MODSIM I1I°

The Language for Object-Oriented
Programming

Tutoria

Products Company

3333 North Torey Pines Cout, La Jolla Cdiformia 92037 « (619) 8245200 Fax(619) 457-1184
Watchmoor Pak, Riversde Way, Camberley, Surey GU15 3YL, UK » 1276 671 671+ Fax 1276 670 677
1600 Wilsn Bivd, 13h Foor, Ardingion, Virginia 22209 « (703) 8752000 Fax (708) 8752004

MODSIM Tutorial

Contents

Copyright O 1996 CACI Products Co.
December 1996

All rights reserved. No part of this publication may be reproduced by any means without written permission from
CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Watchmoor Park

La Jolla, California 92037 Riverside Way

Phone: (619) 824.5200 Camberley, Surrey

Fax: (619) 457-1184 GU153YL, UK

Phone: 1276 671 671
Fax: 1276 670677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the
responsibility for any consequences resulting from the use thereof. The information contained herein is subject to
change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT I1.5 and SIMGRAPHICS |1 are registered trademarks of CACI Products Company.

Contents

N 4 N a
SECTION I. INTRODUCTIONui ittt et e e e e e e 1
1. OVERVIEW OF MODSIM I ..cuunieeeee ettt e e e e e ee e e e eaa s 3
1.1 MODSIM 11l AS A PROGRAMMING LANGUAGEuiiiiiiiiiitiiiiie e e eeeeiniis s e e e e eeerris e e e e eannn s 3
1.2 CONTROL STRUCTURES IN MODSIM HL....ccoiiiiiiiiiicccee e 5
1.3 INPUT AND OUTPUT IN MODSIM T ..eeiiiiiiiiiiiiiii e 7
1.4 OBJECT-ORIENTED PROGRAMMINGuuiiiiitiiiittiiiseeeeeeeasriis s e e e e e e essass e e e e e eear b e e e e e e eennaa s 9
2. BACKGROUNDttt e et e ettt e ettt e e e et e e e e et e e e eea e e aeenn e eaeenanns 11
2.1 DATA STRUCTURES IN CONTEMPORARY LANGUAGEScuuuiiiiiiiiiiiiiiiiie et 11
2.2 MODSIM 'S MODULAR STRUCTUREcttttttiiiiieeeeeeeeeitii e e s s eeesnsia s s e e s eeesaaii s e e e s e eennnaa s 12
2.3 WHAT IS COMPUTER SIMULATION? L..oiiiiitiiiititiis ettt e e et e e e e e e eeanae s 14
2.4 PROCESS-ORIENTED VS EVENT-ORIENTED SIMULATION.uuiiiiiiiiiitiiiie e e e eenris e e e e eeennni s 15
SECTION Il. OBJECT-ORIENTED LANGUAGE FEATURES..........cooiiiiiiiieeei, 17
3. OBJECT ORIENTED PROGRAMMING ...t 19
3.1 WHAT IS OBJECT-ORIENTED PROGRAMMING?iiiiiiiiiiiiiiie ettt 20
3.2 MESSAGES AND BEHAVIORScciiiiiiiiiiieii ittt ettt e e e e e e n s 20
.3 INHERITANCE ...ieiitietttti e e ettt e e ettt e e e e e e et e e e e et e e e e e et e e e e e e e e e et e e s a b n e e e e e e e eeanaaa e es 21
3.4 DECLARING AN OBJIECT TYPE...iittttuiiiiieiitiieiitie e e sttt e e e e e e e e e e e e e e e e e e annae s 22
3.5 METHODS OF AN OBJIECT ceittitttttiiieeeee e ettt e e e e e et s e e e e e et e e e e e e e e e e e st e e e e e e e eennan e eeas 22
3.6 REFERENCE VARIABLESiiiiiittittii e e e ettt e e e et ettt e e e e e e et e s e e e e e e e e s b e e e e e e e e e neaa e as 23
3.7 ANYOBJ, ANYREC AND ANYARRAY ..ottt 25
3.8 ALLOCATING, DEALLOCATING AND INITIALIZING OBJIECTS ...uuiiieeiiiiiiiiiiiee e eeeeeiris e e e s 25
3.9 CoPYING OBJECTS WITH THE CLONE PROCEDUREcuvuuiiiiiiiiiiiiiiiii e 26
4 METHODD S ...ttt e e et e e et e et e e e e e et e e e e e et eb e e eea e aeraanns 29
4.1 REFERENCING FIELDSciiiiitiitiiii ettt ettt e e et e e e e e e e e esnaa s e e e eeeeees 30
4.2 DEFINING IMETHODS. ...t eeittettttiie ettt e ettt e e e e et e et s e e e e e et e e s s e e e e e e e e eeenbaneeeeeeenes 31
4.3 IMPLEMENTING METHODScettttiiiieeeiteietiiie e e e st s e e e e et s s e e et e s s b s e e e e e e eeanaba e e e eeeeens 31
4.4 USING METHODS ..ttt ettt e ettt e e e e e et e e e e e e et e e e a e e e e e e e e eanna s e e e eeeeens 33
4.5 FORMAL PARAMETER QUALIFIERS: IN, OUT, INOUT ..ot 34
S INHERITANCE ..ot e et e e e et e e e et b e e e et e e e eeta e eaeenanns 35
5.1 DECLARING AN INHERITANCEccttttuuieeetttttttiiae e e sseesssni s s e e e e e eeaeaa s e e e e e essa b e e e e e e e eennaaaeeas 35
5.2 EXTENDING OBJIECT PROPERTIES. . ..uiiiiiiiiiiiiiiis ettt e e e e e eaaaa s 36

MODSIM Tutorial

5.3 OVERRIDING METHODS.ctttuuiiiieeettieiiii e ettt e e e e e e e e e e et e s a b e e e e e e e e e e aae e e e e s e ennnaaaas 37
5.4 EXTENDING INHERITED BEHAVIORSotttiiiiiiiiiiiiiiiiiie ettt e e 37
5.5 ASSIGNMENT COMPATIBILITY ..uiieetitettttiiis e e e eeeeeetiss s e e e e e eessss s s e e e e e e esaae s e e e e e e e eassae e e e eseeenannaas 38
6. MULTIPLE INHERITANGCE ...ttt ettt e et e e e eaa e e e eaaaaaes 41
6.1 DECLARING MULTIPLE BASE TYPES....ctttuiiiieiiiiiiiiiiie ettt ettt e e e e e e ennnneas 41
6.2 CONFLICTING FIELDS .. .ciiiiittiiiie ettt ettt s e e e e et e e e e e e e e e e e e e e e e eennaeeas 41
6.3 RESOLVING CONFLICTING METHODSttuuiiiieiiiiieiiiiise e e e ettt e e et e e e e e eanaan e e e e e e e ennnneas 42
6.4 COMBINING MULTIPLE METHODS.ctittitiiiiieeeeeeciti ettt e et e e e e e e e e e e e e enanneas 44
6.5 CONFLICTING FIELD AND METHOD NAMESccitiiitiiiiieeeeeeieeiiieis e e eeerri e e e e e e e s e eennneeas 44
. DATA HIDING ...t e et e e e et e e e e et e e e e et e e e eea e e e eeba e eaenannaaes 45
7.1 DEFINITION IMODULEScttttttiiieeeeeeettttis e e ettt e e e e et e e e e e e e et e s b e e e e e e e e nssab e e e e e e eennaeeas 45
7.2 PRIVATE FIELDS AND METHODSoitiititiiiiee et eeitiii e ettt e e e e et st e e e e e et eas e e e e e e e ennnneas 46
SECTION Ill. SIMULATING WITH MODSIM I ...cooiiiii e 47
8. OBJECT-ORIENTED SIMULATION. ... ittt ettt e e e e et eaeeaa e aaes 49
8.1 SIMULATION TIME ...iieeiteetttttie ettt e e ettt e e e e e e et e b e e e e e e et eeaa e e e e e e eennnaaas 49
8.2 ELAPSING SIMULATION TIME IN TELL METHODSuuuiiiiiiiiiiiiiiie et 50
8.3 DELAYED METHOD CALLS ittt ittt ettt e e et e e e e e e e e e e e e e e e e e nnneaas 51
9. OBJIECT INTERAGCTIONttt e e e e et e e e e et e e e eta e e e eaa e e eennaaaes 53
9.1 CONCURRENCY INMODSIM ...t 53
9.2 SYNCHRONIZED ACTIVITIES 11tuuiiteetttettitiaee e e e e et eetttss e e e e e e eee s s e e e e et ee s s e e e e e e e easaaea e e e e e e eennneans 53
9.3 ARBITRARY SYNCHRONIZATION WITH TRIGGER OBJECTS ...ccevvtiiiiieeeiieiiniiiie e e e e eesnniis e e e e eennnnens 55
9.4 MULTIPLE PROCESS ACTIVITIES ... ciitettitiiiseeeee ettt e ettt e e e e e et e st e e e e e e e eanaa e e e e e e e ennnneas 55
O.5 INTERRUPTING ACTIVITIES ..tttuuiiteeeteettttiie e e e e e ettt e e e et s s e e e e e et e b a b s e e e e e e e e e s aab e e e e e e e ennneaas 56
9.6 HOW OBJECTS AND THEIR ACTIVITIES INTERACT ...tttiiiiiieeeeieeiiiie et e e e e 56
10. GROUPING OBUJECTS ...ttt ettt e e et e e e et e e e et e e e e eaa e e e eeaaaeeenannns 59
10.1 ASSOCIATING OBJIECTS...ciitttttuiiiieeeettietii e e et e ee st e e e e e et e e e e e e e et e e s a e e e e e e e e eeasaea e e eaeenns 59
F0.2 GROUPS ...ttt ettt ettt et e et et e et e e e ettt a e e e et e e e e et e e e e eee 59
10.3 THE QUEUE GROUP ...cuuiiitiiiit ettt e et e et e et e et e et e et e e et e e et e e et s e e aa e e ea e e aa e e eaeaeaneeeaneeanaeannaes 59
10.4 THE STACK GROUPiiiiiiititiie ettt e e e e et e s e e e e e e et e s b b e e e e e e et easasaaeeeeeeens 60
10.5 THE RANKED GROUP......ciiiitittiiieeeee ettt e ettt e e e e e et at s e e e e e e et e b a b e e e e e e e eeannee s neeeeaeeens 60
10.6 THE BTREE GROUP.ciiiiiitittiiie e e ettt ettt e e e ettt s e e e e e e et e e b e e e e e e e e easa s aeeeeaeeens 61
10.7 ITERATING THROUGH A GROUP.......ciiiiiiiiiiiiii e e ettt e ettt s e e e et e et e e e e e e e ean e e e e eeeees 61
11. A SIMPLE AIRPORT MODEL ...ttt e e e et e e e e e e eeeanas 63
11.1 WHY MODEL AN AIRPORT 2. c.ttttiiit e ettt ettt e e ettt e e e e et et s e e e et e s bbb e e e e e e e eennaaa e e e eeeeens 63
11.2 THE SOURCE CODE......ciitititittiiieiee ettt e e e ettt e e e e e et et a e e e e e e et e s b b e e e e e e e e easaaaeeeeeeeens 63
11.3 RESULTS OF THE IMODELcctttuuuieeeiiiiiitiie s e e e ettt e e e e et et e e e s e e e s b e e e e e e e eesnaea e e e e e eenns 71

Contents

11.4 DISSECTION OF THE SIMPLE IMODELiiiiiiiiiiiiiiii e ee ettt e e 72
SECTION IV. ANIMATED GRAPHICS - SIMGRAPHICS Il ... 73
12, SIMGRAPHICS 6.t e et e e et e e e et e e e eaa e e eeaaaaaenean 77
12.1 BACKGROUNDciiiiiitittis e e e e e eetett e e e e e et et et e e e e e et e e e e e e e e e e et e s s e e e e e e e et e e aabn e e e e e e eennaae e es 77
12.2 WHAT IS SIMGRAPHICS 1172 ..t e e e e e e eeean 77
12.3 SIMGRAPHICS 1l OBIECT TYPES ...uiiiiiiiiititiiie ettt 77
12.4 EXAMPLE: DRAWING AN IMAGE IN AWINDOWoiiiiiiiiiiiiiiiie ettt 79
12.5 SIMDRAW - THE GRAPHICS EDITORcoiiiiiiiiiiiii et 80
12.6 CONSTRUCTING A USER INTERFACEcctitttttiiiieeeeeeeetiin e e e e e e eessiis e e e e e s eesaai e e e e e e eennaa s 82
A o = i 1 = PP P PP 84
13. AN ANIMATED AIRPORT MODEL......uuii e eees 87
13.1 THE MODEL DESIGN PROCESS.....ctuuuiiiieiiiiiiiiiiie ettt e e e e s 88
L O S S A R Y et e et e e e et et e e e er e e eeaa e aeenanas 91
LT = 93

MODSIM Tutorial

Preface

This Document

This manual is intended to help teach the MODSIM [11 language to any simulation analyst
with prior programming experience. The manua gives an overview of the language sy n-
tax, its object-oriented, modular, simulation and graphical features.

MODSIM Il Documentation

There are four documents pertaining tdMODSIM I11:

MODSIM 111 Reference Manual - The language reference. Contains information
about the syntax and structure of MODSIM 111 as a programming language. Also
covers object-oriented programming, simulation, graphics and 1/0O

MODSIM |11 Tutorial - This document.

MODSIM 111 User's Manual - It contains information about: mscomp, the com-
pilation manager; MODBENCH, the development environment under Windows,
MODSIM |11 compiler options;and debugging MODSIM.

SIMGRAPHICS Il User's Manual for MODSIM 111 - This manual contains in-
formation about SIMGRAPHICS II, the integrated graphics development and
animation environment for MODSIM II1.

Free Trial & Training

MODSIM lIl is available exclusvely from CACI Products Company. MODSIM |1l can
be sent to your organization for afreetrial. We provide everything needed for a complete
evaluation on your computer: software, documentation, sample models, and immediate
support when you need it.

Training coursesin MODSIM 1l are scheduled on a recurring basis in the following loca-
tions:

La Jolla, California
Washington, D.C.
L ondon, United Kingdom

For information on free trials or training, please contact the following:

In the U.S.and Pacific Rim In Europe:
CACI Products Company CACI Products Division
3333 N. Torrey Pines Ct. Watchmoor Park, Riverside Way
LaJolla, CA 92037 Camberley, Surrey
(619) 824.5200 United Kingdom
Fax (619) 457-1184 1276 671 671

Fax 0276 670 677

MODSIM Tutorial

Sectionl. Introduction

MODSIM Tutorial

1. Overview of MODSIM lII

The Modular Simulation language, MODSIM 11, is a genera-purpose, modular, block
structured language which provides support for object-oriented programming, discrete
event smulation and animated graphics. It isintended to be used for building large pro c-
ess-based discrete event simulation models through modular and object-oriented develo p-
ment techniques.

1.1 MODSIM Il as a Programming Language

MODSIM's syntax and control mechanisms are similar to those of Modula-2, Pascal and
Ada, so a smple MODSIM program which does not use the object or smulation exte n-
sions will look very much like aModula-2, Pascal or Ada program.

For instance, the short program below computes the average of a sequence of numbers
which have been input

MAI N MODULE Sanpl el;

VAR
sum nunber : REAL;
count . | NTEGER;
BEG N

OQUTPUT(" Thi s program conput es the average of a sequence of");
OQUTPUT(" posi tive nunbers. Enter a sequence of nunbers...");
OUTPUT(" Term nate the sequence with a negative nunber:");
I NPUT(nunber) ;
VWHI LE nunmber >= 0.0

INC(count); { increnment the count }

sum : = sum + nunber;
I NPUT(nunber) ;

END WHI LE;

IF count > O
QUTPUT(count, " nunbers were entered");
QUTPUT(" Average is ", sum/ FLOAT(count));

ELSE
QUTPUT(" Not hi ng was entered.");

END | F;

END MODULE.
Note: MODSIM IlI, like Modula-2, requires reserved words such as BEG N, and

OUTPUT etc. to be capitalized. Also like Modula-2 and C, MODSIM is case sensitive.
Thus, the variable namenunber isdifferent fromNUVBER and Nunber .

The two most commonly-used areas wheré/1ODSIM 11 differs from Modula-2 are:
Block structure the END is always followed by akeyword. e.g.

IF ¥ END I F,
FOR Y4 END FOR, etc.

MODSIM Tutorial

Parameter declarations: the syntax for declaring variable parameters is comparable
to Ada, i.e. thedirection in which parameters are passed is explicitly stated:
I'N, OUT, | NCQUT.

