRING type. This type is a
powerful feature of the language. Most high-level languages do not support dynamic
strings. They typically require the programmer to manipulate arrays of characters to
achieve the effect of strings in a program.

Among languages which do not support dynamic strings are: FORTRAN, Algol, Pascal,
C and Ada.

Some languages which do support dynamic strings are: MODSIM III, BASIC,
SIMSCRIPT II.5 and PL/I.

There are several important characteristics of strings in MODSIM. The characters which
make up strings are numbered from 1, not 0. In the string “orange”, the 'o' is at position
1 in the string. The 'g' is at position 5. The length of the string is 6. An empty string is
known as a null string. It has a length of 0.

The CHAR type is a conformant type to the STRING type. This means that a CHAR can be
used anywhere a STRING is expected. A CHAR is treated in these situations as a STRING
of length one.

A conformant type is one which is completely type compatible with another. For in-
stance, the CHAR type is conformant to the STRING type because any single character is
logically equivalent to a string of length one. The opposite is not true however. The
STRING type is not conformant to the CHAR type because a string may, and usually does,
consist of more than one character.

Built-in MODSIM functions associated with the type STRING include STRLEN, SUBSTR,
POSITION, INSERT, REPLACE, UPPER, LOWER, INTTOSTR, STRTOINT, REALTOSTR,
STRTOREAL, STRTOCHAR, CHARTOSTR and SCHAR. A brief description of these func-
tions follows at the end of this chapter. A full description of these functions is provided
in Appendix C.

3.2.3 Representation of TRUE / FALSE or Boolean Data

MODSIM provides a built-in data type which can be used to represent TRUE / FALSE or
Boolean information:

BOOLEAN

MODSIM Reference Manual

24

3.2.3.1 Type BOOLEAN

The BOOLEAN type is used as a switch or flag to represent a TRUE or FALSE state. Al-
though this information can be represented in one bit, the information is actually stored
in one byte on most implementations. A whole byte is used because that is the smallest
unit of data which can be efficiently manipulated in most machines. To pack the data
into bits and manipulate the bits would result in poor performance. Since memory limi-
tations are becoming less of an issue, the trade-off between performance and efficient use
of memory has been resolved in favor of better performance.

3.3 User-defined Types

There are a number of user-defined types. We will cover the two simple types here and
defer discussion of the more complex ones until arrays and records have been covered.

3.3.1 Enumerated Types

The enumerated type is a completely user-defined type. The programmer explicitly lists
all of the possible values for the enumerated type in a specified order. The values are
described using standard identifiers. Up to 256 values can be specified in an enumerated
type. In other words, an enumeration consists of an ordered collection of values ex-
pressed as valid MODSIM identifiers. The TYPE declaration below illustrates the use of
enumerated types:

TYPE
 dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
 compassType = (North, South, East, West);
 directionType = (Up, Down);

An enumerated type may contain any unique, valid identifier. Note that identifiers may
not belong to more than one type since they would then be ambiguous. The ordinal value
of any element is available from the built-in function ORD, which will return a value from
0 to n-1 where n is the number of elements defined for that enumerated type. For in-
stance, ORD(Tue) would evaluate to 2.

Other functions which can operate on enumerated types are MAX, MIN, DEC, INC, and
VAL. These are documented in Appendix C.

Having defined an enumerated type we can then declare a variable of that type. The
variable holds one possible value at a time. If we had a variable called whichWay of
type directionType, it could hold either the value Up or the value Down at any one
time.

Relations between values of enumerated types can be checked in Boolean expressions:

Tue < Wed is TRUE
Tue > Wed is FALSE

Chapter 3: Simple Data Types

25

Values from two different enumerated types cannot be compared because that would be
meaningless. For instance the following expression:

Tue > North

would be flagged by the compiler as an error.

Unlike other languages which have enumerated types, MODSIM has provisions for out-
put. For instance:

IF Tday = Thurs
OUTPUT(Tday);

...

Now that we have introduced the enumerated type, it is worth observing that the
BOOLEAN type can be considered to be a built-in enumerated type with the following
definition:

TYPE
 BOOLEAN = (FALSE, TRUE);

3.3.2 Ordinal Data Types

The following subset of scalar data types are known as ordinal types:

INTEGER, CHAR, BOOLEAN, Enumeration, Subrange

These data types are characterized by a common trait. Each takes on only discrete values
and each has a known ordering. In other words, given the integer value seven we know
that the next possible value is eight and the previous value is six. This certainty in or-
dering is not possible with real numbers. Given the real number 98.632491 we cannot
say what the next or previous value is. Similarly, given the string "Hello" we cannot
say what the next value is.

Why the formal definition of ordinal types? Because they are used in several contexts in
the language. They are used as indices in arrays, choices in CASE statements and to de-
fine subrange types.

Before leaving the subject of ordinal types it is worth noting that the expected ordering
for type CHAR is that given in the ASCII character set. The order for type BOOLEAN is as
follows: FALSE, TRUE.

3.3.3 Subrange Types

A subrange type is simply a subset of an ordinal data type. For instance:

MODSIM Reference Manual

26

TYPE
 scoreType = [1..10];
 gradeType = ['A'..'F'];

Given an enumerated type definition, we can define a subrange of that type since it is
also an ordinal type:

TYPE
 dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
 weekdayType = [Mon .. Fri];

The advantage of the subrange type is that many logic errors in a program can be caught
at run-time. Assigning a value which is out of bounds to a variable of a subrange type
causes a run-time error. If we had a variable of type gradeType and tried to assign a
grade of 'M', this would result in an error.

3.4 External Representation of Data

For each of the simple data types just described, MODSIM specifies formats which are
used to express values of that type. These are known as literals. Literals of each data
type are used in three contexts:

• In program code to express constant values

• For input to a program from a terminal or text data file

• For output from a program.

The formats for literals have been designed so that the type of data being described is ap-
parent from examination of the literal.

3.4.1 INTEGER Literals

There are two ways to express integer numbers. They may be expressed as decimal (base
10) or hexadecimal (base 16) literals. In all cases, they are internally represented in the
computer as binary numbers. The syntax of an integer literal is as follows:

digit

digit

hexadecimal digit

H

Figure 3-2. Syntax of an INTEGER Literal

Chapter 3: Simple Data Types

27

The numeric digit described above may be (0-9) for decimal or (0-9, A-F) for hexadeci-
mal. A sign prefix (+ or -) may optionally be added. Hexadecimal literals must begin
with a digit (0-9) and end with the character H. To express a hexadecimal number which
begins with (A-F), a leading “0” must be supplied. Note that the radix indicator H for
hexadecimal and the digits A-F used in hexadecimal literals must be in upper-case.

Thus the decimal number two hundred twenty eight can be expressed in the following
ways:

decimal 228

hexadecimal 0E4H

Both of these literals will be stored internally as the binary number 011100100.

3.4.2 REAL Literals

There are two ways to express real numbers. They may be written in the familiar deci-
mal notation or using exponential notation which is sometimes called scientific or engi-
neering notation.

Decimal notation consists of an optional sign, 1 or more decimal digits, a decimal point
and 0 or more decimal digits.

Exponential notation consists of an optional sign, 1 or more decimal digits, a decimal
point, 0 or more decimal digits, E (for Exponent), an optional sign and a decimal integer.

 digit .

 E

 +

 -

 digit

 digit

Figure 3-3. Syntax of REAL Literals

Examples of REAL literals are:

23.45 1.2 0.3 34.56E12 -13.4E-7 0.0

MODSIM Reference Manual

28

3.4.3 CHARACTER Literals

There are two ways to express character literals.

Any printable character (alphanumeric or symbol) can be expressed by enclosing it in
apostrophes (single quotes).

'A' 'a' '?' '$' '+'

Control characters which are not printable can be expressed using a format similar to that
for decimal integers. The decimal (i.e. base 10) value of the character is written followed
by the letter C. The C must be in upper-case.

13C ⇒⇒ carriage return 7C ⇒⇒ bell 27C ⇒⇒ escape

To refer to the apostrophe character itself in a CHAR literal, the enclosed apostrophe must
be repeated. The following character literal:

''''

will evaluate as:

'

character' '

Figure 3-4. Character Literals

3.4.4 STRING Literals

String literals in MODSIM consist of any sequence of printable characters on one line
enclosed in quotation marks.

"The rain in Spain falls mainly on the plain."

To use the quotation character inside a string literal, place two quotation marks wherever
a single one is needed in the string. For instance:

"He said ""Thank you"""

will evaluate as:

He said "Thank you"

Chapter 3: Simple Data Types

29

" "

character

Figure 3-5. Syntax of String Literals

3.4.5 BOOLEAN Literals

There is one format for Boolean literals. The possible values are TRUE and FALSE.
These identifiers are reserved words, and must be in upper-case. Note that these are lit-
erals, not strings, so it is not correct to do the following:

IF Status = "TRUE"

The correct use is:

IF Status = TRUE

3.4.6 Enumerations

An enumeration consists of an ordered collection of values expressed as valid MODSIM
identifiers. Therefore a literal for an enumerated type is simply a MODSIM identifier.

3.5 Operators

An operator is a symbol or reserved word which specifies an action or operation to be
performed. “+”, “-”, and “DIV” are examples of operators. A complete list of reserved
words is given in Appendix B.

The operations which can be performed on variables and constants of each data type dif-
fer with the data type. For example, it is obvious that the “+” operator can be used to
add two integer constants together:

2 + 2

but it would not be appropriate to use the same operator with two Boolean constants:

TRUE + FALSE

This has no meaning.

This section lists the operations which may be performed on variables and constants of
each built-in data type. Later, in the sections which cover expressions and assignment,
some of this information will be described in greater detail.

MODSIM Reference Manual

30

In addition to these fundamental operators which allow for the basic manipulation of
data, MODSIM supports a rich collection of built-in procedures to perform more spe-
cialized and/or elaborate operations on data. Examples of these procedures include the
SUBSTR functions which return a substring of the input string and the ROUND function
which rounds real numbers to the nearest whole number. These built-in procedures are
described in detail in Appendix C.

Finally, MODSIM provides a standard set of library modules from which more special-
ized support procedures and objects can be imported for use in a program.

3.5.1 Assignment Operator

The assignment operator is used to assign the value of a constant, variable or expression
to a variable for storage. The assignment operator is the colon followed immediately by
the equal sign:

:=

Many languages use the equal sign alone for assignment, but since the = operator is used
for logical comparison the := operator more clearly denotes the intended action. As a
note of historical interest the ←← symbol was in early drafts of the ASCII character set. It
was intended to be used as the assignment operator. It may help to enforce the notion of
assignment to think of the := symbol as an equivalent to the ←← symbol. Thus,

x := 13.5 is equivalent to x ←← 13.5

The assignment operator is valid for all types, both built-in and user-defined.

3.5.2 Arithmetic Operators

The arithmetic operators are used to manipulate variables and constants of the INTEGER
and REAL types. Figure 6 shows a list of the arithmetic operators and the types to which
they can be applied.

Note that some operations apply only to one type or the other. This is because MODSIM
is a strongly typed language and some operations are meaningful only with that type.

The modulus operator returns the remainder of an integer division. Thus, the expression
33 MOD 7 would evaluate to 5. Likewise the expression 33 DIV 7 would evaluate to a 4.
The expression 5.0 / 2.0 would evaluate to 2.5.

Most of the operators are “binary” operators, i.e. they take two operands, one on either
side. The unary plus and minus operators are used to change the sign of a variable.
These take only one operand which is to the immediate right. Thus, if x evaluates to
5.3, then -x evaluates to -5.3.

Chapter 3: Simple Data Types

31

Operator Meaning Applicable Types

+ addition INTEGER, REAL

- subtraction INTEGER, REAL

* multiplication INTEGER, REAL

/ real division REAL

DIV integer division INTEGER

MOD modulus INTEGER

+ unary plus INTEGER, REAL

- unary minus INTEGER, REAL

Figure 3-6. Arithmetic Operators

The two operands of each binary operator must be type compatible and that type must be
appropriate for the operator. Thus, the following combinations of operands and opera-
tors are legal:

2.0 + 2.0
2 + 2
5.0 / 7.0
8 DIV 2

while the following are not legal:

2.0 + 2 ⇒⇒ mixed REAL and INTEGER operands
5.0 DIV 7.0 ⇒⇒ operand types incompatible with operator
5 / 7 ⇒⇒ operand types incompatible with operator

3.5.3 Relational Operators

The relational operators are used to perform comparisons of values. They are all binary
operators which take an operand on either side. Like arithmetic operators, the operands
used with relational operators must both be of the same type. The result of the expres-
sion is of type BOOLEAN.

Operator Meaning Applicable Types

= equal All types
<> not equal All types
< less than All scalar types and STRING
<= less than or equal All scalar types and STRING
> greater than All scalar types and STRING
>= greater than or equal All scalar types and STRING

Figure 3-7. Relational Operators

MODSIM Reference Manual

32

3.5.4 Logical Operators

There are three logical operators which can be applied to Boolean expressions:

NOT, AND, OR

NOT is a unary operator which takes one operand on its right. AND and OR are binary op-
erators which take two operands, one on either side. The following table summarizes the
effect of each logical operator:

NOT TRUE ⇒⇒ FALSE
NOT FALSE ⇒⇒ TRUE

TRUE AND TRUE ⇒⇒ TRUE
FALSE AND TRUE ⇒⇒ FALSE

FALSE AND FALSE ⇒⇒ FALSE

TRUE OR TRUE ⇒⇒ TRUE
FALSE OR TRUE ⇒⇒ TRUE

FALSE OR FALSE ⇒⇒ FALSE

Figure 3-8. Logical Operators

MODSIM uses "short circuit" evaluation of Boolean expressions. This means that only
as much of an expression is evaluated as is needed to determine the value of the expres-
sion. This topic will be covered in more detail later.

There is another operator which we will mention here for completeness. We will defer
discussion of its use until expressions and structured types have been covered.

The “.” is used to construct qualified identifiers which refer to individual fields of a re-
cord.

3.6 Built-in Procedures and Functions

MODSIM provides a number of predefined or built-in procedures and functions. Below
is a partial list of these procedures. Appendix C provides a complete listing in greater
detail of each procedure and function.

Function Use

ABS(Num) Absolute value of INTEGER or REAL number.
CAP(Chr) Returns the upper-case equivalent of the character

Chr.

Chapter 3: Simple Data Types

33

CHARTOSTR(ArryOfChar) Returns the STRING representation of an ARRAY
OF CHAR.

CHR(Int) Returns the character with the given INTEGER
ordinal value.

CLONE(Ref) Returns a copy of the ARRAY, RECORD or OBJECT
instance referred to by Ref.

FLOAT(Int) Converts INTEGER to REAL.
HIGH(Arry[]) Returns the high bound of an array element.
INTTOSTR(Int) Returns the STRING representation of Int.
LOW(Arry[]) Returns the low bound of an array element.
LOWER(Str) Returns a string in which all characters in Str

have been changed to lower case.
MAX(ScalrTyp) Returns the highest allowed value of a scalar type.
MAXOF(ScalrTypList) Returns the highest value from the list.
MIN(ScalrTyp) Returns the lowest allowed value of a scalar type.
MINOF(ScalrTypList) Returns the lowest value from the list.
ODD(Num) Returns TRUE if odd, FALSE if even.
ORD(Ordinal) Returns the particular ordinal value of an ordinal

type.
POSITION(Str1, Str2) Returns the position of Str2 in Str1.
REALTOSTR(RlNum) Returns the STRING representation of RlNum.
SCHAR(Str, pos) Returns the character at position pos in Str.
STRLEN(Str) Returns the length of string Str.
STRTOINT(Str) Returns the INTEGER representation of Str.
STRTOREAL(Str) Returns the REAL representation of Str.
SUBSTR(pos1, pos2, Str) Returns substring of Str from pos1 to pos2.
TRUNC(RealNum) Truncates a REAL value to INTEGER.
UPPER(Str) Returns a string in which all characters in Str

have been changed to upper-case.
VAL(OrdType, OrdNum) Returns the OrdType value which has ordinal

value OrdNum.

MODSIM Reference Manual

34

Procedure Use

DEC(Ord [,n]) Decrements an ordinal variable by n. n defaults
to 1 if omitted.

DISPOSE(Ref) Deallocates the instance of the ARRAY, RECORD or
OBJECT referenced by Ref.

HALT Terminates a program.
INC(Ord [,n]) Increments an ordinal variable by n. n defaults to

1 if omitted.
INPUT(Var1,...) Reads values from the standard input.
INSERT(Str1, pos, Str2) Inserts Str2 at position pos in Str1.
NEW(Ref) Allocates an instance of Ref, and returns a refer-

ence to it. Can be used with ARRAYs, RECORDs
and OBJECTs.

OUTPUT(Var1,...) Writes values to the standard output.
REPLACE(Str1, pos1, pos2, Str2)

Replaces the part of Str1 from pos1 to pos2
with Str2.

STRTOCHAR(Str, ArryOfChar) Converts Str to an ARRAY OF CHAR.

35

4. Declarations, Expressions and
Precedence

The previous chapter discussed built-in data types and how to express values of each data
type. This chapter discusses how to declare constants, declare user-defined types which
are based on the built-in types, how to declare variables of any type and, finally, how to
use variables and constants in expressions. Before describing data structures and show-
ing how they are declared we first need to discuss what a declaration is and why it is
needed.

4.1 Declarations

Declarations are statements placed ahead of executable code in a program or block which
describe the nature of the data which is to be manipulated. The language uses these dec-
larations to allocate and organize the memory which will be used to store the data and to
check for consistent use of that data. For example, if we have declared that a variable
named X will be used to store REAL numbers, then x := "Hello" will be caught as an
error when the program is compiled.

Another type of declaration is a procedure declaration which describes a procedure or
routine which will be called later by the program's code.

To review the information in Chapter 2, there are four categories of declarations: con-
stant, type, variable and procedure. They can actually appear in any order, but, since the
declarations tend to build one upon the other, they are usually found in the order just de-
scribed. It is also worth noting that the declarations need not be grouped in only one
declaration section. For instance, there could be several VAR declarations sections.

4.1.1 CONSTant Declarations

A constant declaration defines an expression which is substituted at compile-time for the
specified identifier everywhere it occurs. Constants are useful for several reasons:

• Program code becomes more readable when we refer to something by name
rather than by value – i.e NumEmployees vs. 57. Instead of sprinkling program
code with meaningless literal constants, the programmer uses a constant with
good mnemonic value.

• If a value used throughout the program needs to be changed, it needs to be
changed only once in the constant declaration section if a constant has been used
throughout the code instead of once for each use of a literal.

• A constant expression is evaluated only once at compile time, not every time the
constant is used in a program.

MODSIM Reference Manual

36

A constant is declared in a constant declaration block as shown in the syntax diagram
below.

identifier expression

CONST

= ;

Figure 4-1. Syntax of a Constant Declaration

It consists of the reserved word CONST followed by pairs of identifiers and expressions
connected with the equal sign. A constant declaration block ends when another declara-
tion block such as a variable declaration block starts or when a BEGIN statement is
reached.

Once a constant has been declared, its value cannot be altered. Since a constant may be
defined by an expression (such as 2 + 3) one declaration can build on another. For in-
stance:

CONST
pi = 3.141592654;
ArraySize = 25;
circ = 2.0 * pi;
twoPi = circ;
hello = "Hello";

Only a constant or a literal may be used in the expression which defines a constant.

4.1.2 TYPE Declarations

The TYPE declaration is used to create new data types which build upon the existing
built-in types or other user-defined types. The only user-defined data type we have in-
troduced so far is the enumeration. So we will use the enumeration to show how type
declarations are expressed. Later, when the structured data types ARRAY, RECORD and
OBJECT have been introduced, we will revisit the subject and elaborate on TYPE decla-
rations.

TYPE
 carType = (Chrysler, Ford, Porsche, Saab);
 colorType = (red, yellow, green);

Chapter 4: Declarations, Expressions, and Precedence

37

TYPE

= ;simple type

record type

object type

array type

identifier

Figure 4-2. Syntax of a Type Declaration

Note that the identifiers used to name the user-defined enumeration types both end with
the word Type. This is simply a convention which helps make code more readable. The
word Type, when appended to the word color gives the identifier some mnemonic
content. The identifier is being used to name a type definition which holds information
about colors. This convention helps to distinguish type identifiers from variable identifi-
ers.

4.1.3 VARiable Declarations

Variable declarations are the statements which reserve memory space to hold a program's
data and which assign names to these data storage areas. The syntax is straightforward.
One or more identifiers is listed followed by a colon and the data type. Note that some
of the variable declarations below draw on the type definitions we declared above.

VAR
 n, j, k : INTEGER;
 x, y : REAL;
 filename : STRING;
 car : carType;
 trafficLight : colorType;

For each identifier listed on the left of a colon, memory space appropriate for the data
type specified on the right of the colon is reserved.

MODSIM Reference Manual

38

4.1.4 PROCEDURE Declarations

Finally we have procedure declarations. These are the definitions for user-defined pro-
cedures. Constant, type and variable declarations describe data. Procedure declarations
specify the internal data and executable code which will be used to execute the proce-
dure. User-defined procedures will be covered in detail in Chapter 7.

4.1.5 PROCEDURE Variable Declarations

You can declare a type or variable as a procedure type. Variables of this type may be
assigned a procedure that returns the specified type. To invoke the procedure using such
a variable, the variable is preceded by the CALL keyword and followed by an argument
list.

Note: No type checking will be performed on the argument list as to either the number of
types or the number of arguments. For example:

VAR
 p:PROCEDURE BOOLEAN;

PROCEDURE IsInRange(IN x : INTEGER) : BOOLEAN;
BEGIN
 ... { Implementation code }
END PROCEDURE;

BEGIN {MAIN}
 p:= IsInRange;
 IF CALL P(49)

 ...

END MODULE.

4.2 Automatic Initialization of Variables

MODSIM provides for the automatic initialization of all variables. Each variable is
automatically initialized to a specific value at the time it is declared. INTEGER and REAL
variables are initialized to zero. Variables of ordinal types such as CHAR, BOOLEAN and
enumerations are initialized to the value of that type which has ordinal value zero. For
CHAR this is the ASCII NUL character, for the BOOLEAN type this is FALSE and for
enumerated types it is the first value in the list. Subrange variables are initialized to the
lowest value in the subrange. Finally, variables of type STRING are initialized to the null
string. A null string is a string of length zero.

Chapter 4: Declarations, Expressions, and Precedence

39

4.3 Expressions

An expression is a collection of variables, constants or sub-expressions connected by op-
erators. Once all of the operations have been performed one value results. Here is a
simple expression:

2 + 2

Once the addition operation on the two constants has been performed we are left with the
result 4.

Expressions can yield numerical, textual or Boolean results. Since an expression is al-
ways evaluated to one resulting value, an expression always yields results of one type.
For the moment we will concentrate on numerical expressions as we explain the evalua-
tion rules.

Here is a more complicated expression which includes the previous expression as one of
its components:

5 + (3 * (2 + 2))

Note that we used parentheses to clarify our intention for evaluation of this expression.
In this case we evaluate the subexpression 2 + 2 yielding a result of 4 and then evaluate
the remaining expression, and so on until we have one resulting answer.

5 + (3 * (2 + 2)) ⇒⇒ 5 + (3 * 4)

5 + (3 * 4) ⇒⇒ 5 + 12

5 + 12 ⇒⇒ 17

4.4 Operator Precedence

The above operations were performed in a certain order. There are precedence rules for
the operators. The rule for evaluating expressions is that the innermost parenthesized
portions are evaluated first. Within any one level of parenthesization the operations are
performed in a specific order. The following table gives the order of precedence for the
operators. The highest precedence, those which are performed first, are at the top.
Within any group of operators at the same level the precedence is from left to right. The
operator precedence in MODSIM is described below:

MODSIM Reference Manual

40

 highest () function calls . [] NOT

 ⇑ ⇑ * / DIV MOD AND

 ⇓ ⇓ + - OR

 lowest = <> < <= > >=

Figure 4-3. Operator Precedence

4.5 Types of Expressions

The expressions shown above are mathematical expressions. There are two types of
these: those which yield an INTEGER result and those which yield a REAL result. These
have a direct analog in traditional mathematical expressions.

Another type of expression is one which yields a STRING type. For example:

"To be or " + "not to be." ⇒⇒ "To be or not to be."

Expressions can yield CHAR types. For example, if we use the built-in INC function to
increment a character, we get the next character:

INC('A') ⇒⇒ 'B'

One of the more useful expression types is the Boolean expression which, of course,
yields a BOOLEAN result. Boolean expressions are used wherever a TRUE or FALSE an-
swer is expected. The most common place to find them is in an IF statement.

IF x <= 0
 OUTPUT("x was less than or equal to zero");
ELSE
 OUTPUT("x was greater than zero");
END IF

The NOT, AND and OR operators can be used to build more complex expressions:

 (x <= 0) AND (y > 13) OR (day = Thurs)

4.5.1 Evaluating Boolean Expressions

MODSIM optimizes evaluation of Boolean expressions by using short-circuit evalua-
tion. A complex BOOLEAN expression is evaluated only as far as is necessary to deter-
mine its value. The following truth tables illustrate this:

Chapter 4: Declarations, Expressions, and Precedence

41

x AND y result

FALSE not evaluated FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

x OR y result

FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE not evaluated TRUE

NOT x result

FALSE TRUE
TRUE FALSE

Figure 4-4. Short Circuit Logic

This feature is important to the programmer for two reasons:

• As an optimization it avoids evaluating portions of a potentially complicated ex-
pression which will not contribute to the answer.

• It allows the programmer to check a variable to see if it falls within some value
range before proceeding to use it in an expression. This is particularly useful in
preventing divide by zero errors.

Consider :

IF (x <= 37) AND (SomeFunction(k) / SQRT(x) < 21.0)
...

In some languages, both expressions will be evaluated even if X is greater than 37.
Short-circuit logic will prevent this by not evaluating the second operand if the first is
false, thus short-circuiting the statement. In other words, in an AND expression the an-
swer will be false if either operand is false, so there is no need to continue once it is clear
that the first operand is false.

Next consider:

IF (X <> 0.0) AND (Y / X < 20.0) ...

In this case, if the variable X contains a value of zero, the first operand of the AND evaluates
to false and the rest of the expression is ignored. In this case ignoring the rest of the ex-
pression is desirable. Otherwise, when the expression Y / X is evaluated, we would be
dividing by zero and this could cause a run time error. Without short-circuit evaluation of
Boolean expressions we would have to construct a nested IF statement which first checked
to see if X contained the value zero before checking the next IF statement to see if Y / X <
20.0.

MODSIM Reference Manual

42

43

5. Structured Data Types

There are times when the built-in simple data types described earlier are not adequate for
some programming tasks. Often it is desirable to build and use more complex data
structures. The structured data type fills this need. It is a user-defined type which is
composed of more than one data element.

There are three structured data types:

ARRAY An ordered set of data elements referenced using an index or indi-
ces. All elements in an array are of the same type.

RECORD A user-defined data structure composed of some number of built-
in types or other data structures. Each element is a field which has
a name and can be referenced individually.

OBJECT Objects in MODSIM are dynamically allocated data structures
coupled with routines, called methods. Objects have fields, as rec-
ords do. The object's fields define its state at any instant in time
while its methods describe the actions which the object can per-
form. Objects will be discussed in Section II of this manual.

We will examine how these structured data types are used, and will then discuss alterna-
tive ways of managing their memory allocation before covering each one in detail.

5.1 Using Structured Data Types

To provide a framework for the discussion on the use of structured data types, we will
contrive a simple problem and examine a number of ways in which it can be solved.

Problem: We want to store and retrieve information about the names and
ages of a family's children and to be able to do this conveniently.

The family we use in this example has four children:

Who Age
Joe 28
Sue 25
Tim 18
Ana 16

Using the simple data types we have discussed so far, our choices are few. Here is the
code we could write:

MODSIM Reference Manual

44

VAR
 name1, name2, name3, name4 : STRING;
 age1, age2, age3, age4 : INTEGER;
BEGIN

 name1 := "Joe"; age1 := 28;
...
 name4 := "Ana"; age4 := 16;

This is how it would appear in memory:

name1 Joe age 128
 . .

. .

. .
name4 Ana age4 16

But this is not very useful. In order to discover Ana's age we would have to know that it
was stored in the variable age4. We would like to be able to say, "Give me the age of
the fourth child in the family". This is where the array can be useful. When there is
some natural ordering we can use as an index, the array becomes very useful:

name age

1 Joe 1 28

2 Sue 2 25

3 Tim 3 18

4 Ana 4 16

Here we have constructed two arrays. One holds the names and the other the ages of the
children. We need two arrays, because an array can hold only one data type. Thus, we
must store the names in an ARRAY OF STRING and the ages in an ARRAY OF
INTEGER. Now, we can look up the "age of the fourth child in the family" by checking
the fourth entry in the age array. This is how this problem would be solved in a lan-
guage like FORTRAN.

Chapter 5: Structured Data Types

45

More contemporary languages, however, would use a record to hold the related name and
age information. First, we would define a record with two fields: name and age. Then
we would make an array of these fields. Here is the record:

name age

And here is an array of these records filled with the data about our family:

name age

1 Joe 28

2 Sue 25

3 Tim 18

4 Ana 16

This is a more useful structure because we can find the record at index location 4 in the
array and then query about any of the information in that record. We do not have to look
in a separate array for each item of information about the sibling.

So far so good. But there is a nagging problem. How big should we make the array so
that it can handle any size family? Languages typically require arrays to be declared
with information about the size of the array. This information is fixed at the time the
program is written and cannot be changed or specified while the program is running.

What about a family with 13 children? Or how would we handle the family where a
widow and widower, each with 13 children, married. Now we have to allow for 26 en-
tries. This seems quite wasteful when the average family might only have 2 or 3 chil-
dren.

MODSIM provides a solution to this problem. Its arrays are dynamic. They are allo-
cated explicitly by the program while it is running. The required size of the array can be
computed by the program and specified at the time it is allocated.

But we still have a problem to solve. We have been indexing into the array of records
using the inherent ordering in a family's children: "What is the age of the fourth child in
the family?". The combined family of 26 children has two orderings. The fourth child in
the father's original family and the fourth child in the mother's original family. What
now? In fact this is a fairly common situation. We are often presented with data which
has no natural ordinal index.

MODSIM Reference Manual

46

The solution involves the use of records. We simply store the information for each child
in a record and then link the records together. We can link them together by making one
record point to the next. We can do this because a reference to a record is a legal field in
a record. The advantage is that we can string together an arbitrary number of these rec-
ords without having to state in advance how many there will be.

Even with dynamic arrays we eventually reach a moment of truth when we have to fi-
nally decide how big to make the array. A dynamic array cannot be grown in size once it
is allocated. With records, each one is allocated individually. This means that we can
link together any number of records into a linked list. Here is a record to which we have
added a field pointing to the next record in the list:

name

age next

Now we can allocate an instance of this new record type, fill it with data and link it to the
next one. We end up with a structure which looks like this:

Joe Sue Tim Ana

28 25 18 16 NILREC

The NILREC in the next field of the last record indicates that there is no record follow-
ing that one.

Refer to Chapter 14 for a discussion of linked lists in MODSIM.

5.1.1 Dynamic Versus Fixed Structures

The point of the discussion above was to demonstrate the advantage of the dynamic data
structure when compared to fixed data structures. When records and arrays use fixed al-
location like the INTEGER and REAL types, then all information concerning the number
and size of these structures must be stated at the time the program is written. By contrast
the size of dynamically allocated arrays can be decided while the program is running.
With dynamically allocated records, new instances can be allocated as needed and linked
to a list of records. Objects in MODSIM also behave in the same way.

Because the dynamic structured data type is normally the more useful, MODSIM sup-
ports the ARRAY, RECORD and OBJECT types as dynamically allocated types. For the
more limited occasions when fixed allocation may be more appropriate, MODSIM pro-
vides the FIXED ARRAY and the FIXED RECORD.

Chapter 5: Structured Data Types

47

In the remainder of this chapter, we will first discuss how dynamic data structures are
allocated and deallocated, and then we will cover the RECORD and ARRAY types. Finally,
we will discuss the FIXED ARRAY and the FIXED RECORD.

5.2 Memory Management of Dynamic Data Structures

The built-in and user defined data types we have discussed so far, such as the INTEGER,
REAL, STRING, CHAR, BOOLEAN and enumerations, share several important attributes
which characterize the way they are used:

• A variable of the desired type must declared. Conceptually, this variable will
contain the data.

• The memory which is used to store variables of each type is automatically allo-
cated when the program enters the block in which the variable has been declared.

• The memory is automatically deallocated when the block is exited.

• For each piece of memory which holds data, there is one and only one identifier
which refers to it.

• When we assign one variable to another, the value of the data in one is copied
into the other. Two copies of the data then exist.

We can describe these as “fixed” data types. The storage requirements are fixed at the
time the program is written and cannot be changed while the program is running. A pro-
grammer can perform a large variety of tasks with these data types. There is one limita-
tion, however. All data storage requirements must be known and stated in advance using
variable declarations.

MODSIM supports three “dynamic” data types: ARRAY, RECORD and OBJECT. These
types bring with them a number of capabilities not available with the fixed data types
discussed so far. In particular, they provide a dynamic memory management capability.
This capability is particularly important in the case of structured data types because they
can occupy significantly larger amounts of memory than the simple data types which
only contain one element of data.

There are several ways in which these dynamic data types differ from the fixed data
types:

• Memory is explicitly allocated and deallocated by the programmer using the
built-in procedures NEW and DISPOSE.

• There can be more than one identifier which refers to a particular dynamic data
structure.

MODSIM Reference Manual

48

• A dynamic data structure can exist with no identifier referring to it.

This last point is very important. It means that the programmer can allocate an instance
of an OBJECT, RECORD or ARRAY and place it in a MODSIM group or build a linked list
with it. It is not necessary to declare a variable for each instance of a data structure
which might be created by a program while it runs.

The variables which refer to dynamic data structures in MODSIM are called reference
variables. In one sense they act like pointers do in many languages. A dynamic data
structure can have any number of reference variables referring to it, or it can have none.

MODSIM's dynamic data types, their reference variables and the way they are used, dif-
fer from pointers in one important respect. It is not necessary to employ a special syntax
to reference this data in MODSIM. References to these structured data types are made in
the same way as for simple data types.

Despite the significant added utility of these dynamically allocated structured data types,
there are only two ways in which their use differs from the fixed data types:

• The programmer controls the allocation and deallocation of instances of this type.

• The effect of an assignment of reference variables differs from assignment of
fixed data types where an actual copy of the data is made.

Since structured data types can contain significant amounts of data, making a copy of
that data during an assignment is inappropriate. Instead, the reference variable being as-
signed to it is simply made to refer to the same instance of structured data. The follow-
ing code fragment illustrates the difference:

TYPE
 SomeRecType = a record type declaration;
VAR
 j, k : INTEGER;
 a, b : SomeRecType;
...
 k := 4;
 NEW(b); { allocate an instance of b }
 b := some record data { fill record b with data }
...
 j := k; { a copy of the value in k is stored in j }
 a := b; { a and b now refer to the same record

instance }

Chapter 5: Structured Data Types

49

Here is a diagram which illustrates how the data is organized in memory before the last
two assignments are made:

Figure 5-1. Memory Before Assignments

After the assignments are made this is how the data is organized:

Figure 5-2. Memory After Assignments

The important point to remember is that variables of type ARRAY, RECORD and OBJECT
are reference variables. They contain no data. Instead, they simply refer to an instance
of a structured data type which does contain the data. While a variable for a simple data
type uniquely names a particular storage area, a reference variable for an ARRAY,
RECORD or OBJECT type is a way of referring to unnamed data structures of that type.

NILRECa

b

oj

4k

some data

SomeRec Type
Reference

SomeRec Type
Reference

INTEGER

INTEGER

SomeRec Type
Instance

a

b

4j

4k

some data

SomeRec Type
Reference

SomeRec Type
Reference

INTEGER

INTEGER

SomeRec Type
Instance

MODSIM Reference Manual

50

5.2.1 The CLONE Function

There are times when the programmer does, in fact, want a copy of a dynamic data type.
MODSIM provides a built-in function called CLONE for this purpose. It works with the
three dynamic data types: ARRAY, RECORD and OBJECT.

The CLONE function takes a reference variable as an argument. It then allocates space
for a new instance of the same type and copies the values of every element of the original
into the new instance. Finally, it returns a reference to the new copy. CLONE does not
always copy all fields. Refer to paragraph 9.11.

The user could accomplish the same effect by allocating a new instance and explicitly
copying element by element, but the CLONE function provides a short-cut way of ex-
pressing this functionality and accomplishes the copy more efficiently.

To illustrate the CLONE function we will revisit the previous example and substitute a
call to the CLONE function instead of using an assignment statement.

TYPE
 SomeRecType = a record type declaration;
VAR
 j, k : INTEGER;
 a, b : SomeRecordType;
...
 k := 4;
 NEW(b); { allocate an instance of b }
 b := some data { fill record b with data }
...
 j := k; { a copy of the value in k is stored in j }
 a := CLONE(b); { a now refers to a copy of b }

Figure 5-3. Memory Before CLONE and Assignment

Chapter 5: Structured Data Types

51

After the CLONE and assignment are done, the data is organized as follows:

Figure 5-4. Memory After CLONE and Assignment

5.2.2 Orphaned Data

Since a dynamic data structure can be referred to by zero, one or many reference vari-
ables, it is possible for an instance to become “orphaned” or fall into limbo. If an in-
stance of data has no reference variable referring to it and is not being kept in some
linked list or group, then it is orphaned. It is no longer possible to reference that data, yet
it still exists and is using memory.

In the code above, if the reference variable a had been referring to some instance of data,
and it was the only reference, then any assignment to a would cause the original instance
of data to be orphaned.

If this occurs in a loop or some other construct which is executed repeatedly, the program
will eventually run out of memory. This is called a memory leak.

5.2.3 The DISPOSE Procedure

The key point to remember is that the memory used by the lost data is no longer available
during the remainder of the time that the program is running. If the data is no longer
needed, then the instance of data should be returned to the system using the built-in pro-
cedure DISPOSE. The DISPOSE procedure takes an ARRAY, RECORD or OBJECT in-
stance and destroys it. The memory previously used for the instance of data then be-
comes available for allocation with NEW and the reference variable is re-initialized.

5.2.4 Hanging References

Just as there can be orphaned instances of data, there can be reference variables which
refer to an instance of data which has been deallocated with DISPOSE. This is not a
problem as long as the programmer is aware of this fact and does not try to reference part

MODSIM Reference Manual

52

of the disposed data. In fact these hanging references occur whenever more than one ref-
erence variable refers to the same instance of data. For instance, if we have two RECORD
reference variables, recA and recB, each referring to the same instance of data and we
make the following call:

DISPOSE(recA);

Then recA will contain NILREC which indicates that it is not referring to any record, but
recB will still refer to the now defunct data. If the programmer tries to reference any
data referred to by recB the results are undefined.

5.3 Records

A record is a user-defined aggregate data structure composed of some number of built-in
types or other data structures.

Each element of a record is called a field. In a record, the fields are typically of several
different types. One field may be an integer, the next an array of real and the next a
string. Instead of using indices to access individual elements, they are referenced by
their field name. Individual fields are referenced by appending a period and the name of
the field to the name of the record variable. The following RECORD type declaration and
code illustrate how this is done:

TYPE
 positionType = (first, second, third, pitcher,
 shortstop, outfielder, catcher);
 playerType = RECORD
 Name : STRING;
 BatAvg : REAL;
 Team : STRING;
 Position : positionType;
 END RECORD;

VAR
 Player1: playerType;
...
Player1.Team := "Padres";
Player1.BatAvg := 0.225;
Player1.Position := pitcher;
Player1.Name := "Smith"
...

5.3.1 Using NEW to Allocate RECORDs

The following example uses the playerType record type declaration from the earlier
example. It shows how a number of records can be allocated and then be organized into
a list. There are only two RECORD reference variables involved in this code. However,
the list could be grown to any length. This is an example of the reference variable's util-
ity.

Chapter 5: Structured Data Types

53

Note in the example that the playerType which is being defined is used as one of its
own fields. This is a relaxation of the rule that any identifier used must first be defined.
The rule is relaxed in the same way for the object type which will be discussed in the
next section.

TYPE
 playerType = RECORD
 name : STRING;
 batAvg : REAL;
 team : STRING;
 position : positionType;
 nextPlayer : playerType;
 END RECORD;

VAR
 team,
 player : playerType;
...
NEW(player); { Allocate memory for a

 playerType record and make
player refer to it }
team := player; { now both player & team

refer to the same record }
NEW(player); { Allocate another playerType

 record }
player.nextPlayer := team; { new record refers to first }
team := player;
NEW(player); { Allocate another playerType

 record }
player.nextPlayer := team; { new record refers to second }
team := player;
NEW(player); { Allocate another playerType

 record }
player.nextPlayer := team; { new record refers to third }
team := player;

MODSIM Reference Manual

54

The figure below shows the sequence of steps that built the player records:

player NILREC

team

player

NILREC

team

player NILREC

team

player NILREC

Figure 5-5. Linked List of RECORDs

The code creates four player records and links them together. This is called a linked list.
We could make this list arbitrarily long by simply adding new player records and pre-
sumably filling them with some useful information as well. We would still need only the
two reference variables.

The following sequence of code is worth examining to illustrate again the difference
between the behavior of fixed and dynamic data types :

NEW(player);
team := player;

In the first line a memory area appropriate to a playerType, i.e. a player record, is al-
located and the variable called player is made to refer to it. In the second line the vari-
able called team is made to refer to the same memory area. If we contrast this to the
way variables for fixed data types work, we see a significant difference:

1 - VAR
2 - a, b : INTEGER;
3 - ...
4 - a := 4;
5 - b := a;

Chapter 5: Structured Data Types

55

Here, in the fourth line, the value 4 is stored in a variable called a. In the fifth line, the
value which is stored in the variable called a is copied to a variable called b. There are
now two different memory locations storing the value 4.

To summarize the difference between variables for fixed and dynamic data types:

• A memory storage area for a fixed data type can only be referred to by one vari-
able. No two variables can refer to the same storage area.

• A memory storage area for a dynamic data type can be referred to by one, many
or no reference variables.

Reference variables for records are automatically initialized to the value NILREC. This
means that they are referring to nothing. The programmer can also explicitly assign the
built-in constant NILREC to any RECORD typed reference variable to indicate that it is
currently not referring to a record.

5.3.2 ANYREC, ANYOBJ and NILOBJ

The predefined type ANYREC is simply a generic type for any record type. It is used in
cases where the programmer wants to refer to something without worrying about the
type. The value stored in any record type reference variable can be assigned to a variable
of type ANYREC and vice versa.

There are restrictions on the use of type ANYREC. It cannot be used in a call to the built-
in procedure NEW. This is because there is no information associated with the type
ANYREC which would tell the system how much and what type of memory to allocate.
On the other hand, a record of type ANYREC can be passed to the DISPOSE procedure.

The key to its usefulness is that it is compatible with all RECORD types. This is desirable
when writing general purpose procedures or methods which must deal with all record
types. Although we haven't studied procedures yet, this example illustrates the point:

PROCEDURE SwapRecords(INOUT record1, record2: ANYREC);
VAR
 temp : ANYREC;
BEGIN
 temp := record1;
 record1 := record2;
 record2 := temp;
END PROCEDURE;

The code above will swap two records of any type. MODSIM does not check the type of
the records being passed, so only one routine need be written for all possibilities.

Since the record reference variable of type ANYREC circumvents MODSIM's strong type
checking, it is a two-edged sword. It should be used only where it is really necessary to

MODSIM Reference Manual

56

defeat type checking as in the above example. Consider what would happen, for in-
stance, if two different record types were passed in to the SwapRecords procedure.
One would be a player record we have already described and the other would be a per-
sonnel record:

personType = RECORD
 name : STRING;
 salary : REAL;
 age : INTEGER;
END RECORD;

Once they were swapped and we attempted to ask for the age field of a record which was
actually a player type, a serious and probably mysterious run-time error would occur.
We might simply get a strange answer, or the computer might crash.

The moral of the story is that safety features are there for a reason and should be circum-
vented reluctantly and with the advance knowledge that trouble might ensue.

We mentioned the built-in constant NILREC earlier. NILREC is a built-in constant of
type ANYREC.

There is one other “generic” type which also has a pre-defined constant. ANYOBJ is a
generic type used to circumvent type checking of objects. The constant NILOBJ is of
type ANYOBJ. It is used to indicate that an object reference variable is referring to no
object. These are mentioned here for completeness, but both will be covered in more
detail in the section on objects.

5.3.3 Operations on RECORDs

Individual fields of records are referenced using the dot notation. A field of a record can
be used in the same way as a variable of the same type can be used.

There are a number of operations which can be performed on the record as a whole. In
addition to the assignment statement which was discussed above, a record can be used in
Boolean expressions with the = and <> operators.

5.4 Arrays

An array is an ordered set of data elements referenced using an index or indices. The
elements which compose an array can be of any type, but all elements in an array are of
the same type. This is known as the base type of the array.

An array can have any number of dimensions. Each dimension is referenced by its own
index. The index is defined with a subrange which specifies its lower and upper bounds.
Each index may be of any ordinal type.

Chapter 5: Structured Data Types

57

The power of an array is that a program can compute an index into the array to effi-
ciently reference specific elements in a collection of data.

Like a record, an array structure is dynamically allocated using the NEW procedure. Ar-
rays in MODSIM are not only allocated dynamically, but they are also sized dynami-
cally. This is done by passing the NEW procedure information about the desired upper
and lower bounds of each index using a subrange expression.

This is the syntax for an array type declaration:

ordinal
type

base
typeARRAY

,

OF

Figure 5-6. Syntax of an Array Type Declaration

The code below declares two arrays, allocates and sizes them and then assigns values to
some of their elements:

TYPE
 dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
VAR
 valList : ARRAY INTEGER OF REAL;
 dailyCount : ARRAY dayType OF INTEGER;
 n : INTEGER;

...
 n := some calculation
 NEW(valList, 1..n) { allocate space for valList }
 valList[3] := 4.14159;

 NEW(dailyCount, Mon..Fri) { allocate space for dailyCount
} dailyCount[Thurs] := 97;
...

Since the information about the size of an array is specified dynamically by the program
at run-time, this means that declarations for array types are simpler in MODSIM. For
instance, in Pascal the variable declaration of valList would look like this:

valList: ARRAY [1..10] OF REAL;

In other words, since it is not possible to dynamically size an array in Pascal, we must
specify the bounds of each dimension of the array at the time it is declared. In MODSIM
the programmer need only specify the following information to declare an array type:

MODSIM Reference Manual

58

the type of the index for each dimension and the base type of the array. The information
about the bounds for each dimension is provided at run-time, when the array is allocated
with the NEW procedure.