MODSIM I11 supports most Modula-2 features such as modules, strong typing, data hi d-
ing, records, enumerated types, symbolic constants and Modula-2 style control structures.

MODSIM 1l supports the standard simple and structured data types but it aso includes
dynamic data types and monitored types which are used to collect statistics

Scalar types: | NTEGER, REAL, CHAR, BOOLEAN

String type: A full implementation of dynamic strings which manage their
own memory

Dynamic Structured typs: ARRAY, RECORD.
Fixed Structured typs. FI XED ARRAY, FlI XED RECORD.

Monitored Type: A variable to which a statistica monitoring probe is at-
tached. Whenever an assignment is made to the variable or the variable is ref-
erenced, dstatistics can be gathered or user-specified procedures can be
automatically invoked.

Enumerated types. Types in which the allowable values are explicitly enu-
merated in aTYPE declaration.

Subrange types: Subranges of the existing scalar types and of enumerated
types.
The MODSIM | NTEGER valueis 32 bitslong. The MODSIM REAL vaue is 64 bits long.
These are equivaent, respectively, to the C long int and double on a 32-bit architecture.

No “smaler” numeric types like the C short or float are supported. MODSIM supports
| EEE floating-point arithmetic on nachines which provide this capability.

MODSIM is amodular language. This means that it provides forma support for import-
ing definitions and declarations from other modules. These are checked for consistency
when individual modules are compiled. There will be no surprises at link time. Non-
modular languages such asC and C++ do not provide this service.

MODSIM itself makes extensive use of this facility. The core of the language is quite
small. Most support facilities for 1/0, smulation and animated graphics are made available
from standard modules.

The code example above is a smple case in which the entire MODSIM program is co n-
tained in one main program module.

A magjor innovation in MODSIM 11 is the provision of automated program building. This
means that the user does not have to write “make” scripts to tell the compiler how to
compile and link a MODSIM I11 program. Given the name of amain module, MODSIM’ s
compiler knows how to compile and link all relevant parts of the program. It knows
which individual modules need to be compiled and which are already compiled. It aso
keeps track of inter-module dependencies.

Chapter 1: Overview

Thus there are two major types of modulesin MODSIM:
Main Modules
LibraryM odules

Main modules may be compiled and executed on their own. They may | MPORT constants,
types, variables and procedures from library modules, but nothing can be | MPORTed from
amain module. A simple MODSIM program can consist solely of a main module.

Library modules are compiled separately. They contain declarations of types, constants,
variables, procedures and the actual implementation code for procedures and methods for
objects. Each library module typically contains a set of related procedures and objects

There are two parts to a Library Module: the DEFINITION MODULE and the
| MPLEMENTATI ON MODULE. The DEFI NI TION MODULE contains descriptions of
those aspects of the library module which can be imported by other modules. The
| MPLEMENTATI ON MODULE contains the code which implements the functionality of the
library, but which doeshot have to be visible outside the library module itself.

1.2 Control Structures in MODSIM llI

MODSIM's control structure syntax differs subtly from that of Modula-2. In most cases
the syntax is closer to that of Ada. MODSIM also includes a unique WAI T statement for
use in discrete simulation.

We will briefly cover the syntax and use of control statements here so that the examples of
MODSIM code used throughout this tutorial are easier to read. The MODSIM |11 Refer-
ence manual contains a detailed description of the entire language.

In the informa illustrations below, St at ement Sequence is zero or more statements
each separated by semicolons. The semicolon is a statement separator. Optional portions
of the syntax are enclosed in brackets. Alternatives are separated by a vertical bar.

IF:

| F Bool ean Expression
St at ement Sequence
[ELSE
St at ement Sequence]
END | F;

or

| F Bool ean Expressionl
St at ement Sequence

[ELSI F Bool ean Expression2
St at ement Sequence

ELSI F Bool ean Expression3
St at ement Sequence

[ELSE
St at ement Sequence]
END | F;

MODSIM Tutorial

CASE

CASE [ordinal type | string]
WHEN a..e, m Statenent Sequence
VWHEN p: Statenment Sequence
WHEN x..z: Statenent Sequence

[OTHERW SE
St at ement Sequence]

END CASE;

LOOP:

LOOP
St at enent Sequence
END LOOCP;

VWHI LE Bool ean Expression
St at ement Sequence
END WHI LE;

REPEAT
St at ement Sequence
UNTI L Bool ean Expression;

FOR ident := expression TO | DOANTO expression
[BY expression]
St at ement Sequence
END FOR;

FOREACH obj ect I N group [REVERSED]
St at ement Sequence
END FOREACH;

EXIT:

The EXI T statement causes control to pass to the end of the enclosing loop. U n-
like Modula-2, MODSIM's EXI T worksinall loop constructs.

WAIT:

The WAI T statement is used to elapse simulation time. Its syntax is smilar to that
of the | F statement. It contains a statement sequence to be executed if the wait
was completed successfully and an optiona statement sequence to be executed if
the wait was interrupted.

WAI' T reason

[Statement Sequence |
END WAI T;

or

VWAI'T reason

[Statement Sequence | < executed if WAIT conpl eted
[ON | NTERRUPT

St at ement Sequence ¢ executed if WAIT interrupted]
END WAI T,

Ther eason intheWAI T statement can be one of two types:

Chapter 1: Overview

DURATI ON: aninterval of simulation time

FOR another time-elapsing method to be invoked and compl etk

1.3 Input and Output in MODSIM Il

MODSIM provides a complete and coherent I/O facility. Module | Ovbd provides device-
independent text stream inputand output to and from any device or file.

| Ovbd aso supports block-oriented, random access I/0O. Binary files can be created and
read. The Posi ti on method is used to seek to a particular block while the ReadBl ock
and W i t eBl ock methods are used to read and write binary, random access files.

The number of files and/or devices which can be open simultaneoudly is limited only by the
operating system of the machine on which MODSIM is running.

Facilities are also provided for defining 1/O streams, opening and closing files, checking
for the existence of files before attempting to open them, determining access status (Read,
Write, Read/Write, etc.) and determining file size and last modiefd or access time.

The 1/0 capability is implemented in a style familiar to Modula-2 and Ada users. Each
variable type has its own input and output procedure. Each input or output statement o p-
erates on one variable at atime.

Each 1/0 stream in MODSIM is an object. Stream 1/0O objects provide a facility which is
consistent with the object oriented architecture of MODSIM.

| Ovbd defines the following type:
FilelseType = (Input, Qutput, InQut, Append, Wudate, QeateB nary);

Fi | eUseType isused when afileis opened to indicate how it should be handletinput ,
Qut put , | nQut and Append are used to open text files. Cr eat eBi nary isused to cre-
ate abinary file. Updat e is used to open abinary file for read and write.

Excerpted below is a partial list of MODSIM's stream I/O methods. The ASK methods
will be covered under the topic of object oriented programming. For now it would be a p-
propriate to understand the word PROCEDURE wherever ASK METHOD appears below.

ASK METHCOD Open (I N Fi |l eNane: STRI NG
IN I Odirection: FileUseType);

ASK METHOD Cl ose;

ASK METHCD Del et e;

ASK METHOD ReadChar (QUT ch: CHAR);
ASK METHOD Readl nt (QUT n: | NTEGER);
ASK METHOD ReadReal (OUT x: REAL);
ASK METHOD ReadString (OUT s: STRING ;
ASK METHOD ReadLi ne (QUT str: STRI NG ;
ASK METHOD WiteChar (IN ch: CHAR);

MODSIM Tutorial

ASK METHOD Witelnt (IN num fieldw dth: | NTEGER);
ASK METHOD WiteHex (IN num fieldw dth: | NTEGER);

ASK METHOD WiteReal (I N num REAL;
IN fieldw dth,
preci sion: | NTECER);

ASK METHOD WiteExp (I N num REAL;
IN fieldw dth,
precision: | NTEGER);

ASK METHOD WiteString(IN str: STRING;
ASK METHOD Witeln;

ASK METHOD Position(lI N noveTo : | NTEGER);
{ random access file seek }

PROCEDURE Exi stsFile(IN fname: STRING : BOOLEAN,
PROCEDURE Del eteFil e (I N fnanme: STRI NG ;
PROCEDURE Fi |l eSi ze (I N fnane: STRING : | NTECER;

Each Stream 1/O object also has two fields which can be used to control 1/O:
eof : BOOLEAN,;
i oResul t: | NTECER;

MODSIM aso provides several standard procedures, | NPUT, OUTPUT and PRI NT . ..
W TH for doing non-object oriented, free formatted 1/O

The I NPUT procedure takes one or more arguments. The OUTPUT procedure takes zero
or more arguments. The arguments may be any of the following types:
| NTEGER, REAL, CHAR, STRI NG ENUVERATI ON

For example:

OUTPUT("I nput height & weight for item number", n);
| NPUT(hei ght, weight); OUTPUT;

The I NPUT procedure reads values for each argument from standard input. The OQUTPUT
procedure writes the value of each argument to standard output, followed by a newline
character. When it is used without arguments, it writes a newline character alone.

ThePRI NT ... W TH procedure supports formatted ouput to standard 1/0O:
VAR
format Str : STRI NG
BEG N
format Str := "At time **** . ** the nunber waiting is **";

PRINT (SinTime(), numMdit) WTH format Str;

Chapter 1: Overview

1.4 Object-oriented Programming

Programs written in MODSIM are organized around object types. Each object type has
two interrelated sets of properties. These respective properties are fields and methods.
The state of an object instance at any instant is described by the values in a series of fields,

similar to those of arecord. Its behavior, or the actions it is capable of performing, are
described in its methods which are executable routines with special characteristics assoc i-
ated with the object type.

This formal association of data and code provides an inherent encapsulation of the data,
because the information in an object's fields can be changed only by a method which be-
longs to the object or by a method which it has inherited.

In other words, the fields of an object may not be directly modified except by the object
itself. Other parts of a MODSIM program externa to a particular object can change the
value of the object'sfields only indirectly. For instancea cont r ol | er object might want
a vehicle object's speed to be zero. The control | er object could ASK Vehicle TO
St op. The vehicle object's St op method would then set the vehicle's speed field to zero
in response to this message.

Other parts of a MODSIM program may request the value of an object's fields by sending
itamessage. e.g. Car Speed : = ASK Vehicl e speed, where Vehi cl e is an object
and speed isone of itsfields.

Essentidly, an object's fields are “read only” from the perspective of code not included in
the object, but are “read and write” from within the object itself.

Experience with the object-oriented approach shows that it is even more effective at
modularizing the interactions of a program than the structured programming techniques
which spawned Algol, Pascal, Modula-2 and Ada. The part of the program which invokes
some behavior or action can always invoke an action in the same way over a wide range of
object types, eg. ASK Car TO Stop, ASK Aircraft TO Stop. Each object, how-
ever, may have a different behavior in response to this same message. In this casethe al r-
craft will want to land before stopping!

Note that, in any program, there will likely be a number of different methods which have
the same name. Since each is encapsulated within an object, this does not lead to any am-
biguity. Each invocation of a method is accomplished by “sending a message”’ to the o b-
ject requesting it to execute one of its methods.

Thus, the calling entity need not have detailed knowledge of how an object will acco m-
plish the action it is being told to do. It simply asks for a generic action to be performed
and the object which receives the request message has its own, tailored routine to perform
that action.

New object types can be defined in terms of existing object types. When this is done, all

of the fields and methods of the existing object are incorporated as a proper subset of the
new object type. This capability is known as inheritance. Where an inherited method is
inappropriate, it can beoverriddenand a more appropriate method substituted.

MODSIM Tutorial

The appropriate use of inheritance encourages software reusability more effectively than
any library of procedures. Unlike procedura libraries, a properly-structured object library
allows sdective redefinition of some of the code while incorporating other code u n-
changed. In contrast, replacing fundamental algorithms or assumptions in a procedural
library normally requires a wholesale abandonment or re-implementation of the library and
the code which depends on it.

The design of aMODSIM program, then, encourages a careful separation of the datare p-
resentation and behaviors for each object type, as well as the declaration of related types
using a common inheritance. This technique is referred to as object-oriented program-
ming, and will be examined in greater detail in Chapter 3.

10

2. Background

This chapter reviews a number of programming concepts which have been used in the d e-
sign of MODSIM 111 and may prove helpful to users of the language. Those familiar with
process oriented smulation and contemporary programming languages may wish to skip
this chapter.

2.1 Data Structures in Contemporary Languages

Among the many features which distinguish contemporary computer languages from their
predecessors is the ability to organize data into forma structures. These languages are
able to organize disparate types of data into records which can be handled as a unit of i n-
formation. Some languages, typically used for smulation, also have the ability to organ-
ize, manage and manipulate groups and ordered sets of data.

All of these capabilities are implemented in MODSIM. The ability to handle sets or
groups will be covered in some detail in Chapter 10; however, since an understanding of
the concept of record data structures is basic to this tutorial, we will briefly review the
subject here.

To illustrate the concept of records, we can declare a simple personnel record in
MODSIM. The record contains fields for the person's last name, first name, middle initia,
age and department. We alow ages in the range from 17 to 65 years old. The alowed
departments are specified in arenumeration

In MODSIM 11 the structure of arecord is declared in a TYPE statement. The user then
typicaly declares a variable of that type. The MODSIM 111 RECORD type is dynamically
allocated. MODSIM aso supports the FI XED RECORD which is statically alocated. The
TYPE declaration for our personnel record would look like this:

Per sRecType = RECORD
| Name, fNanme : STRI NG

m ddl el ni t ;. CHAR

age [17 .. 65];

depart ment : (Ops, Research, Finance, Sales)
END RECORD,

Note that we have used the subrange type to describe the field for age. MODSIM will
provide run-time checking to ensure that the user does not assign a value outside of that
range to the field age.

The field for department has been described using an enumerated type. In other
words, we have enumerated each of the legal values of the type.

To use the record type we have just declared, we might declare an array of type
Per sRecType:

VAR
staff: ARRAY | NTEGER OF PersRecType;

11

MODSIM Tutorial

This uses the MODSIM I11 ARRAY type which is dynamicaly alocated and sized at pro-
gram run time. The statement declares an array which will hold records of type
Per sRecType and will be indexed using integers. We could also have indexed the array
by characters or by a type such as DayOf Week. In the program code we would allocate
the array with a statement like this:

NEW staff, 1..95);

This would allocate a copy of the array called st af f and size it to fit 95 elements which
would be numbered in the range 1..95.

We could also declare a single variable of that RECORD type which we would use to shut-
tle information back and forth from afile:

VAR
enpl oyee: PersRecType,;

We could then access the information in the various fields in the following way:

enpl oyee. | Nnane := "Smth";
staff[9]. departnent: = Fi nance;
enpl oyee. age : = 27,

The MODSIM |1l Reference Manual provides a detailed discussion of the differences
between the d/namicRECORD and theFI XED RECORD.

2.2 MODSIM llI's Modular Structure

The sample program presented at the beginning of this tutoria showed how a
MODSIM 111 program can exist in just one MAIN module. For larger programsit is more
typica to see MODSIM programs which consist of a main module and any number of
supporting modules. These modules can be separately compiled to ease the task of deve -
opment and maintenance.

Each module typically contains declarations for a set of related procedures and objects and
the executable code which constitutes the procedures and methods.

MODSIM modules can be:
Used to support a single program.

Compiled into support libraries to be shared by many programs

MODSIM itself provides much of its capability through support modules such eSivbd.

A library module actually consists of two modules, each of which is stored in its own file
and can be compiled separately. One is the definition module and the other is the imple-
mentation module

The DEFI NI TI ON MODULE contains declarations for al of the constants, types, variables,
and procedures which will be available for import by other modules. Only the headings of
procedures and methods are declared. There is no executable code in a definition module.
Items declared in a definition module will be accessible or visible to any other module

12

Chapter 2: Background

which imports them. For instance, another module may import a type definition from a
definition module and then declare variables of that type.

The | MPLEMENTATI ON MODULE contains the actual code which implements all proce-
dures and methods. 1t may include CONST, TYPE and VAR declarations which are needed
solely within that library module. A variable or data structure which is declared globally
within an implementation module is considered global to all procedures and objects in that
particular module but is not visible outside of that module.

Anything declared in a definition module is implicitly known in the companion impleme n-
tation module. The implementation module, of course, may also explicitly import defin i-
tions from other definition modules as well.

To illustrate the organization of the three types of modules we have split a small sample
program into modules. The library module contains one simple procedure which reverses
astring passed to it.

MAI N MODULE Sanpl e2;
FROM Text Li b | MPORT Rever se;
VAR
soneText : STRI NG
BEG N
QUTPUT("Enter string: ");
I NPUT(soneText) ;
Rever se(soneText);
QUTPUT(" Reversed string: ");
QUTPUT(t ext);
END MODULE.

The following two modules constitute the library module calletext Li b:

DEFI NI TI ON MODULE Text Li b;
PROCEDURE Reverse(l NOUT str: STRI NG ;
END MODULE.

| MPLEMENTATI ON MODULE Text Li b;
PROCEDURE Reverse(l NOUT str: STRI NG ;

VAR { reverses the input string }
k . | NTEGER,
tenmpStr : STRI NG

BEG N

FOR k := STRLEN(str) DOWTO 1
tempStr = tempStr + SUBSTR(k, k, str);
END FOR;
str := tenmpStr;
END PROCEDURE;
END MODULE.

We would run this sample program by:
1. Compiling theText Li b definition module

2. Compiling theText Li b implementation module

13

MODSIM Tutorial

3. Compiling theSanpl e2 main program module
4. LinkingSanpl e2.
5. RunningSanpl e2.

Since this is a complicated series of steps which have to be accomplished in a certain or-
der, MODSIM provides a compilation manager to simplify this process. The compilation
manager, which is called mscomp, offers a variety of services to help in the management
of both large and small projects. Among its options it offers the following compilation
choices to the user:

Compileand linkeverything

Compile & link only those modules which have been changed since the last co m-
pilation or are affected by changes in modules they import from

Compile asingle module

Passively determine which modules need to be compiled and linked

Once this process has been done once, the user may make changes to the implementation
modules or the main module and later will be able to recompile only those modules which
have been changed without having to recompile the entire program.

This mscomp facility is integrated into the MODSIM 111 Windows user interface called
MODBENCH.

It is important to note that MODSIM supports separate compilation as opposed to in-
dependent compilation. This means that dependencies are checked. If a change is made
which will affect other modules, these are scheduled for recompilation as well. The red
benefit of modularity and separate compilation is seen in large programs with multiple | i-
brary modules where the effect of changes can be localized, yet effects of changes which
affect other modules are correctly handled.

The MODSM 1l User's Manual covers mscomp, the compilation manager, in greater
detail, but one feature which deserves a mention is that mscomp does not require a script,
project or “make” file to operate. It operates using the syntax of the language and infor-
mation from the computer's file system.

2.3 What is Computer Simulation?

There are two general categories of computer smulation: continuous simulation and dis-
crete-event simulation

Continuous simulation describes events using sets of equations which are solved numer i-
cally with respect to time. Examples of problems in this area are fluid-flow or hydraulics
problems and financial modding. Typicaly atime step is chosen. The continuous smul a
tion program then steps forward by the increment of time chosen for thetime step and r e-
calculates all equations which describe the model.

Discrete-event simulation describes a system in terms of logica relationships which cause
changes of state at discrete points in time rather than continuously over time. Examples of

14

Chapter 2: Background

problems in this area are most queuing situations: Objects (customers in a gas station, ai r-
craft on arunway, jobs in a computer) arrive and change the state of the system instant a
neously. Varying amounts of time elapse between events.

In discrete-event smulation, large or small amounts of smulation time can pass between
events, but the state of the system is only of interest when one of its component parts
changes state. MODSIM takes the capabilities of discrete systems modeling languages
like Smula and SIMSCRIPT 11.5 and adds object-oriented programming capability and
the modular constructs of Modula-2.

2.4 Process-Oriented vs Event-Oriented Simulation

The classical approach to discrete-event simulation is event-oriented. In this approach,
routines are written to describe discrete events in the operation of a system. For instance,
in asimple bank model the event routines might be:

Customer arrives
Customer enters queue
Customer engages services of teller

Customer leaves

No time passes during any event routine. Instead, passage of time is handled by schedu -
ing the next event for the object currently being manipulated. In the smple bank mode,
the event “Customer engages services of teller” would schedule the next event,
“Customer leaves’, at some future time.

This event-oriented approach is adequate for smaller models, but in larger models it is o f-
ten difficult to follow or modify the flow of logic which describes the behavior of an o b-
ject, such as a customer. Consider the simple bank model if we added a janitor, a security
guard and some management functions. There would be many unrelated event routines.
Following the logic flow which describes the behavior of a customer would be like tracing
through a sequence of GOTO statementsin alarge BASIC program.

The process approach smplifies larger models by alowing many aspects of an object’s
behavior in amode (e.g. bank customers) to be described in one method which allows for
the passage of time at one or more pointsin its code.

There is a further advantage to the process technique. Once the actions of a class of o b-
jects (such as customers in a bank) have been gathered together in an object, the smul a
tion program can create multiple, concurrent instances of the object. In our bank, for
example, the simulation program would generate a new instance of the customer object
each time a customer arrived. It could also pass information about the customer in the
parameter list of the object's initialization method. Perhaps it would pass in information
about the sort of customer (young or elderly) and the expected service time for the cus-
tomer. While there would be multiple, distinct copies of the customer object operating
simultaneoudly, each could have different values of their fields to describe the particular
customer's properties.

15

MODSIM Tutorial

Finally, objects can interact. In our example, an instance of the customer object with the
young attribute might yield its place in the queue to a customer object with the elderly at-
tribute.

This process approach is the one supported in MODSIM. It exploits object-oriented pr o-
gramming features to smplify both the origina development and the subsequent maint e-
nance of large models.

A simulation model written in MODSIM defines a system in terms of processes because
the process technique provides a powerful structure for expressing most categories of
simulation problems, and provides significant advantages over the direct use of discrete
events.

The advantages of processes are both conceptual and labor-saving. The process stat e-
ments are expressed sequentialy, in a manner which is analogous to the system being d e-
scribed. This practice is recommended by standard design methodol ogies.

16

Sectionll. ObjectOriented Language Features

17

MODSIM Tutorial

18

3. Object Oriented Programming

Objects in MODSIM are dynamically alocated data structures coupled with routines,
caled methods. The fields in the object's data structure define its state at any instant in
time while its methods describe the actions which the object can perform. The vaues of
the fields of an object can be modified only by its own methods. Since no other part of the
program can modify these values, program maintenance and debugging is greatly smpli-
fied.

Other entities can query the value of an object's fields or ask it to perform its methods by
sending messages to the object. This is an important feature of objects. Instead of i n-
voking an object's methods by a call, the user invokes the method by sending a message to
the object requesting it to perform the method. e.g. ASK Car54 TO ReportPosi -
ti on. Thissmal refinement in the way code isinvoked is responsible for many of the ad-
vantages in object-oriented programming.

It allows the code to be executed against a specific set of data, the fields of a particular
object. It also alows severa different object types to have a method of the same name.
Each one responds to a method call by executing its own code.

Below isalist of facts about objectsin MODSIM. The remainder of this chapter and the
next chapter will expand on these facts.

A MODSIM object consists of fields (variables) which describe its state at any 1 n-
stant and methods (procedures) which describe the actions it is capable of per-
forming. The fields and methods are sometimes described as attributes and
behaviorsof an object.

Object types are declared in the TYPE section of a program in a manner smilar to
the declaration of record types. Variables of the object type are then declared in
the VAR section of a program.

The user creates new instances of any object type dynamicaly, as needed, and di s-
poses of the object instances when they are no longer needed.

There can be (and usually are) multiple instances of each type of object existing
concurrently inaMODSIM program.

Code in any part of a MODSIM program can ask an object instance the value of
any of itsfields.

Only an object instance itself can change the value of any of itsfields.

One invokes an object instance's methods by sending a message to the object ask-
ing it to perform a particular method. e.g.ASK Sone(Cbj TO DoSonet hi ng

New object types can be defined in terms of existing object types. This capability
isknow as inheritance

19

MODSIM Tutorial

3.1 What is Object-oriented Programming?

The significance of object oriented programming is that disparate types of objects which
share the same ancestry can each have their own distinct methods which have the same
name as methods in other objects. This means that generic operations can be invoked with
one method name which will cause appropriate (and distinctly different) behavior in each
different object type.

An example of a generic operation might be a command to refuel. For instance, when the
MODSIM statement TELL % TO Ref uel isrecelved by objects such as trucks, cars,
helicopters, etc., each would react differently. The helicopter might take on 1,200 Lbs of
jet fuel, the car would take on 11 gallons of unleaded regular and the truck would take on
380 liters of diesal fuel. Although each vehicle has inherited all of the attributes of a g e-
neric Vehi cl eoj type, each has chosen to provide its own, specifi®ef uel behavior.

The logic which describes how each vehicle type which underlies Vehi cl eCbj performs
refuding is associated with each vehicle object type. So if new vehicle types are added,

the only change required is to add code for each new object type which describes how that

particular vehicle type performs the act of refueling. The procedure associated with an

object type is known as a method for that object.

One of the most important features of object-oriented programming is illustrated in the
above vehicle example. If we add a new vehicle type caled mule, its refueling method
might be to eat a bale of hay. But it would still be appropriate to use the origina calling
code without changing it. It would still be appropriate to TELL ¥ TO Ref uel even
though a new vehicle type has been added.

In traditional strongly-typed languages, the type of each operand is fixed at compile time,
thus statically determining the operation that will be performed when the program is run.
However, an object-oriented language requires the determination of an action to be d e-
ferred until the program isrun. This alows dynamic selection at run-time of the code a p-
propriate for the given object type. This process is known agynamic binding

In many object-oriented languages, new object types can be defined in terms of an existing
object type. This alows structuring of related object types. By default, the new object
retains all properties of the existing object. It can selectively replace or extend any of
those properties, and add new properties. The definition of a new object type in terms of
an existing type is referred to asnheritance

It is the combination of both dynamic binding and inheritance that gives the object-
oriented approach its power and flexibility.

3.2 Messages and Behaviors

One common way to describe interactions in object-oriented programs is the object-
message anaogy, in which an operation in a program is described in terms of a message
sent to an object. The object, in turn, “decides’ what to do in response to the message

Although this anthropomorphic description makes a compiled program seem more human
than it is, it does help to illustrate the object concept, and thus is frequently found in the
literature. The object-message metaphor emphasizes the apparent active selection made

20

Chapter 3: MODSIM Objects

“by” each object, even though the actual implementation is through more prosaic proc e-
dural calls.

Within this framework, objects are active data structures that have associated behaviorsin
response to each message. As implemented by most languages, an object is a data stru c-
ture (usually dynamically alocated) that has one or more associated procedures. These
procedures are called methods to differentiate them from standard procedures. They de-
scribe the method used by an object to perform the action requested by a message.

An object-oriented program can issue a message requesting a specific action to a group of
disparate objects. Each reacts according to its particular method for that request. All o b-
jects of the same type will have the same behavior which is implemented in the objects
methods Methods differ from ordinary procedures in two ways.

1. First, there can be more than one method with the same name. In the vehicle e x-
ample above we could have as many methods named Ref uel asthere are different
object types derived from Vehi cl eObj . Ref uel would be the message name,
while the behavior for al objects of a given type would be defined by the corr e-
sponding method for that object type. Thus, we would have a Ref uel method for
a helicopter, a different Ref uel method for a car and a very different Ref uel
method for amule.

2. Second, each method includes an implied parameter referencing the associated
object data structure. A Ref uel method for a truck would, for example, aways
reference a particular truck-type object. Within an object's methods, this object is
referred to by the system defined variable SELF in MODSIM and in most object-
oriented languages. For example, if the truck object were running low on fuel, one
of its own methods mightTELL SELF TO Ref uel .

3.3 Inheritance

Often, when defining a new type of object, we want a new one just like some other exist-
ing one but with a few changes and a few new features. In these cases we can smply d e-
fine the new object type in terms of the existing object type, and then add new fields and
methods or modify existing ones. When the new object type is defined in terms of an old
object type, we say the new object type inherits properties from the older object type.
The term property refers to the fields and methods of an object type.

Consider a generic vehicle which has fields to define its position, direction of movement
and speed. It has methodsto Pr oceedTo anew location and to St op. A helicopter isa
vehicle which has these same properties, both in terms of the data fields which describe its
status and the methods it executes in response to messages. A helicopter also has at least
one new property, dtitude. Thus, you could define a helicopter object type in terms of a
generic vehicle object, and then add new methods and data fields to handle the helicopter
behaviors and its new properties.

Another case where inheritance can be useful is when two object types have severa things
in common, and thus it may be useful to define an ancestor object type to describe those
properties shared by both types.

21

MODSIM Tutorial

The object types that are inherited are called underlying types. The most immediate un-
derlying object type is aso caled by the more specific term base type. The newly defined
object typeis called aderived typeof its base or underlying types.

It does not matter how remote the derivation is. A new object type inherits the properties
of its base object type and obvioudly al of the underlying types. The new object type can
then supplement these with its own new properties.

A new object type can aso define particular methods differently than those existing for its
base types. We say that the derived typ@verridesthe methods of its base type.

A derived type only overrides and redefines those methods which must be different from
those of its base type. The new object can start from scratch and provide a totally new
method. It also has the option of using the inherited method, but specifying additional b e-
havior.

A library of object types can be even more powerful than a subroutine library, in that small
differences from library routines which are required for user-defined operations can be
specified without replacing the library methods. We merely supplement existing methods.
This is one of the principle benefits an object-oriented library has over its procedura
counterpart.

3.4 Declaring an Object Type

An object type declaration is sSimilar to a record type declaration in that each includes alist
of fields

TYPE
Vehi cl eCbj = OBJECT
course : [O .. 359]; { direction of novenent }
speed : | NTEGER,
posX,
posY : REAL;
END OBJECT,

Object types are declared in thel YPE section of amodule.

3.5 Methods of an Object

An object differs from a record in that it also has methods associated with it to describe
actions it can perform. The name and parameter list of each method forms a method
heading which is specified as part of the object type declaration. The actual code which
implements each method is specified in the coespondingobject implementation block

There are two kinds of methods. ASK methods and TELL methods. ASK methods are
similar to those found in other object-oriented languages. The TELL method is used to
model the passage of time in simulations.

The distinction between them will be covered in Chapters 8 and 9.

Elaborating on the preceding example, here is a complete declaration for the Vehi -
cl e(oj :

22

Chapter 3: MODSIM Objects

TYPE
Vehi cl eObj = OBJECT
course : [O .. 359];

speed : | NTEGER,
posX,
posY : REAL;

ASK METHOD ProceedTo(IN x, y: REAL);
ASK METHCD St op;
END OBJECT,;

In this declaration, both Pr oceedTo and St op are methods for type Vehi cl eQoj . The
actual implementation code for the two methods would be contained in a corresponding
object implementation block

OBJECT Vehi cl e(oj ; the object implementation block
ASK METHOD ProceedTo(IN x, y: REAL);
BEG N
i npl enent ati on code woul d go here
END METHCD
ASK METHOD St op;
BEG N
i npl enent ati on code woul d go here
END METHOD,
END OBJECT;

There is areason why the object declaration is split into two sections. In large MODSIM
programs, the object type declaration would likely be placed in a definition module and the
object implementation block would be placed in an implementation module. In a small
program which consists of only one main module, the object type declaration would come
first, followed later by the object implementation block.

3.6 Reference Variables

The declaration of an object type implicitly defines a new data type of the same name,
known as the reference type. This typeis Smilar to a pointer type. Variables declared as
reference types are known as reference variables. When a variable of that type is de-
clared, it initially assumes a value of NI LOBJ, which is analogous to NI LREC for records
and NI LARRAY for arrays.

Thisis an important point. Declaring a variable of type Vehi cl eObj , for instance, does
not actually allocate space for the object and create it. Thisis done dynamically, at run-
time, with a call toNEW

VAR
car54: Vehicl ej;
BEG N
<& object instance “car54” doesn't exist yet
NEW car 54) ;

<& object instance “car54” now exists

23

MODSIM Tutorial

DI SPOSE(car 54) ;
<& object instance “car54” no | onger exists

NEW car 54) ;
. < a fresh object instance “car54” now exists
END.

A reference variable contains a reference value which identifies a particular instance of an
object type. Programs will often have many instances of a given object type a any given
time. All of these instances share an identical structure, but have separate and distinct
states, represented by different values in their fields. Each new instance of an object has
its own place in the computer system’s memory where the value of itsfields are stored.