So the MODSIM equivalent to the above statement would be:

 valList : ARRAY INTEGER OF REAL;
 ...
 NEW(valList, 1..10);

But the bounds of the array are specified using constants, so we have gained little utility
when compared to Pascal. If we use variables to specify the upper and lower bounds of
the array:

 NEW(valList, a..b);

the utility of dynamically sized and allocated arrays becomes apparent.

When variables or expressions are used to specify the upper and lower bounds, the value
of the first must be less than or equal to the second. This is consistent with the concept
of subranges.

Multi-dimension arrays are demonstrated below:

TYPE
 square = (blank, X, O); { enumerated type }
 tictacType = ARRAY INTEGER, INTEGER OF square;
 or
 tictacType = ARRAY INTEGER OF ARRAY INTEGER OF square;

VAR
 tictacBoard : tictacType;
...
NEW(tictacBoard, 1..3, 1..3)
tictacBoard[1, 3] := X;
tictacBoard[2][2] := O; { alternative syntax for referenc-
ing an element }
...

Chapter 5: Structured Data Types

59

1 2 3

1 X

2 O ⇐⇐ tictacBoard

3

Figure 5-7. An Array

Note that we can either declare a two-dimensional array or we can declare an array of
arrays. In either case, the ways in which a single element can be referenced are the same.
There is no specified limit to the number of dimensions which can be declared.

5.4.1 Operations on ARRAYs

As demonstrated above, individual array elements are referenced by using the array name
followed by the indices in brackets:

schedule[month, day] := booked;

An element of an array referenced in this way can be used in the same way that a variable
of that base type can be used.

There are a number of operations which can be performed on arrays as a whole. One ar-
ray reference can be assigned to another. Thus, if schedule2 is an array of the same
type as schedule above, we can do the following:

schedule2 := schedule;

After this assignment, both schedule and schedule2 refer to the same array. If we
desire a copy of the array, we can do the following:

schedule2 := CLONE(schedule);

After the CLONE is performed, there are two distinct copies of the array each referred to
respectively by schedule and schedule2.

In addition to assignment, an array can be used in Boolean expressions with the = and
<> operators. For two arrays to be considered equal, they must meet the following crite-
ria:

• The number of dimensions must be the same.

MODSIM Reference Manual

60

• The index type and bounds of each dimension must be identical.

• The contents of each element of the two arrays must be equal.

5.4.2 Using the NEW Procedure to Allocate an ARRAY

The NEW procedure is used not just to allocate an array, but to determine its size. For
each dimension of an array, the NEW procedure takes an extra parameter which gives the
lower and upper bounds of that dimension. If the elements of an array are a dynamic
type (such as a RECORD or OBJECT type), each entry in the array must be NEWed sepa-
rately. You do not have to new each entry for fixed allocation types (such as REAL or
INTEGER).

ARRAY type reference variables are automatically initialized to NILARRAY. NILARRAY
is a built-in constant which is compatible with all array types.

5.4.3 Ragged ARRAYs

The NEW procedure can be used to allocate an array in piecemeal fashion to build a rag-
ged array. An example of this would be the allocation of a triangular array:

...
VAR
 b : ARRAY INTEGER, INTEGER OF REAL;
...
NEW(b, 1..5);
FOR k := 1 TO 5
 NEW(b[k], 1..k);
END FOR;

1
2
3
4
5

1 2 3 4 5

The semantics of the NEW procedure when invoked for arrays is that indices can be allo-
cated piecemeal only as we go from left to right in the declaration. Given the array b
which we described above, we cannot do the following:

NEW(b, , 1..10); { illegal allocation! }

Chapter 5: Structured Data Types

61

When an array is allocated with NEW, each element of that array is initialized just as indi-
vidual variables of that base type would be.

The built-in procedure DISPOSE is used to deallocate arrays. After DISPOSE has been
used on an array variable, the value of the reference variable which was passed in is
NILARRAY.

MODSIM Reference Manual

62

5.4.4 The HIGH and LOW Functions

The two functions HIGH and LOW can be used to discover the high and low bounds of any
dimension of an array:

HIGH(<array var>); --- LOW(<array var>);

 xArr : ARRAY INTEGER, INTEGER OF REAL;

Given the above declaration, HIGH(xArr) would return the high bound of the first di-
mension of array xArr. HIGH(xArr[2]) would return the high bound of the array at
position xArr[2]. HIGH and LOW are type compatible with any scalar type variable.

To be less abstract, we can allocate a ragged array as follows:

NEW(xArr, 1..3);
NEW(xArr[1], 1..5);
NEW(xArr[2], 2..3);
NEW(xArr[3], 1..4);

This would yield the following array:

1 2 3

1

2 ⇐ ⇐ xArr

3

4

5

Figure 5-8. A Ragged Array

Chapter 5: Structured Data Types

63

Having done this we will get the following results from calls to HIGH and LOW:

LOW(xArr) ⇒⇒ 1
HIGH(xArr) ⇒⇒ 3

LOW(xArr[1]) ⇒⇒ 1
HIGH(xArr[1]) ⇒⇒ 5
LOW(xArr[2]) ⇒⇒ 2

HIGH(xArr[2]) ⇒⇒ 3
LOW(xArr[3]) ⇒⇒ 1

HIGH(xArr[3]) ⇒⇒ 4

5.5 Objects

Object types are mentioned here for completeness. They have fields just as records do.
But they are a special type and the entire second section of this manual is devoted to
them. Object types can be manipulated in the same way as other dynamic data types.
We can have arrays of objects or use object types as fields of records.

5.6 Declarations Revisited

Now that structured types have been described, the potential uses of the TYPE and VAR
declaration have been considerably expanded. To tie loose ends together, we will com-
bine several previous declarations together and build more complex structures.

CONST
 startYear = 1940;
 thisYear = 1990;
TYPE
 positionType = (first, second, third, pitcher,

 shortstop, outfielder, catcher);
 playerType = RECORD
 name : STRING;
 batAvg : REAL;
 team : STRING;
 position : positionType;
 END RECORD;
 teamType = RECORD
 manager : STRING;
 players : ARRAY INTEGER OF playerType;
 win, loss : INTEGER
 END RECORD;
 leagueType : ARRAY INTEGER OF teamType;
VAR
 statistics : ARRAY INTEGER OF leagueType;
 x : ARRAY INTEGER OF INTEGER;
...

MODSIM Reference Manual

64

NEW(statistics, startYear..thisYear);
{ etc, etc.... }

5.6.1 Anonymous Types

Note that we have declared arrays in two different ways above. In some cases we have
explicitly declared an array type and then declared a reference variable of that type. In
other cases, such as the variables x and statistics above, we have simply declared a
variable and described the specifics of the array. The declarations for the arrays called x
and statistics use what is known as an anonymous type declaration. The array
type is bound to the variable declaration and it has no name. Thus, it is an anonymous
type.

Arrays and enumerations can be declared this way but records and objects cannot.

Programmers often ask which is the “preferred” way to declare an array—using an ex-
plicit type declaration and then declaring a variable of that type, or using the anonymous
declaration.

On the one hand, the anonymous type declaration is a shortcut which yields a perfectly
usable array variable and saves the extra step of declaring an array type. Anonymous
arrays cannot be used as parameters.

On the other hand, declaring an explicit type is a more general approach. Since the type
has a name it can be used to specify parameters to procedures. Also assignments of array
reference variables can only be accomplished when the two variables involved are of the
same exact type. When anonymous types are involved, this condition cannot be satisfied.

There is no simple answer. It depends on how the variable will be used.

5.7 Fixed Data Structures

At the beginning of this chapter we made the case for using dynamic data structures.
While they are the preferred choice for most programming needs, there will still be occa-
sions when the programmer may prefer to use the fixed data structures. These are the
FIXED RECORD and FIXED ARRAY. Variables of these types are allocated and deallo-
cated automatically by the system in the same way as INTEGER and REAL typed vari-
ables are.

The variables associated with these two types are the same as variables for the other fixed
data types; e.g. INTEGER, REAL, etc. This means that there is one and only one identi-
fier associated with each fixed data structure. It also means that there is no way to string
FIXED RECORDS together into a linked list since there are no reference variables associ-
ated with this type.

Chapter 5: Structured Data Types

65

The fixed data structure has another feature which distinguishes it from the dynamic data
structures. Every element of a FIXED ARRAY or FIXED RECORD is of a fixed size.
This means that its base type or its fields must be of a predetermined size. The fields or
base type cannot be a reference variable which refers to some other structure.

The intent is that the information which these two data types carry is completely con-
tained within a known memory area of known size. There are no strings of indeterminate
length and no references to other data structures. This means that the FIXED RECORD
can be used as a template for random access file I/O since each record has a known size
and all information pertinent to that FIXED RECORD is contained in the record itself.
This is an important feature since random access files are characterized by a known,
fixed record size.

5.7.1 The FIXED RECORD Type

The FIXED RECORD type can be declared with fields of the following type: INTEGER,
REAL, CHAR, BOOLEAN, enumeration, subranges, FIXED ARRAY, FIXED RECORD. This
means that it cannot have fields of type: STRING, RECORD, ARRAY or OBJECT.

A fixed record can be used in an assignment. A copy of the record on the right side of
the assignment statement is made and copied into the record variable of the same type on
the left side of the assignment.

A fixed record can be passed as an IN parameter to a procedure. A copy is made and
passed in. In other words, it behaves like any other fixed data type.

5.7.1.1 Declaring FIXED RECORD Types

The syntax used to declare a FIXED RECORD type is identical to that used for a RECORD
type except that the STRING, RECORD, ARRAY and OBJECT types cannot be used as
fields. Other FIXED RECORD types may be used as fields, but the FIXED RECORD type
cannot use itself as a field, unlike the RECORD, since this would be like placing two mir-
rors facing each other. As with the RECORD type, anonymous FIXED RECORD declara-
tions are not allowed. This means that a FIXED RECORD must be declared as an explicit
type and not simply as part of a variable declaration.

5.7.2 The FIXED ARRAY Type

Like the FIXED RECORD, the FIXED ARRAY type can be declared with the following as
its base type: INTEGER, REAL, CHAR, BOOLEAN, enumeration, subranges, FIXED
ARRAY, FIXED RECORD. This means that it cannot use the following as its base type:
STRING, RECORD, ARRAY or OBJECT.

A fixed array cannot be used in an assignment statement. If this were allowed, it would
mean that the entire contents of a fixed array would have to be copied. Elements of a
fixed array can obviously be used in assignment statements. So, if it is necessary to

MODSIM Reference Manual

66

make a copy of one fixed array to another, this can be accomplished in the traditional
way using a loop which iterates through the array copying one element at a time.

When a FIXED ARRAY is used as an IN parameter, it is treated as if it had been passed
with the INOUT qualifier. A copy is not passed to the invoked routine. The invoked
routine simply refers to the original array. In addition, a FIXED ARRAY cannot be
passed as an OUT parameter.

5.7.2.1 Declaring FIXED ARRAY Types

Since the FIXED ARRAY type must specify the size of each of its dimensions in the dec-
laration statement, it has a slightly more complex syntax than the ARRAY type which need
only specify the type of each dimension's index. Anonymous type declarations of the
FIXED ARRAY are allowed.

type identifier

anonymous
enumeration type

anonymous
subrange type

fixed data typeFIXED ARRAY

,

OF

Figure 5-9. FIXED ARRAY Type Declaration

For each dimension of the fixed array the following information which fixes the size of
that dimension must be provided:

• An anonymous subrange

• An anonymous enumeration type

• A type identifier of either an enumeration or a subrange.

Chapter 5: Structured Data Types

67

It is not possible to declare a ragged fixed array since each element of each dimension
must have the same size. Here are some examples of fixed array declarations:

CONST
 last = 47;
TYPE
 square = (blank, X, O);
 tictacType = FIXED ARRAY [1..3], [1..3] OF square;

 dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
 dailyCount = FIXED ARRAY dayType OF INTEGER;

VAR
 valList : FIXED ARRAY [1..10] OF REAL;
 multi : FIXED ARRAY [-4..15], [20..last] OF REAL;

5.8 Referencing the ARRAY and RECORD

Since arrays and records can themselves be composed of structured types, it is worth re-
viewing how we can refer to a particular element of an array or a particular field of a re-
cord in these more complex cases. The following code fragment gives several type dec-
larations and follows them by examples showing how elements of the structures can be
referenced. Note that the ARRAY and FIXED ARRAY types are referenced identically.
The RECORD and FIXED RECORD types are also referenced identically.

TYPE
 positionType = (dayManager, niteManager, clerk1, clerk2);

 xArrType = ARRAY INTEGER OF REAL;
 personRecType = RECORD
 lastName : STRING;
 age : REAL;
 payByMonth : xArrType;
 END RECORD;
 jobRecType = RECORD
 persRec : personRecType;
 jobDescnum,
 monthsInPos : INTEGER
 END RECORD;

 storeType = ARRAY positionType OF jobRecType
...
VAR
 person : personRecType;
 position : jobRecType;
 store : storeType
...
 person.lastName := "Smith";

MODSIM Reference Manual

68

 person.payByMonth[5] := 867.75;
...
 position.persRec.lastName := "Jones";
 position.persRec.payByMonth[12] := 965.45;
...
 store[niteManager].persRec.payByMonth[11] := 1256.75;
 store[clerk1] := position;

Chapter 5: Structured Data Types

69

71

6. Statements and Type Compatibility

Statements are the executable code which perform actions in a program. Statements are
used in the block of a program, procedure, or method. The ease or difficulty of coding
programs in a language is strongly influenced by the way in which a language handles
the concept of a sequence of related statements which perform some action. It is worth
digressing here to examine how a number of languages have handled this notion. We
will look at the IF statement to see how alternative sequences of statements are handled.

In each language we show two IF statements. The first has only one statement per
choice, the other has a statement sequence for each choice. In all cases, if the Boolean
expression is true, Statement1 and Statement2 are executed followed by Statement5. If
the Boolean expression is false, Statement3 and Statement4 are executed followed by
Statement5.

MODSIM:
IF x < 0
 Statement1;
ELSE
 Statement3;
END IF;
Statement5;

IF y > 0
 Statement1;
 Statement2;
ELSE
 Statement3;
 Statement4;
END IF;
Statement5; Ada is similar

Pascal:
if x < 0 then
 Statement1
else
 Statement3;
Statement5;

if y > 0 then
 begin
 Statement1;
 Statement2;
 end
else
 begin
 Statement3;
 Statement4;
 end;
Statement5; Algol is similar

MODSIM Reference Manual

72

C:
if (x < 0)
 Statement1;
else
 Statement3;
Statement5;

if (y > 0)
 {

 Statement1;
 Statement2;
 }
else
 {
 Statement3;
 Statement4;
 };
Statement5;

The important thing to note is that MODSIM III, like Ada, delimits statement sequences
using the control structure itself. Pascal and C use the begin “ end and { “ }, respec-
tively to delimit these sequences. The significance is that control statements like the IF
statement have a different appearance in these languages depending on the number of
statements included in a choice. In MODSIM the appearance of control structures is
consistent in all cases.

6.1 Type Compatibility

Before examining statements in detail we will discuss type compatibility in more detail.
This manual has emphasized that MODSIM is a strongly typed language. Assignment
statements, expressions and parameters passed to procedures and methods are checked
for consistency. Here are the specific type compatibility rules which govern the use of
variables and constants. Wherever the notation Type1 or Type2 is used we mean a vari-
able or literal constant.

1. Type1 and Type2 are the same type, e.g. they are both of type INTEGER.

2. Type1 and Type2 are explicitly defined to be equal in a TYPE statement, e.g.
TYPE Type1 = Type2;.

3. Type1 is a subrange of Type2, e.g. Type1 is a subrange [4..23] and Type2 is
of type INTEGER or vice versa. Note that INTEGER is not considered to be a
subrange of REAL.

4. Type1 and Type2 are both subranges of the same base type.

5. The CHAR type is a conformant type to the STRING type. This means that a CHAR
type may be used anywhere that a STRING type is expected. The reverse is not

Chapter 6: Statements and Type Compatibility

73

true. A STRING type cannot be used where a CHAR type is expected, even if it is
of length 1.

6. An object type value may be assigned to an object variable of an underlying type.
This subject will be covered in detail in Section II of this manual.

7. Any record type value may be assigned to a variable of type ANYREC or vice
versa.

8. Any object type value may be assigned to a variable of type ANYOBJ or vice
versa.

9. Any array type value may be assigned to a variable of type ANYARRAY, or vice
versa.

6.1.1 Type Conversion

By type conversion, we mean the conversion of a value from one type to another while
maintaining the conceptual meaning. For instance, conversion of INTEGER to REAL or a
STRING to an INTEGER. In some cases it is possible for a conversion to result in essen-
tially the same resulting value. An example would be the conversion of the integer 14 to
a real. The real value would be 14.0. If, however, we convert the real value 37.557 to
an integer we would get 37 if we truncated, or 38 if we rounded.

The type conversion procedures are useful in a number of contexts. In some cases ex-
pressions are made up of several different types, so it is necessary to convert some ele-
ments to the expected type for the whole expression.

The table below briefly reviews each of the type conversion procedures which MODSIM
provides for type conversion. Appendix C contains a detailed description of these proce-
dures and functions.

MODSIM Reference Manual

74

Procedure / Function Use

RealNum := FLOAT(IntNum) INTEGER ⇒ REAL

IntNum := TRUNC(RealNum) REAL ⇒ INTEGER

IntNum := ROUND(RealNum) REAL ⇒ INTEGER

Char := CHR(IntNum) [0..255] ⇒ CHAR

IntNum := ORD(OrdinalVal) Ordinal ⇒ INTEGER

Ordinal := VAL(OrdinalType, IntNum) INTEGER ⇒ Ordinal

IntNum := STRTOINT(Text) STRING ⇒ INTEGER

Text := INTTOSTR(IntNum) INTEGER ⇒ STRING

RealNum := STRTOREAL(Text) STRING ⇒ REAL

Text := REALTOSTR(RealNum) REAL ⇒ STRING

STRTOCHAR(Text, ArrayOfChar) STRING ⇒ ArrayOfChar

Text := CHARTOSTR(ArrayOfChar) ArrayOfChar ⇒ STRING

Figure 6-1. Type Conversion Procedures / Functions

Note: MODSIM does not support the concept of type casting in which the data repre-
sentation of one type is treated as if it were another type. This concept is extremely ma-
chine specific and leads to non-portable code. Instead, the explicit conversion proce-
dures above ensure portability.

Below are some examples of the use of these type conversion procedures and functions:

TYPE
 condition = (excellent, good, fair, poor);
VAR
 yesOrNo : BOOLEAN;
 equipStat : condition;
 letter : CHAR;
 intNum : INTEGER;
 realNum : REAL;
 text : STRING;
...
intNum := ORD(FALSE); ⇒⇒ 0
intNum := TRUNC(4.999); ⇒⇒ 4
realNum := FLOAT(intNum); ⇒⇒ 4.0
equipStat := VAL(condition, 2); ⇒⇒ fair

 letter := CHR(65); ⇒⇒ 'A'
letter := VAL(CHAR, 66); ⇒⇒ 'B'
yesOrNo := VAL(BOOLEAN, 1); ⇒⇒ TRUE
intNum := ORD('D'); ⇒⇒ 68
text := "34.56"; ⇒⇒ "34.56"
realNum := STRTOREAL(text); ⇒⇒ 34.56

Figure 6-2. Examples of Type Conversions

Chapter 6: Statements and Type Compatibility

75

In addition to those library modules discussed above and in earlier paragraphs, the library
modules contain many useful functions and procedures which may be explicitly imported
for use.

6.2 The Assignment Statement

In each of the preceding paragraphs the assignment statement was used in examples. In
most cases, this statement simply assigns to the variable on the left, the value obtained by
evaluating the expression on the right. The expression on the right of the assignment
statement must be type compatible with the variable on the left.

variable := expression

6.3 Program Flow Control

The normal sequence of execution in a program is simple. Each statement is executed in
turn. All procedural programming languages provide constructs which can alter this
normal flow of program control. MODSIM provides a rich variety of these constructs
each of which is described below. MODSIM does not require or provide a GOTO state-
ment.

6.4 The IF Statement

The IF statement is perhaps the simplest and most often used of control structures. We
have already seen examples of its use.

IF x < 0 IF y >= 30
 y := 13; x := x + 5;
END IF; ELSE

 x := x - 5;
END IF;

The following example illustrates a multiple choice IF statement and should be self-
explanatory:

IF month <= 3
 quarter := "1st Quarter";
ELSIF month <= 6
 quarter := "2nd Quarter";
ELSIF month <= 9
 quarter := "3rd Quarter";
ELSE
 quarter := "4th Quarter";
END IF;

Of course, at any place where one assignment statement has been used above, we could
substitute a sequence of statements. Here is the formal definition of an IF statement:

MODSIM Reference Manual

76

Figure 6-3. Syntax of the IF...END IF Statement

If the Boolean expression following the IF evaluates to TRUE, the statements up to the
next ELSIF, ELSE, or END IF are executed, after which program control jumps to the
statement following the END IF. If the Boolean expression is FALSE, each ELSIF, if
any, is evaluated until one is found which evaluates to TRUE. If none of the clauses
evaluates to TRUE, the statements following the ELSE are executed.

The ELSIF structures and the terminating ELSE structure are optional. If there is no
ELSE in the statement, it is possible for none of the clauses to be TRUE and the statement
does nothing.

6.4.1 Comparing REAL Values in a Boolean Expression

We mentioned earlier that REAL values cannot be represented exactly in digital comput-
ers because the binary number system used for internal representation can only approxi-
mate the floating-point decimal values being manipulated. Because of this, programmers
should always avoid making comparisons with exact REAL values.

This topic of numerical representation and approximation errors in computer programs is
not one to be taken lightly! The whole discipline of numerical analysis has grown up
around the problem. Suffice to say that any programmer wishing to indulge in serious
mathematical calculation on a digital computer should consult a good text on the subject.

The small program below illustrates some of the pitfalls associated with REAL numbers.
The program is followed by its output. The program starts the variable a at zero and
then adds 0.2 to it a million times:

MAIN MODULE sample4;
VAR
 a: REAL;
 k: INTEGER;
BEGIN

 END IF

 IF

 statement
 sequence

 expression statement
 sequence

 expression statement
 sequence ELSIF

 ELSE

Chapter 6: Statements and Type Compatibility

77

 OUTPUT("MODSIM Program 'sample4'");
 a := 0.0; k := 0;

 WHILE a < 200000.0 a := a + 0.2;
 INC(k);
 IF a = 1.0
 OUTPUT("a should = 1.0 - actually is = ", a);
 END IF;
 IF a = 1.4
 OUTPUT("a should = 1.4 - actually is = ", a);
 END IF;
 IF a = 1.6
 OUTPUT("a should = 1.6 - actually is = ", a);
 END IF;
 IF a = 1.8
 OUTPUT("a should = 1.8 - actually is = ", a);
 END IF;
 IF (a > 999.99999) AND (a < 1000.00001)
 OUTPUT("a should = 1000.0 - actually is = ", a);
 END IF;
 END WHILE;

 OUTPUT("Out of loop - k= ", k);
 OUTPUT("Final value of a minus 200000 = ",a - 200000.0);
END MODULE.

MODSIM Program 'sample4'
a should = 1.0 - actually is = 1.000000
a should = 1.4 - actually is = 1.400000
a should = 1000.0 - actually is = 1000.000000
Out of loop - k= 1000000
Final value of a minus 200000 = 0.000003

We would expect a to have a value of 200,000.0 when we finish, but it actually has a
value of 200,000.000003. In many cases this is an acceptable amount of cumulative
error after doing a million calculations.

But there is another, much more serious problem here. Note that the two IF statements
which are looking for values of 1.6 and 1.8 fail. This means that by the time we have
added 0.2 to the variable a only eight times, we have already accumulated enough error
that the Boolean expression a = 1.6 evaluates to FALSE! On the other hand, the Boo-
lean expression (a > 999.99999) AND (a < 1000.00001) evaluates to
TRUE. The moral of the story is obvious. When writing a Boolean expression which
wants to match a real value, always include an epsilon to allow for error in representation
of real numbers.

Another item of interest is the fact that the system output shows a value of
1000.000000 for the variable a when we know that the actual value was not exactly
equal to 1000.0. When debugging a program with OUTPUT statements, you should be
aware that the OUTPUT statements will show only a certain amount of precision and they
will often round the figure in the last decimal place.

MODSIM Reference Manual

78

In fact, if we used the more precise StreamObj WriteReal method to print out a more
exact representation of a - 200000 at the end of the program, the value printed would
have been 0.0000026657650.

6.5 The CASE Statement

The CASE statement provides a convenient method for branching on various values or
ranges of values of a single expression. We can rewrite the example used with the IF
statement as:

CASE month
 WHEN 1..3:
 quarter := "1st Quarter";
 WHEN 4, 5, 6: ⇐⇐ alternative syntax
 quarter := "2nd Quarter";
 WHEN 7..9:
 quarter := "3rd Quarter";
 OTHERWISE
 quarter := "4th Quarter";
END CASE;

The syntax is:

CASE

WHEN

OTHERWISE

:

END CASE

expression

case label
statement
sequence

statement
sequence

Figure 6-4. Syntax of the CASE .. END CASE Statement

The type of the expression in a CASE statement can be any ordinal type, or STRING. The
expression cannot be of type REAL. The case label cannot be a variable. The
OTHERWISE clause is optional. If the OTHERWISE clause is not included in a CASE
statement and none of the stated choices are selected, then a run-time error will be issued.
REAL is not allowed in CASE statements because comparisons of exact REAL values are
not reliable in binary computers where REAL numbers are represented by approxima-
tions. The case labels in a WHEN clause need not be contiguous. Here are some more
examples:

CASE month
 WHEN 1, 3, 5, 7..8, 10, 12:
 days := 31;

Chapter 6: Statements and Type Compatibility

79

 WHEN 4, 6, 9, 11:
 days := 30;
 OTHERWISE
 IF leapYear
 days := 29;
 ELSE
 days := 28;
 END IF;
END CASE;

6.6 Iterative Statements

MODSIM III provides a rich variety of loop statements: WHILE, FOR, REPEAT, and
LOOP. In MODSIM the EXIT statement may be used in any of these loop constructs to
leave the loop and continue execution at the first statement which follows the loop con-
struct.

6.6.1 The WHILE Statement

The WHILE statement is a loop which is repeated 0 or more times. As long as the Boo-
lean expression at the head of a WHILE construct remains true, the enclosed statements
are executed. For example:

n := 2;
WHILE n < 5
 OUTPUT("n = ", n);
 INC(n); ⇐⇐ { same as n := n + 1 }
END WHILE;

This loop would output the following:

n = 2
n = 3
n = 4

The enclosed statements will be repeated until n equals 5. They would not have been
executed at all if n was greater than or equal to 5 to begin with. In other words, if the
Boolean expression evaluates to false on entry to the WHILE statement, the enclosed
statements are never executed. The syntax of the WHILE statement is:

WHILE END WHILEexpression
statement
sequence

Figure 6-5. Syntax of the WHILE .. END WHILE Statement

MODSIM Reference Manual

80

6.6.2 The REPEAT Statement

The REPEAT statement is a loop which is repeated one or more times. The Boolean ex-
pression is located at the end of the statement and is not evaluated until the body of the
loop has been executed at least once. An example is:

REPEAT
 OUTPUT("This statement will print at least once.");
 INC(A); ⇐⇐ { same as A:= A + 1 }
UNTIL A > 5;

The above statement will repeat until A is greater than 5. If A is greater than 5 before the
loop begins (or greater than 4, in this case), then the statement sequence will be executed
only once. The syntax of the REPEAT...UNTIL statement is:

statement
sequence

expressionREPEAT UNTIL

Figure 6-6. Syntax of the REPEAT...UNTIL Statement

6.6.3 The FOR Statement

The FOR statement is a loop statement which increments (or decrements) a variable by
some integral value until it has iterated through a specified range, each time repeating the
enclosed statements. An example is:

FOR n := 1 TO 5
 OUTPUT("The next number is:", n);
END FOR;

The loop variable may be of any ordinal type. The loop may step by increments different
than one by adding the optional BY statement. It may also step backward by replacing TO
with DOWNTO (leaving the increment positive). The stepping value may be any expres-
sion compatible with type INTEGER. For example:

FOR Letter:= 'z' DOWNTO 'a' BY 2
 OUTPUT("stepping down the alphabet by two. ", Letter);
END FOR;

Chapter 6: Statements and Type Compatibility

81

FOR :=

TO

DOWNTO

BY

END FOR

identifier

expression

statement
sequence

expression expression

Figure 6-7. Syntax of the FOR ... END FOR Statement

It is important to know the semantics of the FOR statement. The expressions which give
the starting point, the end point and the increment are evaluated only once, at entry to the
FOR loop. Changing any of the variables involved in specifying the start, end or incre-
ment of the loop variable will have no effect on the loop while the loop is executing.
Changing the value of the loop variable itself will not alter the execution of the loop, al-
though it will affect the value of the loop variable for that iteration.

The bottom line is that all bookkeeping in FOR loops is done external to the loop. If it is
necessary to leave the loop before it has finished iterating, the programmer can always
use the EXIT statement under control of an IF statement. If it is necessary to alter the
increment value or the end point of a loop while it is executing, the programmer must use
one of the other loop constructs.

6.6.4 The FOREACH Statement

The FOREACH statement provides an easy mechanism for iterating over the contents of a
group object (defined in the MODSIM library module GrpMod) or any object derived
from a group object. The FOREACH statement will iterate over the members of the
group even if a group contains the same object more than once.

The form of the statement is as shown in figure 6-8.

MODSIM Reference Manual

82

Figure 6-8. The FOREACH Statement

In figure 6-8 object variable is a variable declared to be an object type compatible
with the object types stored in the group variable type. The group variable
may be a variable declared to be a type derived from any of the group objects defined in
'GrpMod' including QueueObj, StackObj, RankedObj, BTreeObj and their re-
spective statistical definitions.

The object variable will contain the first member of the group upon entrace to the
loop. If the group is empty, the statements within the FOREACH block will not be exe-
cuted at all. Upon each iteration of the loop the object instance variable will be
updated to contain the next member of the group, even if the current object
variable value has been removed from the group. If the optional keyword REVERSED
is included in the statement, the members of the group will be iterated from the last
member to the first.

In addition to objects defined from 'GrpMod', it is possible to use the FOREACH statement
to iterate over user defined groups. To do this, the user group object must define the
methods: First, Next (for forward iteration) and/or Last, Prev (for reverse itera-
tion), e.g.:

MyGroupObj = OBJECT
ASK METHOD First : Aobj;
ASK METHOD Next (IN obj : Aobj) : Aobj;
ASK METHOD Prev (IN obj : Aobj) : Aobj;
ASK METHOD Last : Aobj;

END OBJECT;
. . .

PROCEDURE iterate (IN grp: MyGroupObj);
VAR

a : Aobj;
BEGIN

FOREACH a IN grp
 {Use 'a' }
END FOREACH;

END PROCEDURE;

FOREACH

END

IN

FOREACH

REVERSED

statement sequence

group variableobject variable

Chapter 6: Statements and Type Compatibility

83

The FOREACH statement can also be used to iterate over the RECORD groups defined in
' ListMod'.

6.6.5 The EXIT Statement

The EXIT statement immediately transfers control to the first statement after a loop con-
struct. The EXIT statement can be used with any loop construct.

6.6.6 The LOOP Statement

The LOOP statement simply loops forever. The only way to stop this loop is to use the
EXIT statement. This loop construct is quite versatile since the EXIT statement(s), and
any corresponding Boolean expression, may be located at the beginning, end, or any-
where within the body of the loop. For example:

LOOP
 OUTPUT("bread");
 INC(IntVar); { same as IntVar:= IntVar + 1 }
 IF IntVar > 5
 EXIT;
 END IF;
 OUTPUT("cheese and turkey");
END LOOP;

The example above will always create a valid sandwich (bread at both ends) as long as
IntVar is initially less than 5.

6.6.7 The Other Control Statements

There are three other control statements which will be covered later. For completeness
we will summarize their use here.

The WAIT statement is used to elapse simulation time. Its syntax is similar to the IF
statement. It will be covered in Section III of this manual. The RETURN statement is
used to end the execution of a procedure or function before reaching the end of the rou-
tine. In the case of functions, it is also used to specify the value which will be returned.
It will be covered in the next chapter

Finally, the TERMINATE statement is used in simulations to end the execution of a chain
of method calls. It will be covered in Section III of this manual.

MODSIM Reference Manual

84

85

7. Procedures and Functions

Procedures are named blocks of code which may be invoked from other parts of a pro-
gram. Every procedure must have a BEGIN, even if it is empty. Procedures have a pa-
rameter list which is used to communicate information to and from the procedure. Cer-
tain types of procedures may act like expressions since they yield a value when executed.
Terms used to describe this type of functionality in other languages are:

ROUTINE, SUBROUTINE, SUBPROGRAM, FUNCTION

There are two kinds of procedures in MODSIM. Proper procedures are those which do
not yield a value when executed. Function procedures yield a value when executed and
can be used like a variable in expressions. They are defined in much the same manner,
using the reserved word PROCEDURE. When a function procedure is defined, its return
type is specified. The return type of a function procedure can be any type except for the
FIXED ARRAY type. MODSIM supports recursive procedure calls.

Throughout the text we will use the terms, procedure and function, in the following
ways:

Procedure: Refers to either a proper procedure or a function procedure. If the
distinction is important, the correct one will be specified.

Function: Refers to a function procedure.

Procedures have optional parameter lists which are used to communicate data between
the invoker and the procedure. The number, type and order of parameters in the proce-
dure declaration and the procedure call of user-defined procedures must match exactly.

Several built-in procedures relax these rules. For instance, the MAXOF procedure takes
any number of arguments, either INTEGER or REAL, and returns the value of the largest
argument. The OUTPUT and INPUT procedures take any number and several types of
arguments in any order.

Within a procedure, the parameters which have been communicated through the pa-
rameter list are treated like variables. When declaring a procedure, the programmer
specifies, for each parameter in the parameter list, the following three pieces of informa-
tion:

• An identifier which will name the parameter

• The type of parameter

• The direction in which information will flow: IN, OUT or INOUT

MODSIM Reference Manual

86

Whenever a procedure is invoked, the parameters are type-checked for consistency with
the declaration. There are two kinds of parameters:

Formal parameters: These are the parameters which are detailed in the declara-
tion of the procedure.

Actual parameters: These are the parameters which are actually passed in to a
procedure when it is invoked.

7.1 Formal Parameter Qualifiers: IN, OUT, INOUT

MODSIM, like Ada, requires a distinction between input and output parameters. The
formal parameter qualifier affects how the variables are treated and assists in document-
ing program code.

Each parameter must be declared with one of the three possible qualifiers:

IN: The value may only be passed in to the procedure from the caller (pass by
value). When the IN qualifier is specified, a copy is made of the value
and the copy is passed in to the procedure. This means that the actual pa-
rameter and the formal parameter are two separate copies. If the formal
parameter is changed inside the procedure this will have no effect on the
actual parameter. The IN qualifier may be used with all types. In all
cases except for the FIXED ARRAY, a copy of the data stored in the vari-
able is made and passed in. The FIXED ARRAY is treated as if it had the
qualifier INOUT. See the note below about subtleties of behavior when
dynamic types are passed with the IN qualifier.

INOUT: The value may be passed in either direction (pass by reference). This
means that no copy is made. The formal parameter is simply an alias for
the actual parameter. If the formal parameter is modified inside the pro-
cedure, this change will affect the actual parameter.

OUT: The OUT qualifier operates identically to the INOUT qualifier with one
extra property. The variables passed with the OUT qualifier are re-
initialized as they are passed in. This enforces the notion that information
only flows in one direction.

Note that when a reference variable for a dynamic data type is passed by value using the
IN qualifier, a copy of the actual parameter, and not the data structure, is made and
passed as a formal parameter to the routine being called. The formal parameter refers to
the same structured data instance as the actual parameter did. So the behavior in this case
is the same as if the INOUT qualifier had been used, as long as no assignments are made
to the actual parameter. This means that any changes made to the structured data in-
stance will be reflected outside of the procedure call.

Chapter 7: Procedures and Functions

87

Constants and literals cannot be used as OUT or INOUT parameters for the same reason
that they cannot be used on the left side of an assignment statement. The following ex-
ample illustrates the point and gives us a preview of a procedure declaration:

PROCEDURE increment(INOUT n : INTEGER);
BEGIN
 n := n + 1;
END PROCEDURE;

If we were to call the procedure with a literal, e.g. increment(3), this has the same
effect as trying to do the following assignment: 3 := 3 + 1.

Procedures are defined in MODSIM much as they are in Pascal, and Ada. They are
specified as declarations before the body of the main program. User-defined procedures
and functions are invoked in exactly the same way as the built-in procedures. A user-
defined procedure with the same name as a built-in procedure will replace the built-in
procedure.

Methods, as mentioned in the introduction, are the procedures which an object can exe-
cute as part of its behavior. We will cover methods in detail in Section II of this manual.
However, it is worth noting that the way in which methods are defined is nearly identical
to the way in which procedures are defined.

There are two aspects of procedures to be covered in this chapter. How to call or invoke
procedures and how to declare them. Since invoking procedures is straightforward, and
there are already many built-in procedures to use, this topic will be covered first.

7.2 Invoking Procedures

We have already used several built-in procedures in examples of code. One of these, the
OUTPUT procedure, is a built-in procedure which prints a list of variables and constants.
To invoke the procedure we simply use its name and supply parameters on which it can
operate:

OUTPUT("Hello there");

Note: We do not have to explicitly use the term “CALL“ to invoke a procedure.

Functions are invoked by placing them in the same context as an expression. In other
words, anywhere an expression is allowed a function may be used or included as a term
of the expression.

n := ROUND(35.5556)

or

OUTPUT(ROUND(35.5556))

MODSIM Reference Manual

88

7.3 Declaring Procedures

The following trivial program shows how a procedure is declared and then used.

MAIN MODULE Sample5;
VAR
 textLine : STRING;

PROCEDURE PrintIt(IN Str: STRING);
BEGIN
 OUTPUT(Str);
END PROCEDURE;

BEGIN
 textLine := "This is a VERY simple program.";
 PrintIt(textLine); { Call the procedure defined above }
END MODULE.

A PROCEDURE heading identifies the beginning of a procedure block. The syntax of a
procedure heading is:

identifier formal
parameters

formal type

PROCEDURE

:

Figure 7-1. Syntax of a Procedure Declaration

When the optional function result type is specified in the procedure declaration, it indi-
cates that this is a function procedure, and a RETURN statement must be specified in the
body of the procedure to exit and return the specified function result.

7.4 RETURN Statement

The RETURN statement has two purposes:

• It can be used to exit from a procedure and return to the invoker before the end of
the procedure is reached.

• It must be used in a function procedure to communicate the return value to the in-
voker.

To illustrate the points we have made so far, here are two procedures which use the Py-
thagorean theorem to compute the length of a hypotenuse given the length of two sides of
a right triangle. Hyp1 is implemented as a proper procedure and returns the answer
through its parameter list. Hyp2 is implemented as a function procedure which returns
the answer as a value.

Chapter 7: Procedures and Functions

89

Figure 7-2. A Right Triangle

PROCEDURE Hyp1(IN a, b : REAL; OUT c : REAL);
BEGIN
 c := SQRT(a*a + b*b);
END PROCEDURE;

PROCEDURE Hyp2(IN a, b : REAL) : REAL;
BEGIN
 RETURN SQRT(a*a + b*b);
END PROCEDURE;

To use these we could do the following:

Hyp1(3.0, 4.0, answer); or answer := Hyp2(3.0, 4.0);

So far we have shown only the simplest of procedure declarations. In actual use, a pro-
cedure may declare its own local variables. The formal definition of a procedure decla-
ration states that we use a procedure heading followed by a subblock. What is this sub-
block? It is almost identical to the syntax for the block which makes up the main pro-
gram. The main difference is that it may not contain the declarations of other proce-
dures, objects or types. This means that we can declare any constants and variables
needed by the procedure, and then any sequence of executable statements.

BEGIN END

simple
declaration

statement
sequence

Figure 7-3. Syntax of the Procedure Block

7.5 The FORWARD Qualifier

There may be times when a procedure needs to be used before it has been defined. When
it is desireable to do so, simply put the procedure heading in the declaration section fol-
lowed by the reserved word FORWARD ahead of the first place where it will be used.

MODSIM Reference Manual

90

Later, in the same module, provide the full declaration in the usual way. If we had
wanted to provide a forward declaration of Hyp1, this is how it would look:

PROCEDURE Hyp1(IN a, b : REAL; OUT c : REAL); FORWARD;

7.6 Procedures With Empty Parameter Lists

A procedure with no parameters can be declared and invoked with or without using an
empty parameter list. We can illustrate this by showing how each of the procedures
whose headings are listed below would be called:

PROCEDURE Proc1; ⇐ ⇐ procedure headings
 or
PROCEDURE Proc1();

PROCEDURE Proc2() : INTEGER;
 or
 PROCEDURE Proc2 : INTEGER;

Proc1; ⇐ ⇐ procedure invocations
 or
Proc1();
n := Proc2();

 or
 n := Proc2;

Figure 7-4. Empty Parameter Lists

91

8. Modules

Up to this point we have explained MODSIM's language features from the viewpoint of a
traditional language such as Pascal, in which all of the components of a program are
found in one file which is compiled as a unit.

One of MODSIM's strong points is its modular structure which allows programs to be
constructed from library modules. Any part of a program can import types, variables,
constants and procedure definitions from these library modules as needed. Each module
can be compiled separately to facilitate program maintenance and reduce development
time.

8.1 Facts About Modules

Since so many features of modules are interdependent, it is difficult to cover the topic in
a strictly sequential fashion. To make things easier, we will list a number of brief facts
about modules and then discuss them at greater length.

• Every MODSIM program must contain a MAIN module.

• As the name implies, there can only be one MAIN module in a program.

• Every MAIN module must have a BEGIN, even if it is empty.

• MAIN modules and IMPLEMENTATION modules may have ModInit procedures.
ModInit procedures may be used to initialize modules before the first statement
of a program is executed.

• Each module is named using a standard identifier.

• A program may consist of any number of modules. Each module is stored in a
separate file.

• There are three types of MODSIM modules: MAIN, DEFINITION, and
IMPLEMENTATION.

• Any module can be compiled separately.

• A library consists of two modules: DEFINITION, and IMPLEMENTATION. Each
is named with the same identifier.

• Any constant, type, variable or procedure declared in a DEFINITION module
may be imported by other modules.

• Any constant, type, variable or procedure declared in a DEFINITION module is
implicitly visible in the accompanying IMPLEMENTATION module.

• There can be no executable code in a DEFINITION module.

• If a procedure or object method is defined in a DEFINITION module it must be
coded in the accompanying IMPLEMENTATION module.

MODSIM Reference Manual

92

• Nothing in an IMPLEMENTATION module is visible anywhere else, including
within that library's DEFINITION module.

• Nothing can be imported from an IMPLEMENTATION module.

• Nothing can be imported from a MAIN module.

• Anything imported into a DEFINITION module is implicitly visible in that li-
brary's IMPLEMENTATION module.

• IMPORT statements must be the first statements in any module. They may be
preceded only by comments.

8.2 The IMPORT Statement

We discuss the IMPORT statement first because it is possible to use MODSIM without
taking advantage of user-defined libraries; yet MODSIM, itself, provides a number of
built-in libraries from which the user may wish to IMPORT.

The IMPORT statement can be used in any kind of module to selectively import any con-
stant, type, variable or procedure definitions from a DEFINITION module. Here is an
example of an import from MODSIM's built-in Utility and Math modules:

FROM UtilMod IMPORT, GetComputerType;
FROM MathMod IMPORT SIN, COS, pi;
 or
FROM MathMod IMPORT SIN AS sine, COS AS cosine, pi;

In the IMPORT statements above, pi is a constant and the remainder of the imported con-
structs are procedures. Note that we simply use the identifier of the construct whose
definition is to be imported. If the identifier which names the imported construct would
conflict with an identifier already in use, the imported construct can be renamed using
the AS clause to rename it . As the example above shows, this renaming feature can be
used arbitrarily for aesthetic reasons as well. The renaming of the variable applies only
within the module which has imported the variable.

 Chapter 8: Mod-
ules

93

FROM IMPORT

,

ASALL

id

id

id

,

()

;

id

AS id

Figure 8-1. Syntax of an IMPORT Statement

Note in the syntax diagram above that MODSIM allows considerable flexibility in the
importing of enumerated types. Here is an enumeration which is defined in IOMod,
MODSIM's built-in input-output module:

TYPE
 FileUseType = (Input, Output, InOut, Append, Update);

To illustrate ways in which enumerations can be handled in an IMPORT statement we will
show four different ways to handle imports from that definition:

1 - FROM IOMod IMPORT ALL FileUseType;
2 - FROM IOMod IMPORT FileUseType(Input, Output);
3 - FROM IOMod IMPORT FileUseType(Input AS in, Output);
4 - FROM IOMod IMPORT ALL FileUseType(Input AS in);

1. Imports the type definition for the enumeration and all of its individual
enumeration values.

2. Imports the type definition for the enumeration and two specific enumera-
tion values.

3. Imports the type definition for the enumeration and two specific enumera-
tion values. It renames one of the enumeration values which is imported.

MODSIM Reference Manual

94

4. Imports the type definition for the enumeration and all of its individual
enumeration values. It renames one of the enumeration values which is
imported.

An attempt to import one of the enumeration values without its parent type will be
treated as an error.

8.3 MAIN Module

The MAIN module contains the main routine of the program. It is the only required mod-
ule.

MAIN MODULE ;id

BEGIN END MODULE .

IMPORT
statement declaration

block

Figure 8-2. Syntax of a MAIN Module

The MAIN module consists of a module heading followed by optional IMPORT statements
and a block.

8.4 DEFINITION Module

A DEFINITION module contains a set of definitions for export to some other module or
modules. These definitions must be explicitly imported by the other modules which need
them. If a procedure or object method is defined in a DEFINITION module, then a cor-
responding IMPLEMENTATION module must be provided and an implementation of any
procedures must be provided. An IMPLEMENTATION module is needed even if it is
empty except for the header and ending statements. The IMPLEMENTATION module
contains the executable code for procedures and methods defined in the DEFINITION
module.

Any construct defined in a DEFINITION module will automatically be visible in the cor-
responding IMPLEMENTATION module. In other words, definitions are implicitly im-
ported to the corresponding IMPLEMENTATION module.

 Chapter 8: Mod-
ules

95

DEFINITION MODULE

END
MODULE

;

IMPORT
statement definition

identifier

.

Figure 8-3. Syntax of a DEFINITION Module

When a procedure is defined in a DEFINITION module, only the procedure heading is
listed. The actual procedure declaration takes place in the corresponding
IMPLEMENTATION module. As an example, if we were to place the procedure Hyp1 in a
DEFINITION module called Trig so it would be available for export, we would do the
following:

DEFINITION MODULE Trig;

CONST
 goldenSection = 3.0 / 5.0;

PROCEDURE Hyp1(IN a, b : REAL; OUT c : REAL);

END MODULE.