Building on the earlier definition of a Vehicle object, we can expand by defining the object
type Ai r cr af t Gbj which inherits from the Vehi cl eObj type. Doing so implicitly de-
fines a corresponding reference type Aircraft Cbj . MODSIM handles this job auto-
matically. In other languages, such as Modula-2 or Pascal, the user would have to
explicitly declare a pointer variable of type Ai rcr af t Obj . Hereis how it would have to
be done in Modula-2:
TYPE
Ai rcraft Obj Poi nter Type = PO NTER TO AircraftQj;

VAR
pl ane : AircraftObj PointerType;

MODSIM diminates this extra step by automatically making every object type, such as
Ai rcraftoj, into areference type from which reference variables can be declared. In
the example below, the globa variable Airline, and the local variables Aneri can75
and Uni t ed15 areall reference variables for objects of typai r cr af t oj .

In this example, we aso improve the way position information is expressed by defining
and using a FI XED RECORD type which wraps up the x and y position information. This
makes the position information easier to refer to and handle.

TYPE

| ocationType = FI XED RECORD
X, y ! REAL;

END RECORD,

Vehi cl eCbj = OBJECT
cour se [0.. 359];
speed ;| NTEGER;
position : |ocationType;

ASK METHOD ProceedTo(! N Dest: LocationType);
ASK METHOD St op;
ASK METHOD Report Status(): | NTECER;

END OBJECT;
Aircraftj = OBJECT(Vehicl e(oj) inherits from V ehicleObj
altitude : | NTEGER adds two new fields

backupAC : Aircraftbj;

24

Chapter 3: MODSIM Objects

ASK METHOD Land; adds a new method
END OBJECT;

VAR
Airline: ARRAY |INTEGER OF AircraftQbj;

ASK METHOD . . .;
VAR

American75, Unitedl5, plane: AircraftQj;
BEA N

END METHOD;
Reference variables can be used in a manner similar to any other type of variable. The

declaration:
Airline: ARRAY |INTEGER COF Aircraft Qbj;

isan example.

Fields of objects containing reference variables can indicate relationships between objects.
In the example above, the field backupAC is a reference variable of type Ai r cr af t Obj
which is used to access the plane's backup aircraft, which is another object instance of
type Aircraft Qoj .

We have shown that a reference variable is used in a manner which is analogous to a
pointer variable, however the smilarity is superficia. A pointer variable smply pointsto a
type of storage such as a record and carries information needed to de-reference the fields
of arecord. A reference variable for an object “points’ to an object in the same way, but
it dso has hidden behind it the sophisticated mechanism by which the object's methods are
dynamically invoked.

3.7 Allocating, Deallocating and Initializing Objects

An object instance is allocated by calling the standard procedure NEW which takes as its
argument a reference variable of the desired type. The reference value for the object i n-
stance is returned in the argument, and each field of the instance is automatically initialized
to zero, NI LREC, NI LOBJ, or NI LARRAY, as appropriate.

For example:

VAR
Unitedl5: AircraftQoj;

NEW(Uni t ed15) ;

The above call to NEwallocates an instance of type Ai rcraf t Obj and returns its refer-
encevalueinuni t ed15.

25

MODSIM Tutorial

Note that it is not sufficient to smply declare the reference variable to obtain access to a
new object instance. The reference variable contains NI LOBJ until it is explicitly assigned
areference value to a new object instance by a call afEW

An object instance is dedllocated by calling the standard procedure DI SPCSE, which takes
asits argument areference value.

For example:
Dl SPOSE(Uni t ed15) ;

de-allocates the object instance which was allocated in the previous example.

Some objects may require initidization before they are used. An example is the Rando-
mtbj from MODSIM's RandMbd. Each instance of an object derived from Randombj

must be initialized so that the random object's seed can be set. Such initiaization can be
accomplished automatically. The built-in procedure NEWchecks to see if a method named
Obj I ni t has been defined for the object. If such a method exists, it is automatically i n-
voked by NEW Note that Obj I nit takes no parameters. The user can override Ob-
j I'nit and add more code to the behavior, but the user's replacement for the overridden
Obj I ni t should aways invoke the original Qbj | nit with an | NHERI TED statement.
The | NHERI TED statement, which we will cover later in more detail, smply executes the
original @j I ni t method which was overridden.

Note that the method name Obj | ni t isreserved for this use. If the user builds an object
“from scratch” and includes a method with the name oj I ni t, it will be automatically
invoked by NEW

If the user requires a more elaborate initialization method or one which takes a parameter
ligt, this can be accomplished with an explicit call to the user's own specid initiaization
method after the call to NEW Obvioudy, the more eaborate init method would need a
name other thanoj I ni t !

A complementary procedure is used to perform “cleanup” before deallocating objects. If a
method with the name bj Ter mi nat e has been defined for an object, the method will
automatically be invoked by DI SPOSE before it deallocates an object instance. The
DI SPCSE procedure will correctly execute the Obj Ter mi nat e method for an object,
even when the object is passed in areference variable of tygeNYOBJ .

3.8 Copying Objects with the CLONE Procedure

MODSIM supports a CLONE function procedure which is used to make a copy of an ob-
ject. The CLONE function takes a reference variable as an argument. It then accomplishes
four steps:

Allocate space for a new object instance of the same type passed in.
Copy the valuesin the fields of object instance passed in to the new copy.
Invoke the new object instance'shj | ni t method, if one exists.

A WD P

Invoke the object type'stbj G one method, if one exists.

26

Chapter 3: MODSIM Objects

Finally, it returns a reference to the new copy. The Obj O one method is analogous to
the Obj I nit and Obj Ter mi nat e methods. The Cbj O one method can be used to
perform any more complex behaviors which the user wants to associate with the copy.

If the programmer overrides an existing Cbj C one method, the overridden method
should be invoked with the | NHERI TED statement to ensure that all behaviors associated
with copying defined by ancestors are carried forward.

27

MODSIM Tutorial

28

4. Methods

The declaration of an object type is accompanied by the code for its associated methods .
The implementation code for the methods is supplied in the object implementation block.
Methods are similar to procedures. Each method may have zero or more parameters, and
ASK methods may also return a single function value.

Methods come in two forms. ASK methods and TELL methods. There are important
distinctions between ASK and TELL as pertains to smulation, but for now we will smplify
the distinction somewhat.

An ASK cal works the same way as a procedure call. When the ASK statement is exe-
cuted, amessage is sent to the object requesting it to invoke the method. The calling code
then waits for the invoked method to finish before proceeding past the ASK statement.
ASK methods are not allowed to pass any simulation time, so, in a Simulation, the action
just described takes place at one instant of simulation time. Another way to describe an
ASK call is as a synchronous call.

The TELL call, which is known as a delayed method call, is essentially an asynchronous
call which is used to build smulation models. The caling code executes the TELL state-
ment which sends a message requesting the object to invoke the method. The calling code
then proceeds past the TELL statement without waiting for the invoked method to com-
plete execution or, for that matter, even to start. TELL methods are alowed to pass
simulation time.

Typically, theinvoked TELL method will start execution, under the control of MODSIM’ s
simulation engine, as soon as the currently executing code has finished.

With ASK and TELL methods, the programmer has complete control over the way met h-
ods are invoked in a simulation, and, therefore, whether time is alowed to elapse. Using
ASK or TELL to invoke a method of an object is often referred to as “sending a message”
to that object.

It is important to note that the distinction between ASK and TELL methods starts when
they are declared. The user can not turn an ASK method into a smulation method by us-
ing theTELL syntax to call it.

Methods of an object are invoked from outside of the object using the ASK or TELL key-
word, the object's reference variable, the method name, and any arguments to the method.
For example:

TELL United20 TO ProceedTo(OHare);

would request the object instance known by the reference variable Uni t ed20 to perform
the method Pr oceedTo with parameter OHar e.

Within any method, the system-defined, or built-in reference variable SELF contains the
reference value of the object instance for which the method was invoked. SELF isimplied
throughout the method and need not be specified to reference the fields or methods of the

29

MODSIM Tutorial

object instance. It may also be used when an object wants to identify itself to another o b-
ject, asin

ASK Uni ted20 TO Report Di st ance(SELF) ;
Thiswould requestUni t ed20 to report its distance from the object making the request.

The fields of an object can only be modified within its own methods. Within a method for
Aircraft Qoj, the fields of the object may be accessed as if they were ordinary local
variables. For example:

altitude : = 1000; or backupAC : = United25;

Also, the object's methods can be invoked as if they were ordinary procedures. For exam-
ple:
Pr oceedTo(HoneBase) ;

is equivalent to:
TELL SELF TO ProceedTo(HoneBase) ;

4.1 Referencing Fields

The vaue of an object's fields may be interrogated using a syntax similar to that for a
function method. Theformis:

ASK object field

For example:
aircraftAltitude := ASK United20 altitude;

would request the object Uni t ed20 to report the value of itsfield caled al ti t ude and
then assign that value to the variableai rcraf t Al ti t ude.

Code which lies outside of an object cannot directly change the value of an object’s fields.
The values of an object's fields can only be changed by the object's own methods. Ther e-
fore, in order to change the value of an object's fields, code which lies outside an object
must invoke a method of the object to do so.

The following example shows how fields of an object are referenced from outside the o b-
ject:

I F ASK Uni ted20 position <> HoneBase
TELL United20 TO ProceedTo(HoneBase);
QUTPUT("Not at hone base, but returning");
ELSE
QUTPUT(" Al ready at hone base");
END | F;

If the same piece of code were in one of the object's own methods, it would look like this:

| F position <> HoneBase

ProceedTo(HoneBase) ;

QUTPUT("Not at hone base, but returning");
ELSE

30

Chapter 4. Methods

QUTPUT(" Al ready at hone base");
END | F;

In the second line above we could also have used:
TELL SELF TO ProceedTo(HoneBase) ;

4.2 Defining Methods

Other than the use of the keywordS ASK METHOD or TELL METHOD instead of
PROCEDURE, methods are defined using a syntax similar to procedure declarations.

For example, the definition below found inraobject type declaration
Vehi cl eCbj = OBJECT
TELL METHOD ProceedTo(I N Dest: |ocationType);
END OBJECT;
defines a method Pr oceedTo that operates on objects of type Vehi cl eQoj . The body
of the method which contains the executable code is found in the corresponding object
implementation block. Typicaly, the object type declaration is contained in the

DEFI NI TION module and the object implementation block is found in the
| MPLEMENTATI ON module.

A method which returns a function result is referred to as a function method. A method
that does not return a function result is known as a proper method. In the example
above, Pr oceedTo isa proper method.

The method may optionally include a list of parameters. The type of the parameters, as
well as the return type of a function method, may be any vaid MODSIM type or atype
defined by the user. The parameter list does not include the object itself, since that is su p-
plied as an implied parameterSELF, to all methods.

TELL methods are not allowed to have OQUT or | NOUT parameters and may not be func-
tion methods. This is because they are invoked asynchronoudly by code which does not
walit for the results. Because of this there is no place to which information can be r e-
turned!

4.3 Implementing Methods

After an object type has been declared, its methods must be coded in a corresponding o b-
ject implementation block. Typically the object type declaration is placed in a
DEFI NI TI ON MODULE <o it is avallable for import to other modules, and the corre-
sponding object implementation block is placed in ah MPLEMENTATI ON MODULE .

The implementation code for the methods of an object type is placed within an OBJECT

END OBJECT block labeled with the name of the object type. This placement of the
implementation code within a named block allows different objects to have methods with
the same name.

31

MODSIM Tutorial

For example, if the previous declaration of Vehi cl eCbj were part of DEFI NI TI ON
MODULE Traf fi cModul e, the corresponding implementation module might include
statements such as:

| MPLEMENTATI ON MODULE Tr af fi cModul e;

VAR

{ Variables common to all Object typesin this module }
ki ndCOf Vehi cl e: ARRAY | NTEGER OF STRI NG

OBJECT Vehi cl enj ;
TELL METHOD ProceedTo(I N Dest: | ocationType);
BEG N

implementation code . . .
END METHQOD;
TELL METHCD St op;
BEG N

implementation code . . .
END METHQOD;
ASK METHOD Report Status(): | NTECER;
BEG N

implementation code . . .
RETURN St at us;
END METHQOD;
END OBJECT;

OBJECT Aircraftbj;

TELL METHOD Land:
BEG N

implementation code . . .
END METHQOD;
END OBJECT;
END MODULE.

This module illustrates several important points about the nature and scope of variables in
aMODSIM program

Any variable declared within a module (prior to any object implementation blocks)
is global to the entire module. There will be only one copy of the variable. The
variable is visble to every object instance's methods as well as to every procedure
in the module. If the variable is declared in the definition module instead of the
implementation module, it will also be visible in any other module of the program
which chooses to import it.

Any field declared within the definition of an object will be visble in the usua
sense within that object's methods. From outside the object, we can ASK an object
instance for the value of any of its fields, but we cannot directly change their value
with an assignment. Each instance of an object type has its own separate copies of
al of thefields.

32

Chapter 4. Methods

Any variable declared within the body of a method will be visible only within that
method. There will be a unique copy of that local variable for each invocation of
that method. Note that it is possible to have more than one invocation of a par-
ticular TELL method for a particular object instance running concurrently with r e-
gpect to simulation time. Chapter 9 will explain how this can happen and why it is
useful.

4.4 Using Methods

Methods differ in one crucia way from procedures; they are always invoked with refer-
ence to a specific object:

ASK | TELL object [TO] nethod[(parameter list)]

TOis a“noise word” which can be optionaly specified in method calls to make the code
more readable.

Function methods are invoked using a syntax similar to that used for accessing fields of an
object:

val ue : = ASK object nethod()

This syntax is the same as that used to access the values of afield. However, a reference
to a function method may also include arguments, which follow the method name, asin

val ue : = ASK obj ect nethod(argunents);

Within a method for a particular object, any of the fields of the object can be referenced
directly since the object's fields are global to its methods. The ASK syntax is not required.
For example, the methodLand might be implemented as

TELL METHOD Land;
BEG N { inplied argunent SELF: AircraftCbj }

ébéed = 0;
END METHOD;
A method invoking another method of the current object can omit the
ASK | TELL object.

For example, a function method Report Status can be referenced from within an
Ai rcraft Qj method with either

QUTPUT(ReportStatus());

or

OUTPUT(ASK SELF TO Report Status());
Similarly

ProceedTo(HonmeBase);
and

TELL SELF TO ProceedTo(HoneBase);

33

MODSIM Tutorial

have the same significance.

However, if amethod is being referenced from outside of the object, the method must be
gualified by an appropriate reference variable.

TELL pl ane TO ProceedTo(HoneBase);

4.5 Formal Parameter Qualifiers: IN, OUT, INOUT

MODSIM, like Ada, makes a distinction between input and output parameters. Each pa
rameter is declared as one of three possible variants:

I N: value may only be passed in to procedure from caller (pass by value)

I NOUT: value may be passed in either direction (pass by referenge
QUT: value may only be passed out from procedure to caller (pass by reference)

Note: Constants and literals cannot be used as OUT or | NOUT parameters for the same
reason that they cannot be used on the left side of an assignment statement.

As an example of forma parameter qualifiers, a procedure which updates a counter might
be declared in MODSIM as:

PROCEDURE Updat e(1 NOUT counter: | NTEGER);

The direction specifier is used only in declarations, not in calls. Thus the call to procedure
Updat e would be: Updat e(TheVal ue) .

These rules apply to both METHOD and PROCEDURE declarations. For example, a method
of Ai rcraftObj might be declared as:

ASK METHOD reportPosit (QUT posit : |ocationType;
QuUT alt . I NTEGER) ;

Only ASK methods can include | NOUT or OUT parameters. TELL methods cannot use
I NOUT or QUT parameters because the invoking code would proceed past the TELL
statement before the invoked method was able to supply the return values.

34

5. Inheritance

A new object type can be defined in terms of an existing object type. The newly derived
object type is then termed a derived typef the base type

The derived type will normally include new fields and/or methods not present in the base
type. It may aso redefine (override) the implementation of a method defined in an under-
lying object type, after explicitly declaring the override.

A overridden method can invoke the method of the same name in an underlying or base
type, by use of thel NHERI TED keyword.

Any method not overridden by the derived type is automatically inherited from the nearest
underlying object type. Similarly, the derived type aso inherits al fields of its underlying
object types.

While a derived type can redefine inherited methods, it cannot redefine inherited fields. It
can, however, add new fields of its own.

A reference value for an object can safely be stored in a reference variable of one of its
underlying object types. This corresponds to redefining the reference variable from the
specific to the more genera object type. The converse assignment is not aways safe, and
thus requires an explicit action by the programmer to circumvent the strong type checking
rules.

5.1 Declaring an Inheritance

A new type of object can be declared in terms of a previoudy-declared object type. This
provides the new object type with the fields and methods of the earlier type, or, to use the
idiom of object-oriented programming, the new type inherits the properties of the earlier
type.

In fact, the smple object type declarations shown in earlier examples will only be used for
the least interesting types of object. Most MODSIM object types are built upon the def i-
nition of other objects, either those from the standard MODSIM library, or user-defined
object types.

For example, objects in a ssimulation often need to have the capability to contain a queue
of other objects. We can define object type Vehi cl eQbj as inheriting the properties of
Queuebj by the syntax:

Vehi cl eCbj = OBJECT(Queuehj)
END OBJECT;

We say that QueueCbj is abase type of Vehi cl eQbj . Vehicl eCbj istermed ade
rived type of Queuebj . Any number of new object types can be derived from a single
base type. A derived type can have more than one base type by means of multiple inher i-
tance which is explained in Chapter 6.

35

MODSIM Tutorial

New object types can aso be defined in terms of other derived types. A hierarchy of o b-
ject types occupying multiple layersis shown here.

Simple Objects

PoweredObj S Uindfesfiing e

Yehicle Ohj gase £
| Lot fiiny frg

ShipOhj AjroraftObj

HelicopterOhj| < feriwd fipe

Complex Objects

Figure 5-1. Sample Inheritance Tree

Any object type that is either a base type of SoneCbj ect , or a type n levels below
Sonebj ect , is referred to as an underlying type of SomeQbj ect ; and Some(hj ect
includes all the properties of the underlying types.

In the illustration, Vehi cl eObj is abase type of Ai rcraft Qoj , aswel as underlying
type of Hel i copt er Obj and Shi pObj . Hel i copt er Obj is a derived type of Air -
craft Qoj .

5.2 Extending Object Properties

A derived object type can, in addition to any properties inherited from the base type, d e-
fine its own additional properties, asin the declaration:

Hel i copter Gbj = OBJECT(AircraftQbj)
| nHover : BOOLEAN:
TELL METHOD Hover (I N Posit : |ocationType;
IN Al't : I NTEGER) ;
END OBJECT;,

The derived object has access to al of the properties of its base type, in addition to its
own unique properties, so we could implement Hover using properties of both Air -
craftObj andHel i copt er oj .

OBJECT Hel i copter Qbj;

TELL METHOD Hover (I N Posit : |ocationType;

36

Chapter 5: Inheritance

IN Al't : I NTEGER) ;
BEG N
ProceedTo(Posit);
St op;
altitude :
| nHover

Alt;
TRUE;

END METHOD:
END OBJECT:

5.3 Overriding Methods

It often occurs in inheritance that a derived object type may wish to modify a method
which it has inherited from an underlying object type.

For example, the Vehi cl eObj type defines a rudimentary mechanism for moving an ob-
ject between two locations in two dimensions. However, a more elaborate method would
be needed for Ai rcraft Obj , which would have specific congtraints for climbing, de-
scending and turning in three dimensions.

Since Aircraft Obj dready has inherited a standard Pr oceedTo method, it must ex-
plicitly override this method and define a new method. Thisis accomplished by noting the
override in the object type declaration of the new object and supplying the replacement
method in the object implementation block.

The declaration of Ai r cr af t Obj would look like

Aircraft Gbj = OBJECT(Vehicl ebj)
OVERRI DE
TELL METHOD ProceedTo(l N dest : | ocationType);
END OBJECT;

The object implementation blocks for Vehi cl eGbj and Ai rcraft Goj would respec-
tively contain definitions for the origina method and the method which Ai rcraft Gbj is
substituting for the overridden one

OBJECT Vehi cl e(oj ;
TELL METHOD ProceedTo(I N dest: | ocationType);

..original vehicle code here.

OBJECT Aircraftbj;
TELL METHOD ProceedTo(I N dest: | ocationType);

..replacement code for aircraft here.

The origina, inherited, behavior was coded in the ProceedTo method for Vehi -
cl eObj , while the ProceedTo method which describes the new behavior for Air -
craf t Obj isdescribed in the object implementation block foki r cr af t Obj .

5.4 Extending Inherited Behaviors

In some cases, the overriding method completely replaces the method from the underlying
type. However, it is more typica that the original code will be invoked and new code
added. We extend the underlying method. In these cases the new method can invoke the

37

MODSIM Tutorial

overridden method, as appropriate, and then provide additional code which describes the
modified behavior.

Invoking the inherited method which has been overridden is accomplished by preceding
the method call with the NHERI TED keyword.

For example, to implement the proper method Pr oceedTo for an Ai rcr af t Obj , it may
be easier to build upon existing ProceedTo code defined for its base type, Vehi -
cl eObj . Thiswould be done in its implementation module using statements such as:

OBJECT Aircraftbj;
TELL METHOD ProceedTo(I N dest: | ocationType);

VAR
deltal titude: REAL;
BEA N
deltaltitude := altitude - dest. z;

{ more flying-specific code here }
| NHERI TED Pr oceedTo(dest);
END METHOD,
END OBJECT;

Thus the ProceedTo method for an AircraftObj would perform some unique calcul a
tions, and then invoke the ProceedTo method from the underlying object type, in this
case Vehi cl eCbj .

An inherited call can be performed for a function method as well. Operations to be per-
formed “before” and “after” a particular method can be handled in MODSIM by the or-
dering of code before and after the inherited call. In general, each method that uses
inherited code will take the form:

ASK METHOD t hi sMet hod(ar gs) ;
BEG N
{ code prior to invoking original nethod }
I NHERI TED t hi sMet hod(ar gs) ;
{ code after invoking original nethod }
END METHOD,

This mechanism is both simple and versatile, and is appropriate for al single inheritance
combinations of methods. When an object inherits methods from more than one object
type, aslightly different approach is used. Thigpproachis described in Chapter 6.

5.5 Assignment Compatibility

A reference value for an object type can dways be assigned to a reference variable of a
base or underlying type. Thisis because al fields and methods of the base or underlying
type are, by definition, known to the derived object. For example, using the previous r e-
lationships, we might have

VAR
flyer : Aircraftj;

helo : HelicopterQj; < derived from AircraftObj

38

Chapter 5: Inheritance

BEA N
flyer := helo;

This relaxed assignment compatibility aso applies to parameters of procedures and met h-
ods.

The relaxed compatibility works only in one direction since it is not aways safe to assign a
variable to a reference variable of a more specific object type. The compiler will not al-
low:

helo := flyer;

because the Hel i copt er Obj may have defined new fields or methods which are un-
known in the realm of Ai rcraft Obj s. An attempt to reference the fields or invoke the
methods would be undefined. For instance, if we allowed the above assignment and then
tried to ASK hel o TO Hover , we would have a problem, since the object stored in the
reference variable called hel o isredly an Ai rcraft Gbj and it does not have a method
calledHover .

39

MODSIM Tutorial

40

6. Multiple Inheritance

MODSIM Il allows an object type to be defined in terms of more than one base object
type. This capability is called multiple inheritance

When a new object type is defined in this way, it has a copy of each field and each method
of its base types. Like many powerful features in any system, this can be a two-edged
sword. [f the base types from which the new object type has been derived have used the
same names for any of their fields or methods, we are left with an ambiguous sSituation.
MODSIM provides facilities to resolve some of these conflicts.

6.1 Declaring Multiple Base Types

A derived object type may be defined in terms of multiple base types. They are listed in
the declaration, asin:

M ssil e = OBIECT(AircraftChj, WaponQbj)

END OBJECT;
This declaration corresponds to the illustration ifigure 6-1.

Simple Objects

PoweredObhj

VehicleOhj

I I I
ShipOhj AfrcraftObij WeaponOhj
I I I
Helicopterohbj Missile Ohj

Complex Objects

Figure 6-1. Multiple-path Inheritance

6.2 Conflicting Fields

If field identifiers of the same name exist in two or more of the base types, the derived
object type will contain a field for each one. Obvioudly, any attempt to reference those
fields in the derived object type would be ambiguous, particularly if some of the fields with

41

MODSIM Tutorial

matching names were of differing types. Because of this, MODSIM does not allow refer-
ences of this sort and will flag them as a compile time error.

If afield from a base type must be accessed and some other base type has a field of the
same name, extra code must be provided to disambiguate the field. This code can assign
the reference value of the object to an object of the desired base type, and then unambi-
guously access the desired field.

Consider the situation which would occur if the Ai rcraft Cbj and the WeaponObj

fromwhich M ssi | eObj was derived each had a weight field. And just to make things
more difficult, the WeaponObj 's weight field is of type REAL and expressed in kilo-
grams. The Aircraft Qbj's weight field is of type | NTEGER and is expressed in
pounds.

Assume we have three reference variables called Ai r cr af t , Weapon and M ssi |l e to
match their respective types. If we assign an instance of M ssi | eObj to al three ref-
erence variables, we have the following situations:

Mssile = ASK arnory TO | ssue(Crui seM ssile);
Aircraft := Mssile;
Weapon = Mssile;

n :
n :
X

ASK M ssile weight U illegal reference
ASK Aircraft weight U ngetsAircraft'sweight (an| NTEGER)
ASK \Weapon wei ght U x getsWeapon's weight (a REAL)

6.3 Resolving Conflicting Methods

Cases where two or more of the base types have methods of the same name are permitted
only when the method is derived from a common ancestor. If there is not a common an-
cestor, the MODSIM compiler produces an error message.

The definition of the object that joins the ancestors must override the common method if
any of the intervening ancestors overrides it. Otherwise, polymorphism will not be able
to work for this method and the MODSIM compiler will produce an error message.

Y ou can supply a completely new method implementation or, as with normal inheritance,
the inherited method can be invoked as part of the implementation. When the method is
inherited from multiple ancestors, a qualified form of the inherited method invocation
can be used to specify the desired version of the method.

42

Chapter 6: Multiple Inheritance

PoweredObj
VehicleObj CompulﬂngObj
I
Sr|1ip0bj IAircraftObj WeaponObj
I
HeIicopteIrObj MilssiIeObj

Figure 6-2. Common Ancestor

As an example, we can consider the M ssil eObj which was derived from an
Ai rcraftObj and a WaponObj . Assume that each of the base types has a method
called Fi ndTar get . Observe that the Fi ndTar get method is itself a method of some
Conput i ngObj from which both Ai r cr af t Obj and WeaponObj inherit:

DEFI NI TI ON MODULE . ..

Comput i ngObj = OBJECT
ASK METHOD Fi ndTarget (I N eneny: Vehicl eCbj);
END OBJECT;

AircraftObj = OBJECT(Vehicl eCbj, ComputingQbj)

" OVERRI DE
ASK METHOD Fi ndTarget (I N eneny: Vehiclej);
END OBJECT;

WeaponCbj = OBJECT(Computi ngQCbj)
OVERRI DE

ASK METHOD Fi ndTarget (I N enemy: Vehicl eQbj);
END OBJECT;

The inheriting object must override the common method and provide its own:

M ssil eCbj = OBJECT(AircraftQoj, WaponObj)

OVERRI DE

ASK METHOD Fi ndTarget (I N eneny: Vehicl eQbj);
END OBJECT;

If the common method is to be invoked in the implementation of the inheriting object, a

qualified inherited call must be used. The qualified inherited call explicitly specifies the
desired version of the method.

43

MODSIM Tutorial

Continuing with the previous M ssi | eCbj as an example, the implementation might
provide the following method:

OBJECT M ssil eObj;
ASK METHOD Fi ndTarget (I N eneny: Vehicl eCbj);
BEG N

| NHERI TED FROM Ai rcraft Gbj Fi ndTar get (eneny);

END METHOD;
END OBJECT:

A qualified inherited call requires the qualifier to be a base type of the object that is be-
ing defined. The | NHERI TED FROM syntax cannot be used to access methods of unre-
lated objects. In the example above this means that the inherited call for the
Fi ndTarget method can only be qualified by one of the two base types of
M ssi | eQbj ; either WeaponObj or AircraftCbj. We could not inherit the Di ve
method from Submar i neQObj , since we are not descended from it.

6.4 Combining Multiple Methods

In many cases, it may be necessary to combine the inherited methods from multiple paths
in the derived type's method. This can be done as long as the | NHERI TED statement
gualifies the inheritance to avoid ambiguity.

Elaborating on the previous example, we could do the following:

OBJECT M ssil e(j;
ASK METHOD Acquire(l N eneny: VehicleQj);
BEG N

I NHERI TED FROM Ai rcraft Qobj Acquire(eneny);
I NHERI TED FROM WeaponObj Acqui re(eneny);

END METHOD:

6.5 Conflicting Field and Method Names

If a method name from one base type is the same as a field name from another base type,
MODSIM flags this as a compile-time error. There is no way to resolve this conflict ex-
cept by renaming one of the fields. Thisisintentional.

No conflict resolution mechanism has been provided in this case since it would lead to

code which, although it could be understood by the compiler, would be confusing or
misleading to those responsible for code maintenance.

44

7. Data Hiding

MODSIM Il separates the definition of methods from the details of their implementation.
It dso alows the separation of the definition of procedures from the details of their i m-
plementation. This provides for separate compilation and data hiding large projects.

The basic compilation unit is the module. Objects, etc. are typically defined in a
DEFI NI TI ON MODULE, and then implemented in art MPLEMENTATI ON MODULE .

Some fields or methods will not be appropriate for use outside the object. Fields or met h-
ods declared as PRI VATE can be used only within the object itself, or within derived ob-
ject types.

7.1 Definition Modules

Objects types are declared in a MODSIM definition module. More than one object type
can be declared in the same module.

If an object type is imported from the definition module, al of its field and method ident i-
fiers are also imported.

The methods for an object type are defined in the corresponding implementation module.
They are contained in their own object implementation block which is named after the o b-
ject type.

For example, a subset of the object types from the previous section might be defined using
the structure:

DEFI NI TI ON MODULE FI i ght Modul e;
FROM Movi ngModul e | MPORT Vehi cl ebj ;

TYPE
Aircraft Gbj = OBJECT(Vehicl ehj)
altitude : REAL;
TELL METHOD C i mbTo(I N hei ght: REAL);
TELL METHOD Circl e;
END OBJECT,

Hel i copt er Gbj = OBJECT(Vehi cl e(bj)
END OBJECT:

END MODULE.

| MPLEMENTATI ON MODULE FI i ght Modul e;
OBJECT Aircraftbj;

TELL METHOD O i nbTo(I N hei ght : REAL):
BEG N
END METHOD:

45

MODSIM Tutorial

TELL METHOD Circl e;
BEG N

END METHOD;
END OBJECT;
OBJECT Hel i copter Qbj;
END OBJECT;
END MODULE.

7.2 Private Fields and Methods

In defining an object type, it is often necessary to include properties which are internal to
the object's implementation. These component fields and/or methods should be unavai I-
able to external users of the object type.

This can be accomplished using a PRI VATE section within the object type declaration,
much asVAR, CONST and TYPE delimit sections of amodule. In the declaration

TYPE
Aircraft Gbj = OBJECT(Vehicl ehj)
altitude : REAL;
TELL METHOD C i mbTo(I N hei ght: REAL);
TELL METHOD Circl e;
PRI VATE
liftCoeff : REAL;
ASK METHOD Cal cLi ft Coeff;
END OBJECT;

wewould refer to |'i ft Coef f and Cal cLi ft Coef f as private properties. The private
properties of an object are visible only within that object type or a derived object type.

Up to the PRI VATE declaration, all properties are assumed public. The PRI VATE section
must precede the OVERRI DE section. Any method in the OVERRI DE section has the same
scope as the original definition.

46

Sectionlll. Simulating withMODSIM lI|

47

MODSIM Tutorial

48

8. Object-Oriented Simulation

MODSIM 1l contains powerful and flexible tools to build discrete-event smulation mo d-
els. Each MODSIM object is capable of carrying on multiple, concurrent activities each of
which elapses smulation time. An activity is scheduled by an object instance using a
WAI T statement in a TELL method. An activity is what occurs in the model as time
elapses. An event isapoint in time at which the state of the model changes in some way.
Any or al activities of an object can be interruptedf necessary.

Another way to view the relationship between events and activities is to say that
MODSIM 11l isinaWAI T statement, not executing code, while an activity transpires. But,
during an event, MODSIM is executing code...; typicaly the code which is changing the
model’ s state in some way.

During an activity, time is elapsing and no MODSIM code is executing to cause this to
happen. During an event, MODSIM code is executing to make the model’ s state change,
but no simulation time is elapsing.

The TELL method is MODSIM’ s tool for writing models. It has several unique and po w-
erful capabilities for modeling and smulation which standard object-oriented methods,
such as theASK method do not have:

It can elapse simulation time using &AI T statement

It can execute synchronoudly or asynchronoudly with respect to smulation time.
This means that it can operate concurrently, in a separate thread of exution.