Note that we also defined a constant which will be available for export. The layout of a
definition module is nearly the same as the layout of a block except that procedures are
not fully defined. Only their heading is listed. We can include constant, type, variable
and procedure declarations.

8.4.1 Cycle Dependencies

MODSIM III does not require users to identify cyclic relationships between definitions in
various modules. Users can simply import types, constants and variables as needed
without regard to such dependencies.

8.5 IMPLEMENTATION Module

An IMPLEMENTATION module contains the actual code for the objects and procedures
whose interfaces are specified in the DEFINITION module. In other words it contains
the full declarations for any procedures or object methods whose headings are listed in
the DEFINITION module. The IMPLEMENTATION module must have the same name as
its corresponding DEFINITION module. Any constants, types or variables declared in
the DEFINITION module are automatically visible in the IMPLEMENTATION module.

MODSIM Reference Manual

96

IMPLEMENTATION MODULE

END MODULE

IMPORT
statement

declaration

identifier

.

;

Figure 8-4. Syntax of an IMPLEMENTATION Module

An IMPLEMENTATION module may also contain declarations of constants, types, vari-
ables or procedures which will be used strictly in that module to implement its capabili-
ties.

An IMPLEMENTATION module may import any constructs it needs from other
DEFINITION modules. If a construct is imported into a DEFINITION module it will
automatically be visible in the corresponding IMPLEMENTATION module. In other
words, items defined in a DEFINITION module are implicitly visible in the accompany-
ing IMPLEMENTATION module, and items imported into the DEFINITION module are
implicitly visible in the IMPLEMENTATION module.

8.6 The ModInit Procedure

MAIN modules and IMPLEMENTATION modules are allowed to have a ModInit proce-
dure. ModInit procedures are procedures guaranteed to be executed before the pro-
gram's first statement is executed. They are a useful tool for initializing modules.

To define a ModInit procedure, one need only to include a definition for a procedure
named ModInit somewhere in the module. The ModInit procedure must have zero
arguments.

No guarantee is given as to the order in which the ModInit procedures of a set of in-
cluded modules will be executed.

8.7 File Naming Conventions for Modules

MODSIM III's compilation manager and other system utilities expect that a certain
naming convention will be used for files which contain modules. MODSIM source files
are expected to have the extension .mod. The file name is composed by preceding the
module name with an M for MAIN module, D for DEFINITION module and I for
IMPLEMENTATION module. The .mod extension is then added. The examples below
show how this is done:

 Chapter 8: Mod-
ules

97

Module Name File Name
MAIN MODULE Alpha MAlpha.mod
DEFINITION MODULE Beta DBeta.mod
IMPLEMENTATION MODULE Beta IBeta.mod
C++ code for Beta Beta.cpp

Figure 8-5. File Naming Conventions for Modules

Note that the naming conventions extend to C++ source code files which may be part of a
library. In other words, part of the implementation code may be provided in C++. When
this is done, naming conventions for the procedure headings in the DEFINITION module
must be followed. These naming conventions will be covered shortly.

The file systems on some computers allow only very short file names to be used. The PC
FAT file system is one of these. It allows filenames to be at most eight characters in
length. For systems such as these, the file names for modules having long names will be
truncated. Thus, MAIN MODULE AlphabetSoup must be stored in a file named
MAlphabe.mod. This means that no two modules may have names with the same first
seven characters. Even though their modules names were unique, they could end up with
identical file names. This restriction does not apply to Windows NT or Windows 95 op-
erating systems when they are not using the MS-DOS based FAT file system.

Finally, file names for MODSIM modules are case sensitive on computers which recog-
nize case in file names, which includes UNIX, Windows NT and Windows 95.

8.8 Including C or C++ Code in a MODSIM Program

The preferred way to include C/C++ routines in a MODSIM program is to provide a pro-
cedure heading in the DEFINITION or IMPLEMENTATION module which is followed by
the keyword NONMODSIM. The C/C++ code is then provided in a file which follows the
naming conventions outlined above.

The following table lists the MODSIM type and the matching type in C/C++ code. The
file 'modsim.h', which is part of the MODSIM distribution should be checked in case
a specific implementation of MODSIM deviates from this table.

MODSIM Reference Manual

98

MODSIM C/C++
INTEGER long

REAL double
BOOLEAN char

 CHAR unsigned char
STRING char * to C

 ANYREC MS_RECORD

ANYOBJ MS_OBJECT

enumeration int
ARRAY OF CHAR string from C

Figure 8-6. MODSIM Types vs C/C++ Types

Below is a MODSIM DEFINITION module followed by C++ and C files which include
the implementation code. The procedure heading for a routine which will be provided in
C++ is followed by the keyword NONMODSIM. In addition the NONMODSIM keyword can
be followed by an optional string literal which distinguishes between different language
linkage conventions. At present the strings "C" and "C++" are valid.

Note: NONMODSIM without any string literal defaults to C++.

DEFINITION MODULE Sample6; ⇐⇐ file DSample6.mod
PROCEDURE foo1(IN x : REAL) : INTEGER; NONMODSIM;
PROCEDURE foo2(IN x: REAL) : INTEGER; NONMODSIM “C”;
END MODULE;

IMPLEMENTATION MODULE Sample6; ⇐⇐ file ISample6.mod
END MODULE;

#include <modsim.h> ⇐⇐ file Sample6.cpp
MS_INTEGER foo1(MS_REAL x)
{
 MS_INTEGER n;
 cout << "x = " << x << "\n";
 return n;
}

#include <modsim.h> ⇐⇐ file Sample6.c
MS_INTEGER foo2(MS_REAL x)
{
 MS_INTEGER n;
 printf ("x = %f\n", x);
 return n;
}

Note: The examples above include 'modsim.h'. This is the preferred way to interface
MODSIM to C++ code as it helps ensure that C++ code will link without problems, and
will be compatible with future releases of MODSIM.

 Chapter 8: Mod-
ules

99

When passing parameters to a C/C++ routine it is important to note that INOUT and OUT
parameters are handled as pointers. Here is a MODSIM procedure heading and the
matching C++ function to illustrate the point:

DEFINITION MODULE Sample7;

 PROCEDURE Proc7(IN x : REAL;
 INOUT n : INTEGER) : CHAR; NONMODSIM;
END MODULE.

MS_CHAR Proc7(MS_REAL x, MS_INTEGER* n)
{
 ...
}

Because the MODSIM STRING type is fully dynamic, it carries with it some bookkeep-
ing information for memory management. Because of this, it must be interfaced to C++
code carefully. This means that strings can be passed between C++ and MODSIM only
in routines which are identified to the compiler as NONMODSIM. This ensures that mem-
ory management bookkeeping is done correctly.

The MODSIM STRING type can be passed directly into a C++ char* variable. The
MODSIM STRING type is null terminated. Strings passed in this way must not be dis-
posed of, or modified by the C++ routine.

Strings coming from C++ to MODSIM must be passed into a MODSIM ARRAY OF
CHAR or FIXED ARRAY [0..n] OF CHAR. The ARRAY OF CHAR can then be con-
verted into a MODSIM STRING type using the built-in procedure CHARTOSTR. The
C++ string must be null terminated. A C++ string must never be passed directly into a
MODSIM STRING type variable. If this is done, the results are unpredictable, but in-
variably bad since the C++ strings lack the memory management fields used in
MODSIM strings.

The example below illustrates passing a MODSIM string to C++ code and passing a C++
string back to MODSIM:

PROCEDURE foo(IN str: STRING); NONMODSIM; ⇐⇐ file Itest.mod

TYPE
 Arr = ARRAY INTEGER OF CHAR;

PROCEDURE Test(IN cstr: Arr);
VAR
 str : STRING;
BEGIN
 str := CHARTOSTR(cstr); { convert to MODSIM string }
 OUTPUT("C++ string: ", str);
END PROCEDURE;

MODSIM Reference Manual

100

PROCEDURE TestStrings;
VAR
 str: STRING;
BEGIN
 str := "a MODSIM string";
 foo(str); { pass string to C++ routine foo }
END PROCEDURE;

#include <modsim.h> ⇐⇐ file test.cpp

extern void test_Test(MS_CHAR* astr);
void foo(MS_STRING str)
{
 cout << "MODSIM string: " << str << "\n";

 char* cstr = "a C++ string";
 test_Test((MS_CHAR*)cstr); // calling MODSIM PROCEDURE Test
}

It is also possible, but not recommended, to use a C++ routine without following the
naming conventions for file names and without identifying the procedure as NONMODSIM
in a DEFINITION module. In this case, the link would have to be handled by the user.
The user would then have to use the naming conventions followed by the compiler. The
routine Proc7 would then look like this:

MS_CHAR Sample7_Proc7(MS_REAL x, MS_INTEGER *n)
{
 ...
}

The MODSIM compiler uses the following conventions:

types : <modulename>_<typename>
global variable : <modulename>_<variablename>
procedure : <modulename>_<procedurename>
method name : <methodname>_
local variables : <variablename>_

Although MODSIM III has no inherent limit on the length of identifiers, linkers often do
have limits. Many machines have linkers with a 32 character limit. Users should keep
this in mind. If the combined length of the module name and identifier exceeds 29 char-
acters (32 minus the 3 underscore characters), it is possible that names which are unique
in the MODSIM code would not be unique when rudely truncated to 32 characters by the
machine's linker. When this happens, the linker may warn that duplicate symbols have
been encountered.

101

Section II. Object-Oriented Programming

MODSIM Reference Manual

102

103

9. Objects in MODSIM III

Objects in MODSIM are dynamically allocated data structures coupled with routines,
called methods. The fields in the object's data structure define its state at any instant in
time while its methods describe the actions which the object can perform. The values of
the fields of an object can be modified only by its own methods, but the values of the
fields can be “read” by any part of the program. We refer to the fields and methods of an
object collectively as its properties.

The programmer declares an object type by specifying its fields and its methods. The
OBJECT type is consistent in behavior to other types. Its closest relative is the RECORD.
Object types can be used as fields of records or as fields of other objects. An array of
objects can be declared. The object type can be used as a parameter in procedures and
methods.

The OBJECT type is a dynamic data type, which means that it behaves in the same way as
arrays and records behave. Object instances are allocated and deallocated by the pro-
grammer using NEW and DISPOSE.

We introduced a number of these aspects of the object data type in the first section of this
manual. This was to draw attention to the many similarities between object types and the
traditional data types. But in some ways it is a large leap from simpler types to object
types because objects add several new programming capabilities to the programmer's
toolbox. Although these new capabilities are more easily classified as evolutionary than
revolutionary, the effect of their introduction on programming technique and style has
been profound.

Some of the new capabilities provided by objects are:

• Encapsulation of data and code: Tying together the fields which describe the
object's state with the procedures (called methods) which define its behaviors.
Controlling access to the fields.

• Inheritance: Once an object type has been defined, new types can be defined
based on the existing type. Each descendant in the hierarchy can add its own
fields and method definitions to those of its ancestors.

• Message passing: An object's methods are invoked by sending a message to the
object asking it to perform a specific method.

• Polymorphism: Allowing differing object types in a hierarchy to share the same
method name but provide their own implementation of that method. This results
in a generic invocation producing different behaviors appropriate to the object
being referenced.

MODSIM Reference Manual

104

• Hierarchical types: A descendant is type compatible with any of its ancestors.

When a variable of type OBJECT is declared, the result is a reference variable. The ob-
ject's reference variable behaves in the same manner as reference variables for arrays and
records.

9.1 Object Type Versus Object Instance

Once an object type has been declared, instances of that type of object are created using
the built-in procedure NEW. The object type serves as a template or specification from
which individual object instances are created by NEW. Each object instance has its own
set of fields of the type and number described in the object type declaration.

9.2 Scope of an Object's Fields

Within an object's methods, all of its fields are visible. In other words, the object's fields
are global in scope to the object's methods. Variables declared within an object's meth-
ods, of course, are local to that particular method.

9.3 Object Type Declaration / Object Declaration

An object type declaration is similar to a record type declaration in that each includes a
list of fields, but an object type declaration also includes the headings for any methods
the object will define. A METHOD is nearly identical to a PROCEDURE except that it is
encapsulated in an object:

TYPE
 VehicleObject = OBJECT ⇐⇐ object type declaration
 course : [0 .. 359];
 speed : INTEGER;
 position : PositType;
 ASK METHOD GoTo(IN destination : PositType);
 END OBJECT;

....
 OBJECT VehicleObject; ⇐⇐ object declaration
 ASK METHOD GoTo(IN destination : PositType);
 BEGIN
 ...
 executable code goes here
 ...
 END METHOD;
 END OBJECT;

Object types are declared in the TYPE section of a module. For each METHOD heading
which is mentioned in the object type declaration there must be a full METHOD decla-
ration in a separate object declaration. The object declaration is a separate, named
block which contains all of the METHOD declarations. So there are two elements involved
in defining an object.

Chapter 9: Objects

105

Figure 9-1. Syntax of an Object Type Declaration

The object type declaration contains the “interface” to the object. All fields are defined
here and the heading for each METHOD is listed.

OBJECT

PRIVATE

OVERRIDE

(

,

)

END

FORWARD

OBJECT

OVERRIDE

PRIVATE

field/method
list

field/method
list

method list

field/method
list

;

identifier

method list

CLASS field/method
 list

MODSIM Reference Manual

106

OBJECT ;

;

END OBJECT

METHOD
declaration

identifier

Figure 9-2. Syntax of an Object Declaration

The object declaration is a separate and distinct block which bears the same name as its
corresponding object type declaration. Its only purpose is to hold the full METHOD decla-
rations for the object type.

It is reasonable to ask why the object declaration has been split into two pieces. In most
large MODSIM programs, the object type declarations would be placed in a
DEFINITION module and the object declaration, which contains the declaration of the
methods, would be placed in an IMPLEMENTATION module. This allows the definition,
or interface, of an object to be made visible in a DEFINITION module while hiding its
implementation in the IMPLEMENTATION module. In a program which consists of only
a main module, the object type declaration would come first, followed later by the object
declaration.

A method which returns a function result is referred to as a function method. A method
that does not return a function result is known as a proper method. In the previous ex-
ample, GoTo is a proper method.

The method may optionally include a list of parameters. The syntax of the parameter
list, the type of the parameters, the parameter qualifier and the type of a function method,
follow the same rules as procedures.

9.4 METHOD Declarations

Other than the use of the keywords ASK METHOD, TELL METHOD or WAITFOR METHOD
instead of PROCEDURE, methods are defined using a syntax similar to procedure decla-
rations. Their heading is listed in the object type declaration and their full declaration is
placed in the object declaration block.

The declaration of the method, or the body of the method which contains the executable
code, is found in the corresponding object declaration block.

Chapter 9: Objects

107

After an object type has been declared, its methods must be declared in a corresponding
object declaration block. Typically, the object type declaration is placed in a
DEFINITION MODULE, and the corresponding object declaration is placed in an
IMPLEMENTATION MODULE.

For example, the corresponding object declaration for the VehicleObject type decla-
ration could look like this:

OBJECT VehicleObject;
 ASK METHOD GoTo(IN destination : PositType);
 BEGIN
 implementation code ...
 END METHOD;
END OBJECT;

9.5 Scope of Fields and Variables in Objects

We mentioned that objects are typically declared and used in a library module. This is a
good place to digress a bit and review the scope of fields and variables from the perspec-
tive of objects defined in modules:

• Any variable declared in a module external to any object type declaration or ob-
ject declaration block is global to the entire module. There will be only one copy
of the variable. The variable is visible to the methods of every object instance as
well as every procedure in the module. If the variable is declared in the
DEFINITION module instead of the IMPLEMENTATION module, it will also be
visible to any other module which imports it.

• Any field declared within an object type declaration will be visible in the usual
sense within that object's methods. Each instance of an object type has its own
separate copies of all of the fields. In other words there will be a separate copy of
each field for each object instance which is created. From outside the object, we
can ASK the object for the value of any of the fields, but we cannot directly
change their value with an assignment.

• Any variable declared within the body of a method will be visible only within
that method. There will be a unique copy of that local variable for each invoca-
tion of that method.

9.6 Object Reference Variables

The declaration of an object type implicitly defines a new data type of the same name,
known as the reference type. Variables declared to be of a reference type are known as
reference variables. When a reference variable for an object is declared, it is initialized
to NILOBJ. NILOBJ is a built-in constant which is analogous to NILREC and
NILARRAY. It means that the object reference variable is not referring to any object.

MODSIM Reference Manual

108

Objects are like records in that they are created and destroyed dynamically, at run-time,
by the built-in procedures NEW and DISPOSE. Each object which is created by NEW, ac-
cording to the type specification for that object type, is called an object instance. Like
arrays and records, once an object type has been defined, multiple instances of objects of
that type can be dynamically created.

Objects are like arrays and records which have been dynamically created with the NEW
procedure. They are not tied to a particular variable. An object instance can be referred
to by one, many or no reference variables. Likewise, a reference variable can refer to
one object or to NILOBJ, i.e. no object.

A reference variable contains a reference value which identifies a particular instance of
an object type. Programs will often have many instances of a given object type. All of
these instances share an identical structure, but each will have distinct values in its fields
to represent its current state.

For example, defining the object type AircraftObject implicitly defines a corre-
sponding reference type AircraftObject:

TYPE
 AircraftObject = OBJECT
 altitude : INTEGER;
 wingAC : AircraftObject;
 TELL METHOD Land;
 END OBJECT;

VAR
 Squadron: ARRAY INTEGER OF AircraftObject;
.
.
PROCEDURE AirControl;
VAR
 Tiger20, Puma33: AircraftObject;
BEGIN
 ...
END PROCEDURE;

In the above example, the field wingAC, the elements of the global variable Squadron,
and the local variables Tiger20 and Puma33 are all reference variables for objects of
type AircraftObject. Note that the declaration for AircraftObject uses the type
AircraftObject as one of its own fields. The identifier is used before its own defi-
nition is complete. This is one of two contexts in the language where this rule is relaxed.
The other context is in fields of records.

Reference variables can be used in a manner similar to other types of variables. The
variable declaration:

Squadron : ARRAY INTEGER OF AircraftObject;

is an example.

Chapter 9: Objects

109

Fields of objects containing reference variables can indicate relationships between ob-
jects. In the example above, the field wingAC is a reference variable of type
AircraftObject which is used to access an aircraft's accompanying wing aircraft,
which is another object instance of type AircraftObject.

9.7 Class Variables (Fields) and Methods

Class variables and methods are specific to an object declaration just as object fields and
methods are. The difference is that only a single instance of a class variable ever exists,
as opposed to object variables (fields) which are duplicated for each instance creation of
the object type. If an object type declaration contains class variables and/or fields, then
the object description itself may be considered an entity or meta class. Class variables
and methods may be referenced directly from the object type itself.

Class variable and method declaration is part of an object's declaration. The keyword
CLASS follows all instance field and method declarations including any OVERRIDE or
PRIVATE sections. Following the CLASS statement, class fields (variables) and meth-
ods may be declared. This section may contain an OVERRIDE and PRIVATE section as
well. Class variables and methods are inherited just as instance fields and methods are
inherited, and class methods may be overridden to modify their behavior as appropriate
for the derived object type.

For example:

PlaneObj = OBJECT
 LoggedHours : REAL;
 Altitude : REAL;
 Destination : CityType; (* declared elsewhere *)
 TELL METHOD FlyTo(IN city : CityType);

 CLASS
 PlaneQueue : QueueObj;
 ASK METHOD CreateQueue;
END OBJECT;

Suppose we desired an object type that could limit the number of instances ever simulta-
neously in existence; for example, a pool of resources where each member of the pool is
a resource object itself. We could declare the following object type:

ResourcePoolObj = OBJECT(ResourceObj)
 OVERRIDE
 ASK METHOD ObjInit;
 ASK METHOD ObjTerminate;
 CLASS
 numberAllowed : INTEGER;
 ASK METHOD SetNumberAllowed(IN num : INTEGER);
END OBJECT;

OBJECT ResourcePoolObj;
 ASK METHOD ObjInit;

MODSIM Reference Manual

110

 BEGIN
 DEC(numberAllowed);
 END METHOD;

 ASK METHOD ObjTerminate;
 BEGIN
 INC(numberAllowed);
 END METHOD;

 ASK METHOD SetNumberAllowed(IN num : INTEGER);
 BEGIN
 numberAllowed := num;
 END METHOD;
END OBJECT;

In our intialization statements we can then instantiate the object type so that it will keep
track of the availability of resource objects:

 ASK ResourcePoolObj TO SetNumberAllowed(34);

Notice that the type name itself is used as a reference for the ASK construct. This is only
allowed for class variables and methods. If an instance of ResourcePoolObj had been
created it could be used to reference any class variables or methods as well. Also, note
that within an object type's methods class variables and methods may be referenced and
class variables assigned as if they were regular fields or methods of the object type.

When we are ready to create a new instance of ResourcePoolObj we check the
numberAllowed field and proceed accordingly:

 ...
VAR
 Resource : ResourcePoolObj;
BEGIN
 IF ASK ResourcePoolObj numberAllowed > 0
 NEW(Resource);
 ELSE
 (* appropriate processing *)
 END IF;
 ...

In addition to ASK methods, both TELL and WAITFOR methods may be delared as
CLASS methods.

9.8 Object Type Checking and the ANYOBJ Type

The special type ANYOBJ provides an escape from strict type checking of reference vari-
ables in MODSIM. It is analogous to the type ANYREC for records.

A variable of type ANYOBJ can be used to hold a reference value of any object type. No
type-checking is performed during an assignment to or from a variable of type ANYOBJ.

Chapter 9: Objects

111

It is a way to circumvent MODSIM's type checking. There may be circumstances when
this is necessary. Usually the relaxation of type checking is used when building general
purpose procedures or methods which are designed to operate on any object instance,
without regard to its type. For example:

PROCEDURE SwitchObjects(INOUT firstObj : ANYOBJ;
 INOUT secondObj: ANYOBJ);
VAR
 temp : ANYOBJ;
BEGIN
 temp := firstObj;
 firstObj := secondObj;
 secondObj := temp;
END PROCEDURE;

The procedure above will exchange objects of any type. This saves us the chore of writ-
ing a separate switch procedure for each object type. This ability is used in many of the
library modules. Of course, as with the ANYREC type, this powerful capability is a two-
edged sword. Since it circumvents strong type checking of parameters, it leaves the
careless programmer vulnerable to run-time errors which may be difficult to debug.

Just as it is not possible to reference fields of a record which has been assigned to a vari-
able of type ANYREC, it is not possible to reference fields of an object which has been
assigned to a variable of type ANYOBJ. This is because the ANYOBJ typed variable car-
ries no information about the structure of the object it is referring to.

9.9 Allocating and Deallocating Objects

An object instance is allocated by calling the standard procedure NEW, which takes as its
argument a reference variable of the desired type. The reference value for the object in-
stance is returned in the argument, and each field of the instance is automatically initial-
ized as appropriate.

For example:

VAR
 Tiger20: AircraftObject;
...
NEW(Tiger20);

The above call allocates an object instance of type AircraftObject and returns its
value in the reference variable Tiger20.

Note: It is not sufficient to simply declare the reference variable to obtain access to an
object instance. The reference variable contains NILOBJ (analogous to NILARRAY and
NILREC) until it is assigned a reference value by a call to NEW or by an assignment
statement.

MODSIM Reference Manual

112

An object instance is deallocated by calling the standard procedure DISPOSE, which
takes as its argument an object reference variable.

For example:

DISPOSE(Tiger20);

deallocates the object instance which was allocated in the previous example.

An object stored in a variable of type ANYOBJ can be passed to DISPOSE. Since objects
carry their actual type information with them, DISPOSE is able to identify the object and
handle it properly.

9.10 ObjInit & ObjTerminate

Some object types may require initialization of their instances before they are used. If a
method called ObjInit has been defined for an object type, then the method will be in-
voked automatically by NEW.

A complementary method called ObjTerminate is used to perform “cleanup” before
deallocating objects. This method is called automatically, if it exists, by DISPOSE be-
fore it deallocates the object instance.

9.11 ObjClone

The built-in CLONE function can be used to make a copy of an object instance. When
CLONE is passed an object instance to copy, it will do the following:

1. Allocate space for a new object instance of the same type passed in.

2. Copy the values in the fields of object instance passed in to the new copy.

3. Invoke the new object instance's ObjInit method if one exists.

4. Invoke the object type's ObjClone method, if one exists.

The ObjClone method is analogous to the ObjInit and ObjTerminate methods.
The ObjClone method can be used to perform any more complex behaviors which the
user wants to associate with the copy.

If the programmer overrides an existing ObjClone method, the overridden method must
be invoked with the INHERITED statement to ensure that all behaviors associated with
copying defined by ancestors are carried forward.

Chapter 9: Objects

113

9.12 Proto Objects

MODSIM provides a special object type declaration facility that allows programmers to
design and implement objects in a general purpose and high-level way, while allowing
the use of these objects to be refined as appropriate to individual applications. For exam-
ple, group objects (queues, stacks, btrees, etc) are provided in the MODSIM runtime li-
brary support. These objects have been implemented so that any object may be placed in
such a group. When used in applications, groups generally contain only one kind of ob-
ject or objects derived from a single ancestor object type. However, the compiler cannot
ensure that only instances of the “correct” object type are added to a user's groups since it
has no way of knowing which types to include or exclude. For this purpose proto-
objects are employed.

A proto-object type declaration is almost identical to a regular object type declaration.
But, with proto-object types the user can indicate that certain field, method return and
formal argument types are replaceable. Replaceable types may be any object type in-
cluding the built-in generic ANYOBJ or the built-in generic ANYREC. A replaceable type
may only be replaced with a compatible type. In the case of ANYOBJ, any object type
may be used. Similarly, for ANYREC any record type may be used. If the replaceable
type is a specific object type, then only object types derived from the replaceable type
may be used.

Any field, method parameter or method return type may be declared as replaceable. An
example of a proto-object declaration is shown below:

Obj = OBJECT
 field : #Aobj;
 ASK METHOD foo(IN a : #Aobj) : #Aobj;
END OBJECT;

Here, 'field' is an Aobj which is replaceable and the method 'foo' has a parameter of
type AObj and returns an AObj, both of which are replaceable.

To derive a substitute replaceable type the syntax shown in figure 9-3 is used.

Figure 9-3. Syntax for Substituting a Replaceable Type

where 'inherit spec' is:

OBJECT ()

,

inherit spec

MODSIM Reference Manual

114

identifier identifier identifier]

,

:[

#

Figure 9-4. Syntax for 'inherit spec'

For example:

If we want to have a queue that could contain only PlaneObjs or object types derived
from planes, we can restrict QueueObj so that the compiler will ensure that only the
correct type of object can be added to the queue:

PlaneQueueObj = OBJECT(QueueObj[ANYOBJ:PlaneObj])
 (* any additional fields and methods needed *)
END OBJECT;

Remember that the replacement type must be compatible with the replaceable type. Any
use of the new type will cause the compiler to ensure that the correct type object (or rec-
ord) instances are passed to the queue object's methods and that its return values (from
Remove(), for example) are assigned to variables of a compatible type.

The following example illustrates how to derive and substitute multiple levels of proto-
objects:

 PlaneObj = OBJECT
 (* field and methods *)
 END OBJECT;

 JetObj = OBJECT(PlaneObj)
 (* fields, methods and overrides *)
 END OBJECT;

 PlaneQueueObj = OBJECT(QueueObj[ANYOBJ:#PlaneObj])
 (* notice that QueueObj is a PROTO with the *)
 (* replaceable type ANYOBJ *)
 (* this object substitutes PlaneObj for ANYOBJ -*)
 (* thereby restricting this queue to hold only *)
 (* PlaneObj things. By placing '#' before *)
 (* PlaneObj in the substitution, subsequent *)
 (* derivations may replace PlaneObj with their *)
 (* own object derived from a PlaneObj *)
 END OBJECT;

Chapter 9: Objects

115

 JetQueueObj = OBJECT(PlaneQueueObj[PlaneObj:JetObj])
 (* in this declaration a further refined queue *)
 (* is defined by substituting JetObj for *)
 (* PlaneObj. since JetObj is NOT preceded *)
 (* by '#' no further substitution would be *)
 (* enabled. however, if desired a '#' could *)
 (* precede JetObj in order to allow *)
 (* further refinements. *)

END OBJECT;

Proto-object types may be used “as is.” That is, it is not required that users derive their
own type or substitute types for the replaceable types. If the proto-object type is used
without replacements, the object type will use the replaceable type(s) as a default. Also,
if a proto-object type specifies more than one replaceable type, the user may selectively
replace zero, one or more of them.

MODSIM Reference Manual

116

117

10. Methods and Fields of Objects

The object type declaration must be accompanied by an object declaration which includes
the full declaration of the object's methods. The heading of each method is listed in the
object type declaration, but the full definition of the method is done in the object decla-
ration block.

A METHOD differs from a PROCEDURE in several important ways:

• The method is tied to an object. It can only be invoked by sending a message to
an object instance requesting that the method be performed.

• Unlike procedures, there can be any number of methods named with the same
identifier. Each one can have different implementation code. They can be distin-
guished from each other because each is tied to a different object type.

• Some methods can elapse simulation time but procedures cannot.

Methods come in three forms: ASK methods, TELL methods, and WAITFOR methods.
The form is specified when they are declared. There are important distinctions between
ASK, TELL, and WAITFOR as pertains to simulation, but for now we will simplify the
distinction somewhat. Since WAITFOR methods may only be called as part of the WAIT
FOR statement we will defer showing examples of WAITFOR method invocations until we
discuss the WAIT FOR construct in Section III.

10.1 Invoking an Object's ASK and TELL METHODs

Methods differ in one crucial way from procedures; they are always invoked with refer-
ence to a specific object:

ASK | TELL object [TO] method [(parameter list)]

 or

value := ASK object [TO] method([parameter list]);

Figure 10-1. Method Invocation

TO is a “noise word” which can be optionally specified in method calls to make the code
more readable, but it has no effect during execution.

An ASK statement behaves exactly like a procedure call. When the ASK statement is
executed, the object is requested to invoke the method. The calling code then waits for
the invoked method to finish execution before proceeding past the ASK statement. ASK

MODSIM Reference Manual

118

methods are not allowed to pass any simulation time, so, in a simulation, the action just
described takes place at one instant of simulation time.

Since the ASK METHOD is like a procedure, it can either be a proper method or a function
method which returns a value.

expression

identifier
actual

parameters

ASK

TO

Figure 10-2. Syntax of the ASK Statement

The TELL method is also known as a delayed method call. It is essentially an
asynchronous call. The calling code executes the TELL statement which requests the
object to invoke the method. The calling code then proceeds past the TELL statement
without waiting for the invoked method to complete execution or, for that matter,
even to start. TELL methods are allowed to pass simulation time.

The TELL METHOD is only available in one form; the proper method. It is not possible
to define a TELL method which acts like a function method and returns a value. Since
the TELL method is called asynchronously and there is no further connection between the
calling code and the TELL method, there would be no place to which a return value could
be passed. Actually there is a place in the invoker's code to which a return could be
made, but the invoking routine is not waiting there to regain control. It has continued
execution past that spot in the code. For the same reason, INOUT and OUT parameters are
not allowed in TELL methods. In Section III we will cover the TELL method and asyn-
chronous calls in more detail.

The WAITFOR method has characteristics of both the TELL method and the ASK method.
Its use is constrained to the WAIT FOR statement. As with TELL methods, WAITFOR
methods are allowed to pass simulation time by means of the WAIT statement. Unlike
TELL methods, WAITFOR methods may pass values back through IN and INOUT pa-
rameters. In Section III we will revisit the WAITFOR method and discuss the WAIT FOR
conditional control construct.

Chapter 10: Methods and Fields

119

TELL

TO

expression

identifier actual
parameters

expressionIN

Figure 10-3. Syntax of the TELL Statement

Note that the syntax of the TELL statement allows options not covered here. These will
be discussed in Section III.

Here are two examples of method invocations; i.e. sending messages to objects request-
ing that methods be performed:

TELL Aircraft TO FlyTo(OHare);
location := ASK Ship position();

The first statement is an asynchronous call. We are asking the object instance named
Aircraft to execute its method called FlyTo. We have provided an input parameter,
presumably telling it where to go.

The second statement is a synchronous call of a function method. We are asking the ob-
ject instance named Ship to execute its method called position. Presumably this will
return the ship's current location, which is then assigned to the variable location.

ASK and TELL methods of an object are invoked from outside of the object using the
ASK or TELL keyword, the object's reference value, the method name, and any arguments
to the method. Note that the reserved word TO is optional. It is one of the few optional
elements of MODSIM's syntax:

ASK { or TELL } object [TO] method();

There is also a short-cut notation which can be used to invoke ASK and TELL methods of
an object. It is not necessary to use the ASK or TELL syntax within any of the object's
methods to invoke its own methods. Methods can be invoked as if they were locally de-
fined procedures.

MODSIM Reference Manual

120

10.2 Built-in Reference Constant SELF

If it is necessary to refer to the object itself, within one of its methods, we use the built-in
reference type constant SELF.

If the three statements above had been placed respectively within methods of an
Aircraft and Ship object, they would look like this:

FlyTo(OHare);
 or
TELL SELF TO FlyTo(OHare);

location := position();
 or
location := ASK SELF position();

SELF may also be used when an object wants to identify itself to another object, as in:

TELL Tiger20 TO ReportDistance(SELF);

This would request Tiger20 to report its distance from the object making the request.

Note: The usual rules which apply to constants also apply to SELF.

10.3 Referencing an Object's Fields

The ASK method is also used for another purpose. In order to determine the value of an
object instance's fields, the ASK method is used in a manner similar to a function call. In
essence we ask the object for the value of its fields. However, the value of an object in-
stance's fields can only be modified within its own methods.

The form is:

ASK object field

For example:

range := ASK Car fuelLeft * ASK Car MPG;

This statement requests the value of two fields of the object instance named Car. An
expression is formed from the two requests and the car's range is computed based on its
remaining fuel and its mileage rate. Note that, in contrast to invoking a function method,
no empty parameter list is used since these are fields which are being referenced.

There is also a shortcut notation which can be used to reference fields of an object in-
stance. Within any of the object's methods, it is not necessary to use the ASK syntax.
Fields can be referenced as if they were local variables.

Chapter 10: Methods and Fields

121

If the statement above had been placed within a method of a Car object, it would look
like this:

range := fuelLeft * MPG;
 or
range := ASK SELF fuelLeft * ASK SELF MPG;

Here is another example which shows how fields of an object are referenced from outside
the object:

IF ASK Tiger20 position <> HomeBase
 TELL Tiger20 TO ProceedTo(HomeBase);
 OUTPUT("Not at home base, but returning");
ELSE
 OUTPUT("Already at home base");
END IF;

If the same piece of code were in one of the object's own methods, it would look like
this:

IF position <> HomeBase
 ProceedTo(HomeBase);
 OUTPUT("Not at home base, but returning");
ELSE
 OUTPUT("Already at home base");
END IF;

In the second line above we could also have used:

TELL SELF TO ProceedTo(HomeBase);

There is a shorthand version of ASK. Occasionally, you may have nested ASKs and the
notation can get a bit cumbersome. The '.' (dot) may be used to access fields and/or ASK
METHODS of an object instead of or in combination with the ASK specifier. This alterna-
tive has been provided to simplify nested ASK expressions in code.

Example:

 ASK (ASK object group) numberIn;
 ASK (ASK object group) Remove();

may be replaced, respectively, with:

 object.group.numberIn;
 object.group.Remove();

MODSIM Reference Manual

122

10.4 Monitoring of Fields or Variables

Monitoring is a group of powerful features that allow behavior to be attached to the oper-
atations of accessing or setting the value of any variable or field. The monitoring opera-
tion is separate and hidden from the processing that uses or sets the value.

You can use monitoring in many ways. For example, you can monitor a variable and
update a screen plot whenever the value changes. You could also represent a value in
storage in a different form that you use for processing the value, e.g., an encrypted or
compressed form. Monitoring can also be used as a debugging tool, allowing you to
watch over certain key variables or fields without altering the main flow of program
logic. Monitoring can also allow you to separate the operation of a pure simulation
model from the statistics gathering that obtains simulation results.

A variable or field (whether of an object or record) may be monitored. Monitoring may
be specified as being left, right, or left and right. Left monitoring means that any time a
value is given to the variable or field, the monitoring methods that you have specified
will be invoked (i.e., that variable or field is on the left hand side of an assignment).
Right monitoring invokes the specified methods whenever the variable or field is refer-
enced (i.e., the variable or field is on the right hand side of an assignment).

You perform monitoring by replacing the data type of a variable or field with a monitor
type that has been declared for the desired data type. Any valid data type can be moni-
tored, including ennumeration type, subrange type, INTEGER, REAL, STRING,
BOOLEAN, object type, record type, and array type.

As well as providing all capabilities of the desired data type, monitoring also invokes
your LMONITOR and/or RMONITOR methods for the monitor type.

In order to obtain the benefits of monitoring you must provide three elements:

1. Define a monitor object.

2. Provide an implementation of the monitor methods.

3. Attach the monitor object to a variable or field.

Monitoring can be either static or dynamic. Static monitoring is part of the program's
complete run while dynamic monitors can be added or removed during a run.

Monitoring is a rich feature because it can support type structures and inheritance. For
instance, you can use dynamic monitoring to attach a monitor to a field of a single ins-
stance of some object. This marked spy object participates in operation of a simulation
model, but can gather a trace of its own unique history or provide special reports.

Chapter 10: Methods and Fields

123

10.4.1 Example of Static Monitoring

MAIN MODULE MonXmp;
 MonitorSample = MONITOR INTEGER OBJECT
 LMONITOR METHOD SetNewValue;

RMONITOR METHOD GetOldValue;
 END OBJECT;
 OBJECT MonitorSample

 LMONITOR METHOD SetNewValue;
 BEGIN

 OUTPUT("SetNewValue to ", NEWVALUE);
END METHOD;
RMONITOR METHOD GetOldValue;
BEGIN
 OUTPUT("GetOldValue, which is ", VALUE);
END METHOD;

 END OBJECT;
VAR
 queuelen : LRMONITORED INTEGER BY MonitorSample;
BEGIN
 queuelen := 0;
 queuelen := queuelen + 1;
END MODULE

10.4.2 Defining Monitor Objects

A monitor object type is declared with the full generality of any other object type decla-
ration, as shown in figure 9-1.

10.4.3 Syntax

 Figure 10-4. Syntax for Monitor Objects

MONITOR

OBJECT

()

,

END

OBJECT

field/method list

identifiertype

MODSIM Reference Manual

124

10.4.4 Semantics

A monitor type may have as many left- and right-hand monitoring methods as desired.
When there is more than one monitoring method for a given direction they will be called
in the order in which they are defined.

A monitor type may inherit from other objects. The parents of a monitor type may be
either monitor types or non-monitor types. An object that inherits from a monitor object
must be a monitor object and must be for the same data type. Only a monitor type may
have monitor methods.

A monitor type may be constructed for another monitor type, and a variable or field may
be monitored by more than one monitor object.

10.5 Implementation Features for Monitor Methods

10.5.1 Syntax

Figure 10-5. Syntax of Monitor Methods

10.5.2 Semantics

A monitor method can access three special quantities: VALUE, NEWVALUE, and
UPDATEVALUE.

VALUE may be accessed from all monitor methods. It provides the last contents of the
monitored variable or field. Its type is identical to the declared monitor object type.

NEWVALUE is available in LMONITOR (left monitor) methods. It gives the value that the
variable of field is scheduled to acquire.

UPDATEVALUE may be called from LMONITOR methods. Such calls allow the method to
modify the NEWVALUE of the variable or field. Subsequently invoked methods will have
the modified NEWVALUE. After all left monitor methods have been invoked the variable
or field will be assigned the value of NEWVALUE.

LMONITOR

RMONITOR

METHOD

END METHOD

;identifier

method block

Chapter 10: Methods and Fields

125

10.6 Attaching a Monitor Object to a Variable or Field

10.6.1 Syntax for Simple Fields

Figure 10-6. Syntax for Simple Fields

10.6.2 Syntax for Monitor Types

Figure 10-7. Syntax for Monitor Types

10.6.3 Semantics

To declare a simple monitored variable or field use the syntax for simple fields. You can
also declare an entire type to be monitored using the syntax for monitor types.

The "BY" list is optional. When present it is a list of one or more monitors. All of these
monitors must be monitors for the same data type. The listed monitors, also known as
the "static monitors" have monitor objects created for them automatically and are auto-
matically attached to the monitored variable. In addition static monitors are automati-
cally disposed when the monitored variable goes out of scope.

Because monitors are full-fledged objects, the ObjInit method (if provided) will allow
them to initialize, and ObjTerminate (if provided) will allow them to clean up grace-
fully.

When a variable or field is declared as LMONITORED or LRMONITORED, each LMONITOR
method of all of its attached monitor objects will be invoked. Similarly, when a variable
of field is declared as RMONITORED or LRMONITORED, all of the attaached RMONITOR
methods will be invoked.

identifier type

identifier

LMONITORED

RMONITORED

LRMONITORED

:

BY,

identifier type

identifier

LMONITORED

RMONITORED

LRMONITORED

:

BY

MODSIM Reference Manual

126

10.6.4 Dynamic Monitors

During a run, additional monitors may be added to a variable or field that has been de-
clared to be monitored. This is done by creating (with NEW) a monitor object of the cor-
rect type and using the ADDMONITOR procedure to add this "dynamic monitor" to the
variable's monitor objects. By default, the monitor is enabled, that is, ADDMONITOR per-
forms ACTIVATE.

During a run, you can use the ACTIVATE and DEACTIVATE procedures, as appropriate,
to turn the operation of a monitor object on or off.

You are responsible for deallocating the dynamic monitor object, so before you
DISPOSE of a RECORD or OBJECT containing a monitored field, you should see that
DEACTIVATE and REMOVEMONITOR are performed, as appropriate.

Since each monitor object has its own fields and methods, it may behave just as any ob-
ject.

GETMONITOR is provided to obtain the reference to one of the monitor objects of a
monitored variable or field. The built-in procedure GETMONITOR takes two arguments: a
monitored variable or field and a monitor object type name. It returns the object of the
specified type. The return value can be used to access fields and methods of the monitor
object.

Because of inheritance, it is possible that a given field will have monitors for its type and
its base types. It is also possible to use ADDMONITOR to attach several monitor objects for
the exact same type. When this is done all of the monitors will operate. The
GETMONITOR function will only return the first monitor for any specific type. If there
are more, or if you add a dynamic monitor for a type that has a static monitor, you may
need to do additional bookkeeping.

127

11. Inheritance

A new object type can be defined in terms of an existing object type. This is called in-
heritance. The newly derived object type is then termed a derived type of that base
type. The derived type will have all the fields and methods of the base type.

The derived type will typically define additional fields and/or methods not present in the
base type. It may also override the implementation of a method defined in an underly-
ing object type and replace it with its own.

MODSIM III also supports a form of inheritance known as multiple inheritance in which
a new object type is defined in terms of two or more existing object types.

A method in a derived type can invoke a method of the same name in an underlying or
base type, by use of the INHERITED keyword. This is useful when the programmer
wishes to append new code to an old method of the same name. The INHERITED key-
word effectively inserts the entire old method in the new method with one statement.

Any method not explicitly overridden by the derived type is automatically inherited from
the base type. Similarly, the derived type also inherits all fields of its base type.

While a derived type can override and replace inherited methods, it cannot redefine in-
herited fields. It can, however, add new fields and new methods of its own.

Attempts to cast down object references to an object type which is not an ancestor will
always cause a runtime error.

11.1 Hierarchical Object Types

The object type is special in a number of ways. The capability to inherit the fields and
methods of an object and elaborate on them is a powerful feature. If the language were
to impose the traditional type rules on the objects involved in an inheritance hierarchy,
this would limit the usefulness of objects.

Because of this feature, an object in a hierarchy is considered to be compatible with the
type of any of its ancestors. The following figure shows a hierarchy of objects all de-
scended from one common object, the PoweredObj.

MODSIM Reference Manual

128

Figure 11-1. Object Type Hierarchy

If we look at the object hierarchy tree from the perspective of the AircraftObj, we can
describe the relationship of objects in the tree in the following way.

All of the types above AircraftObj in the tree are known as underlying types. They
are the ancestors of AircraftObj.

VehicleObj, the object immediately above AircraftObj, from which it was de-
scended, is the base type of AircraftObj. AircraftObj inherited all of its fields
and methods from VehicleObj.

Finally, any connected object below AircraftObj in the tree is a derived type of Air-
craftObj. They are descendants of AircraftObj.

The hierarchical type rules for objects state that a reference value for an object can safely
be assigned to a reference variable of one of its underlying object types. The converse is
not true.

If we had an object instance of type HelicopterObj, we could safely assign it to a
variable of type VehicleObj and then invoke its methods or check the values of its
fields. This is because the HelicopterObj has inherited all of the fields and methods
of VehicleObj.

MODSIM III will not allow the programmer to assign an object instance of type Vehi-
cleObj to a variable of type HelicopterObj. Consider that the HelicopterObj

Chapter 11: Inheritance

129

had defined a method call Hover. The VehicleObj would not know what to do if
asked to execute the Hover method. Serious trouble would ensue.

The hierarchical type rules we just described apply in all situations. Thus, if a procedure
or method was expecting a parameter of type VehicleObj, we could safely and legally
invoke the routine with a variable of type HelicopterObj.

11.2 Coercion of Objects

MODSIM III allows explicit type coercion of objects, so that carefully crafted code may
employ a direct and safer mechanism to accomplish assignment of parent (base) class
object instances to child (derived) class variables and vice versa. Type checking will be
performed to ensure that the coercion type is either an ancestor or child of the instance
type. Coercion is specified by preceding the instance variable to be coerced by the de-
sired type name and surrounding the instance variable with parentheses.

 Example:

 parent = OBJECT
 foo : INTEGER;
 ...
 END OBJECT;

 child = OBJECT(parent)
 bar : REAL;
 ...
 END OBJECT;

 VAR
 p : parent;
 c : child;

 ...

 (1) c := child(p); (* force p to be accepted as a
 child type object *)
 p := parent(c);(* force c to be accepted as a
 parent type object *)

Coercion should be used sparingly and very carefully. Remember that regardless of the
type of the left-hand side of an assignment, the right-hand side remains an instance of the
object class from which it was NEW'ed. It is not necessary to expressly cast child class
objects when assigning them to parent class variables, but for clarity of code it is useful
to do so. When assigning parent class object instances to child class variables explicit
casting is required. This is a potentially dangerous, although occasionally necessary, op-
eration since you are “fooling” the compiler into allowing reference to fields and/or

MODSIM Reference Manual

130

methods that the parent class instance may not actually have. In the above example, after
the first assignment (1) the compiler would allow:

 ASK c bar;

However, c might have been NEW'ed as a parent class object which does not have a bar
field. This type of problem would not express itself until runtime and would cause a run-
time error to be generated.