It can be scheduled to execute at some time in the future.

Not only can one object instance have multiple TELL methods carrying on activities si-
multaneoudly with respect to smulation time, but any one method of the object instance
can be invoked multiple times. Each of these method invocations can be carrying on an
activity at the same point in simulation time.

A method can perform a sequence of related actions. In atime-elapsing TELL method,
these actions may be punctuated by intervals during which smulation time elapses, i.e.
they perform a WAI T. When a WAI T statement is encountered, MODSIM saves the state
of the time-elapsing method and then suspends its execution until the WAI T is completed
or is interrupted. MODSIM then resumes execution of the time-elapsing method at the
appropriate ssmulation time. During th&AI T, other activities may be taking place.

8.1 Simulation Time

MODSIM I1I performs discrete event simulation using several unique capabilities. The
WAI T construct and the time-elapsing TELL method are built into the language itsalf.
Other constructs used to implement simulation models are contained in standard modules
such as Si mvbd (genera simulation tools), ResMbd (constrained resource modeling) |,
RandMbd (random sampling from statistical distributions) and St at Mod (automated gath-
ering and reporting of simulation statisticg.

49

MODSIM Tutorial

The units of time used during simulation are dimensionless. They can represent whatever
time granularity is appropriate for the simulation - years, months, days, hours, minutes,
seconds, milliseconds, nanoseconds. Time is expressed as a standard REAL number, e.g.
a 64-bit floating point number.

Simulation time is maintained by MODSIM. It is available to the user through the REAL-
valued functionSi nili me() which can be imported fronsi mvbd.

8.2 Elapsing Simulation Time in TELL Methods

The term activity describes what happens in atime-elapsing TELL method when a WAI T
statement is executed. In other words, an activity which elapses smulation time is occu r-
ring. A TELL method with three WAI T statements in its body can perform three activities.
One object can have a number of methods, each of which can have zero or more activities
/ WAI T statements. No ssimulation time passes while the code in a TELL method is being
executed. Simulation time only elapses during @Al T.

A WAI T statement is thus used to specify that smulation time should elapse at some point
in a method while the model is engaged in an activity. It optionally specifies a sequence of
statements to be executed after the WAI T is successfully completed, and an optional se-
guence of statements to be executed if the WAI T is interrupted before completing nor-
mally.

The structure of a WAI T statement is Similar to that of an | F statement. It has the genera
form:
WAI T reason
[Statenent Sequence]
[ON | NTERRUPT

St at enent Sequence]
END WAI T;

where r eason is a keyword DURATI ON, which specifies how long to wait or the key-
word FOR which indicates that the method should wait until the method mentioned in the
FOR statement completes execution. The WAI T. . FOR blocks until another activity is
completed / an event happens.

The ON | NTERRUPT clause is optiona. If the WAI T is “successful”, the first statement
sequence is executed. If the WAI T is*not successful”, the statement sequence after the ON
| NTERRUPT is executed instead. In either case, execution continues after the END WAI T
unless one of the statement sequences executes a transfer of control, such as a
TERM NATE.

Although the ON | NTERRUPT clauseis optional, if it isomitted and a WAI T is interrupted,
arun-time error occurs.

A WAI T statement can only appear in a TELL method. If it is placed elsewhere, the com-
piler will flag the error at compile time.

The most basic WAI T is one for a specific period of time. A wait for a specified period of
smulation time is achieved by the WAI T DURATI ON statement. The syntax of the state-

50

Chapter 8: Object-Oriented Simulation

ment is:

VWAI T DURATI ON ti meval ue
[Statenent Sequence]
[ON | NTERRUPT
St at ement Sequence |
END WAI T;

wheret i neval ue isan expression of typeREAL.

8.3 Delayed Method Calls

MODSIM includes a straightforward extension to its basic framework to support object-
oriented interactions within a simulation. This alows for smple event-oriented smul a
tions to be constructed with ordinary objects, and, more significantly, provides a genera
mechanism which allows objects to interact while simulation time elapses.

An earlier chapter introduced the ASK and TELL methods. Although both “send a mes-
sage’ to the receiving object, the two statements differ in how they interact with smul a
tion time.

In many cases, when an object is sent a message to invoke one of its methods, we want to
know that the invoked method has completed before we perform the next step. For e x-
ample, for an Ai rcraf t Gbj to land on arunway, it first must have one properly assigned
toit, asin

ASK controll er TO Assi gnRunway(nyrunway, assignc);

| F assi gnX
destination := nyrunway;
ELSE
destination := alternateAirport;

END | F;

In this case, the smulation logic requires that the Assi gnRunway method for object
control | er be complete before the following | F statement is executed. The invoca
tion of an ASK METHOD is comparable to an ordinary procedure cal, i.e., the Assi gn-
Runway method is required to complete before the next statement is executed.

We say that the program blocks while waiting for the Assi gnRunway method to com-
plete execution. Another way to describe this on a traditional sequential or single-
processor architecture is to say that the invoking code relinquishes the processor to the
routine being caled, Assi gnRunway in this case, and then regains control and continues
execution after the invoked method has completed execution. A single thread of exec u-
tion results. Another way to describe this standard way of doing businessis to say that the
activities are synchronous.

While an activity smulated by a method elapses smulation time, it may not be necessary
or appropriate for the invoker to pause while that method completes. The invoking code
may wish to do other things while the invoked routine is running. It may want to send a
message to the object, invoking one of its time-elapsing methods, and then continue, with-
out waiting for the activity to complete.

51

MODSIM Tutorial

This capability is provided by the TELL method. The invoking process executes the TELL
statement and then continues on without waiting for the invoked time-elapsing method to
complete (or even to start) execution. When a TELL method is invoked, the code which
invokes it does not block. We then have two processes executing simultaneoudly with r e-
gpect to simulation time. The activities are asynchronous and there are multiple threads of
execution with respect to simulation time.

The complete syntax of theTELL statement is:
TELL object [TO] nethod[(argunments)] [IN delay]

The TELL statement can appear anywhere in a program. It is used to invoke TELL meth-
ods, and may not be used to invoke ASK methods. TELL methods are proper methods
with | N parameters only.

A TELL method cannot be a function method and cannot have OUT or | NOUT parameters
since there is no place to which this returned information can be passed. The invoking
code has proceeded past theTELL statement without waiting for any return information.

To take an example, a dispatcher might want to start a truck enroute to a particular loc &
tion, using code such as

TELL METHOD Di spatchTruck(I N dest: Point);

VAR

truck : Vehicl eQbj ect;
BEA N

TELL truck TO ProceedTo(dest);
END METHQOD;
In this case, the Di spat chTr uck method would complete execution at the same simul &
tion time at which it began, no matter how long it eventually took the truck to Pr o-
ceedTo the destination. Another way to describe the behavior is to say that the
D spat chTruck method schedules the ProceedTo method but does not relinquish
control of the processor so that the Pr oceedTo method can execute. The ProceedTo
method in this example will actually execute at some point later in rea time, but at the
same point in simulation time, when the Di spat chTr uck method eventually completes
or performs a WAI T. In either of those two conditions, the Di spat chTruck method

would relinquish the processor and the Pr oceedTo method would have a chance to start
executing.

Also note that, even though thisisa TELL METHOD, it performs no WAI Ts. TELL meth-
ods need not perform a WAI T. Sinceit isa TELL method, however, this means that it can
be scheduled to execute at some time in the future asin:

TELL truck TO ProceedTo(dest) IN 20.0;

52

9. Object Interaction

Operations involving objects may be combined into more complex arrangements than d e-
scribed in the previous chapter.

Each object may perform severa concurrent activities with respect to smulation time.
Time-elapsing methods may synchronize by awaiting the completion of another method.
Or amethod may suspend execution andawait a continuation signal from atrigger lpect.

An object instance may have several methods which are concurrently carrying out activ i-
ties with respect to simulation time.

Any single time elgpsing TELL method of an object instance may be invoked multiple
times such that there are multiple instances of one method carrying out activities concu r-
rently with respect to smulation time. Each method instance has its own distinct, un-
shared set of local variables.

9.1 Concurrency in MODSIM Il

At this point it is worth reviewing how MODSIM supports concurrency. Note that when
we speak of concurrency we mean that a number of activities can be happening smultan e-
oudy with respect to simulation time. On traditional sequential computer architectures,
each method which must execute at the same instant in smulation time actually takes turns
(in real time) using the one processor. On paralel computer architectures however, ac-
tivities could actually take place concurrently with respect to real time.

For the purposes of this discussion we will consider sequentia architectures where co n-
currency is defined to be with respect to simulation time only.

Two distinct object instances can each be carrying out activities at the same point
of simulation time.

One object instance can have two different TELL methods carrying out activities
at the same point of simulation time.

One particular TELL method of one object instance can be invoked multiple times
so that distinct instances of that one method are each carrying out activities at the
same point of simulation time.

9.2 Synchronized Activities

In some scenarios, two methods must operate synchronously. One method starts a second
method and then waits over a period of simulation time for the second method to co m-
plete before the first one resumes execution.

To accomplish this, MODSIM provides th&\Al T FOR statement:

VAIT FOR object [TO] Tine-elapsing nethod[(arg)]
[Statenent Sequence]

[ON | NTERRUPT
St at ement Sequence |

END WAI T;

53

MODSIM Tutorial

The effect of this statement is to:
TELL object TO Tine-el apsi ng net hod();

and then wait for the method to complete. Once the invoked method completes, the
statement sequence after thewAl T FOR is executed.

If the invoking method is interrupted while still waiting for the invoked method to co m-
plete, the statement sequence after theON | NTERRUPT is executed.

If the invoked method TERM NATES, i.e. prematurely finishes execution, then the invoking
method which was waiting for execution of the invoked method to complete also TERM -
NATES.

In the other forms of theWAI T statement two conditions can occur:
TheWAI T completes normally
TheWAI T isinterrupted beforeit is finished

IntheWAI T FOR statement athird condition is possible:

The routine invoked by the WAIT FOR terminates, and the method which
contains the WAIT FOR also terminates.

The effect of TERM NATE is recursive. If method 1 does a WAI T FOR method 2 which
does a WAI T FOR method 3, and method 3 then TERM NATES, then method 2 TERM -
NATES and this causes method 1 toTERM NATE.

As with other forms of the WAI T, the WAI T FOR can only be used in TELL methods of
an object.

The time-elapsing TELL method being waited for can belong to any object; this includes
another method of SELF.

To illustrate use of the WAI T FOR, suppose a simulation includes a transportation cap a-
bility. The shipping process for some freight might include a method which waits while an
Ai rcraft oj fliesthe freight to its desired destination:

TELL METHOD Ship(IN dest : Point);

VAR
ourtransport : Transport Qbject;
BEG N
ourtransport := Transport Manager. next Transport;

WAIT FOR ourtransport TO Fl yTo(dest)
TELL Operations MyStatusls(Arrived);
ON | NTERRUPT
TELL Operations MyStatusls(Del ayed);
END WAI T;
END METHOD,

Whenthe WAI T FOR statement is encountered, our t r ansport is asked to execute its
FI yTo method. The Shi p method waits for the FI yTo method to complete before it
proceeds to its next statement.

54

Chapter 9: Object Interaction

9.3 Arbitrary Synchronization with Trigger Objects

Some processes will need to wait until a specified condition occurs. For these situations,
MODSIM provides a special object type, Tri gger Qbj , which, along with the WAI T
FOR statement, allows a method to pause and wait until some aadition occurs.

The syntax of the statement is:

VAIT FOR trigger object [TO] Fire
[Statenent Sequence]

[ON | NTERRUPT
St at ement Sequence |

END WAI T;

When the WAIT FOR ... Fire statement is encountered, the method suspends and
waits until the trigger object's Tri gger method is invoked by some other method. At
that time, the statement sequence after the WAIT FOR ... Fire is executed. If the
trigger object's I nt errupt Tri gger method is invoked, the suspended method's stat e-
ment sequence after the ON | NTERRUPT is executed instead. A trigger object can have
any number of methods waiting for it tdri gger or | nt errupt Tri gger .

Taking the example of an Ai r cr af t Qbj , a refueling method might prudently wait until
the plane is on the ground before requesting that the tanks be “topped off”, asin:

TYPE
| andedSi gnal : Tri gger Qoj ;

IF flying
WAI T FOR | andedSi gnal TO Fire < i.e. wait until some other
END WAI T; method releases

END | F; trigger landingSignal

ASK airport TO assi gnRefuel er(tankTruck);

VWAI T FOR tankTruck TO refuel (SELF, fuel Capacity);
END WAI T;

9.4 Multiple Process Activities

To construct realistic smulation models, it is often necessary to model a physical object
which can perform severa operations ssimultaneoudly. An aircraft in an airport mode, for
instance, may be required to perform movement, communications and collision avoidance
activities smultaneously. Although this is a fairly common situation, it has traditionaly
been difficult to model, particularly when the activities may interact.

To support such models, MODSIM allows an object to do more than one thing at once.
For instance, an object can receive multiple messages and handle those messages smult a
neously, even when some actions will require time-elapsing sequences of activities.

MODSIM code can be written so that the messages are handled in a way that resolves
potentially contradictory states. For example, an object may be in the middle of one o p-

55

MODSIM Tutorial

eration when it receives a message to perform a different, conflicting operation. Inre-
sponse, the object can:

Interrupt the conflicting time-elapsing method which is waiting
Ignore the new request
Defer the new request.

An operation which an object is to perform over a span of simulation time is termed an
activity and is handled by aMAl T statement in one of the methods of the object.

Severad smple activities could be coded in one time-elapsing method which has severa
WAl Ts or acomplicated behavior could be composed of several different methods.

9.5 Interrupting Activities

MODSIM has provisions for interrupting and stopping any or al activities prematurely.
Any time-elapsing method which is WAI Ting can be interrupted. This is done by invoking
the | nt errupt procedure which can be imported fronsi nmivbd. For example:

Interrupt (Aircraft Gbj, "ProceedTo");

The procedure takes two arguments; the object whose activity is to be interrupted and the
particular method of that object instance which is to be interrupted.

Interrupting the currently executing activity has no effect. Interrupting an activity that is
waiting will cause it to execute the ON | NTERRUPT clause of the WAI T statement. If
thereisnoON | NTERRUPT clause, arun time error will occur.

If it is necessary to interrupt all WAI Ting activities of an object instance, the | nt er r up-
t Al | procedure of Si mvbd can be used:

InterruptAll (Aircraftj);

9.6 How Objects and Their Activities Interact

In MODSIM, every object maintains an Acti vi t yLi st which is a sorted group of ac-
tivities. The activities are ranked by ti mneNext , the time each activity is scheduled to
finish itsWAI T.

An activity record is placed on an object instance's activity list each time one of the object
instance's time-elapsing methods executes a WAI T. The activity record contains all of the
information needed to resume execution of a time-elapsing method after its WAI T is com-
plete or has been interrupted.

When the | nterrupt procedure is invoked, it scans the particular object's activity list
and interrupts the most imminent activity which matches the given name. If there are no
matches, nothing happens. We could do the following:

Interrupt (AircraftChj, "flyTo");

56

Chapter 9: Object Interaction

and the f | yTo method's WAI T would be interrupted. If a method contains multiple WAI T
statements, then whichever one is currently waiting is interrupted. If it isimportant to the
user to conditionally control which WAI Ts are interrupted, then the method can be broken
into separate methods for each activity, or a status can be set before each wait, and then
checked by the interrupting code. For more precision control, MODSIM allows the pr o-
grammer to get a “handle’ to the particular wait of a particular method invocation and
specify the interrupt by using this handle.

The TERM NATE statement is used by any time-elapsing method which wants to finish
execution prematurely. It not only stops execution of the current method, but also TER-
M NATES the method which invoked it using a WAI T FOR. The effect of the TERM NATE
isrecursive. In other words, the invoking routine becomes TERM NATEed and, therefore,
TERM NATES the method which invoked it. Like the WAI T statement, the TERM NATE
statement may only appear within ZELL method.

To summarize;

The I nterrupt procedureis used from outside an object's time-elapsing method
to “wake up” the method before it completes the WAI T. The interrupted method
resumes execution by performing the statement sequence aftéN | NTERRUPT .

The TERM NATE statement is used from insde an object's TELL METHCD to pre-
maturely stop execution of the method and the method which called this method if
it used theWAI T FOR construct.

57

MODSIM Tutorial

58

10. Grouping Objects

Multiple objects in MODSIM are associated through groups. Objects may be selectively
added or removed from a group, and a MODSIM program can iterate through the me m-
bers of agroup. A group can hold any type of object.

Each MODSIM 11l group has a variant which is capable of automatically gathering de-
tailed statistics on the operation of the group.

10.1 Associating Objects

When making extensive use of dynamic data structures, such as objects, a language needs
away to associate multiple objects for common manipulation.

Thisis especiadly true for simulations, which typically group objects queuing for a resource
(the proverbial bank teller or barber) or a series of events scheduled to happen at a specific
time. Such associations are referred to agroupsin MODSIM.

10.2 Groups

A group may contain zero or more of any type of object. An object can belong to any
number of groups. All of MODSIM’s groups support prototyping. This means that the
user can derive anew group object from one of MODSIM |I11”s built-in groups and specify
the type of object that the group is meant to hold.

Probably the most commonly used group is QueueObj , which is a First-In-First-Out
(FIFO) group. Objects are added to the back and removed from the front.

The St ack@oj is a Last-In-First-Out (LIFO) group. Objects are added and removed
from the front.

The Rankedbj is ranked according to the value of an object's field or fields. The user
specifies the ranking by overriding the RankedObj’s Rank method and providing code to
compare two objects for sorting purposes. The object uses this Rank method to sort each
added object into its correct position in the ranked group.

For more efficient handling of large ordered groups which will be added and removed ran-
domly, MODSIM Il supports the BTr eeObj which orders objects according to the value
of astring which is used as akey.

10.3 The Queue Group
For the QueueObj type, the following methods are defined:

ASK METHOD I ncl udes (I N candi date: ANYOBJ) : BOOLEAN,
ASK METHOD Add (| N Newienber: ANYOBJ); { behind Last }

ASK METHOD Renove () { renoves First } : ANYOBJ;
ASK METHOD First () : ANYOBJ;
ASK METHCOD Last () : ANYOBJ;
{ First ... candidate ... Last
<- Prev | Next -> }
ASK METHOD Next (I N candi date: ANYOBJ) : ANYOBJ,

59

MODSIM Tutorial

ASK METHOD Prev (I N candi date: ANYOBJ) . ANYOBJ;
ASK METHOD RenpveThi s (I N nmenber: ANYCOBJ);
ASK METHOD AddBefore (I N Exi sti ngMenber,
NewiVenber: ANYOBJ);
ASK METHOD AddAfter (I N ExistingMenber,
NewMenber: ANYOBJ);

Queuebj aso has defined the fiedld nunber I n which can be queried to determine the
number of objectsin agroup.

The Add method places an object at the back end of the group while Renove takes it
from the front of the group. First, Last, Next and Prev return reference values for
those objects without changing the composition of the group. RenoveThi s removes the
specified object from a group. AddBef ore and AddAfter add an object next to the
specified object in the group.

The I ncl udes method determines whether a specific object is part of a particular group
without traversing the group. This is an important efficiency consideration. Each object
in MODSIM 111 keeps an internal list of groups to which it belongs. The I ncl udes
method interrogates this list, which is likely to be shorter than most groups, to determine
its answer.

10.4 The Stack Group

The St ackObj type inherits al of the fields and methods of the QueueQbj . It overrides
the QueueObj 's Add method and substitutes an Add method which places objects at the
front of the group instead of the back.

10.5 The Ranked Group

The RankedObj type inherits al of the fields and methods of the QueueQoj . It over-
rides the Queuebj 's Add method and substitutes an Add method which inserts new
objects into the group using aRank method to determine their proper position.

ASK METHOD Rank(I N a, b: ANYOBJ) : | NTEGER,
The user overrides the default Rank method and substitutes one which returns the fol-

lowing values:
-1 if a<b
0O if a=b>b
1 if a>0b

The user specifies how the comparisons, e.g.a > b, are made.

Sincethe I N parameters to method Rank are of type ANYOBJ, the user will need to as-
sign them to variables of the appropriate type before attempting comparison of any fields.
As an example, the following implementation for method Rank could be used to rank a
group of cargo objects according to their weight field:

ASK METHOD Rank(I N a, b: ANYOBJ) : | NTEGER,

VAR
BoxA, BoxB: CargoQbj;

60

Chapter 10: Grouping Objects

BEG N
BoxA := a; BoxB := b;
| F ASK BoxA wei ght < ASK BoxB wei ght
RETURN - 1;
END | F;
| F ASK BoxA wei ght > ASK BoxB wei ght
RETURN 1;
END | F;
RETURN O;
END METHOD,

10.6 The BTree Group

The BTr eeObj is an implementation of the group objects which uses the more efficient
Btree (balanced tree) data structure and algorithms to maintain a group which is ordered
according to the value of a string supplied by the user.

This is the group object which should be used in situation s where large ordered groups of
objects need to be maintained. The Btree will be more efficient for larger groups and the
Ranked group will be more efficient for smaller groups.

10.7 lterating Through a Group

It is often necessary to iterate through a group to perform some action on selected mem-
bers of the group. The standard methods provided for group objects alow the user to
easly accomplish this by writing code, but MODSIM has a built-in construct to make the
job smpler. The FOREACH construct iterates through each member of a group and makes
each member available for inspection or removal.

FOREACH obj ect I N group

do something
END FOREACH

Thisis arobust construct which, aside from the convenience it offers, has a specia cap a
bility. It isimpervious to the manipulations of the current object which take place within
the loop. If the logic inside the loop deletes the current object, this construct will still find
the next object. If anew object is added after the current object, the FOREACH will still go
to the “original” next object on the next iteration instead of the one which was just added.

To illustrate the FOREACH, we can go through a group of vehiclesin a Vehi cl eG oup
and schedule any vehicle which is loaded with less than a 60% fuel load to be refueled.
The group has truck objects, car objects, aircraft objects and boat objects. Each is derived
from Vehi cl eObj which definesthe field$ uel St at e.

VAR
vehi cl e: Vehi cl eQbj ;

FOREACH vehi cl e I N Vehi cl eG oup
IF vehicle.fuel State < 0.6
TELL vehicle TO Refuel;

END | F;

61

MODSIM Tutorial

END FOREACH,

62

11. A Simple Airport Model

This chapter examines a ssimple model of an airport. The model illustrates a number of the
basic smulation constructs built into MODSIM 111, but does not use any of the more ad-
vanced constructs which have not been covered in this text. These include items such as
theResource bject, Statistics Object and monitored variables.

This version of the modd is meant to show a model in its most elemental form. A more
elaborate verson of this same model will be described after the chapters on
SIMGRAPHICS Il. That version uses animated graphics and other more advanced fe a
tures of MODSIM |11,

The source code for both versions of the mode! is included in the distribution media for
MODSIM l11, so you can experiment with this model and try changesto it.

11.1 Why Model an Airport?

Airports and their operating rules are familiar to most people. In the case of asimple ai r-
port (such as this one!) there is one runway which is used for both arrivals and departures.
Arriving aircraft have priority over departing aircraft because their fuel capacity does not
permit them to wait for long periods while flying circles around the airport. Departing
aircraft, which wait on the ground, are less constrained.

An airport is conceptually easy to model because it has clearly stated operating rules and a
limited set of behaviors to be modeled. It can be an interesting system to model because
landing and departing aircraft are both competing for one limited resource, the runway.
The interaction of the landing and departing aircraft objects and the controller object pr o-
vides ample opportunities to illustrate object oriented programming.

Finally, it is a classic discrete-event smulation model characterized by randomly occurring
events and queues which grow as demand on the resource exceeds capacity.
11.2 The Source Code

The source code for the model is presented here in its entirety. The code and its embe d-
ded comments are shown in Courier font. The code is interspersed with explanatory r e-
marks using the Times Roman font. The mode is fairly short and uncomplicated, so it is
written in one module.

Initially, the most important thing to do is to read the rules by which the airport operates
and the goal of this model. These are all stated at the start of the source code as a long
comment.

MAI N MODULE airprt;

{ Sinple non-graphic airport nodel --

Rul es for the airport:

63

MODSIM Tutorial

1. Takeoff: The controller may clear an aircraft for
takeoff if no arriving aircraft is in the 6 mle ap-
proach path and the runway is clear. Arriving
aircraft have priority over those waiting to take off.
Departing aircraft are placed in a FIFO queue if they

cannot be
cl eared i mredi ately upon requesting takeoff clearance.

2. Landing : The approach corridor is 6 mles long. No
other aircraft may be cleared to conmence an approach

if the approach path is occupied. |If the runway is not
cl ear when an arriving aircraft reaches its threshold,
it nmust go around for another approach. It then has

priority for |anding ahead of other arriving aircraft.
Go- arounds always take 5 mnutes to conplete. At the
end of 5 mnutes, the aircraft comences anot her ap-
proach or is placed in the arrival queue ahead of ar-
riving traffic.

3. Arriving aircraft which cannot be imediately cleared
for landing are place in a FIFO queue for [|anding.
The controller clears each aircraft to comence | andi ng
approach if no aircraft is using the approach path.

Now we have a description of the airport’s operating rules, but we do not know why we
are writing amodel of the airport. What is it that we hope to learn by running the model?
The answer to this question will determine how we design the model and how we conduct
experiments with it. 1t will also determine the level of detail we will include.

Goal s for the nodel
1. Run the nodel with various traffic rates

2. Measure the follow ng paraneters which will be inpor-
tant to users of the airport:

a. Arriving and departing queues:

- max size
- average size
- average delay tinme (tine in a queue)

b. Nunber of aircraft which arrived & departed
c. Nunber of arriving aircraft which executed a go-
around.

Now we know the goal for the model. We will use it to determine the maximum rate at
which aircraft can arrive and depart without causing arrival and departure queues which
are “too long”.

The next task is to design the model. We start by thinking about the objects involved in
the model and how they will interact. In an object-oriented model this step is, literaly, the
top level of the model design. All we need to do is write the object type definitions and
then flesh out the objects’ methods with code to describe their behaviars

64

Chapter 11: A Simple Airport Model

bjects involved in the simulation:

Controller - Mbddel ed behavi ors:

a. Clear aircraft to | and

b. Cear aircraft to takeoff

c. Receive notification of arriving and departing air-
craft.

d. Receive notification when arriving and departing
aircraft have cleared the runway.

e. Receive progress reports fromaircraft making ap-
pr oaches.

Aircraft - ©Mddel ed behavi ors:

a. Performtakeoff when controller gives takeoff
cl earance

b. Performlanding when controller gives |anding
cl earance

c. Performgo-around if runway is occupi ed.

Traffic Generator - ©Mddel ed behavi or:

a. GCenerate arriving & departing aircraft and request
| andi ng or takeoff clearance.

What is this traffic generator object? It wasn't aliteral part of the airport description, o p-
erating rules or model goals, however there is an implicit requirement to generate traffic
for the airport. Nearly every model needs a mechanism to generate arriving objects such
as aircraft, customers, phone calls, etc.

Next we state some of the assumptions used in the model. A very important item is a
statement about the units used to measure time and distance in the model.

Ti ne base for the nodel is m nutes.
Distance is neasured in Nautical Mles - 1 NM = 1.15
Mles = 1.85 Km
Speed is neasured in Knots (Nautical M| es per Hour)
AC = aircraft }

FROM GrpMod | MPORT St at Queuebj ;

FROM Si mvbd | MPORT StartSi nul ati on, Sinili ne;
FROM RandMod | MPORT Randombj ;

FROM | Ovbd | MPORT ReadKey;

TYPE
trafficType = (arrive, depart);
st at usType = (clear, inUse);
priorityType = (normal, goAround);

AircraftCbj = OBJECT; { virtual aircraft type with comron
attri butes }
ovhdTinme : REAL; { overhead tinme: taxi onto runway for
TO
or roll out after |anding }

65

MODSIM Tutorial

taskTime : REAL; { time required to takeoff or fly ap-
proach }
startTime : REAL; { simtine at which AC starts Land or TO}
END OBJECT;

Takeof f Obj = OBJECT(AircraftQbj);
TELL METHOD Takeof f;
ASK METHOD Objlnit; { set takeoff perfornance attributes }
ASK METHOD (bj Terminate; { report statistics before D SPCS ng }
END OBJECT;

LandOQhj = OBJECT(AircraftObj);
landPriority : priorityType; { normal or goAround which is higher }
TELL METHOD Land;
TELL METHOD GoAr ound;
ASK METHOD Objlnit; { set |anding perfornance attributes }
ASK METHOD Obj Term nate; { report statistics before DO SPCS ng

}
END OBJECT;
TrafficGenCbj = OBJECT
numACgen : INTEGER; { nunber of AC generated }
numACconp © INTEEER { nunber of AC conpl eted | andi ng/takeoff }
totTineSpent : REAL; { total tinme spent by AC conpleting task }
ranGen : Randonthj ; { random nunber gen. used by this obj }
TELL METHOD GenTraffic(IN interarrival Rate : REAL;
I'N ki ndOF AC » traffic-
Type) ;

ASK METHD LogConpl etion(I N whenStarted: REAL); { when done }
ASK METHOD Obj I nit;

END OBJECT;

Control | erj = OBJECT,
arriveQ : Stat QueueObj;
departQ : Stat QueueQpj;

ASK METHOD Landi ngCl earance(I N plane : LandQObj);
ASK METHOD Takeof f Cl earance(I N I ane : Takeof fj);
TELL METHOD C ear OF Runway;

TELL METHOD O ear OF Appr oach;

ASK METHOD Obj I nit;

END OBJECT,
VAR
runway : statusType;
appr oachPat h . statusType; { approach corridor }
ArriveGen © TrafficGenQbj;
Depart Gen : TrafficGenQbj;
Controller : Control l erj;
randSeed | NTEGER; { each new generator uses a new seed }
traffi cRanGn mndon(bj, { used by aircraft to set their fields }
goAr oundCount : | NTEGER,
interRate : REAL; { interarrival rate }
ch . CHAR
CONST
stopTi me = 1440. 0; { mnutes }

66

Chapter 11: A Simple Airport Model

sequenceDelay = 1.0; { interval between departing AC }

OBJECT Takeof f Qbj ;
TELL METHOD Takeof f;
BEG N
VWA T DURATI ON ovhdTine + taskTine { taxi into position & takeoff

END WAI T;
TELL Controller C ear O Runway;
DI SPOSE(SELF) ;

END METHOD;

Note that once the aircraft has completed its take off or landing, it is no longer needed in
the model, so it is discarded by having it DISPOSE of itself

ASK METHOD Qojlnit; { takeoff }

BEG N
ovhdTi ne = traffi cRanGen. Exponenti al (0. 9);
taskTi me = traffi cRanGen. Uni fornReal (0.5, 0.9);
startTime := Sinlinme();

END METHOD;

In this ssmple model, the operating parameters are “hard wired” into the aircraft. 1t would
be more realistic to allow the user to change these parameters at runtime to facilitate e x-
perimentation. Thisis done in the graphical version of the model. The only parameter in
this model which can be changed at run time is the interarrival rate of the aircraft.

Note that each new aircraft samples its operating parameters from one random number
generator, t r af f i cRanGen. If each aircraft created its own random number generator it
would be necessary to seed each one with a unique seed and the random number generator
object would only be used a few times in the Obj | ni t method. It would then be dis-
carded. Itissmpler and more efficient to set up one random number generator to be used
by all arcraft.

ASK METHOD hj Ter mi nat e;
BEG N
ASK Depart Gen LogConpl etion(startTine);
END METHOD;
END OBJECT;

OBJECT LandQbj ;
TELL METHOD Land;
BEG N
VWAI T DURATI ON t askTi ne
END WAI T;
TELL Controller C ear O Approach;
IF (runway <> clear) { is runway clear? }

GoAr ound;
RETURN; | andi ng has been aborted, so exit this nethod
END | F;
runway : = inUse;
WAI T DURATI ON ovhdTinme { roll out tine }
END WAI T;

67

MODSIM Tutorial

TELL Controller C ear O Runway;
Dl SPOSE(SELF) ;
END METHOD;

TELL METHOD GoAr ound;
BEG N
I NC(goAr oundCount) ;
VWAI T DURATION 5.0
END WAIT;
landPriority := goAround,
ASK Controll er Landi ngCl earance(SELF);

END METHOD;

ASK METHOD Oojlnit; { land }

BEG N
t askTi nme = traffi cRanGen. Uni fornReal (2.8, 3.0);
ovhdTi me = traffi cRanGen. Uni fornReal (0.8, 1.2);
landPriority := normal;
startTinme := Sinline();

END METHOD;

ASK METHOD hj Ter m nat e;

BEG N
ASK ArriveGen LogConpl etion(startTine);

END METHOD;

END OBJECT { Aircraftoj };

The traffic generator object creates either landing or departing aircraft. 1t's GenTraf fic
method runs continuously in aloop until smulation time exceeds the stop time. It uses a
random number generator which it creates at the time it isinitialized.