11.3 Object Inheritance

As we mentioned earlier, most of the object types a programmer uses are built upon the
definitions of other object types, either those from the standard MODSIM library, or
user-defined object types. This is a common way to define an object type.

To show how a new object type inherits the attributes of its ancestor and builds upon it,
we can continue with the example shown in the type hierarchy tree above. Consider how
the HelicopterObj was defined based on the existing AircraftObj. For that matter
it is worth examining the entire hierarchy:

DEFINITION MODULE MovingMod;

TYPE
 fuelType = (Unleaded, Diesel, AvGas, JetFuel);

 locationType = RECORD
 latitude,
 longtitude : REAL
 END RECORD;

 EngineObj = OBJECT
 power : INTEGER;
 fuel : fuelType;
 kmPerLtr : REAL;
 TELL METHOD ConsumeFuel;
 END OBJECT;

 VehicleObj = OBJECT(EngineObj)
 position : locationType;
 course : [0..359];
 speedKm : INTEGER;
 fuelLevel : REAL;
 TELL METHOD GoTo(IN destination: locationType);
 TELL METHOD Stop;
 END OBJECT;

 AircraftObj = OBJECT(VehicleObj)
 altitude : INTEGER;
 END OBJECT;

Chapter 11: Inheritance

131

 HelicopterObj = OBJECT(AircraftObj)
 inHover : BOOLEAN;
 TELL METHOD Hover(IN posit : locationType;
 IN alt : INTEGER);
 END OBJECT;
END MODULE.

The derived object has access to all of the properties of its base type, in addition to its
own unique properties, so we could implement the Hover method using properties of
both AircraftObject and HelicopterObject. HelicopterObject is a com-
posite of all of its ancestors plus the fields and methods it has declared on its own. This
means that it has the following fields and methods:

power : INTEGER;
fuel : fuelType;
kmPerLtr : REAL;
position : locationType;
course : [0..359];
speedKm : INTEGER;
fuelLevel : REAL;
altitude : INTEGER;
inHover : BOOLEAN;

TELL METHOD ConsumeFuel;
TELL METHOD GoTo(IN destination: locationType);
TELL METHOD Stop;
TELL METHOD Hover(IN posit : locationType;
 IN alt : INTEGER);

11.4 Overriding Methods

There will be occasions when one of the methods a derived object type has inherited is
not appropriate or needs to be changed in some way. In this case, the new object type
declaration can explicitly state in the object type declaration that it is overriding the in-
herited method. It must then provide a replacement for the overridden method in its ob-
ject declaration block.

Assume that the VehicleObj type defines a Stop method which looks like this:

TELL METHOD Stop;
BEGIN
 speedKm := 0;
END METHOD;

If it were necessary to provide a more elaborate Stop method for the AircraftOb-
ject, this is how the object type declaration would look:

...
 AircraftObj = OBJECT(VehicleObj)
 altitude : INTEGER;
 OVERRIDE

MODSIM Reference Manual

132

 TELL METHOD Stop;
 END OBJECT;

Then we would provide a replacement method declaration with new code in the object
declaration block:

OBJECT AircraftObj
 TELL METHOD Stop;
 BEGIN
 ... make sure we're on the ground first!
 altitude := 0;
 speedKm := 0;
 END METHOD;
END OBJECT;

This is how polymorphism is achieved. The VehicleObj has a method called Stop
which simply sets its speed to zero. The AircraftObj also has a method called Stop,
but this method executes some code to ensure that the aircraft is back on the ground be-
fore it sets the speed to zero. Each object executes a different behavior when sent the
message to stop. It will always be appropriate to do the following:

TELL SomeObj TO Stop;

as long as SomeObj is either a VehicleObj or is derived from VehicleObj.

11.5 Extending Inherited Behaviors

In some cases, the overriding method completely replaces the method from the underly-
ing type. This is what we just did with the Stop method for AircraftObj. However,
in other cases, it may be desirable to merely extend the underlying method. In these
cases the new method can invoke the overridden method as part of its behavior and then
provide additional code which further describes its behavior.

To invoke the overridden method from the base type we precede a standard method invo-
cation with the reserved word INHERITED.

For example, to implement the proper method GoTo for an AircraftObj, it may be
easier to build upon the existing GoTo code defined for its base type, VehicleObj.
Once the inherited GoTo method has been overridden in the object type declaration, a
replacement is provided which calls the original method.

Chapter 11: Inheritance

133

OBJECT AircraftObject;

 TELL METHOD GoTo(IN destination: locationType);
 BEGIN
 { some flying-specific code }
 INHERITED GoTo(destination);
 { more flying-specific code }
 END METHOD;END OBJECT;

Thus, the GoTo method for an AircraftObj would perform some unique calculations,
and then invoke the GoTo method from the underlying object type; in this case,
VehicleObj.

An inherited call can be performed for a function method as well. Such a method might
contain a statement such as:

ASK METHOD FuelAmount(IN TankNum: INTEGER) : REAL;
 ...
 SomeVar:= RlNum * (INHERITED FuelAmount(TankNum)) - 4.0;
 ...

Operations to be performed “before” and “after” a particular method can be handled in
MODSIM by the ordering of code before and after the inherited call. In general, each
method that uses inherited code will take the form:

BEGIN
 { code preparing for the inheritance }
 INHERITED thisMethod(args);
 { code using the inheritance }
END METHOD;

This mechanism is both simple and versatile, and is appropriate for all single-path in-
heritance combinations of methods. When an object inherits methods from more than
one object type, a somewhat more complex approach is necessary. This will be de-
scribed in the following sections on multiple inheritance.

11.5.1 Overriding the ObjInit Method

There will be occasions when the new object defined through inheritance will want to
elaborate the ObjInit method of its ancestor. The ObjInit method can be overridden
just like any other method. However, if this is done, the original ObjInit method must
be invoked with an inherited call. This is also true for ObjClone and ObjTerminate.
It is very important to ensure that any previously defined ObjInit methods are invoked.
If this rule were not observed, then some crucial part of an object's initialization could be
inadvertently omitted. This is particularly important with objects imported from librar-
ies. The user may not be aware of the initialization requirements for these objects.

MODSIM Reference Manual

134

11.6 Multiple Inheritance

MODSIM III allows an object type to be defined in terms of more than one base object
type. This is called multiple inheritance.

When a new object type is defined in this way, it has a copy of each field and each
method of each of its base types. Like powerful features in any system, this can be a
two-edged sword. If the base types from which the new object type have been derived
have used the same identifiers to name any of their fields or methods, we are left with an
ambiguous situation. MODSIM provides facilities to resolve these conflicts.

11.6.1 Declaring Multiple Base Types

To define an object type in terms of multiple base types, each base type is listed in the
object type declaration:

MissileObj = OBJECT(AircraftObj, WeaponObj)
 define more fields and methods here...
END OBJECT;

Figure 11-2. Multiple-Path Inheritance

In this case we have used the existing AircraftObj, added all the fields and methods
of WeaponObj and then added more fields and methods unique to the new Mis-
sileObj.

Chapter 11: Inheritance

135

11.7 Resolving Conflicting Field Names

If field identifiers of the same name exist in two or more of the base types, the derived
object type will contain a field for each one. Obviously, any attempt to reference those
fields in the derived object type would be ambiguous, particularly if some of the fields
with matching names were of differing types. Because of this, MODSIM does not allow
references of this sort and will flag them as a compile-time error.

If a field from a base type must be accessed and some other base type has a field of the
same name, extra code must be provided to disambiguate the field. This code can assign
the reference value of the object to an object of the desired base type, and then unambi-
guously access the desired field.

Consider the situation which would occur if the AircraftObj and the WeaponObj
from which MissileObj was derived each had a weight field. And just to make things
more difficult, the WeaponObj's weight field is of type REAL and expressed in kilo-
grams. The AircraftObj's weight field is of type INTEGER and is expressed in
pounds.

Assume we have three reference variables called Aircraft, Weapon and Missile to
match their respective types. If we assign an instance of MissileObj to all three ref-
erence variables, we have the following situations:

Missile := ASK armory TO Issue(CruiseMissile);
Aircraft := Missile;
Weapon := Missile;

n := ASK Missile weight ⇐⇐ illegal reference
n := ASK Aircraft weight ⇐⇐ n gets Aircraft's weight (an INTEGER)
x := ASK Weapon weight ⇐⇐ x gets Weapon's weight (a REAL)

11.8 Resolving Common Method Names

Cases where two or more of the base types have methods of the same name are permitted
only when the method is derived from a common ancestor. If there is not a common an-
cestor, the MODSIM compiler produces an error message.

The definition of the object that joins the ancestors must override the common method if
any of the intervening ancestors overrides it. Otherwise, polymorphism will not be able
to work for this method and the MODSIM compiler will produce an error message.

You can supply a completely new method implementation or, as with normal inheritance,
the inherited method can be invoked as part of the implementation. When the method is
inherited from multiple ancestors, a qualified form of the inherited method invocation
can be used to specify the desired version of the method.

MODSIM Reference Manual

136

Figure 11-3. Common Ancestor

As an example, we can consider the MissileObj which was derived from an
AircraftObj and a WeaponObj. Assume that each of the base types has a method
called FindTarget. Observe that the FindTarget method is itself a method of some
ComputingObj from which both AircraftObj and WeaponObj inherit:

DEFINITION MODULE ...
...
 ComputingObj = OBJECT
 ASK METHOD FindTarget(IN enemy: VehicleObj);
 END OBJECT;
 ...
 AircraftObj = OBJECT(VehicleObj, ComputingObj)
 ...
 OVERRIDE
 ASK METHOD FindTarget (IN enemy: VehicleObj);
 END OBJECT;
 WeaponObj = OBJECT(ComputingObj)
 ...
 OVERRIDE

 ASK METHOD FindTarget(IN enemy: VehicleObj);
 END OBJECT;

The inheriting object must override the common method and provide its own:

MissileObj = OBJECT(AircraftObj, WeaponObj)
 ...
 OVERRIDE
 ASK METHOD FindTarget(IN enemy: VehicleObj);
END OBJECT;

PoweredObj

VehicleObj
ComputingObj

ShipObj AircraftObj WeaponObj

HelicopterObj MissileObj

Chapter 11: Inheritance

137

If the common method is to be invoked in the implementation of the inheriting object, a
qualified inherited call must be used. The qualified inherited call explicitly specifies the
desired version of the method.

Continuing with the previous MissileObj as an example, the implementation might
provide the following method:

OBJECT MissileObj;
 ASK METHOD FindTarget(IN enemy: VehicleObj);
 BEGIN
 ...
 INHERITED FROM AircraftObj FindTarget(enemy);
 ...
 END METHOD;
END OBJECT;

A qualified inherited call requires the qualifier to be a base type of the object that is be-
ing defined. The INHERITED FROM syntax cannot be used to access methods of unre-
lated objects. In the example above this means that the inherited call for the
FindTarget method can only be qualified by one of the two base types of
MissileObj; either WeaponObj or AircraftObj. We could not inherit the Dive
method from SubmarineObj, since we are not descended from it.

11.8.1 Combining Multiple Inherited Methods

In many cases, it may be useful to invoke the inherited methods from multiple ancestors
in the derived type's method. This can be done since the INHERITED statements are
qualified to avoid ambiguity.

Elaborating on the previous example, we could do the following:

OBJECT MissileObj;

 ASK METHOD FindTarget(IN enemy: VehicleObj);
 BEGIN
 ...
 INHERITED FROM AircraftObj FindTarget(enemy);
 ...
 INHERITED FROM WeaponObj FindTarget(enemy);
 ...
 END METHOD;

11.8.2 Overriding the ObjInit Method in Multiple Inheritance

It is always necessary to ensure that the ObjInit method for an object is invoked if it
exists. This ensures that all initialization code for an object is accomplished. In multiply
inherited objects it is necessary to override any existing ObjInit methods, and to then
invoke each of the inherited methods. Thus, if we defined a new object type in the fol-
lowing way:

MODSIM Reference Manual

138

 c = OBJECT(a, b);
 ...
OVERRIDE
 ASK METHOD ObjInit;
END OBJECT;

In the object declaration block where method declarations are placed we would do the
following:

OBJECT c;
 ASK METHOD ObjInit;
 BEGIN
 INHERITED FROM a ObjInit;
 INHERITED FROM b ObjInit;
 END METHOD;
END OBJECT;

Of course, we might want to add additional initialization code appropriate to the new
object type, but, at a minimum, we would have to do this much in the replacement Ob-
jInit method.

11.9 Conflicting Field and Method Names

If a method name from one base type is the same as a field name from another base type,
MODSIM flags this as a compile-time error. There is no way to resolve this conflict ex-
cept by renaming one of the fields. This is intentional.

No conflict resolution mechanism has been provided in this case since it would lead to
code which, although it could be understood by the compiler, would be confusing or
misleading to those responsible for code maintenance.

139

12. Data Hiding and Data Sharing
The modular organization of MODSIM programs encourages the separation of the defi-
nition of procedures and methods from the details of their implementation. Since other
modules can import from the definition module but cannot see the implementation mod-
ule, this provides both a data hiding and data sharing capability.

Data sharing is also available from the perspective of a single module. Since any con-
stants, types, procedures or variables defined in a module are visible throughout that
module, this allows data sharing between any object types defined in that module.

Data hiding is also available from the perspective of a single module. There are occa-
sions when some fields or methods of an object type should not be used except by the
object itself. The data hiding requirement for an object-oriented language parallels that
for other software engineering efforts, and thus MODSIM supports encapsulation both
indirectly through modules and directly through PRIVATE fields and methods.

Fields or methods declared as PRIVATE can be referenced only within methods of the
object itself, or within methods of derived object types.

12.1 PRIVATE Fields and Methods

Here is an expansion of the previous object type declarations. We have added a few more
methods and one field. One method and one field have been declared to be private to
this object:

TYPE
 AircraftObj =
 OBJECT(VehicleObj)
 altitude : INTEGER;
 TELL METHOD ClimbTo(IN height: REAL);
 TELL METHOD Circle;
 ASK METHOD FindTarget(IN enemy: VehicleObj);
 PRIVATE
 liftCoefficient : REAL;
 ASK METHOD CalcLiftCoeff;
 WAITFOR METHOD DeployLandingGear;
 OVERRIDE
 TELL METHOD Stop;
 END OBJECT;

The PRIVATE section lists all of the fields and methods which are part of the object type
declaration, but which cannot be accessed from outside of the object.

When an object type is imported from a definition module, all of its field and method
identifiers are also imported, except those which have been declared to be PRIVATE.

MODSIM Reference Manual

140

Thus, if we had imported AircraftObj into a module and declared a reference variable
of that type called plane, we could do the following:

fuelLeft := ASK plane fuelLevel;
TELL plane TO ClimbTo(2500.0);
ASK plane TO FindTarget(tank);

Because liftCoefficient is a private field and CalcLiftCoeff is a private method
of type AircraftObj we could not do the following:

ASK plane TO CalcLiftCoeff;
 or
coeffOfLift := ASK plane liftCoefficient;

141

Section III. Simulation

MODSIM Reference Manual

142

143

13. Process-based Discrete-Event Simula-
tion

MODSIM has powerful and flexible capabilities for dealing with discrete-event simula-
tion. Each object is capable of carrying on multiple, concurrent activities, each of which
can elapse simulation time. An activity is an event scheduled by an object instance using
a TELL or WAITFOR method which is capable of elapsing simulation time. The activities
can operate autonomously or they can synchronize their operation. Any or all activities
of an object can be interrupted, if necessary.

Not only can one object instance have multiple TELL and/or WAITFOR methods carrying
on activities simultaneously with respect to simulation time, but any one method of the
object instance can be invoked multiple times. Each of these method invocations can be
carrying on an activity at the same time.

In MODSIM all of the bookkeeping to schedule activities and later execute them is taken
care of by the system.

13.1 Simulation Time

Before going any further we need to discuss the concept of simulation time. A discrete-
event simulation program models a sequence of events. Typically, we are concerned
with the model only at certain points in simulation time when an event occurs which may
change the state of objects in the model.

The units of time used by the simulation are dimensionless. They can represent whatever
granularity of time is appropriate for the simulation - years, months, days, hours, min-
utes, seconds, milliseconds, or nanoseconds. It is up to the user to explicitly perform any
unit conversions.

Simulation time is automatically maintained by MODSIM. The current simulation time
can be determined by invoking the real-valued function SimTime(), which may be im-
ported from SimMod.

At any instant of simulation time there can be multiple, concurrent activities. In reality,
on traditional sequential computer architectures, the activities which appear to be hap-
pening at the same point of simulation time are carried out sequentially by the computer
in actual “wall clock” time. Once all of the activities scheduled for a particular instant of
simulation time have been carried out, the simulation clock is advanced to the next point
in simulation time when an activity has been scheduled.

MODSIM Reference Manual

144

13.2 The System's Pending List - Objects' Activity Lists

To keep track of all activities which have been scheduled, MODSIM keeps a pending
list. The pending list is an ordered list of all objects which have scheduled activities.
The object with the most imminent activity is ordered first in the list.

Each object instance, in turn, keeps its own list of activities which it has scheduled. The
object instance's activity list is ordered by the most imminent activity. Thus, we have a
two-dimensional structure.

Figure 13-1. The Pending List

13.3 Process-oriented vs Event-oriented Simulation

The classical approach to discrete-event simulation is event-oriented. In this approach,
individual routines are written to describe each discrete event in the operation of a sys-
tem. For instance, in a simple bank model the event routines might be:

• Customer arrives

• Customer enters queue

• Customer engages services of teller

• Customer leaves

No time passes during any event routine. Instead, passage of time is handled by sched-
uling the next event routine for the object currently being manipulated. In the simple

 Chapter 13: Simu-
lation

145

bank model, the event routine “Customer engages services of teller” would schedule the
next event routine, “Customer leaves”, at some future time.

This event-oriented approach is adequate for smaller models, but in larger models it is
often difficult to follow or modify the flow of logic which describes the behavior of an
object, such as a customer. Consider the simple bank model if we added a janitor, a se-
curity guard and some management functions. There would be many unrelated event
routines. Following the logic flow which describes the behavior of a customer would be
like tracing through a sequence of GOTO statements in a large BASIC program.

The process approach simplifies larger models by allowing all of the behavior of an ob-
ject in a model (e.g. bank customers) to be described in one or more TELL and/or
WAITFOR methods which allow for the passage of time at one or more points in the
method.

There is a further advantage to the process technique. Once the actions of a class of ob-
jects (such as customers in a bank) have been gathered together in an object, the simula-
tion program can create multiple, concurrent instances of the object instance. In our
bank, for example, the simulation program would generate a new instance of the cus-
tomer object each time a customer arrived. It could also pass information about the cus-
tomer in the parameter list of the object's initialization method. Perhaps it would pass in
information about the sort of customer (young or elderly) and the expected service time
for the customer. While there would be multiple, distinct copies of the customer object
operating simultaneously, each could have different values of their fields to describe the
particular customer's properties.

Finally, process objects can interact. In our example, an instance of the customer object
with the young attribute might yield its place in the queue to a customer object with the
elderly attribute.

This process approach is the one supported in MODSIM. It exploits object-oriented pro-
gramming features to simplify both the original development and the subsequent mainte-
nance of large models.

A simulation model written in MODSIM defines a system in terms of processes because
the process technique provides a powerful structure for expressing most categories of
simulation problems, and provides significant advantages over the direct use of discrete
events.

The advantages of processes are both conceptual and labor-saving. The process state-
ments are expressed sequentially, in a manner analogous to the system being described.
This practice is recommended by standard design methodologies.

MODSIM Reference Manual

146

13.4 Time Elapsing Methods - the WAIT Statement

The time elapsing TELL or WAITFOR method is the construct which supports this process
oriented approach to simulation. In a TELL or WAITFOR method it is possible to use a
WAIT statement to indicate that simulation time should elapse at some point or points in
the method.

Each WAIT statement in a method is considered to be an activity of the parent object.
When a WAIT statement is encountered, the TELL or WAITFOR method suspends execu-
tion. When the specified amount of simulation time has elapsed, the TELL or WAITFOR
method resumes execution. We say that the object has carried out an activity.

We will examine the syntax of the WAIT statement before examining this capability fur-
ther.

13.4.1 The WAIT Statement

A WAIT statement specifies the reason for the wait, a sequence of statements to be exe-
cuted after the WAIT is successfully completed, and an optional sequence of statements to
be executed if the WAIT is interrupted.

The structure of a WAIT statement is similar to that of an IF statement. The syntax is:

WAIT reason
 StatementSequence
[ON INTERRUPT StatementSequence]
END WAIT;

where reason is a keyword, DURATION or FOR, followed by any required identifiers.
The ON INTERRUPT clause is optional. If the WAIT is “successful”, the first statement
sequence is executed. If the WAIT is “not successful”, the statement sequence after the
ON INTERRUPT is executed, instead. In either case, execution continues after the END
WAIT unless one of the statement sequences alters the flow of control.

With all forms of the WAIT statement, the ON INTERRUPT clause specifies exception
code to be executed if the WAIT statement is interrupted. The techniques and tools used
to interrupt activities of a process will be covered in the next chapter.

If the optional ON INTERRUPT clause is omitted and a WAIT is interrupted, a run-time
error will occur.

A WAIT statement can only appear in a TELL or WAITFOR method. A violation of these
rules will be flagged at compile-time.

 Chapter 13: Simu-
lation

147

WAIT

DURATION

FOR TO

ON

END

INTERRUPT

WAIT

expression

expression

identifier actual
parameters

statement
sequence

statement
sequence

Figure 13-2. Syntax of the WAIT Statement

The most basic WAIT is one for a specific period of time. A wait for a specified period
of simulation time is achieved by the WAIT DURATION statement. The syntax of the
statement is:

WAIT DURATION timevalue
 Statement Sequence
[ON INTERRUPT Statement Sequence]
END WAIT;

where timevalue is an expression of type REAL.

There are two other variations of the WAIT statement which will be covered in more de-
tail shortly. One allows the TELL or WAITFOR method to wait until another method
which is invoked completes execution. Another variation allows the TELL or WAITFOR
method to wait until some triggering event occurs.

13.5 The Asynchronous TELL and WAITFOR Calls

Earlier chapters introduced the ASK, TELL, and WAITFOR method calls for proper
methods. Although all three “send a message” to the receiving object, the three state-

MODSIM Reference Manual

148

ments differ in how they interact with simulation time and in the case of the WAITFOR
method, where it may be called.

In many cases, when an object is sent a message to invoke one of its methods, we want to
know that the invoked method has completed before we perform the next step. For ex-
ample, for an AircraftObj to land on a runway, it first must have one properly as-
signed to it, as in:

ASK controller TO AssignRunway(myrunway, assignOK);
IF assignOK
 destination := myrunway;
ELSE
 destination := alternateAirport;
END IF;
...

In this case, the simulation logic requires that the AssignRunway method for object
controller be complete before the following IF statement is executed. The ASK
statement is comparable to an ordinary procedure call, i.e., the AssignRunway method
is required to complete before the next statement is executed.

If the activity simulated by a method will elapse an interval of simulation time, it may
not be necessary or appropriate for the invoker to pause while that method completes.
The invoking code may wish to send a message to another object, invoking one of its
time-elapsing methods, and then continue, without waiting for the activity to complete.

This capability is provided by the TELL statement. The invoking process executes the
TELL statement and then continues on without waiting for the invoked time-elapsing
method to complete (or even to start) execution. The complete syntax of the TELL
statement is:

TELL object [TO] method[(arguments)] [IN delay]

TELL

TO

IN expression

actual
parameters

identifier

expression

Figure 13-3. Syntax of the TELL Call

 Chapter 13: Simu-
lation

149

The TELL statement can appear in any method or procedure. It is used to invoke TELL
methods, and may not be used to invoke ASK methods. TELL methods are proper meth-
ods with IN parameters only.

A TELL method cannot be a function method and cannot have OUT or INOUT parameters,
since there is no place to which this returned information can be passed. The invoking
code has proceeded past the TELL statement without waiting for any return information.

To take an example, the commander of a unit might want to start a unit enroute to a par-
ticular location, using code such as:

TELL METHOD DeployTo(IN dest : locationType);
VAR
 unit: UnitObj;
BEGIN
 ...
 TELL unit TO flyTo(dest);
 ...
END METHOD;

In this case, the DeployTo method would complete execution at the same simulation
time it began, no matter how long it eventually took the unit to flyTo the destination.
Also note that, though this is a TELL method, it performs no WAITs. Since it is a TELL
method, however, this means that it can be invoked at some time in the future as in:

TELL unit TO DeployTo(PointAlpha) IN 20.0;

This is how methods can be scheduled to start execution at some future point in simula-
tion time.

The remaining type of method, the WAITFOR method, is somewhat of a hybrid between
the TELL and ASK methods. Like the TELL method, the WAITFOR method may elapse
simulation time. Unlike the TELL method, it may only be invoked by a WAIT FOR
statement and may modify its OUT and/or INOUT parameters. This is possible because
the invoking method will not continue until the WAITFOR method finishes. Conse-
quently, there is a place to return to. In these later respects the WAITFOR method bears
some similarity to the ASK method.

For example, a cashier might need to wait for a customer to pay before turning merchan-
dise over to her/him. Paying could elapse simulation time. However, the cashier's activ-
ity will not resume until the customer has paid. This is an ideal case for a WAITFOR
method. Simulation time must pass and something is to be passed back:

OBJECT Cashier;
...
WAITFOR METHOD GetPayment(OUT AmtTendered:REAL);
BEGIN

...

MODSIM Reference Manual

150

{ code implementing method }
...

END METHOD;
...

END OBJECT;

13.6 Synchronizing Activities

In some simulation scenarios, two activities must operate synchronously. One activity
starts a second activity and then suspends its execution and waits over a period of simu-
lation time for the second activity to complete before it resumes execution.

To accomplish this, MODSIM provides the WAIT FOR statement:

WAIT FOR object [TO] method[(arg)]
 Statement Sequence
[ON INTERRUPT Statement Sequence]
END WAIT;

The effect of this statement is to:

TELL object [TO] method [(args)];

and then wait for the method to complete. Once the invoked method completes execu-
tion, the statement sequence after the WAIT FOR is executed. If the invoking method is
interrupted while still waiting for the invoked method to complete, the statement se-
quence after the ON INTERRUPT is executed.

The obvious question to ask is “Why not use an ASK method since it is synchronous?”
The answer is simple... an ASK method cannot elapse simulation time. So we need a
technique like this which overcomes the inherently asynchronous nature of TELL meth-
ods.

WAITFOR methods are a special case of the TELL method developed specifically for this
case. WAITFOR methods allow the user to exploit the fact that the invoking method will
not proceed until the method being waited for returns. This guarantee enables WAITFOR
methods to modify their OUT and/or INOUT parameters while still allowing simulation
time to elapse.

An INHERITED method can be invoked using the WAITFOR construct:

WAIT FOR INHERITED tellmethod()

OBJECT TowPlaneObj;
WAITFOR METHOD TakeOffClearance(OUT stat:SType);
BEGIN

WAIT FOR INHERITED TakeOffClearance
WAIT FOR glider TO SignalReady

stat := cleared;

 Chapter 13: Simu-
lation

151

ON INTERRUPT
stat := aborted;

END WAIT;
END METHOD;

END OBJECT;

Also, an object may schedule one of its own TELL METHODS for future execution di-
rectly (without the TELL SELF):

tellmethod() IN 5.0

13.6.1 The Terminate Statement

Shortly, we will discuss the way in which any of the forms of the WAIT statement can be
interrupted. However, there is a control statement which is unique to the WAIT FOR
statement. It is the TERMINATE control statement.

The TERMINATE statement is executed from within a TELL or WAITFOR method, as it
implies, to terminate execution of that TELL or WAITFOR method. It has an important
further effect. If the TELL or WAITFOR method which is being terminated was invoked
with the WAIT FOR method, the invoking method is terminated as well. The effect is
recursive. It will continue up a chain of WAIT FOR calls.

In the other forms of the WAIT statement two conditions can occur:

• The WAIT completes normally

• The WAIT is interrupted before it is finished.

In the WAIT FOR statement a third condition is possible:

• The routine invoked by the WAIT FOR terminates, so the method which contains
the WAIT FOR also terminates.

For example:

IF SimTime() >= StopTime
 TERMINATE;

END IF;

The TELL or WAITFOR method being waited for can belong to any object.

To illustrate use of the WAIT FOR, suppose a combat simulation includes a logistics ca-
pability. The deployment process for a combat unit might include a method which waits
while an AircraftObj flies the unit to its desired destination:

MODSIM Reference Manual

152

TELL METHOD Deploy(IN dest : locationType);
VAR
 ourtransport: TransportObj;
BEGIN
 ourtransport := TransportManager.nextTransport;
 WAIT FOR ourtransport TO FlyTo(dest)
 TELL Hq MyStatusIs(Arrived);
 ON INTERRUPT
 TELL Hq MyStatusIs(Delayed);
 END WAIT;
END METHOD;

When the WAIT FOR statement is encountered, ourtransport is asked to execute its
FlyTo method. The Deploy method waits for the FlyTo method to complete before it
proceeds to its next statement.

13.7 Arbitrary Synchronization with Trigger Objs

Some processes will need to wait until a specified condition occurs. For these situations,
MODSIM provides a special object type, TriggerObj, which, along with the WAIT
FOR statement, allows a method to pause and wait until some condition occurs.

The syntax of the statement is:

WAIT FOR trigger object [TO] Fire
 Statement Sequence
[ON INTERRUPT
 Statement Sequence]
END WAIT;

When the WAIT FOR ... Fire statement is encountered, the method suspends and
waits until the trigger object's Trigger method is invoked by some other method. At
that time the statement sequence after the WAIT FOR ... Fire is executed. If the
trigger object's InterruptTrigger method is invoked, the statement sequence after
the ON INTERRUPT is executed, instead. A trigger object can have any number of
methods waiting for it to Trigger or InterruptTrigger.

Taking the example of an AircraftObj, a refueling method might prudently wait until
the plane is on the ground before requesting that the tanks be “topped off”, as in:

landedSignal : TriggerObj;
...
IF flying

 WAIT FOR landedSignal TO Fire ⇐⇐ i.e. wait until some other
 END WAIT; method releases
END IF; trigger landedSignal
ASK airport TO assignRefueler(tankTruck);
WAIT FOR tankTruck TO refuel(SELF, fuelCapacity);
END WAIT;

 Chapter 13: Simu-
lation

153

13.8 Multiple Process Activities

To construct realistic simulation models, it is often necessary to model a physical object
which can perform several operations simultaneously. A tank in a ground combat model,
for instance, may be required to perform movement, communications and target acquisi-
tion activities simultaneously. Although this is a fairly common situation, it has tradi-
tionally been difficult to model, particularly when the activities may interact.

To support such models, MODSIM allows an object to do more than one activity at once.
For example, a process object may be in the middle of one operation when it receives a
message to perform a different, conflicting operation. In response, the object can:

• Interrupt the conflicting time-elapsing method which is waiting

• Ignore the new request

• Defer the new request.

13.9 Activity Tie-breaking, Time Advance and Activity Trace

It is sometimes necessary to arbitrate the order of activities (TELL methods) scheduled
for identical simulation times and/or to be notified when simulation time is about to be
advanced. To accomplish these fine-tuning controls, an object called SimControlObj
has been provided in the MODSIM runtime library module SimMod.

In the case of tie-breaking, to specify which activity should be executed next, an instance
of a SimControlObj derivative is created and its method SetTieBreaking is in-
voked with a TRUE argument. At any point during the simulation when two or more
methods are scheduled for the current simulation time the ChooseNext method of the
SimControlObj derivative instance will be invoked and passed a group containing the
activity records (ACTID type) of all such methods. By overriding the ChooseNext
method, users can select which method will be activated next. The owner object and
method name of an ACTID may be obtained by using the SimMod procedures Activ-
ityOwner and ActivityName, respectively, passing an ACTID as an argument. The
user must return one of the ACTID's from the group, which will be the next active
method. Users may enable and disable this mechanism with calls to SetTieBreaking
(TRUE and FALSE arguments, respectively) at any point in a simulation.

For example:

FROM SimMod IMPORT SimControlObj, ActivityGroup, Activity-
Name, ActivityOwner;

TYPE
 MyControlObj = OBJECT(SimControlObj)

MODSIM Reference Manual

154

 OVERRIDE
 ASK METHOD ChooseNext(IN group: ActivityGroup) : ACTID;
 END OBJECT;

 MyObj = OBJECT
 TELL METHOD tmeth1;
 TELL METHOD tmeth2;
 END OBJECT;

OBJECT MyControlObj
 ASK METHOD ChooseNext(IN group: ActivityGroup) : ACTID;
 VAR
 act: ACTID;

BEGIN
 OUTPUT("The following TELL methods scheduled activities");

OUTPUT ("for the same time");
FOREACH act IN group
 OUTPUT(ActivityName(act), " of ", OBJTYPENAME(ActivityOwner(act)));
END FOREACH;
RETURN group.Last;

 END METHOD;
 END OBJECT;

 OBJECT MyObj;
 TELL METHOD tmeth1;
 BEGIN
 OUTPUT("got to tmeth1");
 END METHOD;

 TELL METHOD tmeth2;
 BEGIN
 OUTPUT("got to tmeth2");
 END METHOD;
 END OBJECT;
 VAR
 ControlObj: MyControlObj;
 obj1, obj2: MyObj;

. . .
 NEW(ControObj);
 ASK ControlObj TO SetTieBreaking(TRUE); {turn tie-breaking on }

 NEW(obj1);
 NEW(obj2);

 TELL obj1 TO tmeth1 IN 10.0;

 Chapter 13: Simu-
lation

155

 TELL obj2 TO tmeth2 IN 10.0;

 StartSimulation;

Time update notification is obtained similarly. An instance of a SimControlObj de-
rivative is created and its method SetTimeAdvance is invoked with a TRUE argument.
By overriding the TimeAdvance method, users will be notified when simulation time is
about to change and be passed the value to which simulation time is to be set. Users may
perform any desired behaviors within this method, including scheduling TELL methods
for the current or later simulation time. As with tie breaking, notification may be en-
abled and disabled, by calls to SetTimeAdvance at any point in a simulation.

Finally, SimControlObj may be used to trace activity calls using the same mechanism
which was used in tie-breaking and time advance. Just before an activity is activated or
reactivated, the 'ActivityTrace' method of SimControlObj is called allowing a
step-by-step trace through the simulation. The 'SetActivityTrace' method controls
this feature.

Note: When the above features are used together, it is only necessary to derive one in-
stance of SimControlObj.

13.10 Interrupting Activities

MODSIM has provisions for interrupting and stopping any or all activities prematurely.
Any time-elapsing method can be interrupted by invoking the Interrupt procedure
which takes as its parameters the object reference value of the object to be interrupted
and the name of the particular method to be interrupted. The Interrupt procedure is
imported from SimMod. For example:

Interrupt(Puma20, "ProceedTo");

An Interrupt does not take place immediately, but is scheduled like a TELL method.
If you wish an Interrupt to take place immediately you should include a WAIT 0.0
statement. Interrupting an activity that is waiting will cause it to execute the ON
INTERRUPT clause of the WAIT statement. If there is no ON INTERRUPT clause, a
run-time error will occur.

In MODSIM, every object maintains an ActivityList which is an ordered list of ac-
tivities scheduled for that object. The activities are ranked by the time each activity is
scheduled to finish its WAIT.

An activity record is placed on the object's activity list each time one of the object's
time-elapsing methods executes a WAIT. The activity record contains all of the informa-
tion needed to resume execution of a time-elapsing method after its WAIT is complete or
it has been interrupted. Neither the pending list nor an object's activity list which con-

MODSIM Reference Manual

156

tains these activity records is directly accessible to the user. These are all maintained in-
ternally by MODSIM. The user's access to these facilities is through procedures (such as
the WAIT, Interrupt, TERMINATE) and the facilities of the trigger object.

The Interrupt procedure scans the object's activity list and interrupts the most immi-
nent activity which matches the given name. If there are no matches, nothing happens.
We could do the following:

Interrupt(Puma20, "flyTo");

and the object instance Puma20's flyTo method's WAIT would be interrupted.

If a method contains multiple WAIT statements, then whichever one is currently waiting
is interrupted. If it is important to the user to conditionally control which WAITs are in-
terrupted, then the method can be broken into separate methods for each activity, or a
status can be set before each wait, and then checked by the interrupting code.

The TERMINATE statement is used by any time-elapsing method which wants to finish
execution prematurely. It not only stops execution of the current method, but also TER-
MINATEs the method which invoked it using a WAIT FOR. The effect of the
TERMINATE is recursive. In other words the invoking routine becomes TERMINATEed
and therefore TERMINATEs the method which invoked it. Like the WAIT statement, the
TERMINATE statement may only appear within a TELL or WAITFOR method.

To summarize:

• The Interrupt procedure is used from outside an object's time-elapsing method
to “wake up” the method before it completes the WAIT. The interrupted method
resumes execution by performing the statement sequence after the ON
INTERRUPT.

• The TERMINATE method is used from inside a process object's TELL METHOD or
WAITFOR method to prematurely stop execution of the method (and the method
which called this method, if it was invoked using the WAIT FOR construct).

13.10.1 Interrupting Methods and ACTID

The built-in type ACTID allows users to capture a reference to a specific activation of a
TELL method. Bear in mind that TELLing an object to invoke a method schedules that
method's execution. The method does not actually begin execution until its turn arrives in
the pending activity list. Similarly, using the WAIT FOR construct schedules the invoca-
tion of an object's method.

If a user wishes to interrupt a particular invocation of a TELL method at a later time in
the application, then a handle with which to reference this invocation must be retained by
the user. This can be accomplished by declaring a variable or field to be of type ACTID

 Chapter 13: Simu-
lation

157

and then using this variable as the left-hand side of an assignment statement and the de-
sired TELL method invocation as the right-hand side.

For example:

VAR
 activity : ACTID;
BEGIN
 activity := TELL anObject TO doSomething; (1)
 ...

After executing (1) activity will contain a reference to the specific instance of
method doSomething of object instance anObject. If the user wants to do a WAIT
FOR this method, the ACTID reference may be substituted for the actual scheduling of
the TELL method:

 ...
 WAIT FOR activity END WAIT;
 ...

As you can see, if activity were global or a field of an object, then more than one
method could WAIT FOR the same invocation of doSomething. If an unassigned ac-
tivity or an already completed activity is used in the WAIT FOR, a runtime error will
result.

In order to interrupt this invocation of doSomething you can import the procedure
'InterruptMethod' from the MODSIM library module SimMod.
InterruptMethod takes an ACTID as its argument and will notify the method that it
has been interrupted and schedule it to execute in the current simulation time.

Note that since WAITFOR methods may only be invoked by the WAIT FOR construct,
they may not be used on the right hand side of an assignment statement. Consequently,
WAITFOR method invocations may not be assigned to ACTID variables.

THISMETHOD is a built-in constant of type ACTID that can only be accessed within
TELL/WAITFOR methods. For example:

TELL METHOD foo;
VAR
 a : ACTID;
BEGIN
 a := THISMETHOD;

 ...

MODSIM Reference Manual

158

159

14. Grouping Objects

A language which makes use of dynamic data structures, such as objects, needs a way to
group related objects in a disciplined way. This is especially true for simulations, which
typically group objects queueing for a resource (the proverbial bank teller), or a series of
events scheduled to happen at a specific time. Such associations are referred to as
groups in MODSIM.

Objects may be selectively added to, or removed from a group. A MODSIM program
can iterate through a group examining the members of that group. Groups are untyped so
that they can hold a mixture of object types. An object can belong to any number of
groups.

When groups are used, the ordering may be either implicit or explicit. The implicitly
ordered, or ranked group, will always have one ordering for the same objects in the
group, regardless of the order in which they were added. These are normally associated
with ascending or descending sorts based on one or more fields, such as a list of activities
sorted on initiation time.

Groups may also have an explicit ordering that depends on how the group is added to.
The most common are the queue and stack groups which are FIFO and LIFO lists, re-
spectively.

Here is the type hierarchy of MODSIM's built-in groups which can be imported from
GrpMod.

Figure 14-1. Built-in Groups

14.1 Using Group Objects

It is often useful in applications to gather objects into some logical association.
MODSIM's library support for this association mechanism is provided through the
groups declared in DGrpMod.mod. There are a variety of grouping types: queue,
stack, ranked, btree. Since these groups are provided as objects, you can easily derive
your own object type and modify the behavior as required.

All groups in MODSIM are declared as proto-objects with the type of groups that can be
added and removed being replaceable. These groups can, of course, be used “as is” and
will default to an ANYOBJ type group. This means that the compiler will not check for

MODSIM Reference Manual

160

any particular type of object and will allow any object to be added to such a group and
will assume that any assignment of return values from the group is correct.

Insertion/Removal Order:

 QueueObj/StatQueueObj : First-In-First-Out (FIFO)

 StackObj/StatStackObj : Last-In-First-Out (LIFO)

 RankedObj/StatRankedObj : User-Determined-In-First-Out

 BTreeObj/StatBTreeObj : Key-Determined-In-First-Out

User order groups: RankedObj and BTreeObj

A RankedObj group will insert new objects into the group based upon the user de-
fined method Rank. In order to use a RankedObj, users must derive their own ob-
ject from a RankedObj and then override the method Rank, as appropriate to the
objects to be ordered in the tree. The Rank method must return one of -1, 0 or 1 de-
pending on the relative ordering of its two arguments. If the first argument is to precede
the second argument then -1 should be returned. If the arguments are considered equal,
then 0 is returned. Otherwise, (first argument is to succeed second argument in order) the
value 1 is returned.

Similarly, a BTreeObj is an ordered group of objects. The underlying structure of a
BTreeObj is more efficient for groups that are to be added to, and deleted from, ran-
domly and often. The group members must be identifiable with a STRING key, deter-
mined by the user. The key need not be unique, although this is the usually case. If the
key is non-unique, subsequent insertions with the same key will be inserted after already
present objects with that key. You determine the order of the BTreeObj by deriving
your own object type from BTreeObj and overriding the Key method. This method
must return a STRING which will be the key associated with the object being inserted.
The argument to the Key method is an object reference of an object being added or spe-
cifically removed (RemoveThis method) from the group.

14.2 The Queue Group

The following methods are defined for the built-in QueueObj object type:

ASK METHOD Includes(IN candidate : ANYOBJ) : BOOLEAN;
ASK METHOD Add(IN NewMember : ANYOBJ); { behind Last }
ASK METHOD Remove(): ANYOBJ; { removes First }
ASK METHOD First() : ANYOBJ;
ASK METHOD Last() : ANYOBJ;
 { First ... candidate ... Last
 <- Prev | Next -> }
ASK METHOD Next(IN candidate : ANYOBJ) : ANYOBJ;
ASK METHOD Prev(IN candidate : ANYOBJ) : ANYOBJ;

Chapter 14: Grouping Objects

161

ASK METHOD RemoveThis(IN member : ANYOBJ);
ASK METHOD AddBefore(IN ExistingMember,
 NewMember : ANYOBJ);
ASK METHOD AddAfter(IN ExistingMember,
 NewMember : ANYOBJ);

Deletion of objects from the group can be accomplished with either the Remove or
RemoveThis methods. The Remove method always deletes the first object in the
group and returns a reference to the deleted member. The RemoveThis method takes an
object reference as an argument and removes that particular object (regardless of its order
within the group) from the group. If RemoveThis is passed NILOBJ as an argument or
the object parameter is not a member of this group, a runtime error will occur.

The Add method places an object at the back end of the group, while Remove takes it
from the front of the group. The exact insertion of items can be altered using the
AddAfter or AddBefore methods, rather than the usual Add. RemoveThis,
AddBefore and AddAfter can be used to circumvent the inherent FIFO discipline of
this object. These methods will insert an object just after or just before another object
already in the group. These methods cannot be used with RankedObj or BTreeObj as
they would destroy the group's ability to do normal insertions properly.

First, Last, Next and Prev return reference values for those objects without chang-
ing the composition of the group.

The Includes method determines whether a specific object is part of a particular group
without traversing the group. This is an important efficiency consideration. Each object
keeps an internal list of groups to which it belongs. The Includes method interrogates
this list, which is likely to be shorter than most groups, to determine its answer.

QueueObj also has defined the field numberIn which can be queried to determine the
number of objects in a group.

14.3 The Stack Group

The StackObj type inherits all of the fields and methods of the QueueObj. It overrides
the QueueObj's Add method and substitutes an Add method which places objects at the
front of the group instead of the back.

14.4 The Ranked Group

The RankedObj type inherits all of the fields and methods of the QueueObj. It over-
rides the QueueObj's Add method and substitutes an Add method which inserts new ob-
jects into the group using a Rank method to determine the object’s proper position:

ASK METHOD Rank(IN a, b: ANYOBJ) : INTEGER;

MODSIM Reference Manual

162

The user overrides the default Rank method and substitutes one which returns the fol-
lowing values: -1 if a < b, 0 if a = b and 1 if a > b. The user decides how the
comparisons, e.g. a > b, are to be made.

Since the IN parameters to the Rank method are of type ANYOBJ, the user will need to
assign the referenced values to variables of the appropriate type before attempting com-
parison of any fields. As an example, the following implementation for method Rank
could be used to rank a group of cargo objects according to their weight field:

CargoObj = OBJECT
 weight : INTEGER;
 cube : INTEGER;
 priority : priType;
END OBJECT;

ASK METHOD Rank(IN a, b: ANYOBJ) : INTEGER;
VAR
 BoxA, BoxB: CargoObj;
BEGIN
 BoxA := a; BoxB := b;
 IF ASK BoxA weight < ASK BoxB weight
 {Replace -1 with 1 if ordering is descending}
 RETURN -1;
 END IF;
 IF ASK BoxA weight > ASK BoxB weight
 {Replace 1 with -1 if ordering is descending}
 RETURN 1;
 END IF;
 RETURN 0;
 {Returning 0 means it is ranked after the last of
 others of the same value}
END METHOD;

This ranks the group of objects in increasing order, e.g., 1, 2, 3, 4, …. To reverse this
order, the two RETURN statements would be switched. Of course, the user could provide
a more elaborate Rank method which based the ranking on the values of more than one
field.

14.5 Statistical Groups

In addition to the three basic group types (QueueObj, StackObj, RankedObj), three
statistically accumulating groups have been added: StatQueueObj, StatStackObj
and StatRankedObj. These new groups will acquire statistical data based upon the
number of objects in the group, both with and without respect to time. Methods have
been provided in order to easily provide this information.

Each group type described in the MODSIM library module GrpMod has a parallel sta-
tistical acquisition group described in the same module. The statistically capable groups
all begin with Stat followed by the group type name. For example, QueueObj is
mirrored by StatQueueObj.

Chapter 14: Grouping Objects

163

Each of the statistic groups can provide the maximum and minimum number of objects
ever in the group (methods Maximum and Minimum). The method Count counts the
number of times that membership in the group has changed. The Mean, StdDev
(standard deviation) and Variance may be obtained, as well as WtdMean,
WtdStdDev and WtdVariance. The Wtd variety means that the statistic is based
upon the length of simulation time the numberIn field was a particular value. In other
words, the statistic is weighted with respect to time.

If users require other statistics or operations based upon the number of objects in a group,
all statistically acquiring group objects have a MONITORED INTEGER field called
number. The user may add their own monitors to this field to further capture relevant
information and behavior (see MONITORING section).

These statistical groups function identically to the basic groups.

14.6 Iterating Through a Group

The FOREACH statement is the most general and efficient way to iterate through mem-
bers of a group. However, if the user wants to go through the members without changing
the group, the following construct is preferred:

VAR
 member : MyObject;
 group : QueueObj;
...

BEGIN
 member := ASK group First(); (1)
 WHILE member <> NILOBJ
 (* perform tasks on member objects *)
 member := ASK group Next(member);
 END WHILE;

(* ***** OR ***** *)

 member := ASK group Last(); (2)
 WHILE member <> NILOBJ
 (* perform tasks on member objects *)
 member := ASK group Prev(member);
 END WHILE;

This WHILE loop will go through all the members of a group successively assigning
their reference values to the variable member. In (1) the iteration will go from the be-
ginning to the end of the group (removal order), in (2) the iteration will go from the end
to the beginning of the group (reverse removal order). A runtime error will occur if
NILOBJ is passed to the method Next or Prev.

If the members of a group are to be successively removed from a group the following
statements may be used:

MODSIM Reference Manual

164

VAR
 member : MyObject;
 group : QueueObj;

...

BEGIN
 WHILE ASK group numberIn > 0
 member := ASK group TO Remove();
 (* perform processing on 'member' *)
 END WHILE;

Although the examples demonstrate using QueueObj, any group object type or any
object type derived from a group object type will behave in the same way.

165

15. Statistical Distributions: RandomObj

Random variables are available in MODSIM III through the library object RandomObj,
which can be imported from RandMod. The programmer creates an object of type
RandomObj, and queries it for successive random numbers.

The random numbers generated by the RandomObj are in the range:

0.0 < Sample < 1.0

The samples can also be drawn from a number of statistical distributions. The distribu-
tions which are supported are:

Distribution Return Type
UniformReal REAL
UniformInt INTEGER
Exponential REAL
Normal REAL
Gamma REAL
Beta REAL
Triangular REAL
Erlang REAL
LogNormal REAL
Weibull REAL
Poisson INTEGER
Binomial INTEGER

There are support methods which can be used to set the seed, reset to the original seed, or
to return the antithetic variate, e.g. 1 - Sample instead of Sample.

Each time an instance of RandomObj is created, its ObjInit method will set it to a de-
fault seed. The sequence of random numbers drawn from RandomObj will always be
the same given the same seed. In other words, the RandomObj returns a pseudo-random
number stream.

The random numbers follow from the initial seed number which the RandomObj is
given. A new seed may be set at any time. The following is a simple example:

MAIN MODULE Rand1;
FROM RandMod IMPORT RandomObj;
VAR OurRand : RandomObj;
 RlNum : REAL;
 IntNum : INTEGER;
BEGIN
 NEW(OurRand);
 FOR IntNum:= 1 TO 20

MODSIM Reference Manual

166

 RlNum := ASK OurRand UniformReal(-100.0, 100.0);
 OUTPUT(RlNum);
 END FOR;
END MODULE.

This program will print 20 REAL typed samples from the Uniform distribution in the
range -100.0 < Sample < 100.0.

The random numbers are reproducible. The following example generates the same num-
bers twice with two different objects:

MAIN MODULE Rand2;
FROM RandMod IMPORT RandomObj;
VAR
 OurRand1 : RandomObj;
 OurRand2 : RandomObj;
 RlNum1 : REAL;
 RlNum2 : REAL;
 IntNum : INTEGER;
BEGIN
 NEW(OurRand1);
 NEW(OurRand2);
 FOR IntNum := 1 TO 20
 RlNum1 := ASK OurRand1 Normal(50.0, 4.0);
 RlNum2 := ASK OurRand2 Normal(50.0, 4.0);
 OUTPUT(RlNum1, " ", RlNum2);
 END FOR;
 DISPOSE(OurRand1);
 DISPOSE(OurRand2);
END MODULE.

MODSIM III uses the same multiplicative congruential pseudo-random number genera-
tor as SIMSCRIPT II.5. Its period is 231. The behavior of the random number generator
is the same on all machines on which MODSIM is run. Thus, the same random number
streams will result wherever models are run.

There are ten different predefined random number streams, numbered 1..10. By default,
instances of RandomObj have a seed from stream number 1. MODSIM also defines a
stream number 0 which is identical to stream number 1. These predefined random num-
ber streams are identical to those provided in SIMSCRIPT II.5 and yield the same se-
quence of random numbers.

We can modify the above example by altering the seed of one of the streams, using the
SetSeed method and the FetchSeed procedure:

MAIN MODULE Rand3;
FROM RandMod IMPORT RandomObj, FetchSeed;
VAR
 OurRand1 : RandomObj;
 OurRand2 : RandomObj;
 Seed2 : INTEGER;

Chapter 15: Statistical Distributions

167

 RlNum1 : REAL;
 RlNum2 : REAL;
 IntNum : INTEGER;
BEGIN
 NEW(OurRand1);
 NEW(OurRand2);
 Seed2 := FetchSeed(3); {Get seed from stream 3}
 ASK OurRand2 TO SetSeed(Seed2);
 FOR IntNum := 1 TO 20
 RlNum1 := ASK OurRand1 UniformReal(-100.0, 100.0);
 RlNum2 := ASK OurRand2 UniformReal(-100.0, 100.0);
 OUTPUT(RlNum1, " ", RlNum2);
 END FOR;
 DISPOSE(OurRand1);
 DISPOSE(OurRand2);
END MODULE.

Note that the SetSeed will take any positive INTEGER as a parameter. It is not neces-
sary to use one of the ten predefined seeds.

MODSIM III also provides a non object-oriented random number generator through a
procedure called Random. This procedure uses the particular machine's random number
generator and will vary in the stream it provides on different machines.

Statistics gathering can also be easily accomplished by using the statistical monitor ob-
jects defined in DStatMod.mod. This module provides four basic statistical monitor
objects. There are two types of these monitors, one that is not weighted with respect to
time and another that is. Both types are each provided to monitor INTEGERs and REALs.

Also included in this module are some predefined types that will enable statistics acqui-
sition: SINTEGER, SREAL (no time weighting), TSINTEGER, TSREAL (time weight-
ing), BINTEGER, BREAL (both no time and time weighted accumulation). As the names
imply, those types with the INTEGER suffix may be used to define INTEGER variables or
fields and those types with the REAL suffix may be used to define REAL variables or
fields.

These objects will provide basic statistical values for the monitored data point. If your
application requires additional computations you may derive your own monitor from
these monitor object types and define your own monitored type. As with any monitor
object, statistical monitor objects may be specified either statically or dynamically for
any variable or field declared to be monitored.

Here is an example using DStatMod:

FROM StatMod IMPORT SINTEGER, IStatObj;

VAR
 num: SINTEGER;

MODSIM Reference Manual

168

 i: INTEGER;
. . .

 FOR i := 1 TO 4
 OUTPUT ("Number?")
 INPUT(num);
 END FOR
 OUTPUT ("average is ",
 ASK (GETMONITOR (num, IStatObj)) Mean ());

. . .

169

16. Resource Objects

A common requirement in modeling applications is the notion of a blocking request for
resource acquisition and the companion notion of releasing the resource back to the
available pool. This mechanism is provided in MODSIM's library as the ResourceObj
declared in DResMod.mod. Since it is provided as an object, any additional require-
ments such as resource preemption or resource contention may easily be added to an ob-
ject derived from this class.

The ResourceObj has been designed and implemented to afford a great deal of func-
tionality and still remain flexible enough to allow users to derive their own resource ob-
ject types from it. ResourceObj is provided as a proto-object so that the user, if de-
sired, can restrict the type of object which may request a particular resource.

A ResourceObj provides an asynchronous blocking mechanism, meaning that it allows
simulation time to elapse while waiting for a resource. Resources are a finite pool of
elements that may be acquired for some period of simulation time. Once acquired by an
object, a resource is unavailable for subsequent requests until it is returned to the re-
source pool. Applications will usually attach specific meanings to resources, such as
drive devices, machines, labor, etc.

The ResourceObj will automatically accumulate statistics and, if desired, plot a histo-
gram on both allocation history and pending queue history. The default when this object
is created is that statistics are turned off, but methods are provided which will individu-
ally turn on those statistics relevant to your application.

16.1 Acquiring Resources

Resources may be obtained using one of four methods: Give, TimedGive,
PriorityGive and GetResource. Each of these methods takes at least two argu-
ments: an object reference and the number of resources requested. All of the request
methods must be invoked using the WAIT FOR invocation of methods so that the
method can block until the resource is available. When the requesting method returns
normally (i.e., is not interrupted) from the WAIT FOR, the object reference has acquired
control of the requested number of resources and retains control of them until a Take-
Back or Transfer method is executed. The Give and PriorityGive methods
will always, and only, return normally to the requesting (blocked) method. However, the
TimedGive and GetResource methods may return by interrupting the waiting
method. In the case of an interrupt, the requesting object has NOT received the required
resources within the specified simulation time interval and must proceed accordingly.

Users must provide an INTERRUPT section in the WAIT FOR statement if using the
TimedGive or GetResource request methods. Otherwise, if a timeout occurs and the
method is interrupted, a runtime error will result.

MODSIM Reference Manual

170

16.1.1 Differences between Request Methods

The Give request will block the requesting method until the requested resource(s) be-
come available. This is the simplest and most common request method for
ResourceObjs.

If the user has a situation where the request for the resource must be filled within a spe-
cific simulation time period then the TimedGive method should be used. This method
will block the requesting method until the resource(s) are available or until the specified
time period has elapsed. In the former case, the requesting method will return normally
from the WAIT FOR. In the latter, the requesting method's WAIT FOR will be inter-
rupted. This indicates to the requesting method that it has not received control of the re-
quested resources and that the specified time period has elapsed.

Another, common requirement for resource acquisition is queuing requests based upon
priority. If this is a requirement of your application, use the PriorityGive request
method. This takes, in addition to the basic arguments, a REAL number priority. The
higher the priority the more forward in the pending list the request will be placed. Natu-
rally, if the request can be filled immediately, the priority makes no difference. This type
of request will NOT preempt the resources from an object which has already acquired
them. It is up to the user to coordinate such activity through the methods of the objects
involved in such a transaction. The Transfer and Cancel methods can be useful for
such a situation. Also, the user should be aware that if they are using a variety of request
methods to the same resource object, any request method which does not require priority
specification (i.e., Give and TimedGive) assumes a priority of 0.0.

Finally, the GetResource request method combines the timeout and priority properties
of TimedGive and PriorityGive and allows the user to specify both a time period
and priority for the request. Again, as in the TimedGive, the user must provide an ON
INTERRUPT clause in the event that the request times out.

To summarize the different methods of resource acquisition:

Give: block until resource is available.

TimedGive: block until resource is available or specified simulation units have
elapsed (timeout). If timeout occurs, requesting method will be interrupted.

PriorityGive: block until resource is available but queue object on pending list
based upon priority value — higher numbers get more priority.

GetResource: a combination of TimedGive and PriorityGive.

Chapter 16: Resource Objects

171

16.2 Changing the Set of Resources

A ResourceObj assumes it has a homogeneous set of resources and that these re-
sources are completely equivalent in that it does not matter which one is given to whom.
To initiate the resource pool the user does a Create method giving the number of re-
sources to begin with in the pool. This should be done before any requests are made.
Otherwise, the ResourceObj will consider itself to have zero resources available and
all requests will block.

The number of resources available from the pool is controlled by four methods:

• • Create
• • IncrementResourcesBy
• • DecrementResourcesBy
• • TakeBack

To increase the total pool number of resources the IncrementBy method is used. This
will make the total number of resources ever available equal to the previous maximum
available plus the increment. If any requests are pending at the time of the
IncrementBy, they will be filled, if possible. To reduce the total number available use
the DecrementBy method. This method will wait to gather as many resources as speci-
fied and remove them from the available pool. It will wait until they are returned to the
pool if they are not immediately available, and it will decrement the pool before any
pending or new requests are fulfilled.

The maximum number of resources is kept in the ResourceObj field
MaxResources. The field Resources contains the currently available number of re-
sources and the field PendingResources contains the number of resources pending
filling (not the number of requests but the total number of resources requested).

Once a requesting method returns normally from a request for resources, the object refer-
ence given in the request is considered to have control of the resource(s). To return the
resource(s) to the available pool, the TakeBack method is used giving the owner object
reference and the number of resources being returned. An attempt to return more re-
sources than assigned to an object will result in a runtime error. Rather than returning the
resource(s) to the available pool, the user can decide to transfer the “ownership” of the
resource(s) to another object. Again, any attempt to transfer more resources than owned
by the object will result in a runtime error. The user must provide code to take care of
letting the receiving object know it now has control of the resources and the relinquishing
object no longer has control. This is not done by ResourceObj.

If a user wishes to revoke a request for all or some of requested resources by a particular
object, the Cancel method is provided. This method will remove the specified number
of resources from the request of an object on the pending list. Again, the user must pro-

MODSIM Reference Manual

172

vide and invoke the necessary methods to notify the requesting object of the change in its
request status.

16.3 Statistics of Resources

ResourceObjs have the ability to keep statistics on both allocated and pending resource
requests. By default, statistical accumulation is off. To activate it for the allocation list
use SetAllocStats and pass the TRUE value. For the pending list use
SetPendStats and pass the TRUE value.

Either of these lists can be set up to accumulate histograms using either
SetAllocHistogram or SetPendingHistogram.

173

Section IV. Input / Output

MODSIM Reference Manual

174

175

17. Input / Output

There are a number of ways in which to do input and output in MODSIM. We have al-
ready seen the free-format INPUT and OUTPUT statements which allow simple, unfor-
matted input and output to the default I/O device (usually a CRT and its keyboard).

MODSIM also provides a standard library module, IOMod, which contains a stream I/O
object called StreamObj. This object allows the user to stream oriented input and out-
put to other devices and files. IOMod also contains a number of support routines which
interface with the machine's file system. MODSIM also supports two other modes of
I/O: random access file I/O and indexed sequential file I/O.

 At the end of this chapter a few of the I/O routines from IOMod are discussed.

17.1 INPUT & OUTPUT Statements

MODSIM III provides two standard built-in procedures, INPUT and OUTPUT for doing
non-object oriented, free formatted I/O.

The INPUT procedure takes one or more arguments. The OUTPUT procedure takes zero
or more arguments. The arguments may be any of the following types:

INTEGER, REAL, CHAR, STRING

For example:

OUTPUT("Input height & weight for item number", n);
INPUT(height, weight);
OUTPUT;

In addition to the types listed above, the OUTPUT statement accepts and correctly handles
values of user defined enumerated types.

The INPUT procedure reads values for each argument from the system's standard input, if
it exists. The OUTPUT procedure writes the value of each argument to the system's stan-
dard output, followed by a newline character. When it is used without arguments, it
writes a newline character alone.

You can include an object reference in an OUTPUT statement. By default the hexadeci-
mal address of the object will be printed. If the user supplies an ObjPrint method then
the result of this method will be printed:

myObj = OBJECT
 Name : STRING
 ASK METHOD ObjPrint() : STRING;
 ASK METHOD SetName(IN TestString : STRING);

MODSIM Reference Manual

176

 . . .
END OBJECT

ASK METHOD ObjPrint : STRING;
BEGIN
 RETURN Name;
END METHOD;

VAR
 obj : MyObj
BEGIN
 . . .
 NEW(obj);
 ASK obj TO SetName(“foo”);
 OUTPUT(obj);
 . . .

The result will be to print “foo”.

MODSIM III also provides two procedures for constructing formatted strings:

 PRINT [(expressionlist)] WITH formatstring
 SPRINT [(expressionlist)] WITH formatstring

Both will generate a string based upon the provided formatting string. The formatting
string contains a field specification which indicates field width and, in the case of REALs,
precision. The PRINT function will automatically output the constructed string to
stdout with an appended newline. SPRINT will return the constructed string as a
MODSIM STRING type which you may use, as appropriate.

A format string may be a literal, constant or variable STRING. The formatting is indi-
cated by embedding field specifications within the string. Asterisks ('*') are used to indi-
cate field widths and, in the case of REALs, precision. Fields may be left, right or cen-
tered justified. The defaults are that numbers and strings are right justified. You may
override or explicitly indicate this by making the last character of your field specification
one of '<', '>' or '~' for left, right or centered, respectively.

Here is a sample of code using PRINT:

 CONST
 format=" ****** ***.** ***< ";
 VAR
 s : STRING;
 r : REAL;
 i : INTEGER;
 str : STRING;

Chapter 17: Input/Output

177

 BEGIN
 s := "values";
 r := 32.854;
 i := 28;
 PRINT (s,r,i) WITH format;
 str := SPRINT (s,r,i) WITH format;

17.2 Stream I/O Using StreamObj

In MODSIM stream I/O is implemented using the StreamObj object. Files may be read
from or written to, but it is not possible to reposition to an arbitrary position in the file.
Below is a simple example of its use in which a text file called “sample.txt” is read
and printed out.

FROM IOMod IMPORT StreamObj,
FileUseType(Input);

VAR
 Strm : StreamObj;
 textLine : STRING;

 . . .

 NEW(Strm);
 ASK Strm TO Open("sample.txt", Input);
 WHILE NOT (ASK Strm eof)
 ASK Strm TO ReadLine(textLine);
 OUTPUT(textLine);
 END WHILE;
 ASK Strm TO Close;
 DISPOSE(Strm);
 . . .

The following pararagraphs contain a partial list of the methods and procedures associ-
ated with StreamObj.

17.3 ASK Methods of StreamObj

Open(IN FileName: STRING; IN IOdirection: FileUseType)
Description: Opens the specified filename for the specified use. There are three special

filenames: stdin, stdout, and stderr. Stderr is the system default
device for error messages.

Close

Description: Closes the file associated with the object.

Delete

Description: Deletes the file associated with the object.

MODSIM Reference Manual

178

ReadChar(OUT ch: CHAR)

Description: Reads a character from the stream.

ReadInt(OUT n: INTEGER)

Description: Reads an integer from the stream.

ReadReal(OUT x: REAL)

Description: Reads a REAL value from the input file/device. Can read exponential no-
tation as well as standard real notation.

ReadString(OUT str: STRING)

Description: Reads characters up to, but not including, the next space, tab, carriage re-
turn or end of file.

ReadLine(OUT str: STRING)

Description: Reads a character string from the current position up to, but not including,
the newline character.

WriteChar(IN ch: CHAR)

Description: Writes a character to the stream.

WriteInt(IN num, fieldwidth: INTEGER)

Description: Writes an integer number to the stream.

WriteHex(IN num, fieldwidth: INTEGER)

Description: Writes an integer in hexadecimal notation.

WriteReal(IN num: REAL; IN fieldwidth, precision: INTEGER)

Description: Writes a real number to the stream.

WriteString(IN str: STRING)

Description: Writes a string to the stream.

WriteLn

Description: Writes a newline character to the stream.

17.4 Procedures of IOMod

ExistsFile(IN fname: STRING): BOOLEAN

Description: Returns TRUE if the file exists, FALSE if not. fname can be a full path or
a filename in the current directory.

DeleteFile(IN fname: STRING)
Description: Deletes the specified file, if it exists.

Chapter 17: Input/Output

179

FileSize(IN fname: STRING): INTEGER

Description: Returns the size of the specified file, in bytes.

ReadKey(): CHAR

Description: Reads one character from the console with no echo. It does not require a
Carriage Return, Enter or Newline before returning the character.

Each Stream I/O object also has two fields which report status:

eof : BOOLEAN;
ioResult : INTEGER;

The eof field, which signifies end-of-file, becomes TRUE as soon as the last item has
been read from the file and nothing remains to be read. The ioResult field takes on a
value which indicates the status of the last I/O activity. A normal completion, with no
error, leaves a value of zero in this field. The current implementations place a non-zero
value in the field to indicate an error.

MODSIM Reference Manual

180

181

18. Graphics and Animation

Graphics capabilities of SIMGRAPHICS II are available for use with MODSIM. They
include the following features:

Animation: Icons created off-line using the graphical editor move and
orient themselves according to simulation logic.

Graphic Editor: Used to create and edit icons, input forms, graphs and
charts.

Presentation Graphics: Used to create charts and graphs off-line using the graphi-
cal editor. The charts and graphs are then tied to variables
in the program.

You will use these features through an object-oriented interface to the various graphic
objects.

These advanced graphical development capabilities are fully documented in the
SIMGRAPHICS II User Manual.

MODSIM Reference Manual

182

183

Appendices

MODSIM Reference Manual

184

185

Appendix A. Glossary

activity: A WAIT statement in a TELL or WAITFOR method. The place in
an object's TELL or WAITFOR method where simulation time
elapses.

base type: With respect to objects: The immediate ancestor or the imme-
diate underlying object type of an object type.

With respect to arrays: The type of each element in the array.

behavior: A method of an object implements the object's behavior.

component: Either a field or method for an object.

conflicting methods: This occurs when two or more of the base types in a multiple
inheritance have a method with the same name.

derived type: An object type defined in terms of one or more existing object
types.

dynamic binding: The type of each operand and operation is determined at
run-time; most object-oriented languages, including MODSIM,
are based on dynamic binding. MODSIM uses dynamic binding
only for field references and method calls, not for other opera-
tions such as +, -, AND, etc.

dynamic data type: One of: ARRAY, RECORD, OBJECT. The memory for an in-
stance of each of these types is explicitly allocated and deallo-
cated by the programmer using the NEW procedure and deallo-
cated using the DISPOSE procedure.

encapsulation: Packaging the fields which define the state of an object and the
methods which define its behaviors within one object definition.

enumeration: A user-defined ordered set of literal values - e.g.
workday = (Mon, Tue, Wed, Thu, Fri)

field: One of the variables associated with a particular object or rec-
ord type.

MODSIM Reference Manual

186

fixed data type: One of: INTEGER, REAL, STRING, CHAR, BOOLEAN, enumera-
tion, subrange, FIXED ARRAY, FIXED RECORD. These data
types are automatically allocated and deallocated on entry to
and exit from the block in which their variables are declared.

function method: A method which returns a value. Only ASK methods can return
a value. TELL and WAITFOR methods cannot be function meth-
ods.

function procedure: A procedure which returns a value.

group: A structure used to associate objects. There are three basic
group object types: StackObj, QueueObj, RankedObj.

inheritance: The definition of one object type in terms of another, already-
existing object type.

instance: One particular array of an array type. One particular record of a
record type. One particular object of an object type.

invoke: To call a procedure or method. To cause a procedure or method
to execute.

member: An object which is contained within a group.

message: The name of a method; “sending message A to B” is an
equivalent way of saying “ask object B to perform method A”
or “perform method A with object B”.

method: A routine which describes an object's behavior. Similar to a
procedure, however a method is always associated with an ob-
ject.

object: A dynamic data structure that includes an associated list of
methods.

ordinal type: The subset of scalar types which have a known ordering. In
other words, given one value which belongs to the type, it is
possible to state what the next or previous value would be. The
following are ordinal types: INTEGER, CHAR, BOOLEAN, enu-
merations and subranges.

Appendix A: Glossary

187

pass by reference: When a parameter in a parameter list is shared by both the in-
voking and the invoked routine. Parameters with the INOUT
and OUT qualifier are passed by reference.

pass by value: When a copy of a parameter in a parameter list is made and
passed in to the invoked routine. Parameters with the IN quali-
fier are passed by value.

private property: A property with a scope limited to the methods of an object type
or derived object types.

process: Process-based simulations allow methods of objects to describe
a series of related activities rather than being limited to defining
simply one event per method.

proper method: A method that has no return value. Can be either a TELL, ASK
or WAITFOR method.

proper procedure: A procedure that has no return value.

property: A characteristic or attribute of an object type. Specifically ei-
ther a method or field of the object type.

public property: A property of an object that is available for use outside the
methods of that object type.

qualified inherited call: In a multiple inheritance, an invocation of an inherited method
of a specific base type, as in:

INHERITED FROM SomeObject aMethod;

record: A data structure which consists of a collection of fields which
may be variables of differing types.

reference type: Each array, record and object type has an implicit reference
type, which is used to define variables that refer to a specific in-
stance of that type - analogous to a pointer type.

reference variable: A variable that references a specific instance of an array, record
or object type; a variable of the reference type.

routine: A general term for a sub-routine, procedure, function or
method.

MODSIM Reference Manual

188

scalar type: A type which has only one element or component part and can
be used to scale, measure or quantify things. The following are
scalar types: INTEGER, REAL, CHAR, BOOLEAN, enumerations
and subranges. An example of something which would not be a
scalar type is an array, record or object type.

shared variable: A variable which is shared by all the methods of a particular
object type. In other words, a variable defined outside the
scope of an object so that it will be visible to all instances of
that object type. Usually a shared variable is defined globally,
within a module.

simple data type One of the following types: INTEGER, REAL, CHAR, BOOLEAN,
STRING, enumerations, subranges.

strong typing: The type of each operand, parameter and operation is fixed at
compile-time. MODSIM, Ada and Pascal are characterized by
strong typing.

structured data type: One of the following aggregate types: ARRAY, RECORD,
OBJECT, FIXED ARRAY or FIXED RECORD.

TELL method: A proper method which is executed asynchronously. It can
elapse simulation time. If it has a parameter list, only IN pa-
rameters are allowed. WAIT statements are allowed in TELL
methods.

time-elapsing method: A TELL METHOD which contains at least one WAIT statement.

underlying type: If type A is derived from type B, or from some type which is in
turn derived from B, then B is said to be an underlying type of
A.

WAITFOR method: A proper method which is executed asynchronously. It can
elapse simulation time. Unlike a TELL method, a WAITFOR
method's parameter list allows OUT and INOUT parameters.
WAIT statements are allowed in WAITFOR methods.

189

Appendix B. Reserved Words

The following is a complete list, with descriptions, of the reserved words in MODSIM
III.

ACTID

Example: act : ACTID

. . .

act := TELL obj TO GoTo(x, y);

Description: Built-in type which is used to represent simulation activities. Routines in
the MODSIM run time library (SimMod) can interpret this data type.

ALL

Example: FROM SomeModule IMPORT ALL Colors;

Description: Specifies that all enumerated constants of the enumerated type are to be
imported.

AND

Example: Expr1 AND Expr2

Description: A BOOLEAN operator. If both BOOLEAN expressions are TRUE then the
entire expression is TRUE. If either BOOLEAN expression is FALSE, the
entire expression is FALSE. If the first expression is FALSE, the second
condition is not evaluated.

ANYARRAY

Example: anyAr : ANYARRAY;

ar : ARRAY INTEGER OF STRING;

 . . .

anyAr := ar;

ar := anyAr;

Description: Built-in type which can be used to represent any array type. It overcomes
MODSIM's strict typing.

 Note: Use with caution.

ANYOBJ

Example: PROCEDURE foo(IN n : ANYOBJ);

 . . .

foo(Obj);

MODSIM Reference Manual

190

Description: Built-in type which can be used to represent any object type. It overcomes
MODSIM's strict type checking.

 Note: Use with caution.

ANYREC

Example: n : ANYREC;

rec : MyRec;

. . .

rec := n;

Description: Built-in type which can be used to represent any record type. It overcomes
MODSIM's strict type checking.

 Note: Use with caution.

ARRAY

Example: VAR x : ARRAY INTEGER OF REAL;

Description: Declares an array type with the given index type and element type.

AS

Example: IMPORT StreamObj FROM IOMod AS OutputObj;

Description: Changes the name of the imported definition.

ASK

Example: ASK Obj1 TO MoveForward;

Example: Pos := ASK Tank1 CurrentPos;

Description: References a field or invokes an ASK method of the specified object.
Since ASK methods are not allowed to elapse simulation time, the invoked
method will be completed before program control passes to the next
statement.

Example: TYPE

 CarObj = OBJECT

 ASK METHOD Move(IN x, y : INTEGER);

Description: Part of the method heading for an ASK method.

Example: OBJECT CarObj

 ASK METHOD Move(IN x, y : INTEGER);

Description: Part of the method declaration within an object block.

Appendix B: Reserved Words

191

BEGIN

Example: MAIN MODULE MainMod;BEGIN...END MODULE.

Example: BEGIN ... END PROCEDURE;

Description: Identifies the beginning of a sequence of executable statements.

BOOLEAN

Example: isDone : BOOLEAN;

. . .

IF isDone

. . .

END IF;

Description: Built-in type which is used to represent either TRUE or FALSE.

BY

Example: FOR i := 0 TO 20 BY 2

Example: FOR i := 20 DOWNTO 0 BY 2

Description: Optional qualifier which describes the size of the increment in a FOR
statement. The control variable of the loop may be of any ordinal type,
but the increment must be an integer expression.

CALL

Example: CALL procvar(x,y);

Description: Invokes the procedure assigned to procvar passing the optional argu-
ment list.

CASE

Example: CASE NewCar

 WHEN Saab, Chrysler:

 OUTPUT("Family car");

 WHEN Porsche:

 OUTPUT("Sports car");

 OTHERWISE

 OUTPUT("A what?");

END CASE;

Description: Defines a multiple branch conditional statement. The expression after the
word CASE is evaluated. If its value matches any of the choices after the
word WHEN, that statement sequence is executed. If the value doesn't
match any choice, the statement sequence after the OTHERWISE is exe-
cuted.

MODSIM Reference Manual

192

CHAR

Example: ch : CHAR;

. . .

ch := 'i';

Description: Built-in type which is used to represent single characters.

CLASS

Example: TYPE

 Obj = OBJECT

 CLASS

 f : INTEGER

 ASK METHOD foo;

 END OBJECT;

 . . .

 ASK Obj TO foo; { no instances have been created }

 i := Obj.f;

 . . .

Description: Defines a section in which the fields and methods are independent of any
particular instance of the object, and may be referenced as such.

CONST

Example: CONST

 Sky = blue; pi = 3.14159;

Description: Precedes a series of constant declarations. The type of the constant de-
pends on the type of the literal or expression used to define it.

DEFINITION

Example: DEFINITION MODULE Transport;

 . . .

END MODULE.

Description: Identifies the module as a DEFINITION module, in which variables, ob-
ject types, etc. are described.

DIV

Example: b := 7 DIV 2;

Description: Integer division operator. In the example, B will be set to 3. See also
MOD.

DOWNTO

Example: FOR k := 20 DOWNTO 0 BY 2

Appendix B: Reserved Words

193

Description: This indicates that a FOR loop's control variable should be decremented
rather than incremented after each iteration. Note that the increment
amount is always stated as a positive integer.

DURATION

Example: WAIT DURATION 4.0

Description: Indicates execution of a TELL or WAITFOR method should be suspended
for the specified amount of simulation time, unless interrupted. In the ex-
ample above, the WAIT pauses for 4 units of simulation time.

ELSE

Example: IF Door = Open

 OUTPUT("Door was open.");

ELSE

 OUTPUT("Door was closed.");

END IF;

Description: If the Boolean expression evaluates to FALSE, the statement block fol-
lowing ELSE is executed.

ELSIF

Example: IF fuelLevel > 12500

 status := ContinueMission;

ELSIF fuelLevel > 3500

 status := ReturnToBase;

ELSE

 status := LowFuelEmergency;

END IF;

Description: Included in an IF statement to allow multiple conditions.

END

Example: BEGIN ... END PROCEDURE;

Example: WHILE... END WHILE;

Description: Marks the end of a control statement, structure declaration, block or mod-
ule. Always followed by an identifier which specifies what is being
ended, e.g. END FOR, END MODULE, END METHOD, END RECORD,
END OBJECT, etc.

EXIT

Example: LOOP
 ...
 IF n > 37

MODSIM Reference Manual

194

 EXIT;
 END IF;
 ...
END LOOP;

Description: The EXIT statement may be used to break out of any of the loop state-
ments: WHILE, REPEAT, FOR, or LOOP.

FALSE

Example: VAR

 b : BOOLEAN;

. . .

 b := FALSE;

. . .

Description: One of the two BOOLEAN constants; the other being TRUE.

FIXED

Example: arrType = FIXED ARRAY [1..10] OF REAL;

Description: Indicates that the array is a fixed rather than a dynamic array.

Example: recType = FIXED RECORD
 name : STRING;
 age : INTEGER;
END RECORD;

Description: Indicates that the record is a fixed rather than a dynamic record.

FOR

Example: FOR k := 1 TO 5 ... END FOR;

Description: A FOR loop repeats the enclosed statement sequence until the loop control
variable exceeds the terminating value. If no BY statement clause is in-
cluded, the step defaults to 1.

Example: WAIT FOR SomeObj TO SomeMethod;

Description: One of the three optional forms of the WAIT statement, in which one
method waits for another activity to complete.

FOREACH

Example: FOREACH obj IN myQueueObj

. . .

END FOREACH;

Description: A construct to allow iteration over a group of objects or records, usually
the group is one derived from GrpMod (for objects) or ListMod (for rec-
ords).

Appendix B: Reserved Words

195

FORWARD

Example: PROCEDURE Recurse(IN n : INTEGER); FORWARD;

Description: Used to declare the existence of a procedure before the full declaration is
specified. This is useful when routines have a cyclic calling pattern.

Example: TYPE

 SomeThing = OBJECT; FORWARD;

Description: Used to declare the existence of an object type before its full declaration
so it can be referred to by another object. Useful when two or more object
types have fields which refer to each other.

FROM

Example: FROM GrpMod IMPORT QueueObj;
Description: Specifies the definition module from which a definition is to be imported.

Example: INHERITED FROM SomeObj SomeMethod;
Description: Specifies the base object type from which an inherited method is to be in-

voked.

IF

Example: IF a = 3

 OUTPUT(a);

END IF;

Description: If the Boolean expression is TRUE, the following statement sequence will
be executed. If it is FALSE, the next clause (if any) will be executed (see
ELSIF, ELSE).

IMPLEMENTATION

Example: IMPLEMENTATION MODULE Transport;

 ...

END MODULE.

Description: Identifies the module as an IMPLEMENTATION module.

IMPORT

Example: FROM SimMod IMPORT ProcessObj;

Description: Imports the item named by the identifier from the specified module and
adds its definition to the scope of the importing module.

MODSIM Reference Manual

196

IN

Example: PROCEDURE PrintIt(IN textLine: STRING);

Description: The IN qualifier appears in a formal parameter list and specifies the di-
rection in which data will flow. IN parameters are passed by value.

Example: TELL SomeObj TO SomeMethod IN 10.0;

Description: The IN qualifier specifies that the method should be invoked in that
many units of simulation time.

INHERITED

Example: ASK METHOD ProceedTo;

BEGIN

 ...

 INHERITED ProceedTo;

 ...

END METHOD;

Description: When a new object type is derived from an existing type, and a method is
overridden in the new object, the old method code is still available, and a
call qualified with the word INHERITED can be used to invoke it.

INOUT

Example: PROCEDURE Capitalize(INOUT text: STRING);

Description: This declares a formal parameter to be both an input and an output pa-
rameter to a routine. It is passed by reference.

INTEGER

Example: i : INTEGER;

. . .

i := 5 + j;

Description: Built-in type which is used to represent integers (whole numbers).

INTERRUPT

Example: WAIT DURATION 3.0

 OUTPUT("Wait completed");

ON INTERRUPT

 OUTPUT("Wait was interrupted");

END WAIT;

Description: If the WAIT statement is interrupted, the ON INTERRUPT clause is exe-
cuted.

LMONITOR

Appendix B: Reserved Words

197

Example: StrMonObj = MONITOR STRING OBJECT

 . . .

 LMONITOR METHOD laccess;

 . . .

END OBJECT;

Description: Declares a method within a monitor object which is called automatically
just before any attempt is made to change the value of a monitored vari-
able.

LMONITORED

Example: StrMonVar = LMONITORED STRING BY StrMonObj;

. . .

str : StrMonVar;

Description: Declares a variable type to be left monitored. The LMONITOR methods of
any monitor objects attached to this variable will be called before the vari-
able changes value.

LOOP

Example: LOOP
 ...
 IF n > 37
 EXIT;
 END IF;
 ...
END LOOP;

Description: The enclosed code will repeat until an EXIT statement is executed.

LRMONITORED

Example: StrMonVar = LRMONITORED STRING BY StrMonObj;

. . .

str : StrMonVar;

Description: Declares a variable type to be left and right monitored. The LRMONITOR
methods of any monitor objects attached to this variable will be called be-
fore the variable changes value or is read.

MAIN

Example: MAIN MODULE AirportModel;

 ...

END MODULE.

Description: Identifies the module as the MAIN module of a program.

MODSIM Reference Manual

198

METHOD

Example: ASK METHOD Shoot(IN Angle: REAL);

Description: Keyword for a method heading.

MOD

Example: IntNum:= 7 MOD 2;

Description: MOD is used to obtain the “remainder” of an integer division. In the exam-
ple above, the INTEGER variable IntNum will be set to 1.

MODULE

Example: MAIN MODULE AirportModel;

 ...

END MODULE.

Description: Used to delimit a module.

MONITOR

Example: RealMonObj = MONITOR REAL OBJECT

 . . .

END OBJECT;

Description: Used to declare a monitor object, in which LMONITOR, RMONITOR and
LRMONITOR methods may be declared.

NEW

Example: NEW(obj);

NEW(rec);

NEW(arr, 1..10);

Description: Used to create instances of dynamic data types, objects, records and ar-
rays.

NILARRAY

Example: IF arr = NILARRAY

 OUTPUT("unallocated array");

END IF;

Description: The value of an array reference variable before it is created.

NILOBJ

Example: IF obj = NILOBJ

 OUTPUT("unallocated object");

END IF;

Description: The value of an object reference variable before it is created.

Appendix B: Reserved Words

199

NILREC

Example: IF rec = NILREC

 OUTPUT("unallocated record");

END IF;

Decsription: The value of a record reference variable before it is created.
NONMODSIM

Example: PROCEDURE foo; NONMODSIM;

Description: Specifies that a procedure heading in a DEFINITION module defines a
routine which will be provided in C++.

NOT

Example: IF NOT (k = 3) ...

Description: Inverts TRUE and FALSE in a BOOLEAN expression.

OBJECT

Example: TYPE

 Boat = OBJECT

 ...

 END OBJECT;

Description: Used to delimit an object type declaration.

Example: OBJECT Boat;

 ...

END OBJECT;

Description: Used to delimit an object declaration.

OF

Example: VAR x : ARRAY [0..10] OF REAL;

Description: Indicates the type of the elements of an ARRAY.

ON

Example: ON INTERRUPT ...

Description: Optional part of a WAIT statement which precedes the code to be executed
when a WAIT statement is interrupted.

OR

Example: (x < 3.5) OR (n > 5)

Description: A BOOLEAN operator. If either or both of the BOOLEAN expressions are
TRUE, the expression will be TRUE. If the first condition is TRUE, the
second condition is not evaluated.

MODSIM Reference Manual

200

OTHERWISE

Example: CASE NewCar

 WHEN Saab, Chrysler:

 OUTPUT("Family car");

 WHEN Porsche:

 OUTPUT("Sports car");

 OTHERWISE

 OUTPUT("A what?");

END CASE;

Description: See CASE. This identifies the “default” case in a CASE statement.

OUT

Example: PROCEDURE CurrentTime(OUT Time: INTEGER);

Description: Declares a formal parameter of a routine to be for output only. The pa-
rameter is passed by reference, and is initialized on entry to the called
routine.

OVERRIDE

Example: TYPE
 Bicycle = OBJECT
 ...
 OVERRIDE;
 ASK METHOD GOTO(IN x, y : INTEGER);
 ...
 END OBJECT;

Description: Indicates that an inherited method is to be overridden. The new method is
then specified in the object block.

PRIVATE

Example: Boat = OBJECT
 ...
 PRIVATE
 ASK METHOD Report(IN rpt: STRING);
 status: INTEGER;
 ...
END OBJECT;

Description: Declares methods and fields to be accessible only from within the object's
own methods.

PROCEDURE

Example: PROCEDURE PrintIt(IN text: STRING);

Description: Keyword for a procedure heading.

Appendix B: Reserved Words

201

PROTO

Description: Redundant in MODSIM III.

REAL

Example: rNum : REAL;

. . .

rNum := 5.635

Description: Built-in type which is used to represent floating point (fractional num-
bers).

RECORD

Example: TYPE

 CustFil = RECORD

 Age: INTEGER;

 Name: STRING;

 END RECORD;

Description: Used to define a record type. A record is a collection of fields which may
be accessed as a group, or individually by referring to a specific field
name.

REPEAT

Example: REPEAT

 INC(k);

 OUTPUT(k);

UNTIL k = 5;

Description: Repeat the enclosed code until the BOOLEAN expression is TRUE. The
BOOLEAN expression is evaluated after each iteration.

RETURN

Example: PROCEDURE Sum(IN i,j : INTEGER): INTEGER;

BEGIN

 RETURN i+j;

END PROCEDURE;

Description: The RETURN statement is used to exit from a function procedure and
specify the function result. When used in a proper procedure without a re-
sult argument, it simply exits the procedure.

REVERSED

Example: FOREACH obj IN myQueueObj REVERSED

 . . .

MODSIM Reference Manual

202

END FOREACH;

Description: Used in a FOREACH statement to specify the iteration will proceed from
the last item to the first.

RMONITOR

Example: ChMonObj = MONITOR CHAR OBJECT

 . . .

 RMONITOR METHOD raccess;

 . . .

END OBJECT;

Description: Declares a method within a monitor object which is called automatically
just before any attempt is made to access the value of a monitored vari-
able.

RMONITORED

Example: ch : RMONITORED CHAR BY ChMonObj;

Description: Declares a variable type to be right monitored. The RMONITOR methods
of any objects attached to this variable will be called before the variable is
read.

SELF

Example: IF obj = SELF

. . .

END IF;

Description: An constant object reference variable which represents the object instance
of the current method.

STRERR

Example: i := STRTOINT("abc"); { STRERR is TRUE }

i := STRTOINT("135"); { STRERR is FALSE }

Description: Represents the status of the last STRTOINT or STRTOREAL built-in proce-
dure.

STRING

Example: str : STRING;

. . .

str := "hello" + "world";

Description: Built-in type which is used to represent a string (sequence of characters).
Memory management of STRING is handled automatically by MODSIM.

Appendix B: Reserved Words

203

TELL

Example: TELL Car1 TO StartMoving;

Description: Invokes a TELL method of an object. A TELL method is invoked asyn-
chronously and may contain WAIT statements. The TELL statement will
not wait for the invoked method to be completed.

Example: TYPE
 CarObj = OBJECT
 TELL METHOD StartMoving;
 ...
 END METHOD;

Description: Part of the method heading for a TELL method.

TERMINATE

Example: TELL METHOD StartMoving;
...
BEGIN
 ...
 IF (Location = WallLocat)
 OUTPUT("Crash.");
 TERMINATE;
 END IF;
 ...
END METHOD;

Description: A TERMINATE statement is used from inside a object instance's TELL or
WAITFOR method to prematurely stop execution of that method and any
method which invoked that method by means of a WAIT FOR statement.

THISMETHOD

Example: TELL METHOD foo;

VAR

 a : ACTID;

BEGIN

 a := THISMETHOD;

. . .

Description: Built-in constant of type ACTID which represents a TELL or WAITFOR
method activity. It is available within TELL and WAITFOR methods.

TO

Example: ASK Obj1 TO Remove;

TELL Obj1 TO Activate;

WAIT FOR Car1 TO Move;

MODSIM Reference Manual

204

Description: TO is an optional “noise word” provided to make ASK, TELL and WAIT
calls more readable.

TRUE

Example: VAR

 b : BOOLEAN;

 ...

 b := TRUE;

Description: One of the two BOOLEAN constants, the other being FALSE.

TYPE

Example: TYPE

 weekdays = (Mon, Tue, Wed, Thur, Fri);

Description: Precedes a series of type declarations.

UNTIL

Example: REPEAT

 INC(k);

 OUTPUT(k);

UNTIL k = 5;

Description: Identifies the terminating condition of a repeat loop.

VAR

Example: VAR

 Len: INTEGER;

Description: Precedes a series of variable declarations.

WAIT

WAIT FOR Car1 TO GoTo(Garage)

WAIT DURATION 5.0

WAIT FOR Signal TO Trigger

Description: A WAIT statement will suspend execution of the routine while simulation
time elapses.

Appendix B: Reserved Words

205

WAITFOR

Example: OBJECT

 ElevatorObj = OBJECT

 . . .

 WAITFOR METHOD Active(IN floor : INTEGER;

OUT full : BOOLEAN)

 . . .

END OBJECT;

 Description: A method which may only be called from a WAIT FOR statement. Unlike
the TELL method, it may have OUT and INOUT parameters. In addition,
the invoking method will not proceed until the method being waited for
returns.

WHEN

Example: CASE NewCar

 WHEN Saab, Chrysler:

 OUTPUT("Family car");

 WHEN Porsche:

 OUTPUT("Sports car");

 OTHERWISE

 OUTPUT("A what?");

END CASE;

Description: Identifies a case in a CASE statement.

WHILE

Example: WHILE k < 5

 OUTPUT(k);

 INC(k);

END WHILE;

Description: Repeats the enclosed code while the BOOLEAN expression remains TRUE.
The BOOLEAN expression is evaluated before each iteration.

WITH

Description: See PRINT and SPRINT in Appendix C.

MODSIM Reference Manual

206

207

Appendix C. Built-in Procedures

For each of the procedures and functions listed below we have provided a procedure
heading which describes the number and type of parameters and the type of the return
value. Since these are built-in procedures, some may have special capabilities not avail-
able to user-defined procedures. For instance, the first procedure described can take ei-
ther an INTEGER or REAL argument.

ABS (IN arg : INTEGER or REAL) : INTEGER or REAL
Description: Returns the absolute value of the argument. Return value is of same type

as input.

ACTIVATE(IN monvar : AnyMonitoredVar;
 IN montype : AnyMonitoredObjectType)
 : <montype> object reference
Description: Activates a previously deactivated monitored variable.

ADDMONITOR(IN monvar : AnyMonitoredVar;
 IN monobj : AnyMonitorObjectVar)
Description: Adds a monitor created by the user (dynamically) to the monitor list asso-

ciated with the monvar.

CAPIN ch : CHAR) : CHAR
Description: Converts the input character to uppercase.

CHARTOSTRIN chrArray : ARRAY OF CHAR) : STRING
Description: Returns the STRING representation of an ARRAY OF CHAR.

CHR(IN n : INTEGER) : CHAR
Description: Converts an INTEGER in the range 0 to 255, inclusive, to the correspond-

ing CHAR. For example, given an input of 65 it will return 'A'. If n falls
outside the range 0 to 255, this routine returns CHR(0).

CLONE(IN d : anyDynType) : anyDynType
Description: Takes any dynamic data type as an input and returns a copy. The dynamic

data types are: ARRAY, RECORD and OBJECT.

If the input type is an object, its ObjClone method is invoked, if it exists.

MODSIM Reference Manual

208

DEACTIVATE(IN monvar : AnyMonitoredVar;
 IN montype : AnyMonitoredObjectType)
 : <montype> object reference
Description: Deactivates a monitored variable.

DEC(INOUT arg : AnyOrdinalType [; IN n : INTEGER])
Description: Decrements arg by n. i.e. arg := arg - n. If n is not specified, it

defaults to 1.

DISPOSE(IN refVar : AnyRefType)
Description: Deallocates the space pointed to by the argument. The argument can be of

any dynamic data type; e.g. ARRAY, RECORD or OBJECT. The refVar is
guaranteed to be initialized to NILOBT, NILARRAY or NILREC after the
call.

If an object type is the input, DISPOSE executes the object's
ObjTerminate method, if any, before deallocating the space used by the
specified object instance.

FLOAT(IN n : INTEGER) : REAL
Description: Converts the argument to REAL.

GETMONITOR(IN monvar : AnyMonitoredVar;
 IN montype : AnyMonitoredObjectType)
 : <montype> object reference
Description: Returns the object type of a monitored object.

HALT
Description: Terminates a MODSIM program, returning control to the operating sys-

tem or other calling program. UtilMod also defines a routine called
ExitToOS which performs a halt while returning a status code to the op-
erating system. In both cases any PROCEDUREs registered with ONEXIT
will be called before the program terminates.

HIGH(IN arr : AnyArrayType) : IndexType
Description: Returns the highest index of the array argument. The return type is the

same as the index type used to define the array. The argument can also
be an array element when AnyArrayType is a multi-dimension array.

INC(INOUT arg : AnyOrdinalType [IN n : INTEGER])
Description: Increments the given variable by the given amount, i.e. arg := arg +

n. If n is not specified, it defaults to 1.

Appendix C: Built-In Procedures

209

INPUT(OUT var1 : Sometype [OUT var2 : Sometype ...])
Description: Reads from standard input and inserts the acquired values in each of the

variables, sequentially. The input values may be separated by spaces,
tabs, or newlines. Takes one or more parameters. Sometype must be
one of: CHAR, INTEGER, REAL, or STRING. The types can be mixed.

INSERT(INOUT str1 : STRING;
 IN pos : INTEGER;
 IN str2 : STRING)
Description: Inserts str2 at position pos in str1. If pos is less than or equal to

zero, then str2 is inserted ahead of str1. If pos is greater than the
length of str1, then str2 is inserted behind str1. If str1 is null,
str2 is assigned to str1. If str2 is null, str1 is unchanged.

INTTOSTR(IN n : INTEGER) : STRING
Description: Returns the STRING representation of n.

ISANCESTOR(IN objtype: AnyObjTypeIdentifier;
 IN obj: AnyObjInstance) : BOOLEAN
Description: Allows you to determine at runtime whether an object variable has a cer-

tain object type in its inheritance tree or is the object type itself.

LOW(IN arr : AnyArrayType) : IndexType
Description: Returns the lowest index of the array argument. The return type is the

same as the index type used to define the array. The argument can also be
an array element when AnyArrayType is a multi-dimension array.

LOWER(IN str : STRING) : STRING
Description: Returns a copy of str in which all upper-case characters have been

changed to lower-case.

MAX(ScalarType) : ScalarType
Description: Returns the maximum value of the given type which can be represented

by the computer. MAX may be used in constant expressions.

MAXOF(IN arg1 : ScalarType
 [IN arg2 : ScalarType ...]) : ScalarType
Description: Returns the highest value from the list of scalar type arguments. All of

the arguments in the list must be of the same scalar type.

MIN(ScalarType) : ScalarType
Description: Returns the minimum value of the given type which can be represented by

the computer. MIN may be used in constant expressions.

MODSIM Reference Manual

210

MINOF(IN arg1 : ScalarType
 [IN arg2 : ScalarType ...]) : ScalarType
Description: Returns the lowest value from the list of scalar type arguments. All of the

arguments in the list must be of the same scalar type.

NEW(OUT rec : AnyRecordType)
Description: Allocates a new instance of a record and returns a reference to it.

NEW(OUT obj : AnyObjectType)
Description: Allocates a new instance of an object and returns its reference value. The

object instance's ObjInit method is invoked automatically, if it exists.

NEW(OUT array : AnyArrayType ;
 IN low..high : IndexType [; low..high : IndexType ...])
Description: Allocates memory for an array. Note that, for a multi-dimensional array,

index ranges may be specified in separate NEW statements, and the array
in that case would be specified by the already-defined indices.

OBJTYPEID(IN objtype : AnyObjTypeIdentifier) : INTEGER
Description: Given an object class type name, it returns a unique INTEGER valued

identifier for that type.

OBJTYPENAME(IN obj : ANYOBJ) : STRING
Description: Given an object reference variable it returns a string which contains the

object's type name. Note that the name which is returned is the original
type name of the object, not the new name assigned if the object type was
renamed in an IMPORT statement.

OBJVARID(IN obj: ANYOBJ) : INTEGER
Description: Given an object reference, returns a unique integer valued identifier for

the object type.

ODD(IN n : INTEGER) : BOOLEAN
Description: Returns TRUE if the number is odd, FALSE if even.

ONERROR(IN proc: AnyProcedure)
Description: Registers proc with the system so that upon encountering a sys-

tem error, proc will be invoked. Multiple procedures may be
registered. They will be invoked in last-in-first-out order.

ONEXIT(IN proc: AnyProcedure)
Description: Same as ONERROR except proc will be invoked upon any exit from the

program. Multiple procedures may be registered. They will be invoked
in last-in-first-out order.

Appendix C: Built-In Procedures

211

ORD(IN arg : AnyOrdinalType) : INTEGER
Description: Returns the ordinal value of the argument. For instance, the character

'A' has the ordinal value 65. If we define the enumeration: (Mon,
Tue, Wed, Thur, Fri), then ORD(Thur) would return 3.

OUTPUT([IN arg1 : Sometype] [IN arg2 : Sometype ...])
Description: Writes the arguments to the standard output. A newline character is writ-

ten after the last argument. If no arguments are given, a blank line is out-
put. Takes zero or more arguments. Sometype must be one of: CHAR,
INTEGER, REAL, STRING, or Object reference. The types can be mixed.
If an object type is given as an argument, OUTPUT executes the object's
ObjPrint method. If an ObjPrint method is not declared, the hexa-
decimal address of the object will be printed.

POSITION(IN str1, str2 : STRING) : INTEGER
Description: Returns the position of str2 in str1. If str2 is not completely con-

tained in str1, returns 0. If either str1 or str2 is of length zero, a run-
time error occurs.

PRINT ([expressionlist]) WITH formatstring
Description: Formats a string based on formatstring and outputs the constructed

string to standard output with an appended new line.

REALTOSTR(IN x : REAL) : STRING
Description: Returns the STRING representation of x.

REMOVEMONITOR(IN monvar : AnyMonitoredVar;
 IN monibj : AnyMonitoredObjectVar)

Description: Removes a monitor created by the user (dynamically) from the monitor
list associated with monvar.

REPLACE(INOUT str1 : STRING;
 IN pos1,
 pos2 : INTEGER;
 IN str2 : STRING)
Description: Replaces the part of str1 from pos1 to pos2 with str2.

e.g. if str1 := "abcdefghijkl" and str2 := "WXYZ".

REPLACE(str1, 3, 4, str2) ⇒ str1 = "abWXYZefghijkl"
REPLACE(str1, 1, 1, str2) ⇒ str1 = "WXYZbcdefghijkl"
REPLACE(str1, 2, 11, str2) ⇒ str1 = "aWXYZl"

MODSIM Reference Manual

212

If pos1 is 0, a runtime error occurs. If pos1 is in str1 but pos2 is out-
side, the end of str1 from pos1 is replace with str2. If both pos1 and
pos2 are outside of str1, str2 is concatenated to the end of str1.

ROUND(IN arg : REAL) : INTEGER
Description: Rounds the argument and returns the closest integer result. This is the al-

gorithm:
IF arg >= 0.0
 RETURN(TRUNC(arg + 0.5));
ELSE
 RETURN(TRUNC(arg - 0.5));
END IF;

SCHAR(IN str : STRING;
 IN pos : INTEGER) : CHAR
Description: Returns the character at position pos in str. A run-time error occurs if

pos falls outside of str.

SIZEOF(AnyTypeName) : INTEGER;
Description: Given any type specifier, this function returns the amount of memory

space, in bytes, required to store a variable of that type. For example,
SIZEOF(INTEGER) would return 4. SIZEOF(PlayerRecType) would
return the number of bytes required to store a record of that type.

SPRINT([expressionlist]) WITH formatstring
Description: Returns a string constructed using formatstring. formatstring

may be a literal, constant or variable STRING. Formatting is indicated by
embedding asterisks to indicate field width and real number precision.
Left justification, right justification, and centering are indicated by placing
a <, >, and ~, as the last character of the field specification.

STRLEN(IN str : STRING) : INTEGER
Description: Returns the length of string str.

STRTOCHAR(IN str : STRING;
 OUT chrArray : ARRAY INTEGER OF CHAR)
Description: Converts str to an ARRAY INTEGER OF CHAR.

STRTOINT(IN str : STRING) : INTEGER
Description: Returns the INTEGER representation of str. If successful, sets the

system defined variable STRERR to FALSE. If str cannot be con-
verted, returns 0 and sets STRERR to TRUE.

Appendix C: Built-In Procedures

213

STRTOREAL(IN str : STRING) : REAL
Description: Returns the REAL representation of str. If successful, sets the sys-

tem defined variable STRERR to FALSE. If str cannot be con-
verted, returns 0.0 and sets STRERR to TRUE.

SUBSTR(IN pos1,
 pos2 : INTEGER;
 IN str : STRING) : STRING
Description: Returns substring of str from pos1 to pos2, inclusive. If the range lies

outside of str, returns a null string. If pos1 is in str and pos2 falls
outside, returns from pos1 to end of string. If pos1 is less than or equal
to zero or pos1 is greater than pos2, a run-time error occurs.

TRACE
Description: Output a series of messages (to standard output) which indicate the current
call stack.

TRUNC(IN arg : REAL) : INTEGER
Description: Truncates arg to an integer.

UPDATEVALUE(IN value : MonitorType)
Description: Called from LMONITOR methods to modify the NEWVALUE.

UPPER(IN str : STRING) : STRING
Description: Returns a copy of str in which all lower-case characters have been

changed to upper-case.

VAL(IN OrdinalTypeName : OrdinalType;
 IN OrdNum : INTEGER) : OrdinalType
Description: Returns a value, of the specified type, which has the given ordinal posi-

tion. For instance, VAL(CHAR, 65) will return 'A'.

MODSIM Reference Manual

214

215

Appendix D. Standard Library Modules

This appendix contains alphabetical listings of all of the constants, variables, types, pro-
cedures and objects defined by the standard library modules.

MODSIM Reference Manual

216

D.1 Module Name: Debug

D.1.1 Description

Provides functionality to help debug MODSIM programs.

D.1.2 Variables

None.

D.1.3 Types

None.

D.1.4 Procedures

GetNumberArrays
Parameters: None
Return Value: INTEGER
Description: Returns the number of currently allocated arrays.

GetNumberStrings
Parameters: None
Return Value: INTEGER
Description: Returns the number of currently allocated strings.

GetNumberType
Parameters: IN typeid: INTEGER
Return Value: INTEGER
Description: Returns the number of currently active objects/records with the id

'typeid.' The id of an object instance may be obtained through
OBJVARID.

ObjectDump
Parameters: IN object : ANYOBJ
Return Value: None
Description: Prints general information regarding the object reference to stdout.

PrintMemStats
Parameters: IN stream : StreamObj
Return Value: None
Description: Prints out a formatted record containing the number of currently allo-

cated arrays, strings, objects and records. For objects and records it
will print out the name of the object/record type and the number allo-
cated only if that number is greater than zero.

Appendix D: Standard Library Modules

217

WriteTrace
Parameters: IN filename : STRING
Return Value: None
Description: In the case of a runtime error or a call to TRACE in a program, the re-

sult of the traceback will be printed to a file (in the current working di-
rectory) named 'filename' - the default, if no call to WriteTrace is
made, is to write the result to stderr. Only those procedures and
methods compiled with the traceback option turned on will be in-
cluded in the trace list.

MODSIM Reference Manual

218

D.2 Module Name: GrpMod

D.2.1 Description

Provides functionality to represent and iterate over groups of objects.

D.2.2 Constants

None.

D.2.3 Types

GroupOrderType
Type: enumeration
Constants: vFIFO {first in, first out}

vLIFO {last in, first out}
vRanked {ranked, - override Rank method}

Description: Determines the add behavior of groups.

StatINTEGER
Type: LRMONITORED INTEGER BY IStatObj, ITimedStatObj
Description: Provides a definition for a monitored integer type that will gather sta-

tistics with and without respect to time.

D.2.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

QueueObj
StackObj
RankedObj
BTreeObj
StatQueueObj
StatStackObj
StatRankedObj
StatBTreeObj
SimQueueObj

Virtual objects - intermediate objects which are not used directly:

GroupObj
ExpandedGroupObj
BasicGroupObj
ExpandedBasicGroupObj
BasicRankedObj
BasicBTreeObj
StatGroupObj
BStatGroupObj

Appendix D: Standard Library Modules

219

D.2.4 Procedures

GetGroups
Parameters: IN obj : ANYOBJ

INOUT groups : QueueObj
Return Value: None
Description: Generates a queue containing pointers to each group of which the

specified (given) object is a member.

MODSIM Reference Manual

220

D.3 Module Name: IOMod

D.3.1 Description

Provides I/O interface functionality.

D.3.2 Constants

None

D.3.3 Types

FileUseType
Type: enumeration
Constants: Input Output InOut Append Update CreateBinary
Description: Used by the Open method of StreamObj to determine the type of file

opening required. Input, Output, InOut, Append are text mode
opens. Update and CreateBinary are binary mode opens.

D.3.4 Procedures

DeleteFile
Parameters: IN fname : STRING
Return Value: None
Description: Removes the file fname from this disk storage device, if it exists. No

error results from attempting to delete a non-existent file.

FileAccessTime
Parameters: IN fname: STRING
Return Value: INTEGER
Description: Returns time file last accessed in seconds past 1/1/70 00:00 GMT .

FileExists
Parameters: IN fname: STRING
Return Value: BOOLEAN
Description: Determines whether the file named fname (or directory) exists on

the disk storage device. fname may be a full path specification for a
file.

FileModTime
Parameters: IN fname: STRING
Return Value: INTEGER
Description: Returns time file last modified in seconds past 1/1/70 00:00 GMT.

FileSize

Appendix D: Standard Library Modules

221

Parameters: IN fname: STRING
Return Value: INTEGER
Description: Returns the size of the file in bytes, or -1 if the file does not exist.

ReadKey
Parameters: None
Return Value: CHAR
Description: ReadKey reads one character from the console with no echo. It does

NOT require a Carriage Return, Enter or Newline before returning
with the character.

MODSIM Reference Manual

222

D.4 Module Name: ListMod

D.4.1 Description

Provides functionality to represent and iterate over collections of records.

D.4.2 Constants

None

D.4.3 Types

None

D.4.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

QueueList
StackList
RankedList
BTreeList
StatQueueList
StatStackList
StatRankedList
StatBTreeList

Virtual objects - intermediate objects which are not to be used directly:

ListObj
BasicListObj
BasicQueueList
BasicStackList
BasicRankedList
BasicBTreeList
StatListObj
BStatListObj
BStatQueueList
BStatStackList
BStatRankedList
BStatBTreeList

Appendix D: Standard Library Modules

223

D.5 Module Name: MathMod

D.5.1 Description

General purpose math procedures.

D.5.2 Constants

pi
Type: REAL
Value: 3.1415926535897932;

e
Type: REAL
Value: 2.7182818284590452;

D.5.3 Types

None.

D.5.4 Procedures
ACOS
Parameters: IN x : REAL
Return Value: REAL
Description: Arc cosine of x, -1 <= x <= 1

ASIN
Parameters: IN x : REAL
Return Value: REAL
Description: Arc sine of x, -1 <= x <= 1

ATAN
Parameters: IN x : REAL
Return Value: REAL
Description: Arc tangent of x from -pi/2 to pi/2

ATAN2
Parameters: IN y : REAL

IN x : REAL
Return Value: REAL
Description: Two argument (cartesian) form of this operation.

CEIL
Parameters: IN x : REAL
Return Value: INTEGER
Description: Returns the smallest integer not less than x.

MODSIM Reference Manual

224

COS
Parameters: IN x : REAL
Return Value: REAL
Description: Cosine of x

EXP
Parameters: IN x : REAL
Return Value: REAL
Description: Exponential function: e^x

FLOOR
Parameters: IN x: REAL
Return Value: INTEGER
Description: Returns the largest integer not greater than x

LN
Parameters: IN x: REAL
Return Value: REAL
Description: Natural log of x, 0 < x

LOG10
Parameters: IN x: REAL
Return Value: REAL
Description: Base 10 log of x , 0 < x

POWER
Parameters: IN x: REAL

IN y: REAL
Return Value: REAL
Description: X raised to the y power

SIN
Parameters: IN x: REAL
Return Value: REAL
Description: Sine of x

SQRT
Parameters: IN x: REAL
Return Value: REAL
Description: Square root of x, 0 <= x

Appendix D: Standard Library Modules

225

TAN
Parameters: IN x: REAL
Return Value: REAL
Description: Tangent of x, x <> -pi/2, x <> pi/2.

MODSIM Reference Manual

226

D.6 Module Name: OSMod

D.6.1 Description

A portable operating system interface. This module contains procedure definitions that
can be used to access various functions of the operating system. The procedures defined in
OSMod are intended to provide an OS interface to write portable applications but not ne c-
essarily to exploit all features of the underlying operating system.

D.6.2 Constants

OSOK, OSERROR
Type: INTEGER
Description: Returns values for calls that return 'success' (ok) or 'error' as their return

value.

D.6.3 Types

AccessTypeET
Type: enumeration
Constants: ATRead { file allows read access }

ATWrite { file allows write access }
ATReadWrite { both read and write ok }
ATExecute { file is marked executable }
ATFileOK { file exists and is accessible }

Description: Return type of TestAccess procedure.

DIRHNDL
Type: ANYREC
Description: Directory handle. Used for reading directories.

FileTypeET
Type: enumeration
Constants: FTUnknown { file type unrecognized or file

doesn't exist }
 FTDirectory { file is directory }

FTOrdinary { ordinary file }
FTCharSpecial { Char special (Unix) }
FTBlkSpecial { Block special (Unix) }
FTFIFO { FIFO/ pipe }

Description: Return type of FileType procedure.

OSTimeRec
Type: FIXED RECORD
Fields: sec : INTEGER { seconds (0 - 59) }

min : INTEGER { minutes (0 - 59) }
hour: INTEGER { hours (0 - 23) }
mday: INTEGER { day of month (1 - 31) }
mon : INTEGER { month of year (1 - 12) }

Appendix D: Standard Library Modules

227

year: INTEGER { year - 1900 }
wday: INTEGER { day of week (Sunday = 0) }
yday: INTEGER { day of year (0 - 365) }

Description: Time record structure to hold the components of the system time. Set by
LocalTime(), read by TimeRec2Asc().

D.6.4 Procedures

D.6.4.1 Miscellaneous OS Queries and Calls

ClearScreen
Parameters: None
Return Value: None
Description: Clear the text screen.

ExitToOS
Parameters: IN status: INTEGER
Return Value: None
Description: Exit to OS and return status as the return code.

Note : This routine exits immediately. It does not call MODSIM ONEXIT routines and
does not call the MODSIM debugger. For an alternative see ExitTOOS in
UtilMod.

GetComputerType
Pamameters: None
Return Value: STRING
Description: Returns the type of the computer. See notes on GetOSType() below.

GetCurrentDrive
Parameters: None
Return Value: STRING
Description: Returns the current drive. For PCs (Windows 95, NT) this is the drive

letter (with trailing colon). For UNIX systems an empty string is r e-
turned.

GetEnv
Parameters: IN var: STRING
Return Value: STRING
Description: Gets the value of environment variable var. Returns an empty string

when var was undefined or the empty string. When the variable var was
undefined the procedure OSErrorCode will return OSERROR (otherwise
OSOK) so that 'empty' can be distinguished from
'undefined'.

GetHostID

MODSIM Reference Manual

228

Parameters: None
Return Value: INTEGER
Description: Returns a hardware specific serial number of the host. If none is avai l-

able, '0' is returned.

GetHostName
Parmeters: None
Return Value: STRING
Description: Returns the name of the host (if defined) on the network. When

"hostname" is not supported on the OS, an empty string is returned.

GetOSType
Parameters:
Return Value: STRING
Description: Returns the OS type of the current OS. The return string contains mult i-

ple words that describe the OS, e.g. the company, the OS name, the ve r-
sion, common aliases, etc. NEVER DO AN EXPLICIT STRING
COMPARE with the result this function, since the contents may change
in the future as additional information becomes necessary. Instead use the
built-in procedure POSITION to match the word you are interested in.
YOU ARE GUARANTEED that components that are in the string WILL
NEVER BE TAKEN OUT. Therefore, existing code will not break when
additional information is added.

 - All flavors of UNIX will contain the word "UNIX"
 - All flavors of Windows will contain the word "WINDOWS"

GetProgDir
Parameters: IN prog: STRING
Return Value: STRING
Description: When prog is a path (i.e. contains directory seperation characters),

GetProgDir returns just the directory part of it. If it is just a name,
GetProgDir searches through the current ‘path’ and returns the first
directory that contains that file/executable or an empty string when not
found.

GetWindowSysType
Pamameters: None
Return Value: STRING
Description: Returns the type of the current window system. See GetOSType()

above.

GetWorkingDirectory
Parameters: None
Return Value: STRING
Description: Get current working directory as string (no trailing slash). If there was

an error, the empty string is returned.

Appendix D: Standard Library Modules

229

MaxFileNameLength
Parmeters: None
Return Value: INTEGER
Description: Returns the maximum length of a file name (i.e. a path component) on

the current OS for the given drive. This includes only the name and not
any mandatory extension part.

OSErrorCode
Parameters: None.
Return Value: INTEGER
Description: Error code of the last failed OS call.

D.6.4.2 Time Routines

Delay
Parameters: IN seconds: INTEGER
Return Value: None
Description: Delays 'seconds' and then resumes execution.

LocalTime
Parameters: IN timesecs: INTEGER
Return Value: OSTimeRec
Description: Converts the given number of time seconds into minutes, hours, etc.

and fills OSTimeRec with the results. Note that OSTimeRec is a local
(static) variable in LocalTime so that each call overwrites that single
time structure.

MicroDelay
Parameters: IN microseconds: INTEGER
Return Value: None
Description: Delays 'microseconds' and then resumes execution.

SystemRealTime
Parameters: None
Return Value: REAL
Description: Returns number of seconds since a fixed time point in the past. Res o-

lution is fractions of a second, if supported by operating system.

SystemTime
Parameters: None
Return Value: INTEGER
Description: Returns number of seconds since a fixed time point in the past.

TimeRecToAsc
Parameters: IN ostimerec: OSTimeRec
Return Value: STRING

MODSIM Reference Manual

230

Description: Transforms time data from a OSTimeRec record into character form:
"Sat Apr 13 15:45:30 1991\0"

TimeToString
Parameters: IN timesecs: INTEGER
Return Value: STRING
Description: Returns ASCII representation of given time (seconds) in string form as

described in TimeRecToAsc.

D.6.4.3 Files and Directories

AppendSlash
Parameters: IN path: STRING
Return Value: STRING
Description: Appends a directory separator character to ‘path’ if the last character

of ‘path’ is not already a directory separator character.

BaseName
Parameters: IN path: STRING
Return Value: STRING
Description: Returns only the last name part of ‘path’. Possible trailing slashes in

path are ignored, i.e. for "/a/b/", “b” is returned.

ChangeDir
Parameters: IN path: STRING
Return Value: INTEGER
Description: Change directory to path. Returns OSOK for ok, OSERROR on error.

CloseDir
Parameters: IN dirhndl: DIRHNDL
Return Value: INTEGER
Description: Close directory associated with dirhndl. Returns OSOK for ok,

OSERROR for error.

CopyFile
Parameters: IN from, to: STRING
Return Value: INTEGER
Description: Copies file 'from' to 'to' and returns OSOK on ok, OSERROR in case of

an error.
DeleteFile
Parameters: IN path: STRING
Return Value: INTEGER
Description: Remove file name. Returns OSOK for ok, OSERROR on error.

DirName
Parameters: IN path: STRING
Return Value: STRING

Appendix D: Standard Library Modules

231

Description: Returns only the directory part (without the last directory separator
character) of ‘path’. Possible trailing slashes in path are ignored.

FileAccessTime
Parameters: IN path: STRING
Return Value: INTEGER
Description: Time of last file access in seconds since 'system time starting

point' (see ‘SystemTime’), or 0 for ERROR (e.g. file does not ex-
ist).

FileExists
Parameters: IN path: STRING
Return Value: BOOLEAN
Description: Returns TRUE when file name exists, FALSE otherwise.

FileModTime
Parameters: IN path: STRING
Return Value: INTEGER
Description: Time of last file modification in seconds since 'system time

starting point' (see ‘SystemTime’), or 0 for ERROR (e.g. file
does not exist).

FileSize
Parameters: IN path: STRING
Return Value: INTEGER
Description: Returns file size in bytes for path or -1 if error.

FileType
Parameters: IN path: STRING
Return Value: FileTypeET
Description: Get file type code for path.

GetDirSepChar
Parameters: None
Return Value: CHAR
Description: Returns the 'directory seperator chararacter' for the cur-

rent OS (e.g. '/' on UNIX)

IncrFileNameIfExists
Parameters: IN infilename: STRING
Return Value: STRING
Description: Makes a unique filename from infilename by incrementing a

'counter' at the end of the file name. The format of infilename is:
 "<optional path><name><idx>.<ext>" where "<idx>" is a

number (sequence of digits) or empty and the "." is the 'extension
seperator char' for this OS. When ‘infilename’ does not ex-
ist, it is returned unchanged. When it does exist, the number in idx is
incremented until the resulting file name does not exist (gets unique file

MODSIM Reference Manual

232

name). When ‘infilename’ is not found, ‘idx’ starts at 1. When
‘idx’ grows in width and the total length of the filename exceeds
MaxFileNameLength, ending characters of ‘infilename’
(<name> part) are removed.

IsLegalFileNameChar
Parameters: IN c: CHAR
Return Value: BOOLEAN
Description: Return TRUE if the given char can be used in the NAME PART of a

filename on the current OS.

MakeDir
Parameters: IN directory: STRING
Return Value: INTEGER
Description: Make directory. Returns OSOK for ok, OSERROR on error.

MakeEmptyFile
Parameters: IN filename: STRING
Return Value: INTEGER
Description: Makes an empty file with the given path. If the file already exists, it is

overwritten. Returns OSOK on ok, OSERROR on error.

MakeTmpFile
Parameters: IN directory: STRING
Return Value: STRING
Description: Creates a unique tmp file in 'directory' and returns the name. When

‘directory’ is an empty string, the current directory is used. The file
is created immediately (with MakeEmptyFile) so that subsequent
calls to it will not return the same name.

MapToLegalFileName
Parameters: IN namestr: STRING
Return Value: STRING
Description: Maps an arbitrary string namestr to a legal file name, deleting all

characters from namestr that are illegal for a file name on the current
operating system.

MatchesFilePattern
Parameters: IN str, pat: STRING
Return Value: BOOLEAN
Description: Returns TRUE when string str matches pattern pat. Intended for file

name pattern matching. Pattern recognizes wild cards "*" and "?" with
their usual meaning. Combinations of the wild card characters are a l-
lowed. The wild cards work as follows:

• Let ANYCHAR be one arbitrary character. The match of pat
against str is done in a FORWARD comparison.

Appendix D: Standard Library Modules

233

• A '?' in pat matches exactly one ANYCHAR in str (at the cur-
rent comparison position).

• A "*" in pat matches a sequence (0 or more) of ANYCHARS in
str EXCEPT the one character that follows the '*' in pat. For
instance, pat = "*." matches "abc." where '*' matches
"abc". But "*." does not match "abc.d.", since the first dot
in str will match the first (and only) dot in pat.

Note: This is not a regular expression match.
Note: This is a file name comparison. On Windows, the match is not case sensitive.

MatchesFilePatternNoCase
Parameters: IN str, pat: STRING
Return Value: BOOLEAN
Description: Case insensitive version of ‘MatchesFilePattern’.

OpenDir
Parameters: IN path: STRING
Return Value: DIRHNDL
Description: Call to start reading the directory 'path'. Returns a handle to the

opened directory that must be passed in to NextDirEntry and
CloseDir. When the return DIRHNDL is NILREC, the directory could
not be opened. When 'path' is an empty string the current directory
is read. Use 'FileType' and 'MatchesFilePattern' to filter out
only certain entries when reading a directory.

NextDirEntry
Parameters: IN dirhndl: DIRHNDL
Return Value: STRING
Description: Returns next directory entry in directory opened with OpenDir or an

empty string for end or error. When end, OSErrorCode is 0, other-
wise OSErrorCode <> 0 (OS dependent error code). See also:
‘MatchesFilePattern’.

RemoveDir
Parameters: IN directory: STRING
Return Value: INTEGER
Description: Remove directory. Returns OSOK for ok, OSERROR for error when the

directory was not empty.

RenameFile
Parameters: IN old, new: STRING
Return Value: INTEGER
Description: Rename file old to new (UNIX: mv). Might not work on all OSs to

rename directories. Returns OSOK or OSERROR.

RemoveFinalSlash

MODSIM Reference Manual

234

Parameters: IN path: STRING
Return Value: STRING
Description: Removes all directory separator characters from the end of ‘path’.

TestAccess
Parameters: IN path: STRING; IN acc: AccessTypeET
Return Value: BOOLEAN
Description: Test file with name path for access rights by current user. The type

checked for is given in acc. Returns TRUE for access, FALSE other

D.6.4.4 Process Management

CheckBGTask
Parameters: OUT pid, exitcode, status: INTEGER
Return Value: None.
Description: This function can be used to query the operating system as to whether a

background task has finished yet, whether it terminated normally or
was killed by a signal and what exit code was returned (e.g. from an
ExitToOS() call). The output parameters are set as follows:

• pid: the process id of the terminated process, or -1 for 'no
children present' or 0 for 'no background task
has finished yet'. When pid is neither -1 or 0, i.e. it
contains a valid PID of a background process that has termi-
nated, the remaining out parameters are set as follows:

• exitcode: the exit/return code of the terminated process
• status: 0 when child terminated normally (with Exit() call);

a value <> 0 indicates abnormal termination (e.g. killed, not
enough memory, etc.) in which case the value's interpretation is
dependent on the OS.

This call NEVER WAITS for a background task to finish. It always
returns immediately. To check for multiple finished background tasks,
it should be called in a loop as long as the return value is greater than 0.

GetPID
Parameters: None.
Return Value: INTEGER
Description: Gets PID of current process or -1 for error. Returns 0 when processes

are not supported on the current operating system.

GetPPID
Return Value: INTEGER
Description: Gets PPID (parent PID) of current process or -1 for error.

KillBGTask
Parameters: IN pid: INTEGER

Appendix D: Standard Library Modules

235

Return Value: INTEGER
Description: Sends a 'kill' signal to the background task PID (previously started

with StartBackgroundTask. Note that some programs can choose
to ignore the kill signal on some operating systems. Returns OSOK
for ok, OSERROR for error (e.g. wrong PID).

StartBGTask
Parameters: IN cmd: STRING; IN minimized: INTEGER
Return Value: INTEGER
Description: Issues ‘cmd’ as a background task and returns the PID (process ID/ a

process handle) of the newly started task. As in SystemCall, 'cmd' is
handed to the systems command line interpreter/shell. This call is asy n-
chonous, i.e. it returns immediately after starting the background job.
To find out when the background job has finished and what exit code
was returned by that task, you must call ‘HasBGTaskFinished’ de-
scribed below. When 'minimized' <> 0, the application runs
minimized (an icon but no window is shown).

SystemCall
Parameters: IN cmd: STRING; IN minimized: INTEGER
Return Value: INTEGER
Description: Performs OS call with ‘cmd’ and returns the return code. ‘cmd’ is a

command string that will be handed to a command line interpreter.
This call is synchronous, i.e. it waits until the command returns. When
'minimized' <> 0, the application runs minimized (an icon but no
window is shown).

MODSIM Reference Manual

236

D.7 Module Name: RandMod

D.7.1 Description

Provides random number generation capability.

D.7.2 Constants

None

D.7.3 Types

D.7.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

RandomObj

D.7.4 Procedures

FetchSeed
Parameters: IN SimscriptSeedNumber : INTEGER
Return Value: INTEGER
Description: FetchSeed will return the first seed of the specified SIMSCRIPT

random number stream. For example,

 ASK RandStream TO SetSeed(FetchSeed(4)).

Random
Parameters: None
Return Value: REAL
Description: Pseudo-random number generator. Returns a sample between 0.0 and

1.0 excluding the end points.

Appendix D: Standard Library Modules

237

D.8 Module Name: ResMod

D.8.1 Description

Contains descriptions of objects used to track resources used by an application.

D.8.2 Constants

None

D.8.3 Types

None

D.8.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

EntryObj
PriorityList
AllocQueueObj
ResourceObj

MODSIM Reference Manual

238

D.9 Module Name: SimMod

D.9.1 Description

Provides interface to simulation functionality.

D.9.2 Variables

Timescale
Type: REAL
Description: Number of real seconds per simulation unit (graphics only).

D.9.3 Types

D.9.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

ActivityGroup
SimControlObj
TriggerObj

D.9.4 Procedures

ActivityListDump

Parameters: IN ProcObj : ANYOBJ
Return Value: None
Description: Dumps the activity list of a particular object.

ActivityName
Parameters: IN activity : ACTID
Return Value: STRING
Description: Given an activity record for a TELL METHOD, returns the name of

the method.

ActivityOwner
Parameters: IN activity : ACTID
Return Value: ANYOBJ
Description: Given an activity record for a TELL METHOD, returns the owner

object for this method instance.

Interrupt
Parameters: IN object: ANYOBJ

IN methName: STRING
Return Value: None
Description: Causes the method named methName of the object instance object

to receive an interrupt message when it returns from its wait. No error

Appendix D: Standard Library Modules

239

occurs if no active method of this name is found for the indicated ob-
ject instance. If the method has been scheduled, but has not yet exe-
cuted it will simply be removed from the pending list.

InterruptAll
Parameters: IN object: ANYOBJ
Return Value: None
Description: Interrupts all activities scheduled for that object.

InterruptMethod
Parameters: IN activity: ACTID
Return Value: None
Description: Sends an interrupt message to the specific method instance described

by 'activity.' The activity reference should have been captured
when doing the original scheduling of the method. If the method has
already completed or the 'activity' argument is NILREC, a run-
time error will result.

InterruptWaitingFor
Parameters: IN activity: ANYREC
Return Value: None
Description: Interrupts the method(s) that are suspended and waiting 'activity'.

The 'activity' must be a method that was activated by a WAIT FOR
statement. This method will set the state of the invoking method to
interrupted and cause 'activity' to be removed from any pending
lists.

NumActivities
Parameters: IN object: ANYOBJ
Return Value: INTEGER
Description: Returns number of activities pending for an object.

NumActPending
Parameters: None
Return Value: INTEGER
Description: Returns the total number of activities pending.

NumObjPending
Parameters: None
Return Value: INTEGER
Description: Returns the number of objects with activities pending.

MODSIM Reference Manual

240

NumWAITFOR
Parameters: None
Return Value: INTEGER
Description: Returns the number of activities in a WAIT..FOR status.

PendingListDump
Parameters:

IN DoActList: BOOLEAN
Return Value: None
Description: Dumps the entire pending list showing each object on it. If

DoActList is true, it also dumps each object's activity list.

PendingListDumpToStream
Parameters: IN doActList : BOOLEAN; IN stream : streamObj
Return Value: None
Description: Prints a summary of the contents of the simulation pending list to the

named file 'stream'. If 'doActList' is 'TRUE', it also dumps each
object's activity list.

ResetSimTime
Parameters: IN newtime: REAL
Return Value: None
Description: Resets simulation time to newtime for multiple runs - may only be in-

voked before StartSimulation begins or after StartSimula-
tion ends.

ScheduledTime
Parameters: IN activity : ACTID
Return Value: REAL
Description: Given an activity record for a TELL METHOD, returns the next time the

activity is scheduled to execute.

SimTime
Parameters: None
Return Value: REAL
Description: Returns the current simulation time.

StartSimulation
Parameters: None
Return Value: None
Description: This procedure begins the simulation run. No simulation methods will

be initiated (actually executed) until StartSimulation is begun. At
least one method must be scheduled prior to calling
StartSimulation or control will immediately return to the state-

Appendix D: Standard Library Modules

241

ment following the StartSimulation. Control returns to this
statement after all pending method activities have completed.

StopSimulation
Parameters: None
Return Value: None
Description: Will empty the pending list of all activities and return control to the

statement after StartSimulation.

UseCalendar
Parameters: IN flag : BOOLEAN
Return Value: None
Description: Determines which of two algorithms will be used to order the simula-

tion pending list. The Calendar Queue algorithm is the default data
structure for ordering the simulation pending list. It works best for
models which may have 10 or more activities concurrently pending.
For certain models the older ranking algorithm may prove more opti-
mal. To obtain the older method pass 'FALSE' as the argument. To
restore usage of the Calendar Queue pass 'TRUE'.

MODSIM Reference Manual

242

D.10 Module Name: StatMod

D.10.1 Description

Contains definitions for statistical accumulation objects. Also included are predefined
statistical types for basic INTEGER and REAL types.

D.10.2 Constants

None.

D.10.3 Types

BINTEGER
Type: LMONITORED INTEGER BY IStatObj, ITimedStatObj;
Description: Predefined INTEGER type for collectiong statistics.

BREAL
Type: LMONITORED REAL BY RStatObj, RTimedStatObj;
Description: Predefined REAL type for collecting statistics.

histogram
Type: ARRAY INTEGER OF REAL
Description: Provides the type definition used by statistical objects for histograms.

Users may declare variables of this type and assign the Histogram
field of statistical objects to it, thereby getting access to the elements
of the
histogram.

SINTEGER
Type: LMONITORED INTEGER BY IStatObj;
Description: Predefined INTEGER type for collecting statistics.

SREAL
Type: LMONITORED REAL BY RStatObj;
Description: Predefined REAL type for collecting statistics.

TSINTEGER
Type: LMONITORED INTEGER BY ITimedStatObj;
Description: Predefined INTEGER type for collecting statistics.

TSREAL
Type: LMONITORED REAL BY RTimedStatObj;
Description: Predefined REAL type for collecting statistics.

Appendix D: Standard Library Modules

243

D.10.3.1 Object Types

The following is a list of objects which are documented in Appendix E:

IStatObj
ITimedStatObj
RStatObj
RTimedStatObj
StatObj
TimedStatObj

MODSIM Reference Manual

244

D.11 Module Name: UtilMod

D.11.1 Description

Provides general purpose utility procedures.

D.11.2 Constants

None.

D.11.3 Types

MachineType
Type: enumeration
Constants: UnknownComp, Sun3, SPARC, Sun386, PC, VAXstation, DECsta-

tion, SGI, MacII, Tektronix, DG88000, R6000, NeXT, HP300,
HP700, HP800, PCUnix, Motorola, DECALPHA

Description: Constants returned by GetComputerType function.

OSType
Type: enumeration
Constants: UnknownOS, DOS, OS286, OS2, SunOS, VMS, Ultrix, Irix, UTek,

DGUnix, HPUnix, AIX, Macintosh, MACH, SCOUnix, Unix88, Win-
dows, Solaris, AlphaOSF

Description: Constants returned by GetOSType function.

D.11.4 Procedures

AdrToHex
Parameters: IN Adr : ANYREC

OUT Hex : STRING
Return Value: None
Description: Converts a dynamic record reference into a STRING containing the

hex representation of the record's address.

CallDebugger
Parameters: None
Return Value: BOOLEAN
Description: Invokes the MOSIM debugger, returns TRUE if the debugger was invoked.

ClockTimeSecs
Parameters: None
Return Value: INTEGER
Description: Time in seconds since 1/1/70 .

Appendix D: Standard Library Modules

245

ClockRealSecs
Parameters: None
Return Value: REAL
Description: Time in seconds since 1/1/70 - resolution is fractions of seconds if the

OS provides support.

DateTime
Parameters: OUT time : STRING
Return Value: None
Description: Provides date and time in following format: Tue Aug 02 17:38:32

1988 .

ExitToOS
Parameters: IN Status : INTEGER
Return Value: None
Description: Halts execution, passing exit Status to OS.

GetCmdLineArg
Parameters: IN ArgNumber: INTEGER;

OUT Arg: STRING
Return Value: None
Description: Returns command line arguments. Returns a null string if ArgNumber

is higher than the actual arguments. Returns program name if given
ArgNumber=0.

GetComputerType
Parameters: None
Return Value: MachineType
Description: Returns a constant of type 'MachineType' which indicates the ma-

chine on which the program is running.
GetNumArgs
Parameters: None
Return Value: INTEGER
Description: Returns the number of command line arguments.

GetOSType
Parameters: None
Return Value: OSType
Description: Returns a constant of type 'OSType' indicating the type of operating

system under which the program is executing.

MODSIM Reference Manual

246

RuntimeError
Parameters: IN message: STRING
Return Value: None
Description: Invokes MODSIM run-time error mechanism passing it the message.

Appendix D: Standard Library Modules

247

D.12 Module Name: Version

D.12.1 Description

Provides access to the version number of the MODSIM compiler.

D.12.2 Constants

None

D.12.3 Types

None

D.12.4 Procedures

getVersion
Parameters: None
Return Value: STRING
Description: Returns the version number of the MODSIM compiler, e.g. '1.2'.

getVersionDate
Parameters: None
Return Vaalue: STRING
Description: Returns the build date of the MODSIM compiler, e.g. '10/18/96'.

ObtainVersion
Parameters: OUT version : STRING
Return Value: None
Description: Gives the version of the MODSIM compiler, e.g. 'MODSIM-III Version 1.2'.

MODSIM Reference Manual

248

249

Appendix E: Objects

ActivityGroup

250

Module: SimMod
Derived From:QueueList
Substitutes: ANYREC:ACTID
Description: A specialized group for collecting activities.

ASK Method Return Type Private Defined By
Add None No ActivityGroup
Next None No ActivityGroup

FIELDS and METHODS

ASK Method: Add
Parameters: IN item : ACTID;
Return Value: None
Description: Adds an activity to the end of the group.

ASK Method: Next
Return Value: None
Parameters: IN member : ACTID;
Description: Returns next member.

ActivityList

251

Module: SysMod
Derived From:RankedList
Description: A MODSIM internal.

Field Type Private Defined By
nextTime REAL Yes ActivityList
NextActivity ActivityList Yes ActivityList
PrevActivity ActivityList Yes ActivityList

ASK Method Return Type Private Defined By
SetNext None Yes ActivityList
SetPrev None Yes ActivityList
Add None Yes ActivityList
AddFirst None Yes ActivityList
Remove activitytype Yes ActivityList
RemoveThis None Yes ActivityList

FIELDS and METHODS

Internal to operation of the MODSIM system.

ActivityQueue

252

Module: SimMod
Derived From:QueueList

activitytype
Description: A MODSIM internal.

FIELDS and METHODS: None

AllocQueueObj

253

Module: ResMod
Derived From:StatQueueObj
Substitutes: EntryObj for: ANYOBJ
Description: A list of EntryObj's containing references to objects that have acquired

one or more resources.

Field Type Private Defined By
numResources INTEGER No StatGroupObj

ASK Method Return Type Private Defined By
Adjust None No AllocQueueObj
Reset None No AllocQueueObj

FIELDS and METHODS

Field: numResources
Type: INTEGER
Description: Field provided for statistics.

ASK Method: Adjust
Parameters: IN delta : INTEGER;
Return Value: None
Description: Updates numResources field for statistics.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Reset monitors associated with numResources.

BasicBTreeList

254

Module: ListMod
Derived From:ListObj
Description: A “virtual” object that provides the basic methods required for a btree or-

dered group. A btree is an efficient data structure for storing ordered sets
of data that will have many members.

Field Type Private Defined By
Order INTEGER No BasicBTreeList

ASK Method Return Type Private Defined By
Add None No BasicBTreeList
Find #ANYREC No BasicBTreeList
Key STRING No BasicBTreeList
ObjInit None No BasicBTreeList
SetOrder None No BasicBTreeList

FIELDS and METHODS

Field: Order
Type: INTEGER
Description: Contains the maximum number of values that may be stored in a node of

the tree. The desired order of a tree depends upon the nature of the ob-
jects to be stored. The default order of the btree is 5.

ASK Method: Add
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Determines the correct insertion point for the passed in record based upon

its key value (returned by the Key method) and adds the record to the
group at that location in the tree. If more than one object may have the
same key, the new record will be added after all other equivalently keyed
records.

ASK Method: Find
Parameters: IN key: STRING
Return Value: #ANYREC
Description: This method will return the first record it finds that is associated with the

passed in string. If no record is found in the group with such a key
NILREC is returned. If more than one record may have the same key the
Next method will provide references to them.

BasicBTreeList (cont.)

255

ASK Method: Key
Parameters: IN object: #ANYREC
Return Value: STRING
Description: This method will be used by the insertion and location methods of the

btree to determine the correct location for this object. The user is ex-
pected to provide (by overriding) a method appropriate to the reocrds be-
ing added to the group.

ASK Method: ObjInit
Parameters: None
Return Value: None
Description: Sets the default order of the btree to 5.

ASK Method: SetOrder
Parameters: IN degree: INTEGER
Return Value: None
Description: Allows the order of the btree to be changed. The btree must be empty

when this is done otherwise a runtime error will be generated. In general
an odd order works best.

BasicBTreeObj

256

Module: GrpMod
Derived From:BasicGroupObj
Description: A “virtual” object that provides the basic methods required for a btree or-

dered group based upon a user provided sting key. A btree is an efficient
data structure for storing ordered sets of data that will have many mem-
bers.

Field Type Private Defined By
Order INTEGER No BasicBTreeObj

ASK Method Return Type Private Defined By
Find #ANYOBJ No BasicBTreeObj
Key STRING No BasicBTreeObj
ObjInit None No BasicBTreeObj
ObjLoad None No BasicBTreeObj
SetOrder None No BasicBTreeObj

FIELDS and METHODS

Field: Order
Type: INTEGER
Description: Contains the maximum number of values that may be stored in a node of

the tree. The desired order of a tree depends upon the nature of the ob-
jects to be stored.

ASK Method: ObjInit
Parameters: None
Return Value: None
Description: Sets the default order of the btree to 5.

ASK Method: ObjLoad
Parameters: None
Return Value: None
Description: Internal.

ASK Method: Key
Parameters: IN object: #ANYOBJ
Return Value: STRING
Description: This method will be used by the insertion and location methods of the

btree to determine the correct location for this object. The user is expected
to provide (by overriding) a method appropriate to the objects being added
to the group.

BasicBTreeObj (cont.)

257

ASK Method: Find
Parameters: IN key: STRING
Return Value: #ANYOBJ
Description: This method will return the first object it finds that is associated with the

passed key in string. If no object is found in the group with such a key
NILOBJ is returned. If more than one object may have the same key the
Next method will provide references to them.

ASK Method: SetOrder
Parameters: IN degree: INTEGER
Return Value: None
Description: Allows the order of the btree to be changed. The btree must be empty

when this is done, otherwise a runtime error will be generated. In general
an odd order works best.

BasicGroupObj

258

Module: GrpMod
Derived From:GroupObj
Description: A “virtual” object that describes the core methods that all group objects

have.

ASK Method Return Type Private Defined By
Add None No BasicGroupObj
AddAfter None No BasicGroupObj
AddBefore None No BasicGroupObj
Dump None No BasicGroupObj
Empty None No BasicGroupObj
EmptyAndDispose None No BasicGroupObj
First #ANYOBJ No BasicGroupObj
Includes BOOLEAN No BasicGroupObj
Last #ANYOBJ No BasicGroupObj
Next #ANYOBJ No BasicGroupObj
ObjClone No BasicGroupObj
ObjTerminate None No BasicGroupObj
Prev #ANYOBJ No BasicGroupObj
Rank #ANYOBJ No BasicGroupObj
Remove #ANYOBJ No BasicGroupObj
RemoveThis None No BasicGroupObj

FIELDS and METHODS

ASK Method: Add
Parameters: IN ExistingMember: #ANYOBJ

IN NewMember: #ANYOBJ
Return Value: None
Description: Adds an object (NewMember) to the end of the group.

ASK Method: AddAfter
Parameters: IN ExistingMember: #ANYOBJ

IN NewMember: #ANYOBJ
Return Value: None
Description: Adds the an object (NewMember) to the group after an object that is al-

ready a member of the group.

ASK Method: AddBefore
Parameters: IN ExistingMember: #ANYOBJ

IN NewMember: #ANYOBJ
Return Value: None
Description: Adds an object (NewMember) to the group before an object that is already

a member of the group.

BasicGroupObj (cont.)

259

ASK Method: Dump
Parameters: None
Return Value: None
Description: Prints information about a group object including references (hex ad-

dresses) to its members to stdout.

ASK Method: First
Parameters: None
Return Value: #ANYOBJ
Description: Returns a reference to the first object in the group. If the group is empty it

returns NILOBJ.

ASK Method: Includes
Parameters: IN candidate: #ANYOBJ
Return Value: BOOLEAN
Description: Determines membership of an object in the group. If it is a member TRUE

is returned, otherwise FALSE.

ASK Method: Last
Parameters: None
Return Value: #ANYOBJ
Description: Returns a reference to the last object in the group. If the group is empty it

returns NILOBJ.

ASK Method: Next
Parameters: IN candidate: #ANYOBJ

Description: A reference to an object that is a member of the group.
Return Value: #ANYOBJ
Description: Returns a reference to the object that immediately follows the passed in

object within the group. If the passed in object is the last member of the
group NILOBJ is returned.

ASK Method: ObjClone
Parameters: None
Return Value: #ANYOBJ
Description: Per MODSIM language.

ASK Method: ObjTerminate
Parameters: None
Return Value: None
Description: Checks that the group is empty before disposal. If not, a runtime error is

generated. Groups must contain no members when they are disposed.

BasicGroupObj (cont.)

260

ASK Method: Prev
Parameters: IN candidate: #ANYOBJ

Description: A reference to an object that is a member of the group.
Return Value: #ANYOBJ
Description: Returns a reference to the object that immediately precedes the passed in

object within the group. If the passed in object is the first member of the
group NILOBJ is returned.

ASK Method: Remove
Parameters: None
Return Value: #ANYOBJ
Description: Returns a reference to the first object in a group after removing that object

from the group.

ASK Method: RemoveThis
Parameters: IN member: #ANYOBJ

Description: A reference to an object that is a member of the group.
Return Value: None
Description: Removes a specific object from the group.

BasicListObj

261

Module: ListMod
Derived From: ListObj
Description: A “virtual” object that describes the core methods that all list objects

have.

ASKMethod ReturnType Private DefinedBy
AddAfter None No BasicListObj
AddBefore None No BasicListObj
Dump None No BasicListObj
First #ANYREC No BasicListObj
Includes BOOLEAN No BasicListObj
Last #ANYREC No BasicListObj
Next #ANYREC No BasicListObj
ObjTerminate None No BasicListObj
Prev #ANYREC No BasicListObj
Remove #ANYREC No BasicListObj
RemoveThis None No BasicListObj

FIELDS and METHODS

ASK Method: AddAfter
Parameters: IN ExistingMember: #ANYREC

IN NewMember: #ANYREC
Return Value: None
Description: Adds a record (NewMember) to the group after a record that is already a

member of the group.

ASK Method: AddBefore
Parameters: IN ExistingMember: #ANYREC

IN NewMember: #ANYREC
Return Value: None
Description: Adds a record (NewMember) to the group before a record that is already a

member of the group.

ASK Method: Dump
Parameters: None
Return Value: None
Description: Prints information about a group object including references (hex ad-

dresses) to its members to stdout.

 BasicListObj (cont.)

262

ASK Method: First
Parameters: None
Return Value: #ANYREC
Description: Returns a reference to the first record in the group. If the group is empty it

returns NILREC.

ASK Method: Includes
Parameters: IN candidate: #ANYREC
Return Value: BOOLEAN
Description: Determines membership of an record in the group. If it is a member TRUE

is returned, otherwise FALSE.

ASK Method: Last
Parameters: None
Return Value: #ANYREC
Description: Returns a reference to the last record in the group. If the group is empty it

returns NILOBJ.

ASK Method: Next
Parameters: IN candidate: #ANYREC
Return Value: #ANYREC
Description: A reference to a record that is a member of the group.
Description: Returns a reference to the record that immediately follows the passed in

record within the group. If the passed in record is the last member of the
group NILOBJ is returned.

ASK Method: ObjTerminate
Parameters: None
Return Value: None
Description: Checks that the group is empty before disposal. If not, a runtime error is

generated. Groups must contain no members when they are disposed.

ASK Method: Prev
Parameters: IN candidate: #ANYREC

Description: A reference to a record that is a member of the group.
Return Value: #ANYREC
Description: Returns a reference to the record that immediately precedes the passed in

record within the group. If the passed in record is the first member of the
group NILOBJ is returned.

ASK Method: Remove
Parameters: None
Return Value: #ANYREC
Description: Returns a reference to the first record in a group after removing that rec-

ord from the group.

BasicListObj (cont.)

263

ASK Method: RemoveThis
Parameters: IN member: #ANYREC
 Description: A reference to an record that is a member of the

group.
Return Value: None
Description: Removes a specific record from the group.

BasicQueueList

264

Module: ListMod
Derived From:ListObj
Description: A “virtual” object for holding lists of records.

ASK Method Return Type Private Defined By
Add None No BasicQueueList

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Inserts the passed in record at the end of the list.

BasicRankedList

265

Module: ListMod
Derived From:ListObj
Description: A “virtual” object for holding sorted lists of records.

ASK Method Return Type Private Defined By
Add None No BasicRankedList
AddFirst None No BasicRankedList
Rank INTEGER No BasicRankedList

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Adds an object to the group by determining its rank relative to members

already in the group. New member records having a rank equal to objects
already members of the group will be inserted after all such records.

ASK Method: AddFirst
Parameters: IN: #ANYREC
Return Value: None
Description: Inserts an record at the head of the group regardless of its rank. Caution

should be used in invoking this method as it can disturb the ranked nature
of the group.

ASK Method: Rank
Parameters: IN object1: #ANYREC
 IN object2: #ANYREC
Return Value: INTEGER
Description: This method is provided as a “stub” so that the user may derive their own

group object from a RankedList (see below) and override the Rank
method to specify the desired ordering of the records. The return values
should be as follows:

record1 < record2 => -1
record1 = record2 => 0
record1 > record2 => 1

BasicRankedObj

266

Module: GrpMod
Derived From:GroupObj
Description: A “virtual” object that allows ranked groups to be initially built quickly

without ranking.

ASK Method Return Type Private Defined By
AddFirst None No BasicRankedObj

FIELDS and METHODS

ASK Method: AddFirst
Parameters: IN NewMember: #ANYOBJ
Return Value: None
Description: Adds before first.

BStatBTreeList

267

Module: ListMod
Derived From:BasicBTreeList

StatListObj
Description: Same functionality as BasicBTreeList plus accumulates statistics on

number of records in list.

Field Type Private DefinedBy
Order INTEGER No BasicBTreeList
firstRoster ANYREC Yes ListObj
lastRoster ANYREC Yes ListObj
number StatINTEGER No StatListObj
numberIn INTEGER No ListObj
root ANYOBJ Yes BasicBTreeList

ASKMethod ReturnType Private DefinedBy
Add None No BStatBTreeList
Find #ANYREC No BasicBTreeObj
Key STRING No BasicBTreeObj
ObjInit None No BasicBTreeObj
SetOrder None No BasicBTreeObj

FIELDS and METHODS
ASK Method: Add
Return Value: None
Parameters:

IN NewMember: #ANYREC
Description: See Add method of BasicBTreeObj.

BasicStackList

268

Module: ListMod
Derived From:ListObj
Description: A virtual object for holding stacks of records.

ASK Method Return Type Private Defined By
Add None No BascicStackList

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: IN NewMember: #ANYREC
Description: Add record first in list.

BStatBTreeList

269

Module: ListMod
Derived From:BasicBTreeList

StatListObj
Description: Provides statistics gathering of BTree records.

ASK Method Return Type Private Defined By
Add None No BStatBTreeList

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Add record to BTree and update level.

BStatGroupObj

270

Module: GrpMod
Derived From:ExpandedBasicGroupObj

StatGroupObj
Description: A “virtual” object that provides all the basic functionality of group objects

plus the basic methods required for statistical accumulations on groups.

ASK Method Return Type Private Defined By
AddAfter None No BStatGroupObj
AddBefore None No BStatGroupObj
Count INTEGER No BStatGroupObj
Maximum INTEGER No BStatGroupObj
Mean REAL No BStatGroupObj
Minimum INTEGER No BStatGroupObj
Remove #ANYOBJ No BStatGroupObj
RemoveThis None No BStatGroupObj
Reset None No BStatGroupObj
SetHistogram None No BStatGroupObj
StdDev REAL No BStatGroupObj
Variance REAL No BStatGroupObj
WtdMean REAL No BStatGroupObj
WtdStdDev REAL No BStatGroupObj
WtdVariance REAL No BStatGroupObj

FIELDS and METHODS

ASK Method: AddBefore
Parameters: IN ExistingMember: #ANYOBJ

IN NewMember: #ANYOBJ
Return Value: None
Description: Inserts the 'NewMember' immediately before the 'ExistingMember'

within the group.

ASK Method: AddAfter
Parameters: IN ExistingMember: #ANYOBJ

IN NewMember: #ANYOBJ
Return Value: None
Description: Inserts the 'NewMember' immediately after the 'ExistingMember'

within the group.

ASK Method: Count
Parameters: None
Return Value: INTEGER
Description: Returns the number of times the numberIn field has been modified.

BStatGroupObj (cont.)

271

ASK Method: Maximum
Parameters: None
Return Value: INTEGER
Description: Returns the maximum value that has been in the numberIn field (i.e., the

maximum number of objects ever in the group).

ASK Method: Mean
Parameters: None
Return Value: REAL
Description: The average number of objects in the group.

ASK Method: Minimum
Parameters: None
Return Value: INTEGER
Description: Returns the minimum value that has been in the numberIn field (i.e., the

minimum number of objects ever in the group - always 0).

ASK Method: Remove
Parameters: None
Return Value: #ANYOBJ
Description: Returns a reference to the first object in a group after removing that object

from the group.

ASK Method: RemoveThis
Parameters: IN member
Type: #ANYOBJ
Description: A reference to an object that is a member of the group.
Return Value: None
Description: Removes a specific object from the group.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Clears the statistical accumulations to zero. Useful for multiple repetitions

of a simulation.

ASK Method: SetHistogram
Parameters: IN low: INTEGER

IN high: INTEGER
IN interval: INTEGER

Return Value: None
Description: Allows user to set up a histogram for accumulation on the numberIn

field of the group.

BStatGroupObj (cont.)

272

ASK METHOD: StdDev
Parameters: None
Return Value: REAL
Description: Returns the standard deviation for the mean of the numberIn.

ASK METHOD: Variance
Parameters: None
Return Value: REAL
Description: Returns the variance for the mean of the numberIn.

ASK METHOD: WtdMean
Parameters: None
Return Value: REAL
Description: Returns the average number of objects in the group, weighted with

respect to time.

ASK METHOD: WtdStdDev
Parameters: None
Return Value: REAL
Description: Returns the standard deviation of the average number of objects in the

group, weighted with respect to time.

ASK METHOD: WtdVariance
Parameters: None
Return Value: REAL
Description: Returns the variance of the average number of objects in the group,

weighted with respect to time.

BStatListObj

273

Module: ListMod
Derived From:BasicListObj

StatListObj
Description: A “virtual” object that provides all the basic functionality of list objects

plus the basic methods required for statistical accumulations on lists.

ASK Method Return Type Private Defined By
AddAfter None No BStatListObj
AddBefore None No BStatListObj
Count INTEGER No BStatListObj
Remove #ANYREC No BStatListObj
RemoveThis None No BStatListObj
Reset None No BStatListObj
SetHistogram None No BStatListObj
StdDev REAL No BStatListObj
Variance REAL No BStatListObj
WtdMean REAL No BStatListObj
WtdStdDev REAL No BStatListObj
WtdVariance REAL No BStatListObj

FIELDS and METHODS

ASK Method: AddAfter
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Add a record after an existing record and update level.

ASK Method: AddBefore
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Add a record before an existing record and update level.

ASK Method: Count
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Number of observations since last reset.

ASK Method: Maximum
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Maximum level observed since last reset.

ASK Method: Mean
Parameters: IN NewMember: #ANYREC

 BStatListObj (cont)

274

Return Value: None
Description: Mean observation since last reset.

ASK Method: Minimum
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Minimum level observed since last reset.

ASK Method: Remove
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: .

ASK Method: RemoveThis
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Remove specific record from group and update level.

ASK Method: Reset
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Reset statistics.

ASK Method: SetHistogram
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Set histogram.

ASK Method: StdDev
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Standard deviation since last reset.

ASK Method: WtdMean
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Time-wighted mean since last reset.

ASK Method: WtdVariance
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Time-wighted variance since last reset.

BStatListObj

275

ASK Method: Variance
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Variance since last reset.

BStatQueueList

276

Module: ListMod
Derived From:BasicQueueList

StatListObj
Description: Same functionality as a BasicQueueList plus accumulates statistics on

number of records in list.

ASK Method Return Type Private Defined By
Add None No BStatQueueList

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: IN NewMember: #ANYREC
Description: See Add method of BasicQueueList.

 BStatStackList

277

Module: ListMod
Derived From:BasicStackObj

StatListObj
Description: This object has the same functionality as a BasicStackList object.

The BStatStackList also accumulates statistics on a number of records
in the list.

ASK Method Return Type Private Defined By
Add None No BStatStackList

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember: #ANYOBJ
Return Value: None
Description: Inserts 'NewMember' at the end of the group.

BStatQueueList

278

Module: ListMod
Derived From:BasicQueueList

StatListObj
Description: Provides statistics gathering using ranked groups of records.

ASK Method Return Type Private Defined By
Add None No BStatQueueList

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember: #ANYREC
Return Value: None
Description: Inserts 'NewMember' at the end of the group.

BStatRankedList

279

Module: ListMod
Derived From:BasicRankedList

StatListObj
Description: Same functionality as BasicRankedList plus accumulates statistics on

number of records in list.

ASK Method Return Type Private Defined By
Add None No BStatRankedList
AddFirst None No BStatRankedList

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: IN NewMember: #ANYREC
Description: See Add method of BasicRankedList.

ASK Method: AddFirst
Return Value: None
Parameters: IN NewMember: #ANYREC
Description: See AddFirst method of BasicRankedList.

BStatStackList

280

Module: ListMod
Derived From:BasicStackList

StatListObj
Description: Same functionality as BasicStackList plus accumulates statistics on

number of records
in list.

ASK Method Return Type Private Defined By
Add None No BStatStackList

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: IN NewMember: ANYREC
Description: See Add method of BasicStackObj.

BTreeList

281

Module: ListMod
Derived From:BasicListObj

BasicBTreeList
Description: A composite object that provides an ordered insertion of records into a

group based upon a key value for each record added. If the Key method is
not overridden insertion will be FIFO as in a QueueList. Btrees are
an efficient data structure for ordered trees that will have many members
and do a lot of insertion and deletion.

ASK Method Return Type Private Defined By
AddAfter None No BTreeList
AddBefore None No BTreeList
ObjTerminate None No BTreeList
Remove #ANYREC No BTreeList
RemoveThis None No BTreeList

FIELDS and METHODS

ASK Method: AddAfter
Parameters: IN ExistingMember : ANYOBJ;

IN NewMember : ANYOBJ;
Return Type: None
Description: Must not be overridden with a BTree.

ASK Method: AddBefore
Parameters: IN ExistingMember : ANYOBJ;

IN NewMember : ANYOBJ;
 Return Type: None
Description: Must not be overridden with a BTree.

ASK Method: ObjTerminate
Parameters: None
Return Type: None
Description: Cleanup internal BTree structures.

ASK Method: Remove
Parameters: None
 Return Type: None
Description: Remove first record from group.

BTreeList (cont)

282

ASK Method: RemoveThis
Parameters: IN Member : ANYOBJ;
Return Type: None
Description: Remove the specific record from the group.

BTreeObj

283

Module: GrpMod
Derived From: BasicBTreeObj
Description: A composite object that provides an ordered insertion of objects into a

group based upon a key value for each object added. If the Key method is
not overridden insertion will be FIFO as in a QueueObj. BTrees are an
efficient data structure for ordered trees that will have many members and
do a lot of insertion and deletion.

ASK Method Return Type Private Defined By
AddAfter None No BasicBTreeObj
AddBefore None No BasicBTreeObj
ObjTerminate None No BasicBTreeObj
Remove #ANYOBJ No BasicBTreeObj
RemoveThis None No BasicBTreeObj

FIELDS and METHODS

ASK Method: AddAfter
Parameters: IN ExistingMember : ANYOBJ;

IN NewMember : ANYOBJ;
Return Type: None
Description: AddAfter cannot be used with a BTree.

ASK Method: AddBefore
Parameters: IN ExistingMember : ANYOBJ;

IN NewMember : ANYOBJ;
 Return Type: None
Description: AddBefore cannot be used with a BTree.

ASK Method: ObjTerminate
Parameters: None
Return Type: None
Description: Verification and overhead.

ASK Method: Remove
Parameters: None
 Return Type: None
Description: Removes First, i.e., the element with the smallest key.

ASK Method: RemoveThis
Parameters: IN Member :
 Return Type: None
Description: Removes the specific member.

EntryObj

284

Module: ResMod
Derived From:None
Description: This object is a record of an object's use of a resource.

Field Type Private Defined By
Object ANYOBJ No EntryObj
Trigger TriggerObj No EntryObj
Number INTEGER No EntryObj
Priority REAL No EntryObj
Timer ANYOBJ No EntryObj
State INTEGER No EntryObj

ASK Method Return Type Private Defined By
Initialize None No EntryObj
SetNumberIn None No EntryObj
SetPriorityTo None No EntryObj
SetState None No EntryObj
SetTimer None No EntryObj
SetTriggerTo None No EntryObj

FIELDS and METHODS

Field: Object
Type: ANYOBJ
Description: Object that own/requests the resource.

Field: Trigger
Type: TriggerObj
Description: Internal trigger.

Field: Number
Type: INTEGER
Description: Number of units of the resource.

Field: Priority
Type: REAL
Description: Priority of the request.

Field: Timer
Type: ANYOBJ
Description: Internal.

Field: State
Type: INTEGER
Description: Internal.

EntryObj (cont.)

285

ASK Method: Initialize
Return Value: None
Parameters: IN Obj: ANYOBJ

IN num: INTEGER
IN Trig: TriggerIbj
IN next: INTEGER
IN pr: REAL

Description: Initializes all fields of the object.

ASK Method: SetNumberTo
Return Value: None
Parameters: IN number : INTEGER
Description: Sets the Number field.

ASK Method: SetPriorityTo
Return Value: None
Parameters: IN pr : REAL
Description: Sets the Priority field.

ASK Method: SetState
Return Value: None
Parameters: IN state : INTEGER
Description: Sets the internal state field.

ASK Method: SetTimer
Return Value: None
Parameters: IN timer : ANYOBJ
Description: Sets the Timer field.

ASK Method: SetTriggerTo
Return Value: None
Parameters: IN Trig : TriggerObj
Description: Sets the Trigger field.

ExpandedBasicGroupObj

286

Module: GrpMod
Derived From:BasicGroupObj

ExpandedBasicGroupObj
Description: Adds support for FIFI, LIFO and ranked groups.

ASK Method Return Type Private Defined By
SetGroupOrder None No ExpandedBasicGroupObj
UpdateDelay None No ExpandedBasicGroupObj
UpdateEntryLevel None No ExpandedBasicGroupObj
UpdateLevel None No ExpandedBasicGroupObj
UpdateExitLevel None No ExpandedBasicGroupObj
UpdateNumEntries None No ExpandedBasicGroupObj
UpdateNumExits None No ExpandedBasicGroupObj
SetDelayStats None No ExpandedBasicGroupObj
ResetStats None No ExpandedBasicGroupObj
Add None No ExpandedBasicGroupObj
GetRosterCard None No ExpandedBasicGroupObj
DelRosterCard None No ExpandedBasicGroupObj

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember : #ANYOBJ
Type: INTEGER
Return Value: None
Description: Add a member to the group.

ASK Method: DelRosterCard
Parameters: IN card : ANYREC;

IN member : #ANYOBJ
Return Value: None
Description: Internal method.

ASK Method: GetRosterCard
Parameters: IN NewMember : #ANYOBJ
Return Value: None
Description: Internal method.

ASK Method: ResetStats
Parameters: None
Return Value: None
Description: Sets the Timer field.

ExpandedBasicGroupObj (cont)

287

ASK Method: SetGroupOrder
Parameters: IN disc : GroupOrderType
Return Value: None
Description: Set the eGroupOrder field.

ASK Method: SetDelayStats
Parameters: IN flag : BOOLEAN
Return Value: None
Description: Set the bDelayStats field.

ASK Method: SetLevelStats
Parameters: IN flag : BOOLEAN
Return Value: None
Description: Set the bLevelStats field.

ASK Method: UpdateDelay
Parameters: IN obj : #ANYOBJ;

IN dt : REAL
Return Value: None
Description: Update the Delay field.

ASK Method: UpdateLevel
Parameters: IN rDelta : REAL
Return Value: None
Description: Set the Level field.

ASK Method: UpdateExitLevel
Parameters: IN obj : #ANYOBJ
Return Value: None
Description: Update the Level field on exit from the group.

ASK Method: UpdateNumEntries
Parameters: IN obj : #ANYOBJ
Return Value: None
Description: Update the number of entries.

ASK Method: UpdateNumExits
Parameters: IN obj : #ANYOBJ
Return Value: None
Description: Set the number of exits.

ExpandedGroupObj

288

Module: GrpMod
Derived From:GroupObj
Description: Adds fields used in the ExpandedBasicGroupObj.

Field Type Private Defined By
bDelayStats BOOLEAN No ExpandedGroupObj
bLevelStats BOOLEAN No ExpandedGroupObj
eGroupOrder STRING No ExpandedGroupObj
rLevel INTEGER No ExpandedGroupObj
rNumEntries ANYREC No ExpandedGroupObj
rNumExits ExpandedGroupObj
tDelay ExpandedGroupObj

FIELDS and METHODS

Field: bDelayStats
Type: BOOLEAN
Description: If TRUE, collect delay stats.

Field: bLevelStats
Type: BOOLEAN
Description: If TRUE, collect level stats.

Field: eGroupOrder
Type: GroupOrder
Description: Determines add behavior: FIFO, LIFO, Ranked.

Field: rLevel
Type: LMONITORED REAL
Description: Membership level for monitoring.

Field: rNumEntries
Type: REAL
Description: Number of times member is added to group.

Field: rNumExits
Type: REAL
Description: Number of times member is removed from group.

Field: tDelay
Type: LMONITORED REAL
Description: Accumulates SIMTIME objects that are members of the group for the

purpose of monitoring.

GroupObj

289

Module: GrpMod
Derived From:None
Description: A “virtual” object that describes the fields all group objects have.

Field Type Private DefinedBy
firstRoster ANYREC Yes GroupObj
lastRoster ANYREC Yes GroupObj
numberIn INTEGER No GroupObj

ASK Method Return Type Private Defined By
GetRosterCard None No GroupObj
DelRosterCard None No GroupObj

FIELDS and METHODS

Field: firstRoster
Type: ANYREC
Description: An internal (to the group object) record that contains a reference to the

first member of the group.

Field: lastRoster
Type: ANYREC
Description: An internal (to the group object) record that contains a reference to the

last member of the group.

Field: numberIn
Type: INTEGER
Description: A counter that has the current number of objects in the group.

ASK Method: GetRosterCard
Parameters: None
Return Value: INTEGER
Description: Get a roster card for the new member.

ASK Method: DelRosterCard
Parameters: None
Return Value: INTEGER
Description: Delete a roster card.

IStatObj

290

Module: StatMod
Derived From:StatObj
Description: Statistical monitor for INTEGER type.

Field Type Private Defined By
Maximum INTEGER No IStatObj
Minimum INTEGER No IStatObj

LMONITOR Method Defined By:
access IStatObj

RMONITOR Method Defined By:
raccess IStatObj

FIELDS and METHODS

Field: Maximum
Type: INTEGER
Description: Maximum observation since last reset.

Fields: Minimum
Type: INTEGER
Description: Minimum observation since last reset.

LMONITOR Method: access
Description: Updates statistics based on observation. Increments the number of obser-

vations by 1. Updates minimum and maximum values if appropriate. Up-
dates the sum by the value of the observation. Updates the sum squared by
the squared value of the observation. Adds the value to the histogram if a
histogram is previously created by SetHistogram.

RMONITOR Method: raccess
Description: Override method to add functionality to derived object.

iTimedStatObj

291

Module: StatMod
Derived From:TimedStatObj
Description: Time-weighted statistical monitor for INTEGER type.

Field Type Private Defined By
Maximum INTEGER No ITimedStatObj
Minimum INTEGER No ITimedStatObj
value INTEGER No ITimedStatObj

ASK Method Return Type Private Defined By
Reset None No ITimedStatObj
TAdjust None No ITimedStatObj

LMONITOR Method Defined By
access ITimedStatObj

RMONITOR Method Defined By
raccess ITimedStatObj

FIELDS and METHODS

Field: Maximum:
Type: INTEGER;
Description: Maximum observation since last reset.

Field: Minimum:
Type: INTEGER;
Description: Minimum observation since last reset.

Field: Value:
Type: INTEGER;
Description: The value being monitored.

LMONITOR Method: access;
Description: Updates statistics based on observation. Increments the number of obser-

vations by 1. Updates minimum and maximum values if appropriate. Ad-
justs time dependent values.

RMONITOR Method: raccess;
Description: Provides access to object if monitored statistic is accessed. Override

method to add functionality to derived object.

ASK Method: Reset
Parameters: None

ITimedStatObj (cont)

292

Return Value: None
Description: Resets Minimum and Maximum and sets current time.

ASK Method: TAdjust
Parameters: None
Return Value: None
Description: Updates time dependent values.

ListObj

293

Module: ListMod
Derived From: None
Description: A “virtual” object that describes the fields all list objects have. All list

objects are designed to hold RECORDs.

Field Type Private Defined By
numberIn INTEGER No ListObj

FIELDS and METHODS

Field: numberIn
Type: INTEGER
Description: A counter that has the current number of objects in the group.

PriorityList

294

Module: ResMod
Derived From:StatRankedObj
Substitutes: EntryObj for: ANYOBJ
Description: Keeps a list, ranked by priority, of all objects waiting to receive a re-

source.

Field Type Private Defined By
numResources INTEGER No PriorityList

ASK Method Return Type Private Defined By
Add None No PriorityList
Adjust None No PriorityList
Rank INTEGER No PriorityList
Reset None No PriorityList

FIELDS and METHODS

Field: numResources
Type: INTEGER
Description: LRMONITORED INTEGER by IStatObj and ITimedStatObj.

ASK Method: Add
Parameters: IN NewMember : EntryObj
Return Value: REAL;
Description: Inserts NewMember in proper ranking order.

ASK Method: Adjust
Parameters: IN NewSeed
Return Value: None
Description: Updates numResources field for statistics.

ASK Method: Rank
Parameters: IN a,b : EntryObj
Return Value: None
Description: Relative order of a, b based on priority.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Resets monitors associated with numberResources.

QueueList

295

Module: ListMod
Derived From:BasicListObj

BasicQueueList
Description: A composite object that provides a grouping mechanism based upon FIFO

(first-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By
ObjLoad None No QueueList

FIELDS and METHODS

ASK Method: ObjLoad
Parameters: None
Return Value: REAL
Description: Load QueueList from a persistent data base.

QueueObj

296

Module: GrpMod
Derived From:BasicGroupObj
Description: A composite object that provides a grouping mechanism based upon FIFO

(first-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By

Add None No QueueObj

FIELDS and METHODS

ASK Method: Add
Parameters: IN NewMember : ANYOBJ
Return Value: REAL
Description: Add the new member first.

RandomObj

297

Module: RandMod
Derived From:None
Description: Provides a variety of statistical distributions for random number genera-

tion.

Field Type Private Defined By
originalSeed INTEGER No RandomObj
currentSeed INTEGER No RandomObj
antithetic BOOLEAN No RandomObj

ASK Method Return Type Private Defined By
Sample REAL No RandomObj
SetSeed None No RandomObj
Reset None No RandomObj
UniformReal REAL No RandomObj
UniformInt INTEGER No RandomObj
Exponential REAL No RandomObj
Normal REAL No RandomObj
Gamma REAL No RandomObj
Beta REAL No RandomObj
Triangular REAL No RandomObj
SetAntithetic None No RandomObj
ObjInit None No RandomObj
Dump None No RandomObj
LogNormal None No RandomObj
ObjInit None No RandomObj
Erlang None No RandomObj
Weibull None No RandomObj
Poisson None No RandomObj
Binomial None No RandomObj

FIELDS and METHODS

Field: antithetic
Type: BOOLEAN
Description: Generate antithetic variates.

Field: currentSeed
Type: INTEGER
Description: Current seed - changes on every random draw.

Field: originalSeed
Type: INTEGER
Description: Argument in last SetSeed message.

RandomObj (cont.)

298

ASK Method: Binomial
Parameters: None
Return Value: None
Description: Generate a random sample from the Binomial distribution. The binomial

distribution represents the integer number of successes in "n" independent
trials, each having the probability of success "p". The values of both "n"
(number of trials) and "p" (probability" must be greater than 0.

ASK Method: Beta
Parameters: IN alpha1: REAL

IN alpha2: REAL
Return Value: REAL
Description: Returns a random sample from the beta distribution related to the gamma

function where the result is restricted to the unit interval. Given argu-
ments of alpha1 and alpha2 must be greater than 0;

alpha1, alpha2 > 0; Beta(alpha1,alpha2) =
Gamma(alpha1,alpha1) / (Gamma(alpha1,alpha1) +
Gamma(alpha2,alpha2))

ASK Method: Dump
Parameters: None
Return Value: None
Description:

ASK Method: Erlang
Parameters: None
Return Value: None
Description: The Erlang distribution is a special case of "Gamma" which results when

"alpha" is an integer. If 'K = 1' this function is the same as the exponential
distribution. Generate a random sample from the Erlangian distribution.

ASK Method: Exponential
Parameters: IN mean: REAL
Return Value: REAL
Description: Returns a random sample from the exponential distribution, mean > 0.

ASK Method: Gamma
Parameters: IN mean: REAL

IN alpha: REAL
Return Value: REAL

RandomObj (cont.)

299

Description: Returns a random sample from the gamma distribution. This distribution
has smaller variance and more control in parameter selection than the Ex-
ponential method, and can therefore be used to more realistically represent
observable data. mean, alpha > 0; mean = alpha * beta in the
standard representation of this distribution.

ASK Method: LogNormal
Parameters: None
Return Value: None
Description: Generates a random sample from the Log Normal distribution. The log

normal distribution is often used to characterize skewed data. The given
"mean" must be greater than 0.

ASK Method: Normal
Parameters: IN mean: REAL

IN sigma: REAL
Return Value: REAL
Description: Returns a random sample from the normal distribution. This distribution

generates the Gaussian bell-shaped curve. sigma > 0.

ASK Method: ObjInit
Parameters: None
Return Value: None
Description:

ASK Method: Poisson
Parameters: None
Return Value: None
Description: Generates a random sample from the Poisson distribution. Poisson idstri-

butions are often used to model the number of occurences of some event
in a given period of time. The value of mu must be greater than 0.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Resets to the original seed last specified by SetSeed.

ASK Method: Sample
Parameters: None
Return Value: REAL;
Description: Returns sample S where: 0.0 < S < 1.0

ASK Method: SetAntithetic
Parameters: IN onOff: BOOLEAN
Return Value: None

RandomObj (cont.)

300

Description: Toggles sampling with antithetic variates, default is FALSE.

ASK Method: SetSeed
Parameters: IN NewSeed
Type: INTEGER
Return Value: None
Description: All RandomObjs start with a default of FetchSeed(1). A new seed

can be generated at any time.

ASK Method: Triangular
Parameters: IN min: REAL

IN mode: REAL
IN max: REAL

Return Value: REAL
Description: Returns a random sample from the triangular distribution,

min < mean < max.

ASK Method: UniformInt
Parameters: IN lo: INTEGER

IN hi: INTEGER
Return Value: INTEGER
Description: Returns a random sample from the uniform distribution in [lo,hi].

ASK Method: UniformReal
Parameters: IN lo: REAL

IN hi: REAL
Return Value: REAL
Description: Returns a random sample from the uniform distribution in [lo,hi].

ASK Method: Weibull
Parameters: None
Return Value: None
Description: Generates a random sample from the Weibull distribution. The Weibull

function can be used to generalize distribution function implementation.
By selecting the values of the parameters, several families can be repre-
sented. For example, if shape = 1 the Weibull function is the same as
Exponential with mean = scale. The shape and scale arguments
must be greater than 0.

RankedList

301

Module: ListMod
Derived From:BasicListObj

BasicRankedList
Description: A composite object that allows the user to specify a relative order between

records being added to the group. Records will be added to the group
based upon this ordering. If the Rank method is not overridden the inser-
tion order of the group is undefined.

ASK Method Return Type Private Defined By
ObjLoad None No RankedList

FIELDS and METHODS

ASK Method: ObjLoad
Return Value: None
Parameters None
Description: Establishes ranked list when read from a persistent data base.

RankedObj

302

Module: GrpMod
Derived From:BasicGroupObj

BasicRankedObj
Description: A composite object that allows the user to specify a relative order between

objects being added to the group. Objects will be added to the group based
upon this ordering. If the Rank method is not overridden the insertion or-
der of the group is undefined.

ASKMethod Return Type Private Defined By
Add None No RankedObj

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters IN NewMember : ANYOBJ
Description: Performs ordered insertion.

ResourceObj

303

Module: ResMod
Derived From:None
Description: This object type provides a blocking resource acquisition mechanism. This

mechanism is particularly useful for simulation scenarios. Object in-
stances requesting one or more resources from the created (instantiated)
pool will be granted acquisition as the resources are or become available.
The requesting method will block (WAIT FOR) at the point of request un-
til the request can be fulfilled or it is interrupted.

Field Type Private Defined By
AllocationList AllocQueueObj No ResourceObj
MaxResources INTEGER No ResourceObj
PendingList PriorityList No ResourceObj
PendingResourcesINTEGER No ResourceObj
Resources INTEGER No ResourceObj

ASK Method Return Type Private Defined By
AllocCount INTEGER No ResourceObj
AllocMaximum INTEGER No ResourceObj
AllocMean REAL No ResourceObj
AllocMinimum INTEGER No ResourceObj
AllocStdDev REAL No ResourceObj
AllocVariance REAL No ResourceObj
AllocWtdMean REAL No ResourceObj
AllocWtdStdDev REAL No ResourceObj
AllocWtdVarianceREAL No ResourceObj
Allocate None Yes ResourceObj
Cancel None No ResourceObj
Create None No ResourceObj
Find #ANYOBJ Yes ResourceObj
IncrementResourcesBy None No ResourceObj
NumberAllocatedTo INTEGER No ResourceObj
ObjInit; None No ResourceObj
ObjTerminate; None No ResourceObj
PendWtdMean REAL No ResourceObj
PendWtdStdDev REAL No ResourceObj
PendWtdVariance REAL No ResourceObj
PendingCount INTEGER No ResourceObj
PendingMaximum INTEGER No ResourceObj
PendingMean REAL No ResourceObj
PendingMinimum INTEGER No ResourceObj
PendingStdDev REAL No ResourceObj
PendingVariance REAL No ResourceObj
ReportAvailability INTEGER No ResourceObj

ResourceObj (cont)

304

ASK Method Return Type Private Defined By
ReportNumberPending INTEGER No ResourceObj
Reset None No ResourceObj
ResetAllocationStats None No ResourceObj
ResetPendingStats None No ResourceObj
SetAllocHistogram None No ResourceObj
SetAllocationStats None No ResourceObj
SetPendHistogramNone No ResourceObj
SetPendStats None No ResourceObj
TakeBack None No ResourceObj
Transfer None No ResourceObj

TELL Method Return Type Private DefinedBy
DecrementResourcesBy None No ResourceObj

WAITFOR Method Return Type Private DefinedBy
GetResource None No ResourceObj
Give None No ResourceObj
PriorityGive None No ResourceObj
TimedGive None No ResourceObj

FIELDS and METHODS

Field: AllocationList
Type: AllocQueueObj
Description: A group of EntryObjs describing currently allocated resources.

Field: PendingList
Type: PriorityList
Description: A group, ordered by priority (highest to least), of EntryObjs describing

resource requests.

Field: MaxResources
Type: INTEGER
Description: Total number of resources potentially available from the ResourceObj

instance.

Field: Resources
Type: INTEGER
Description: The number of currently available resources for the instance.

Field: PendingResources
Type: INTEGER
Description: Number of resources requested.

ResourceObj (cont)

305

ASK Method: ObjInit
Return Value: None
Parameters None
Description: Creates all internal data structures.

ASK Method: ObjTerminate
Return Value: None
Parameters None
Description: Empties and disposes internal data structures.

ASK Method: ReportAvailability
Parameters: None
Return Value: INTEGER
Description: How many could be obtained immediately.

ASK Method: ReportNumberPending
Parameters: None
Return Value: INTEGER
Description: Number requested that have not yet been provided.

ASK Method: NumberAllocatedTo
Parameters: IN Object: #ANYOBJ
Return Value: INTEGER
Description: The number of resources that have been allocated to object.

ASK Method: Create
Parameters: IN number: INTEGER
Return Value: None
Description: Initialize resource to have number of resources.

ASK Method: IncrementResourcesBy
Parameters: IN incBy: INTEGER
Return Value: None
Description: Increase the number of resources in the total resource pool.

TELL Method: DecrementResourcesBy
Parameters: IN decBy: INTEGER
Return Value: None
Description: Decrease the number of resources in the total resource pool.

ResourceObj (cont)

306

WAITFOR Method: Give
Parameters: IN Me: #ANYOBJ
 IN numberDesired: INTEGER
Return Value: None
Description: Requests acquisition of 'numberDesired' resources and allocates them

to object 'Me'. Calling method is blocked until resource(s) become avail-
able on a first come first served basis.

WAITFOR Method: TimedGive
Parameters: IN Me: #ANYOBJ
 IN numberDesired: INTEGER
 IN timePeriod: REAL
Return Value: None
Description: Same as Give above except if resources are not acquired within

timePeriod simulation units the calling method will be resumed with an
INTERRUPT. Calling code should have an ON INTERRUPT clause to
handle this case.

WAITFOR Method: PriorityGive
Parameters: IN Me: #ANYOBJ
 IN numberDesired: INTEGER
 IN priority: REAL
Return Value: None
Description: Same as Give above except those requests that must be queued will be

queued based upon the given priority. The higher the priority argument
the more forward in the pending list the request will be placed.

WAITFOR Method: GetResource
Parameters: IN Me: #ANYOBJ
 IN numberDesired: INTEGER
 IN timePeriod: REAL
 IN priority: REAL
Return Value: None
Description: A combination of TimedGive and PriorityGive. Requesting method

will 'timeout' if resource is not allocated within timePeriod simula-
tion units and calling method will be resumed with an INTERRUPT condi-
tion (an ON INTERRUPT clause should be provided), queued requests will
be allocated based upon given priority.

ASK Method: TakeBack
Parameters: IN FromMe: #ANYOBJ
 IN numberReturned: INTEGER
Return Value: None

ResourceObj (cont)

307

Description: This returns previously allocated resource(s) that were acquired by object
FromMe. If the object did not have the resource to begin with a runtime
error will result.

ASK Method: Transfer
Parameters: IN From, To: #ANYOBJ
 IN numberTrans: INTEGER
Return Value: None
Description: Transfers “ownership” of resource from From object to To object. User

must provide code to notify both objects of condition. This method is pro-
vided to facilitate preemption allocation.

ASK Method: Cancel
Parameters: IN Object: #ANYOBJ
 IN numberToCancel: INTEGER
Return Value: None
Description: Cancels all or portion of request for resource(s) that is currently on pend-

ing list - user must provide code to notify object of cancellation.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Resets both Allocation and Pending statistics.

ASK Method: ResetAllocationStats
Parameters: None
Return Value: None
Description: Resets statistics for the AllocationList.

ASK Method: SetAllocationStats
Parameters: IN on
Type: BOOLEAN
Return Value: None
Description: Statistics gathering may be turned on (TRUE) or off - default is off.

ASK Method: SetAllocHistogram
Parameters: IN low: INTEGER

IN high: INTEGER
IN interval: INTEGER

Return Value: None
Description: Set up resource allocation histogram bounds.

ASK Method: AllocMaximum
Parameters: None
Return Value: INTEGER

ResourceObj (cont)

308

Description: The maximum number allocated at any time up to the present simulation
time.

ASK Method: AllocMinimum
Parameters: None
Return Value: INTEGER
Description: The minimum number allocated at any time up to the present simulation

time.

ASK Method: AllocCount
Parameters: None
Return Value: INTEGER
Description: Returns the number of times the number of units of the resource was allo-

cated at the present simulation time.

ASK Method: AllocMean
Parameters: None
Return Value: REAL
Description: The mean number of objects on the allocation list.

ASK Method: AllocVariance
Parameters: None
Return Value: REAL
Description: The variance of the number of objects allocated.

ASK Method: AllocStdDev
Parameters: None
Return Value: REAL
Description: The standard deviation of the number of objects on the allocation list.

ASK Method: AllocWtdMean
Parameters: None
Return Value: REAL
Description: The mean, weighted with respect to time, of objects on the allocation list.

ASK Method: AllocWtdVariance
Parameters: None
Return Value: REAL
Description: The weighted variance of the number of units of the resource with respect

to time, of objects on the allocation list.

ASK Method: AllocWtdStdDev
Parameters: None
Return Value: REAL

ResourceObj (cont)

309

Description: The weighted standard deviation with respect to time, of objects on the
allocation list.

ASK Method: ResetPendingStats
Parameters: None
Return Value: REAL
Description: Reset the pending stats.

ASK Method: SetPendingStats
Parameters: None
Return Value: REAL
Description: Set up resource pending histogram bounds.

ASK Method: SetPendHistogram
Parameters: None
Return Value: REAL
Description: Set up resource pending histogram bounds.

ASK Method: PendingMaximum
Parameters: None
Return Value: REAL
Description: The maximum number of objects requested but not yet granted.

ASK Method: PendingMinimum
Parameters: None
Return Value: REAL
Description: The minimum number of objects requested but not yet granted.

ASK Method: PendingCount
Parameters: None
Return Value: REAL
Description: The number of times the object pending was updated.

ASK Method: PendingMean
Parameters: None
Return Value: REAL
Description: The mean of the number of objects on the pending list.

ASK Method: PendingVariance
Parameters: None
Return Value: REAL
Description: The variance of the number of objects requested but not yet granted.

ASK Method: PendingStdDev
Parameters: None

ResourceObj (cont)

310

Return Value: REAL
Description: The standard deviation of the number of objects requested but not yet

granted.

ASK Method: PendWtdMean
Parameters: None
Return Value: REAL
Description: The average, weighted with respect to time, of objects on the pending list.

ASK Method: PendWtdVariance
Parameters: None
Return Value: REAL
Description: The weighted variance of the number of objects on the pending list.

ASK Method: PendWtdStdDev
Parameters: None
Return Value: REAL
Description: The weighted standard deviation of the number of objects on the pending

list.

ASK Method: Find
Parameters: IN Obj: #ANYOBJ
Return Value: #ANYOBJ
Description: For private use by the ResourceObj, locates a particular object on the

pending list for transfer or cancellation purposes.

ASK Method: Allocate
Parameters: IN Me: #ANYOBJ
 IN number: INTEGER
 IN priority: REAL
Return Value: None
Description: For private use by the ResourceObj, actually executes granting resource

request and all attendant bookkeeping.

RStatObj

311

Module: StatMod
Derived From:StatObj
Description: Statistical monitor for REAL type.

Field Type Private Defined By
Maximum REAL No RStatObj
Minimum REAL No RStatObj

LMONITOR Method Defined By
access RStatObj

RMONITOR Method Defined By
raccess RStatObj

FIELDS AND METHODS

Field: Maximum
Type: REAL
Description: Maximum observation since last reset.

Fields: Minimum
Type: REAL
Description: Minimum observation since last reset.

LMONITOR Method: access
Description: Provides access to object if monitored statistics is accessed.

RMONITOR Method: raccess
Description: Updates statistics based on observation.

RTimedStatObj

312

Module: StatMod
Derived From:TimedStatObj
Description: Weighted statistical monitor for REAL type.

Field Type Private Defined By
Maximum REAL No RTimedStatObj
Minimum REAL No RTimedStatObj
value INTEGER No RTimedStatObj

ASK Method Return Type Private Defined By
Reset None No RTimedStatObj
TAdjust None No RTimedStatObj

LMONITOR Method Defined By
access RTimedStatObj

RMONITOR Method Defined By
raccess RTimedStatObj

FIELDS AND METHODS

Field: Maximum
Type: REAL
Description: Maximum observation since last reset.

Fields: Minimum
Type: REAL
Description: Minimum observation since last reset.

LMONITOR Method: access
Description: Updates statistics based on observation.

RMONITOR Method: raccess
Description: Provides access to object if monitored statistics is accessed.

ASK Method: TAdjust
Parameters: None
Return Value: None
Description: Updates time dependent values.

ASK Method: Reset
Parameters: None
Return Value: None
Description: Resets Minimum, Maximum, and sets resetTime.

SimControlObj

313

Module: SimMod
Derived From: None
Description: The simulation control object lets the developer resolve time ties.

This object provides mechanisms for fine-tuning the execution of activities within a
simulation. To take advantage of its capabilities (tie-breaking and time advance notifi-
cation) the user must derive an object type from this class and override the desired be-
haviors. In addition, either or both, of the 'Set' methods must be called to notify the
simulation controller of the desired behavior.

ASK Method Return Type Private Defined By
TimeAdvance REAL No SimControlObj
ChooseNext ACTID No SimControlObj
ActivityTrace ACTID No SimControlObj
SetTieBreaking None No SimControlObj
SetTimeAdvance None No SimControlObj
SetActivityTraceNone No SimControlObj

FIELDS AND METHODS

ASK Method: ActivityTrace
Parameters: IN activity : ACTID
Return Value: ACTID
Description: Trace simulation activities. Method is activated right before the activity is

activated or reactivated and just before it is suspended for a WAIT.

ASK Method: ChooseNext
Parameters: IN group : ActivityGroup
Return Value: ACTID
Description: Choose the next event in the case of a time tie. The method is invoked

when there are two or more activities scheduled for the identical simula-
tion time. The method must return the activity which should be activated
next.

ASK Method: SetActivityTrace
Parameters: IN flag : BOOLEAN
Return Value: None
Description: If TRUE, then ActivityTrace is called for each new activity.

ASK Method: SetTieBreaking
Parameters: IN flag : BOOLEAN
Return Value: None
Description: If TRUE, then ChooseNext is called to resolve time ties.

SimControlObj (cont)

314

ASK Method: SetTimeAdvance
Parameters: IN flag : BOOLEAN
Return Value: ACTID
Description: If TRUE, then TimeAdvance is called when the simulation clock is to

advance.

ASK Method: TimeAdvance
Parameters: IN newTime : REAL
Return Value: REAL
Description: Notification of advance of the simulation clock. This method is invoked

when the simulation time is about to be advanced. Any desired work may
be performed from this method including scheduling more activities. The
method must return either the current simulation time which will allow
any newly scheduled activities to be performed or the new proposed
simulation time which has been passed in as an argument.

SimQueueObj

315

Module: GrpMod
Derived From: ExpandedBasicGroupObj

RankedObj
Description: LIFO, FIFO and ranked groups with delay and level monitoring.

Field Type Private Defined By
oDelayMonitor
oLevelMonitor

ASK Method Return Type Private Defined By
AddDelayMonitor REAL No SimQueueObj
AddLevelMonitor ACTID No SimQueueObj
RemoveDelayMonitor ACTID No SimQueueObj
RemoveLevelMonitor None No SimQueueObj
ObjInit None No SimQueueObj
ResetStats None No SimQueueObj
ObjTerminate None No SimQueueObj
Add None No SimQueueObj
GetRosterCard None No SimQueueObj
DelRosterCard None No SimQueueObj

FIELDS AND METHODS

Field: oDelayMonitor
Type: RStatObj
Description: Statistics.

Field: oLevelMonitor
Type: RTimedStatObj
Description: Weighted statistics.

ASK Method: AddDelayMonitor
Parameters: IN mon : RStatObj
Return Value: None
Description: Adds monitor to tdelay field.

ASK Method: AddLevelMonitor
Parameters: IN mon : RTimedStatObj
Return Value: None
Description: Adds monitor to rLevel field.

SimQueueObj (cont)

316

ASK Method: RemoveDelayMonitor
Parameters: None
Return Value: None
Description: Removes monitor from tDelay field.

ASK Method: RemoveLevelMonitor
Parameters: None
Return Value: None
Description: Removes monitor from rLevel field.

ASK Method: ObjInit
Parameters: None
Return Value: None
Description: Default version does nothing.

ASK Method: ResetStats
Parameters: None
Return Value: None
Description: Resets numEntries, numExits and monitor objects.

ASK Method: ObjTerminate
Parameters: None
Return Value: None
Description: Verification and overhead.

ASK Method: Add
Parameters: IN NewMember : ANYOBJ
Return Value: ACTID
Description: Supports LIFO, FIFO and ranked insertions.

ASK Method: GetRosterCard
Parameters: IN NewMember : ANYOBJ
Return Value: None
Description: Internal

ASK Method: DelRosterCard
Parameters: IN member : ANYOBJ
Return Value: None
Description: Internal

StackList

317

Module: ListMod
Derived From:BasicListObj

BasicStackList
Description: A composite object that provides a grouping mechanism based upon LIFO

(last-in-first-out)insertion and removal.

ASK Method ReturnType Private Defined By
ObjLoad None No StackList

FIELDS and METHODS

ASK Method: ObjLoad
Parameters: None
Return Value: None
Description: Load StackList from a persistent data base.

StackObj

318

Module: GrpMod
Derived From:BasicGroupObj
Description: A composite object that provides a grouping mechanism based upon LIFO

(last-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By
Add None No StackObj

FIELDS and METHODS

ASK Method: Add
Parameters: NewMember
Return Value: REAL
Description: Add the new member last.

StatBTreeList

319

Module: ListMod
Derived From:BStatListObj

BStatBTreeList
Description: Same functionality as BasicBTreeList plus accumulates statistics on

number of records in list.

StatBTreeObj

320

Module: GrpMod
Derived From:BStatGroupObj
Description: Same functionality as a BTreeObj plus statistical accumulation on num-

ber of objects kept in group.

ASK Method Return Type Private Defined By
Add None No StatBTreeObj

FIELDS and METHODS

ASK Method: Add
Parameters: NewMember
Return Value: REAL
Description: Performs balanced insertions, accumulates stats.

StatGroupObj

321

Module: GrpMod
Derived From:None
Description: Provides basic fields required by group objects that accumulate statistics.

Field Type Private Defined By
number StatINTEGER No StatGroupObj

FIELDS and METHODS

Field: number
Type: StatINTEGER
Description: A monitored integer field that parallels the numberIn field of group ob-

jects. It is this field upon which statistics are kept.

StatListObj

322

Module: ListMod
Derived From:None
Description: Provides basic fields required by list objects that accumulate statistics.

Field Type Private DefinedBy
number StatINTEGER No StatListObj

FIELDS and METHODS

Field: number
Type: StatINTEGER
Description: A monitored integer field that parallels the numberIn field of group ob-

jects. It is this field upon which statistics are kept.

StatObj

323

Module: StatMod
Derived From:None
Description: Provides basic functionality and fields for Statistical accumulation.

Field Type Private Defined By
Count INTEGER No StatObj
Sum REAL No StatObj
SumOfSquares REAL No StatObj
high INTEGER No StatObj
interval INTEGER No StatObj
low INTEGER No StatObj

ASK Method Return Type Private Defined By
ObjTerminate None No StatObj
Mean REAL No StatObj
MeanSquare REAL No StatObj
Reset None No StatObj
GetHistogram None No StatObj
SetHistogram None No StatObj
StdDev REAL No StatObj
Variance REAL No StatObj

FIELDS AND METHODS

Field: Count
Type: INTEGER
Description: Number of observations.

ASK Method: Mean
Parameters: None
Return Value: REAL
Description: Compute the mean of observations.

ASK Method: MeanSquare
Parameters: None
Return Value: REAL
Description: Compute the mean square of observations.

Field: Sum
Type: REAL
Description: Sum of observations.

StatObj (cont.)

324

Field: SumOfSquares
Type: REAL
Description: Sum of squares of observations

Field: high
Type: INTEGER
Description: High bound of histogram.

Field: interval
Type: INTEGER
Description: Number of intervals.

Field: low
Type: INTEGER
Description: Low bound of histogram.

ASK Method: SetHistogram
Parameters: IN Low: INTEGER

IN High: INTEGER
IN Interval: INTEGER

Return Value: None
Description: Set up parameters for histogram collection: bin for all values lower than

Low and higher than High will automatically be allocated to the 0th ele-
ment and High - Low DIV Interval + 1 element respectively.

ASK Method: StdDev
Parameters: None
Return Value: REAL
Description: Compute the standard deviation of the observations.

ASK Method: Variance
Parameters: None
Return Value: REAL
Description: Compute the variance of the observations.

ASK Method: Reset
Parameters: None
Return Value: REAL
Description: Reset statistics.

ASK Method: GetHistogram
Parameters: None
Return Value: None
Description: Get the monitor's histogram pointer.

StatObj (cont.)

325

ASK Method: ObjTerminate
Parameters: None
Return Value: None
Description: Disposes histogram if it exists.

StatQueueList

326

Module: ListMod
Derived From:BStatListObj

BStatQueueList
Description: Same functionality as BasicQueueList plus accumulates statistics on

number of records in list.

StatQueueObj

327

Module: GrpMod
Derived From:BStatGroupObj

BStatQueueObj
Description: Same functionality as a QueueObj plus statistical data provided from the

number of objects in the queue.

ASK Method Return Type Private Defined By
Add None No StatQueueObj

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: NewMember
Description: Add new member last.

StatRankedList

328

Module: ListMod
Derived From:BStatListObj

BStatRankedList
Description: Same functionality as BasicRankedList plus accumulates statistics on

number of records in list.

StatRankedObj

329

Module: GrpMod
Derived From:BStatGroupObj

BStatRankedObj
Description: Same functionality as RankedObj plus statistical accumulation on num-

ber of objects kept in group.

ASK Method Return Type Private Defined By
Add None No StatRankedObj
AddFirst None No StatRankedObj
GetRosterCard None No StatRankedObj
DelRosterCard None No StatRankedObj
ObjInit None No StatRankedObj

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: NewMember
Description: Add new member first.

ASK Method: AddFirst
Return Value: None
Parameters: NewMember
Description: Add at beginning of membership list.

ASK Method: DelRosterCard
Return Value: None
Parameters: rec = ANYREC

obj : ANYOBJ
Description: Internal routine.

ASK Method: GetRosterCard
Return Value: None
Parameters: NewMember
Description: Internal routine.

ASK Method: ObjInit
Return Value: None
Parameters: None
Description: Sets field required for invoking ranked Add behavior.

StatStackList

330

Module: ListMod
Derived From:BStatListObj

BStatStackList
Description: Same functionality as BasicStackList plus accumulates statistics on

number of records in list.

StatStackObj

331

Module: GrpMod
Derived From:BStatGroupObj
Description: Same functionality as a StackObj plus statistical accumulation on num-

ber of objects in group.

ASK Method Return Type Private Defined By
Add None No StatStackObj
ObjInit None No StatGroupObj

FIELDS and METHODS

ASK Method: Add
Return Value: None
Parameters: None
Description: Add new member first.

ASK Method: ObjInit
Return Value: None
Parameters: None
Description: Sets field required for invoking LIFO behavior .

StreamObj

332

Module: IOMod
DerivedFrom: None
Description: Object type provides the basic file (stream) input-output capabilities.

Field Type Private Defined By

eof BOOLEAN No StreamObj
fileName STRING No StreamObj
handleIN ANYREC Yes StreamObj
handleOUT ANYREC Yes StreamObj
haltOnErr BOOLEAN No StreamObj
ioResult INTEGER No StreamObj
isBinary BOOLEAN No StreamObj

ASK Method Return Type Private Defined By
Close None No StreamObj
Delete None No StreamObj
Dump None No StreamObj
GetPosition None Yes StreamObj
IsOpen None No StreamObj
ObjInit None No StreamObj
ObjTerminate None No StreamObj
Open None No StreamObj
Position None Yes StreamObj
ReadBlock None No StreamObj
ReadChar None No StreamObj
ReadInt None No StreamObj
ReadLine None No StreamObj
ReadReal None No StreamObj
ReadString None No StreamObj
SetHaltonErr None No StreamObj
WriteBlock None No StreamObj
WriteChar None No StreamObj
WriteExp None No StreamObj
WriteHex None No StreamObj
WriteInt None No StreamObj
WriteLn None No StreamObj
WriteReal None No StreamObj
WriteString None No StreamObj

StreamObj (cont.)

333

FIELDS and METHODS

Field: eof
Type: BOOLEAN
Description: Set to TRUE when the last item in the file is read.

Field: filename
Type: STRING
Description: Name of the file.

Field: haltOnErr
Type: BOOLEAN
Description: If TRUE, generate a runtime error when an inout/output error is detected.

Field: handleIN
Type: ANYREC
Description: Internal and implementation specific.

Field: handleOUT
Type: ANYREC
Description: Internal and implementation specific.

Field: ioResult
Type: INTEGER;
Description: The result of the last IO request.

Field: isBinary
Type: BOOLEAN
Description: True when file last opened in Binary mode.

ASK Method: Close
Return Value: None
Parameters: None
Description: Concludes access the opened file.

ASK Method: Delete
Return Value: None
Parameters: None
Description: Removes the opened file from the disk storage device.

ASK Method: Dump
Return Value: None
Parameters: None
Description: Prints to stdout basic information regarding the object instance.

StreamObj (cont.)

334

ASK Method: GetPosition
Return Value: INTEGER
Parameters: None
Description: Returns the position (in bytes) from the beginning of the file to the current

location of the file pointer. The file pointer is advanced by reads, writes or
explicit positioning to the file.

ASK Method: IsOpen
Return Value: None
Parameters: None
Description: Has a file been opened.

ASK Method: ObjInit
Return Value: None
Parameters: None

ASK Method: ObjTerminate
Return Value: None
Parameters: None
Description: Ensures that the file is closed before disposing of the object.

ASK Method: Open
Return Value: None
Parameters: IN FileName: STRING

IN IOdirection: FileUseType
Description: Sets up “communication” between user and disk file named 'FileName.'

Files may be opened for input, output or both depending on the constant
'IOdirection.'

ASK Method: Position
Return Value: None
Parameters: IN moveTo: INTEGER
Description: Moves the file pointer moveTo bytes from the beginning of the file. Use-

ful for random accessing files.

ASK Method: ReadBlock
Return Value: None
Parameters: IN buffer: ANYREC

IN size: INTEGER
IN blocknum: INTEGER

Description: Reads size bytes from the location size * blocknum in the file into the rec-
ord 'buffer.'

ASK Method: ReadChar
Return Value: None

StreamObj (cont.)

335

Parameters: OUT ch: CHAR
Description: Reads a single character from the currently opened file.

ASK Method: ReadInt
Return Value: None
Parameters: OUT n: INTEGER
Description: Reads a single integer from the currently opened file.

ASK Method: ReadLine
Return Value: None
Parameters: OUT str: STRING
Description: Reads from current position to end of line NOT including the newline. If

line is longer than str, as much as will fit is read, and remainder of line is
truncated

ASK Method: ReadReal
Return Value: None
Parameters: OUT x: REAL
Description: Read a real number from the file.

ASK Method: ReadString
Return Value: None
Parameters: OUT str: STRING
Description: Reads up to the next space or tab.

ASK Method: SetHaltonErr
Return Value: None
Parameters: None
Description: Set haltOnErr field.

ASK Method: WriteBlock
Return Value: None
Parameters: IN buffer: ANYREC

IN size: INTEGER
IN blocknum: INTEGER

Description: Writes size bytes from the beginning of the record 'buffer' to the file
starting at file position size * blocknum bytes from the beginning of the
file.

ASK Method: WriteChar
Return Value: None
Parameters: IN ch: CHAR
Description: Writes a single character to the opened file.

ASK Method: WriteExp

StreamObj (cont.)

336

Return Value: None
Parameters: IN num: REAL

IN fieldwidth: INTEGER
IN precision: INTEGER

Description: Writes a real number, in exponential form (3.14 e 10) to the currently
opened file.

ASK Method: WriteHex
Return Value: None
Parameters: IN num: INTEGER

IN fieldwidth: INTEGER
Description: Writes the integer value num to the currently opened file as a hexadecimal

number.

ASK Method: WriteInt
Return Value: None
Parameters: IN num: INTEGER

IN fieldwidth: INTEGER
Description: Writes the integer value num to the currently opened file.

ASK Method: WriteLn
Return Value: None
Parameters: None
Description: Writes a single newline to the currently opened file.

ASK Method: WriteReal
Return Value: None
Parameters: IN num: REAL

IN fieldwidth: INTEGER
IN precision: INTEGER

Description: Writes a single real number in standard form (i.e., 123.889) to the file.
'precision' argument indicates the number of places to the right of the
decimal to write.

ASK Method: WriteString
Return Value: None
Parameters: IN str: STRING
Description: Writes a single string to the opened file.

TimedStatObj

337

Module: StatMod
Derived From:StatObj
Description: Adds fields and methods for statistical accumulation weighted with re-

spect to simulation time.

Field Type Private Defined By
LastTime REAL No TimedStatObj
FirstTime REAL No TimedStatObj

ASK Method Return Type Private Defined By
GetHistogram REAL No TimedStatObj
Mean REAL No TimedStatObj
MeanSquare REAL No TimedStatObj
Reset None No TimedStatObj
UpdateHistogram None Yes TimedStatObj

FIELDS and METHODS

Field: LastTime
Type: REAL
Description: Simulation time of last observation.

Field: FirstTime
Type: REAL
Description: Simulation time of first observation.

ASK Method: Mean
Return Value: REAL
Description: Compute the time-weighted mean.

ASK Method: MeanSquare
Return Value: REAL
Description: Returns the time-weighted mean square.

ASK Method: Reset
Return Value: None
Description: Reset statistics.

ASK Method: UpdateHistogram
Return Value: None
Parameters: IN value: REAL
Description: Use value to update a cell in the histogram array.

TimedStatObj (cont)

338

ASK Method: GetHistogram
Return Value: None
Parameters: IN value: REAL
Description: Get the monitor's histogram pointer.

TriggerObj

339

Module: SimMod

Derived From:None
Description: Provides asynchronous rendezvous capability for TELL methods.

ASK Method Return Type Private DefinedBy
Dump None No TriggerObj
InterruptTriggerNone No TriggerObj
NumWaiting None No TriggerObj
ObjInit None No TriggerObj
ObjTerminate None No TriggerObj
Release None No TriggerObj

TELL Method Return Type Private Defined By
Trigger None No TriggerObj

WAITFOR Method Return Type Private Defined By
Fire None No TriggerObj

FIELDS and METHODS

ASK Method: Dump
Return Value: None
Parameters: None
Description: Print out relevant information regarding state.

WAITFOR Method: Fire;
Return Value: None
Parameters: None
Description: Enables suspension of calling TELL method.

ASK Method: InterruptTrigger
Return Value: None
Parameters: None
Description: Interrupt all activities pending a TriggerObj.

ASK Method: NumWaiting
Return Value: INTEGER
Parameters: None
Description: Returns number of activities waiting to be triggered.

ASK Method: ObjInit
Return Value: None
Parameters: None
Description: Initializes internal data structures.

TriggerObj (cont)

340

ASK Method: ObjTerminate
Return Value: None
Parameters: None
Description: Cleans up internal data structures .

ASK Method: Release
Return Value: None
Parameters: None
Description: Synchronous release of suspended activities.

TELL Method: Trigger
Return Value: None
Parameters: None
Description: Asynchronous release of suspended activities.

341

Index

.

.(dot)
symbol in identifier................................32

.dot notation................................ 56

.mod
file extension................................ 94, 99

A

accumulative errors................................ 21
accuracy of representation.............................. 21
ACTID................................ 151, 154-155
ACTID variable 155
actions................................ 101
activities................................ 4, 141

concurrent................................ 141
interrupt or stop................................ 153, 155
order of 151, 155
scheduled................................ 142

activities scheduled for object............... 153, 155
activity................................ ..144, 153, 155, 183

synchronous................................ 148
activity record................................ 153, 155
ActivityList................................ 153, 155
ActivityName procedure....................... 151, 155
ActivityOwner procedure...................... 151, 155
ActivityTrace................................ 153
Actual parameter................................ 84
Add................................ 158-159
AddAfter................................ 159
AddAfter or AddBefore methods.................. 159
AddBefore................................ 159
allocate................................ 47
allocating objects................................ 109
allocation

dynamic 57
ancestor................................ 126, 183
AND................................ 32, 187
animation................................ 179
anonymous type................................ 63
ANSI................................ 22
antithetic variate 163
ANYOBJ............ 56, 71, 108-114, 136, 157, 160

reference to fields............................. 109, 114
ANYREC.......................... 55, 71, 108, 111, 114
approximation errors................................ 21, 74
arithmetic operator................................ 30
ARRAY................................ 43-56, 66, 188

allocation 59, 60
anonymous type................................ 63

bounds................................61
disposal60
dynamic................................45
dynamic sizing................................57
in Boolean expression................................ .59
initialization60
operations................................59
ragged60, 61
type declaration................................57

array bounds................................57
array elements

referencing59
array of fields45
ARRAY OF INTEGER................................ ...44
ARRAY OF STRING................................44
AS................................ 90, 188

resolve IMPORT conflict............................90
ASCII character set22
ASK...................... 108, 114, 117, 118, 124, 188

method within object................................ .117
ASK METHOD...................... 104-105, 114-116

proper or funtion type...............................116
ASK statememt115
ASK statement

effect on program execution......................115
assignment 48, 55, 64
assignment operator................................30
assignment statement................................73
asynchronous call................................116
automatic compilation................................ 5
automatic initialization............................. 38, 55

B

base type................................ . 56, 125, 126, 183
base types................................ 132, 136
BEGIN................................ 11, 189
begin end

Pascal70
behavior183
Beta distribution................................163
binary................................27
binary number system................................20
binary operator................................31, 32
binding

dynamic................................183
Binomial distribution................................163
BINTEGER................................ 165, 245
block 2, 9, 13, 14, 189
blocking mechanism

resource................................167

MODSIM Reference Manual

342

BOOLEAN............................. 19, 25, 31, 40, 47
Boolean expression........................40, 59, 74-81
Boolean literal 29
BOOLEAN type................................ 24
bounds................................ 56, 57

in array dimensions................................ 57
upper and lower in array............................ 58

bracket................................ 17
BREAL................................165, 245
btree 157
BTreeObj................................ 158
built-in procedure................................ ...32, 205
built-in simple data type................................ . 19
BY................................ 189

loop increment................................ 78

C

C language interface................................ 95, 99
C/C++ interface

STRING data type................................ 97
STRING data type passed in....................... 97

C/C++ source code
naming conventions................................ ... 95

CALL................................38, 85, 189
Cancel method................................ 168
case label................................ 76
case sensitive................................ 12
CASE statement................................ 76

type of expression in................................ .. 76
CHAR................................ 19, 22, 25, 40, 47
CHAR type................................ 22, 23
character................................ 22
character literal................................ 28
Chinese character set 22
ChooseNext method

SimControlObj................................ ..151, 155
class................................ 107, 114, 190

meta................................107, 114
Class variables................................107, 114
CLONE 50, 110, 114, 205
Close 175
code management................................ 5
code sample................................ 9
comment................................ 17
comments

nested 17
comparison of fields................................ 160
comparisons

value................................ 31
compilation

modular 1
separate................................ 89

compilation................................ 5
component................................ 183

concatenation................................ 40
concurrent................................ 143
concurrent activities................................ . 4, 141
conflicting field names

in inheritance 136
conflicting methods................................ 183
conformant type................................ 23
CONST................................ 36, 190
constant declaration35
Control character 28
control structure................................ 70
conversion

type................................ 71
copy................................ 50

dynamic data type................................50
cyclic relationships................................ ... 93, 99

D

data
orphaned................................ 51

data element................................ 43, 56
data hiding................................ 137
data sharing 137
data structure 43

aggregate................................ 52
ARRAY................................ 43
dynamic 46, 184
fixed................................ 46, 63
OBJECT................................ 43
RECORD................................ 43, 52
without identifier................................ 48

data structures
building complex................................ 62

data type................................ 20
BOOLEAN................................ 19, 24-25, 31
built-in simple................................ 19
CHAR................................ 19, 22, 23
copy of dynamic................................ 50
definition of................................ 20
dynamic 84, 183
dynamic vs. fixed................................54
enumeration 19
fixed................................ 47, 184
FIXED RECORD................................64
INTEGER 19, 21
MODSIM vs. C/C++................................ ..95
procedure 38
REAL................................ 19, 21
simple 19, 186
STRING................................ 19, 23
structured 19, 43, 186
subrange................................ 19, 25
user defined................................ 43
user-defined simple................................19

Index

343

data types
create new................................ 36
dynamic 47
replaceable................................ 111, 114

deallocate................................ 47
debugger................................ 5
DEC................................ 24, 206
decimal 27
decimal notation................................ 27
declaration 10, 35, 62, 104, 114

constant................................ 35, 36
method................................ 104, 114
object................................102, 104, 114
of method................................ 115
of procedures, object methods............... 93, 99
procedure 35, 38
syntax................................ 37
TYPE................................ 36
VAR................................ 35
variable 37

declaring an object type................................ 102
DecrementResourcesBy................................ 169
DEFINITION module........ 89-99, 104-105, 114

with IMPLEMENTATION module...... 92, 99
delayed method call................................ 116
Delete................................ 175
DeleteFile................................ 176, 245
delimiter 11, 15

comment 17
derived object................................ 129, 136
derived type................................ ...125, 126, 183
descendant 126
describe the nature of the data........................ 35
development environment................................ 5
dimension

array................................ 56
index................................ 56

discrete-event simulation.................. 4, 141, 142
DISPOSE........ 47, 51-55, 60, 101-114, 183, 206

of ANYOBJ................................ 110, 114
distribution................................ 163
DIV................................ 30, 31, 190
double precision................................ 21
DOWNTO................................ 190

loop increment 78
DResMod.mod................................ 167
DStatMod.mod................................. 165
duplicate symbols................................ 98, 99
DURATION................................ 145, 191
DURATION in WAIT statment............ 144, 145
dynamic array................................ 45
dynamic binding................................ 183
dynamic data structure............................. 46, 63
dynamic data structures................................ 157

dynamic data type.................. 47, 50, 54-55, 183
object................................101

dynamic memory management.......................47
dynamic string................................23

E

elapse simulation time................................ ..141
element................................43
ELSE................................ 74, 191
ELSIF................................ 74, 191
encapsulation............................ 1, 101, 137, 183
END WAIT................................ 144, 145
enumerated type................................24, 91
enumerated types

in OUTPUT statment................................173
enumeration 19, 25, 47, 183

anonymous type................................63
eof................................177
equal sign................................30
Erlang distribution................................163

runtime................................ 109, 114, 251
errors

approximation74
evaluating expressions................................39
evaluation

BOOLEAN................................32
event................................142
example

OUTPUT and INPUT...............................173
RandomObj................................163

execution order................................151, 155
ExistsFile176
EXIT................................ 77, 191
EXIT statement79, 81
Exponent................................27
Exponential distribution...............................163
exponential notation................................27
expression 35, 39, 40

BOOLEAN................................32, 40, 59
mathematical40

expressions
BOOLEAN................................32
evaluating................................39

F

FALSE................................ 24, 29, 192
FetchSeed................................ 165, 245
field.......................... 4, 43-45, 52, 101-124, 183

PRIVATE................................ . 107, 114, 137
field name52
fields

inherited125
FIFO................................ 157, 158

circumventing................................159

MODSIM Reference Manual

344

file................................ 94, 99
does it exist................................ 176
naming convention............................... 94, 99
repositioning within................................ . 175

file close................................ 175
file delete................................175, 176
file end flag................................ 177
file I/O

random access................................ 64
file name extension................................ .. 94, 99
file open................................ 175
file read flag 177
file size................................ 177
filename................................ 95, 99

constraints 95, 99
FileSize................................177, 245
Fire................................150, 155
First................................ 158
FIXED ARRAY...................... 46, 63, 66, 83, 84

assignment................................ 64
copy................................ 64
each dimension................................ 65
IN or INOUT................................ 65
ragged not allowed................................ 66

FIXED ARRAY type................................ 64
fixed data structure................................ .. 46, 63
fixed data type................. 47, 48, 54-55, 63, 184
FIXED RECORD................................46, 63, 66

declared as explicit type............................. 64
FIXED RECORD type................................ ... 64
FIXED RECORDS................................ 63
flag 24
floating point number................................ 21
FOR in WAIT statment.........................144, 145
FOR statement................................ 78, 79
FOREACH................................79, 192

with empty group................................ 80
Formal parameter 84
formal parameter qualifier 84
format string................................ 174
formatstring................................ 174
FORWARD................................87, 193
free formatted I/O................................ 173
function................................ 83

MODSIM................................ 32
function method............................ 104, 114, 184
Function procedure...........................83, 86, 184
function result type................................ 86

G

Gamma distribution................................ 163
generic type................................ 55, 56
GetResource................................ 167
GetResource method................................ 168

GetResource request method......................... 168
Give................................ 167, 168
Give method................................ 168
glossary................................ 183
GOTO statement................................ 73
Graphic Editor 179
Graphics 179
group111, 114, 184

LIFO and FIFO................................ 157
number times has changed........................ 160
queue................................ 157
QueueObj................................ 158
ranked................................ 157
removing from................................ 159
stack................................ 157
statistical................................ 160

group based on user defined Rank................ 158
group ordering 157
groups................................ 157
GrpMod module................................ ... 157, 160

H

hanging reference................................ 52
help system................................ 5
hexadecimal................................ 27
hexadecimal address of object....................... 173
Hierarchical type................................ 102
hierarchy................................ 101

object................................ 126
HIGH................................ 61, 206
histogram................................ 245

for ResourceObj................................ 170

I

I/O 173
Icon................................ 179
identifier 11, 20, 24, 47, 106, 114

length................................ 98-99
IF................................ 16, 193
IF statement 69, 73, 76

multiple choice................................ 73
IMPLEMENTATION module.... 89-99, 104-114
import 89, 94, 99, 105, 114, 193

conflict................................ 90
enumerated type................................ 91

IMPORT statement................................ 90
IN65, 84, 147, 194
IN parameter................................ 64, 147
INC................................ 24, 206
Includes 158
increment of loop variable............................. 79
IncrementResourcesBy................................ . 169
independent compilation................................ ..1
index................................ 43, 44, 56

Index

345

array................................ 44
inherit 128
Inheritance................................101, 125, 184

base type................................ 125
conflicting field names............................. 136
derived type................................ 125
multiple................................125, 132, 136

inherited........................ 125, 130, 135, 136, 194
class variables and methods.............. 107, 114
ObjInit................................ 131, 136
order of method execution................ 131, 136

inherited behaviors............................... 130, 136
inherited call 131, 136

qualified................................ 185
initialization................................ ... 38, 135, 136

automatic 38
BOOLEAN................................ 38
CHAR................................ 38
enumeration variable................................ ..38
INTEGER 38
ordinal types................................ 38
REAL................................ 38
STRING................................ 38

initialize................................ 60
initialize modules................................ 89
INOUT................. 84, 97-99, 116, 147, 194, 245
INPUT................................ 3, 83, 173, 207, 245
input/output

IOMod module................................ 173
StreamObj................................ 173

instance................................ 143, 184
INTEGER.. 2, 3, 10, 14-31, 38-50, 59-66, 96-99
integer literal................................ 26
INTEGER type................................ 21
interrupt 141, 153-155, 167-168, 194, 245
InterruptTrigger method

TriggerObj 150, 155
invoke................................ 184
invoking a method................................ 115
invoking a procedure................................85
IOMod module................................ 173
ioResult................................ 177
ISO 646 character set................................22
iterate through a group................................ . 157

J

Japanese character set22

K

kanji................................ 22
katakana................................ 22
key

STRING................................ 158
Key method................................ 158

L

Last158
layout 9
length of identifier...............................13, 98-99
Lexical components................................ 9
library module................................ 5
library modules................................89
LIFO157-158
link

limits 98-99
link records46
linked list46, 54
list

linked54
literal................................11, 26

boolean................................29
character................................28
decimal................................27
enumerated type................................29
hexadecimal................................27
integer26
real27
string28

literal constant................................20
locality 9
logical operator................................32
LogNormal distribution................................163
long integer................................21
loop increment

BY................................78
DOWNTO................................78
TO................................78

loop increments................................78
loop iteration................................80

REVERSED................................80
loop statement................................77, 81
loop variable................................78

increment79
LOW................................ 61, 207

M

MAIN MODULE.................. 9, 89, 92, 104, 114
MAX................................ 12, 22, 24, 207
MAXOF................................83, 207
MaxResources................................169
Mean................................160
member184
memory

running out of................................51
memory leak................................51
memory locations................................55
memory management................................47

dynamic................................47

MODSIM Reference Manual

346

message................................115, 184
Message passing................................ 101
meta class107, 114
method................1, 101, 102, 115, 183-184, 196

asynchronous................................145, 186
class................................107, 114
declaration................................104, 114
function104, 114, 184
INHERITED................................130, 136
invoking................................ 115
not returning a result.........................104, 114
OVERRIDE.............. 107, 114, 125, 129, 136
parameters104, 114
pause to wait for condition................150, 155
PRIVATE................................ .107, 114, 137
proper 104, 114, 145, 185
returning a result...............................104, 114
TELL................................ 186
time elapsing................................ 186

METHOD declaration........... 102, 104, 114, 115
METHOD heading................................102, 114
MIN................................22, 24, 207
MOD................................ 30-31, 196
ModInit89, 94, 99

order of execution................................ 94, 99
modular structure................................ 89
module................................1, 5, 89, 196
modulus operator................................ 30, 31
MONITORED INTEGER field.................... 161
MONITORING................................120, 124
Multi-dimension array................................ ... 58
multiple choice IF statement.......................... 73
multiple inheritance...................... 125, 132, 136
Multiple Process Activities........................... 151

N

naming convention................................ .. 94, 99
naming conventions

C source code................................ 95, 99
nested comment................................ 17
NEW47, 51-60, 101-110, 114, 183, 196, 208
new capabilities................................ 101
new data types................................ 36
newline character................................ 173
Next................................158, 161
NILARRAY............................ 60, 105, 114, 196
NILOBJ............56, 105-106, 114, 159, 161, 196
NILREC...................... 52, 55-56, 105, 114, 197
NONMODSIM................................ . 95-99, 197
Normal distribution................................ 163
NOT32, 197
notation 56
null string 38
number

random................................ 163
number field................................ 161
number times group has changed................. 160
numerical accuracy................................ 21

O

ObjClone................................ 110, 114
override................................ 110, 114

object............. 1, 4, 43-51, 59, 62, 101, 184, 197
activity................................ 144
array of................................ 101
CLONE................................ 110, 114
declaration 104, 114
declaration/initialization................... 105, 114
derived................................ 129, 136
DISPOSE................................ 110, 114
dynamic creation.............................. 105, 114
Encapsulation of data & code................... 101
field................................ 101
field with reference variable............. 107, 114
fields................................ 118, 124
hierarchy................................ 101
in groups................................ 157
inheritance 125
inserting first in group.............................. 159
inserting in group............................. 158, 159
instance................................102, 106, 114
interaction................................ 143
METHOD declaration...............102, 104, 114
METHOD heading........................... 102, 114
modification of fields........................ 118, 124
NEW................................ 106, 114
new data type capabilities......................... 101
ObjClone................................ 110, 114
ObjInit................................110, 114, 124
ObjInit in multiple inheritance......... 135, 136
ObjTerminate................................ ... 110, 114
Polymorphism...........................101, 130, 136
properties 101
PROTO................................ 157
reference as SELF................................ 118
removing from group................................ 159
routines/methods................................ 101
statistical data collection........................... 160
statistical monitor................................ 165
type declaration.........................102, 105, 114

object declaration................................ . 104, 114
object hierarchy................................ 126
object instance...............................102, 109, 114

concurrent................................ 143
OBJECT type................................ 101, 183
object type declaration...................102, 104, 114
objects queueing................................ 157
ObjInit110, 114, 131, 136

Index

347

of RandomObj................................ 163
override................................ 131, 136

ObjInit method................................ 135, 136
ObjPrint 173
ObjTerminate................................ 110, 114
ON INTERRUPT................................ . 144, 148
ON INTERRUPT clause................153, 155, 168
ON INTERRUPT in WAIT statement.. 144, 145
Open file................................ 175
operand................................ 31, 175, 183
operation................................ 183
operations

array................................ 59
operator................................ 11, 29, 30

arithmetic................................ 30
assignment................................ 30
binary................................ 30, 31, 32
logical 32
modulus30-31
precedence................................ 39
relational................................ 31
unary................................ 30-32

operator precedence................................ 39
OR................................ 32, 197
order 151, 155
ordering 10

of groups................................ 157
ordinal type................................ .19, 25, 56, 184
orphaned data................................ 51
OTHERWISE................................ 76, 198
OUT................................84, 116, 147, 198
OUT parameter 97, 99
OUTPUT..................... 3, 83, 173, 174, 209, 245
OUTPUT procedure................................85
OUTPUTing Objects................................ 173
OVERRIDE.......... 107, 114, 125, 129, 136, 198
override ObjInit................................ 131, 136

P

parameter
actual 84
copy of................................ 84
formal 84
formal qualified................................ 84
method................................ 104, 114
passing to C................................ 97, 99

parameter list 83
empty................................ 88

parameters
OUT or INOUT................................ 85

parentheses 39
pass by reference................................ 84, 185
pass by value................................ 185
pause to wait for condition................... 150, 155

pending list........................... 142, 153, 155, 245
PendingResources................................169
pi................................ 90, 190, 245
pointer................................48

lost51
Poisson distribution................................163
polymorphism....................... 1, 4, 101, 130, 136
precedence................................35
precedence rule................................39
Presentation Graphics................................ ...179
Prev................................ 158, 161
PRINT................................ 174, 198, 209
priority of resource request...........................168
PriorityGive................................167-168
PriorityGive method................................168
PRIVATE............................. 107, 114, 137, 198
private property................................185
procedure................................ 55, 83, 86, 198

executed before program.......................94, 99
function................................ 83, 86, 184
ModInit94, 99
MODSIM................................32
proper................................83
recursive................................83
used before defined................................87

procedure block................................86
procedure declaration............................... 35, 38
PROCEDURE heading................................ ...86
procedure type................................38
procedures................................85, 245

built-in................................85
user defined................................38, 85

Process................................ 2, 4, 142-44, 185
program execution

asynchronous................................116-117
program structure................................ 9
project management................................ 5
proper method.............................. 104, 114, 185
proper methods................................145
Proper procedure................................83, 185
properties 101, 185
PROTO OBJECT................................ .114, 167

replaceable types................................113-114
pseudo-random number................................163
public property................................185

Q

queue................................157
QueueObj................................ 158, 162

R

ragged array60, 61
RandMod module................................163
Random................................ 165, 245

MODSIM Reference Manual

348

random number 163
pseudo................................ 163
reproducible................................ 164

random number generator
non object-oriented................................ ... 165
period of 164

Random variable................................ 163
RandomObj................................ 163
Rank method................................ 158-160
ranked 157
RankedObj................................ 158-159
read character from console..................177, 245
ReadChar................................ 176
ReadInt................................ 176
ReadKey................................177, 245
ReadLine................................ 176
ReadReal................................ 176
ReadString................................ 176
REAL.............. 19-21, 30, 38, 40, 47, 59, 63, 74
real number 20-21, 27
REAL type................................ 21
REAL values

exact 74
RECORD....................... 43-52, 59, 66, 185, 199

dynamic................................ 46
RECORD type declaration......................52, 102
recursive procedure................................ 83
recursive TERMINATE........................154, 155
reference

hanging................................ 52
pass by................................84, 185

reference type................................ 105, 114, 185
reference value................................106, 114
reference variable.. 48-55, 84, 102-114, 138, 185
relational operator................................ 31
Remove................................ 158
Remove method................................ 159
RemoveThis................................ 158
RemoveThis method................................ 158
rename................................ 90
REPEAT statement................................ 78
Replaceable types...........................111-112, 114
Reserved word................................12, 187
resource................................ 167

Create method................................ 169
histogram set up................................ 170
preemption................................ 168
release................................ 167
revoking request for................................ . 169
transfer ownership 169

resource acquisition................................ 167
resource blocking mechanism...................... 167
resource request

priority of................................ 168

resource return 169
ResourceObj................................ 167-170

SetAllocStats................................ 170
ResourceObj field MaxResources.................. 169
ResourceObj field PendingResources............ 169
ResourceObj field Resources......................... 169
ResourceObj SetPendStats............................ 170
ResourceObj statistics............................ 167-170
ResourceObj TakeBack method.................... 169
resources

changing set of................................ 169
pending requests................................ 169

resources available................................ 169
Resources field................................ 169
resources requested................................ 167
RETURN................................ 86, 199
RETURN statement................................ .. 81, 86
REVERSED................................ 80, 199
round off errors................................ 21
routine 83, 184, 185
runtime error

resource request................................ 167
resource return 169
transfer of resource ownership.................. 169

S

sample MODSIM code................................9
sample of MODSIM code................................ .2
scalar type................................ 19, 186
scheduled activities................................ 142
scientific notation................................ 27
scope...................... 9, 13-14, 102, 105, 114, 137
scope of identifier................................ 15
scope of reference................................ . 105, 114
seed................................ 163, 245
SELF................................118, 186, 200
semicolon................................ 16
Separate compilation................................1, 5
separator 11, 16
sequence of execution................................73
SetAllocHistogram................................ 170
SetAllocStats................................ 170
SetPendingHistogram................................ ... 170
SetPendStats

of ResourceObj................................ 170
SetSeed................................ 165
SetTieBreaking method

SimControlObj................................ . 151, 155
SetTimeAdvance

SimControlObj................................ . 153, 155
shared variable................................ 186
short-circuit evaluation............................. 32, 40
SimControlObj................................ 151, 155
SIMDRAW................................ 5

Index

349

simple data type............................... 19, 43, 186
SIMSCRIPT II.5................................ 4, 164
SimTime()................................141, 155, 251
simulation time......................... 4, 141-144, 251

elapsing..............................141-147, 167, 183
notification of advance..................... 151, 155
passage of................................ 142
passing................................ 116
unit conversions................................ 141
units of................................ 141
update notification............................ 153, 155

SINTEGER................................ 165, 245
source code................................ 95, 99
source file................................ 94, 99
SPRINT................................174, 201, 210
SREAL 165, 245
stack................................ 157
StackObj................................ 158, 159
StackObj type................................ 159
standard input. 173
standard output 173
standard procedure................................ 12
state 101
Statement................................ 69
statement sequence................................ 70
statistical data 160
statistical distribution................................ ... 163
statistical groups 161
statistical monitor objects............................. 165
statistics

on ResourceObj................................ 167, 170
pre-defined types of variables................... 165

StatQueueObj................................ 160, 339
StatRankedObj................................ 160
StatStackObj................................ 160
StdDev................................ 160
stream

random number................................ 163
StreamObj................................173, 175, 338
StreamObj for input/output........................... 173
STRING................................ 19, 22, 40, 47

characteristics of................................ 23
generation of format................................ . 174

STRING key................................ 158
String literal................................ 28
STRING type................................ 23, 97, 99
strongly typed............................ 3, 9, 30-31, 186
structured data type.......................... 19, 43, 186
subblock................................ 87
subprogram................................ 83
subrange................................ ..19, 25, 56, 58, 70
subrange type................................ 25
sub-routine................................ 185
subroutine................................ 83

substitute................................113-114
substitution................................111-114
switch................................24
symbols................................15

T

TakeBack method................................ .167, 169
TELL 117, 141-146, 201

method within object................................ .117
TELL METHOD.... 104, 114-116, 154-155, 186
TERMINATE........................ 149, 154-155, 201
TERMINATE statement................................ .81
time................................141

units of141
TimeAdvance method

SimControlObj................................ .153, 155
TimedGive method............................... 167, 168

for resource request................................ ...168
time-elapsing method................................ ...186
TO................................ 117, 201

loop increment................................78
token 9, 11, 16
Transfer................................168
Transfer method................................167
Triangular distribution163
Trigger 150, 155
Trigger Object................................150, 155
TriggerObj................................ 150, 155
TRUE................................ 24, 29, 202
TSINTEGER................................ 165, 245
TSREAL 165, 245
type2, 20, 36, 62, 95, 99, 202

ordinal................................184
reference................................185
scalar................................186
underlying................................186

type casting................................72
type checking................................ .. 55, 109, 114

circumvent with ANYOBJ................ 109, 114
type compatibility................................70
type conversion................................3, 71
TYPE declaration................................36

anonymous................................63
array57
PROTO OBJECT.............................. 111, 114
RECORD................................52, 102

U

unary operator................................32
undefined52
underlying type................................126, 186
UniformInt distribution................................ .163
UniformReal distribution..............................163
units of time................................141

MODSIM Reference Manual

350

UNTIL................................78, 202
update simulation time..........................153, 155
user-defined simple data type......................... 19
user-defined type................................ 24

V

VAL24, 211
pass by................................ 185

value comparison................................ 31
VAR................................62, 202
variable................................20, 105, 114

class................................107, 114
global in module...............................105, 114
local to method................................ .105, 114
reference..........48, 52, 84, 102, 105, 114, 185
refers to DISPOSEd data structure............. 51
shared 186

Variable declaration................................ 37
Variance 161
visibility................................ 9

W

WAIT........................ 4, 144, 154-155, 186, 202
WAIT DURATION................................ 145

WAIT FOR................................ ... 148-155, 167
TERMINATE................................ ... 149, 155

WAIT FOR statement................................ .. 116
WAIT statement................................ 81

syntax................................ 144
WAIT statements

multiple................................ 154-155
WAITFOR................................ 141-144, 203
WAITFOR METHOD... 114-116, 147, 155, 186
Weibull distribution................................ 163
WHEN................................ 76, 203
WHILE statement................................ 77
whole number................................ 21
Write line................................ 176
WriteChar 176
WriteHex 176
WriteInt 176
WriteLn 176
WriteReal................................ 176
WriteString 176
WtdMean................................ 161
WtdStdDev................................ 161
WtdVariance................................ 161