OBJECT TrafficGenj;
TELL METHOD GenTraffic(IN interarrival Rate : REAL;

I N ki ndOF AC © trafficType);
VAR
pl aneTO : Takeof fj;
pl aneLand : LandQbj;
BEG N

VWHI LE (Si nli me <= stopTi ne)
WAI T DURATI ON ranGen. Exponenti al (interarrival Rate);
END WAIT;
I NC(numACgen) ;
CASE (ki ndOF AC)
WHEN arri ve:
NEW pl aneLand) ;
ASK Controll er Landi ngC earance(pl aneLand);
VWHEN depart :
NEW pl aneTO) ;
ASK Controll er TakeoffC earance(pl aneTO ;
END CASE;
END WHI LE;
END METHOD;

ASK METHOD LogConpl etion(l N whenStarted: REAL);

68

Chapter 11: A Simple Airport Model

BEG N
tot Ti meSpent := totTinmeSpent + (SinTime() - whenStarted);
I NC(numACcomp) ;

END METHOD;

The Qoj I ni t method creates a random number generator object which is used to provide
pseudo random interarrival times. Since there could be multiple instances of this object
(two are used in this program), each instance needs to use a different seed for the random
number generator object. If this was not done, every instance would generate planes at
the same exact times

ASK METHOD Obj I nit;
BEG N
NEW r anGen) ;
I NC(randSeed); { each generator gets a unique seed }
ASK ranGen TO Set Seed(randSeed) ;
END METHOD;
END OBJECT { TrafficGenOoj };

OBJECT Controllerj;
ASK METHOD Landi ngCl earance(I N AC : Landbj);

BEG N
IF ((arriveQ nunberin = 0) AND (approachPath = clear))
approachPath : = inUse;
TELL AC TO Land;
ELSE { AC on go around are put first in arriveQ

IF ((AC. landPriority = goAround) AND
(arriveQ nunmberin > 0))
ASK arriveQ TO AddBefore(arriveQ First, AC);
ELSE
ASK arriveQ TO Add(AC);
END | F;
END | F;
END METHOD;

ASK METHOD Takeof f Cl earance(I N AC : Takeof f Obj);
BEG N
IF ((departQ nunmberin = 0) AND
(runway = clear) AND
(approachPath = clear))
runway : = inUse;
TELL AC TO Takeof f;
ELSE
ASK depart Q TO Add(AC);
END | F;
END METHOD;

TELL METHOD C ear OF Runway;

{ AC which have conpleted | anding rollout or takeoff
use this nmethod to report that they have cleared the
runway. Controller then checks to see if an ACis
waiting for takeoff }

VAR
AC : Takeof f Qbj;

69

MODSIM Tutorial

BEG N
runway := clear;
WAI T DURATI ON trafficRanGen. Exponenti al (sequenceDel ay)
END WAI T;

IF ((departQ nunmberin > 0) AND
(approachPath = clear) AND
(runway = clear))

AC : = depart Q Renpve;

runway : = inUse;
TELL AC TO Takeoff;
END | F;
END METHOD;

TELL METHOD O ear OF Appr oach;
{ AC which have cleared the approach corridor
use this nmethod to informthe controller. The control-
ler then clears the next arriving aircraft to land. }
VAR
AC : LandOQbj;
BEG N
IF (arriveQ nunberln > 0)
AC : = arriveQ Renpve;
approachPath : = inUse;
TELL AC TO Land;
ELSE
approachPath : = cl ear;
END | F;
END METHOD;

ASK METHOD Qbj I nit;

BEG N
NEW arriveQ;
ASK arriveQ TO SetDelayStats(TRUE); { turn CNstats col lecting }
NEW depart Q ;
ASK depart Q TO Set Del aySt at s(TRUE) ;

END METHOD;

END OBJECT { ControllerQoj };

PROCEDURE ShowResul t's;
BEG N
OUTPUT,;
QUTPUT(" Simul ation Run is Finished at Simlinme ", Sinilinme());
QUTPUT("Mean interarrival rate used for arrivals & depar-
tures: ", interRate);
QUTPUT("# of arriving AC. ", ASK ArriveGen numACgen,
" # of departing AC. ", ASK DepartGen numACgen);
QUTPUT("# of go arounds =", goAroundCount);
OQUTPUT("Max # AC waiting to takeoff & Mean # waiting to take
off: ", Controller.departQ Maximum " - ", Control -
| er.depart Q Mean);
QUTPUT(" Mean tinme spent departing: ",
ASK Depart Gen tot Ti meSpent / FLOAT(ASK Depart Gen
numACcomp)) ;
QUTPUT("Max # AC waiting to land & Mean # waiting to |and:

70

Chapter 11: A Simple Airport Model

Controller.arriveQ Maxi mum " - ", Control -
ler.arriveQ Mean);
QUTPUT(" Mean time spent |anding: ",
AK ArriveCGen tot Ti mneSpent / FLOAT(ASK ArriveGn nunhG

conp)) ;
END PROCEDURE;

BEG N
QUTPUT(" Mean time between arrivals / departures?");
QUTPUT(" (optimum value is around 6 minutes)");
I NPUT(i nter Rate);
NEW Control |l er);
NEWtraffi cRanGen);
I NC(randSeed) ;
ASK traffi cRanGen TO Set Seed(randSeed) ;
NEW ArriveGen);
TELL ArriveGen TO GenTraffic(interRate, arrive);
NEW Depart Gen) ;
TELL DepartGen TO GenTraffic(interRate, depart);
StartSi nul ati on;

ShowResul t's;
OUTPUT,;
QUTPUT(".... Hit any key to term nate");
ch : = ReadKey; { on PC Wndows hol ds wi ndow open till key is
hit }
END MODULE.

11.3 Results of the Model

These are the statistics which result when the modd is run with the recommended 6 mi n-
ute inter-arrival time:

Simulation Run is Finished at Siniime 1466. 567241

Mean interarrival rate used for arrivals & departures:
6. 000000

of arriving AC. 243 # of departing AC. 230

of go arounds = 4

Mix # ACwaiting to takeoff & Mean # waiting to takeoff: 25 - 10.467890
Mean tine spent departing: 60.910749

Max # ACwaiting to land & Mean # waiting to land: 6 - 1.344961
Mean tinme spent |anding: 6.098950

Note: The modd did not finish exactly at the end of 1,440 minutes of smulated time.
That was the time at which the model stopped generating new aircraft traffic. There were
still aircraft landing or departing at that time, so the model did not actualy finish until 26
minutes later.

We can audit some of the model’s results by simple consistency checks. This helps to
validate that the model is operating correctly and builds confidence in the results which we
can not easily compute.

The model was run with the recommended inter -arrival rate of 6 minutes. This means that
an average of 10 aircraft per hour would arrive and the same average number depart.
Since the model generated traffic for 1,440 minutes (24 hours), we would expect 24 x 10

71

MODSIM Tutorial

or 240 aircraft to arrive and depart. We had 243 arrivals and 230 departures. For a short
run with a small sample size thisis reasonable.

Had we run the model for a longer time or over a number of replications, the number of
observed arrivals and departures would come closer to the anticipated number. In fact,
most of the model’ s statistics would be of better quality. The one exception to thisruleis
the maximum queue lengths. The longer we run the model, the more likely we are to en-
counter some random combination of events which would lead to a long queue building
up. Since this would be a rare event and not characteristic of the system’s “norma” b e-
havior it istypically not a useful measure.

The solution to this problem is to run the model a number of times and average the max i-
mum queue lengths. We say we have run X number of replications of the model. Thus,
instead of characterizing the maximum gueue length as the “longest queue in a month’'s
worth of operation” it might be more useful to offer “the average daily max imum queue
length resulting from a month’ s worth of operations’.

11.4 Dissection of the Simple Model

With the introductory comments removed, the source code above contains about 340 lines
of code. It is a complete model of a plausible system which allows the user to conduct
experiments and arrive at some conclusion about the potential traffic capacity of the ai r-
port.

Is it a redlistic mode? Wall, it is a redistic model of the airport which was described.
However, that description was kept deliberately simple so the model would be easy to
study.

In “red life” the airport and its model would be more complex. Here are some potentia
shortcomings of this model:

It does not consider the possible effects of adverse weather on traffic flow.

Although traffic is generated randomly, it is dways at the same average rate.
There are no peaks and valleys as the day progresses.

It presents its data in aggregate form as a series of averages and maximums. It
would be useful to know more about the nature of operations. Animation would
help, as would some information about the variance of the performance data.

In the rea world, controllers would likely “break” the rules and take shortcuts to
improve efficiency, if safety could be assured. The model’s operating rules and
logic would have to be made more complex to reflect this.

No alowance is made for the startup transient. Most models would be alowed to
“warm up” to a steady state, before starting to ctlecting statistics.

There is a bug in the model! When aircraft are forced to go around because the
runway is not clear, they take 5 minutes to go around and then are placed ahead of
all other traffic in the landing queue. Unfortunately, there may be other aircraft

72

Chapter 11: A Simple Airport Model

which had to go around already in the queue. The latest aircraft to go around
would be placed in the queue ahead of other aircraft which had gone around. So
the logic in the Controller object’'s Landi ngCl ear ance method needs to be
changed so that aircraft on a go around are placed in the landing queue ahead of
“normal” aircraft, but behind all other “go around” aircraft.

There are obvious improvements which could be made, but this model has served its pu r-
pose which is to illustrate how a collection of interacting objects can be organized into a
model of a“rea world” system. The program aso illustrates how MODSIM [1I’s smula-
tion engine is unobtrusively embedded into the language. The WAIT DURATION stat e-
ments in the TELL METHODS are the only visible evidence of the smulation capability.
Note also that statistics on the models queues are automatically gathered behind the
scenes so the code is not cluttered with statistics statements which might obscure the logic
of the model.

Later we will expand this model to include animated graphics, more extensive statistics
gathering, presentation graphics and a graphical user interface. However, the fundamental
portions of that model will remain very similar to this code.

73

Section IV. Animated Graphics- SIMGRAPHICS I

75

MODSIM Tutorial

76

12. SIMGRAPHICS I

12.1 Background

SIMGRAPHICS Il is a set of pre-defined objects used by MODSIM I11 programmers to
build portable programs which use the graphica user interface, graphics and animation
features of window systems such as Microsoft Windows and X Windows$t supports:

Data visualization, charting and plotting.

Animationand interactive graphics.

User interface through dialog boxes, menus, palettes, etc.
Editing of graphical and user interface objects.

Three dimensional animation

The two features which distinguish SSIMGRAPHICS |1 from other graphics systems are its
portability and its close integration with MODSIM 11I’s smulation engine. This means
that the implementation of animated graphics is smple and the same code can be moved
from machine type to machine type without change. When MODSIM I11 programs which
use SIMGRAPHICS Il are moved from one window system to another, the appearance of
the menus, dialog boxes, etc. change to conform with the “look and feel” of the particular
window system, but the functionality remains the same.

12.2 What is SIMGRAPHICS I11?

By default, SIMGRAPHICS |l uses vector graphics to draw icons, charts and back-
grounds, but it can aso display and scale bit-mapped graphics. This means that photo-
graphs and other bit-mapped graphics can be displayed as part of a smulation.
Conversion programs to trandate between most bit-mapped and vector graphics standards
are provided with the Unix versions oMODSIM 111.

Vector graphics which use popular standards such as Autocad can be imported and used.
Finally, SSIMGRAPHICS Il produces Postscript output files which can be used in docu-
mentation and reports.

This section of the tutorial:
Introduces the user to the principal components of SSIMGRAPHICS |

Provides example code which shows how to implement each magjor graphics cap a
bility. The sections of code used for illustration are from sample programs. Each
of these programsisincluded in thé1ODSIM I11 distribution.

12.3 SIMGRAPHICS Il Object Types

SIMGRAPHICS Il isimplemented using MODSIM |11 object types. This givesit a num-
ber of advanced features which are usuallyot available in most graphics systems

77

MODSIM Tutorial

The objects are adaptable through multiple inheritance. The user can take any
graphical object and add additional behavior to it through inheritance.

Existing objects can be turned into graphical objects by smply inheriting from a
graphical object.

The graphics system is portable. SIMGRAPHICS Il is an integral part of
MODSIM I1I'slibrary and is dways the same on every system. There are no parts
of the system which are machine or operating system dependent, so MODSIM

code which uses SIMGRAPHICS Il can be moved from one machine / operating
system type to another by simply re-compiling it.

The graphics are integrated with simulation. The animated objects in
SIMGRAPHICS Il have their positions updated automatically by the smulation
engine. You only need to specify starting position and speed. When you tell the
object to MoveTo a hew position, the job of re-drawing, scaling, etc. is handled
automatically.

There are approximately 40 modules in the SIMGRAPHICS |1 library. These contain o b-
jects used to build graphics images and user interface objects such as dialog boxes. The
modules aso contain a number of virtual object types. These are building blocks from
which the other objects in the library are built. The virtual object types, whose names all

end withVQbj , are used only to define other object types and are never used directly.

The virtual types are made visible and accessible because they are the “foundation” of the
graphics system and define many of the basic fields and methods inherited by the graphics
object types which are used to build graphics and user-interface windowed programs.

Listed here are the object types which define the core of SIMGRAPHICS II:

78

G aphi cVObj - This virtua object is the base graphic object type. It contains
fields and methods which are used by the graphics system to manipulate and man-
age graphical objects. Objects derived from Gr aphi cVQbj can be drawn/erased,
positioned, selected, hidden, copied and made selectable or non-selectable. They
are capable of loading/saving their graphical representation from/to a library o b-
ject, and adding/removing/manipulating child objects.

Cont r ol VObj - This virtual object type is the base class for object types which
support user interaction, such as dialog boxeand menus

W ndowObj - Corresponds to a display window. This is the canvas upon which
all the graphic objects appear. It can be sized and positioned programatically or by
user interaction with the windowing system. Its default drawing areais the largest
centered square within a display window, but it can be made to appear anywhere
on the user’s screen, fill the entire screen or open as a rectangular rather than
square window. It defines a base coordinate system whose default is (O, 0) -
(32,767, 32,767). Theoriginis at the lower left corner of the window

It contains an optional menu bar, palettes, status bar, and graphical images and has
associated dialog boxes. It supports mouse tracking and button click detection.

Chapter 12: SIMGRAPHICS I

The user can override its Moused i ck and MouseMbve methods and add custom
functionality to these ations.

Its appearance and the way in which users re-size and move it follow the standards
of the particular windowing system such as Microsoft Window®SF/Motif etc.

| mageObj - Thisisthe base class for al graphics other than dialog boxes, menus,
etc. It defines the fields which govern the object’s appearance. Objects derived
from | mageObj can be assigned color, and can be highlighted, scaled, rotated,
and trandated. Hierarchies of these objects can be built, so child images can be
added to anl mageObj object and positioned relative tats coordinate system.

G aphi cLi bObj - This object can hold descriptions of any graphic objects, i n-
cluding icons, dialog boxes and menus. It is typically loaded with these images
from a file produced by MODSIM’s graphics editor, SMDRAW. SIMDRAW
allows the user to build al aspects of a graphical user interface from icons to dia
log boxes. SIMDRAW stores the descriptions of graphic objects in files with the
extenson “. S&.” The files can be saved in text format, for portability, or in bi-
nary format for speed.

12.4 Example: Drawing an Image in a Window

This example assumes that the user has previoudy drawn a representation of the graphic
object called ‘airplane using the SIMDRAW graphical editor and stored this image in a
file caled nypi cs. sg2. The graphica depiction called ai r pl ane is then associated
with thel magebj callednyl con in this program and isthen displayed.

MAI N MODULE denpl;

FROM W ndow | MPORT W ndow(bj ;
FROM | nage I MPORT | mageQbj ;
FROM G aphi ¢ | MPORT G aphi cLi bQbj ;

VAR
Wi n : W ndowObj ;
lib : Graphi cLi bQoj ;
myl con : | nageQbj ;
i nput : ANYOBJ;

BEG N
NEW win); { Create a wi ndow }
NEW lib); { Ceate alibrary and load it froma file }
ASK |ib TO ReadFronfFile ("nypics.sg2");
NEW mylcon); { Create an inage and |load its graphical
representation fromthe library }
ASK nylcon TO LoadFronii brary (lib, "airplane");
{ Add icon to wi ndow and ask wi ndow to Draw }
ASK wi n TO AddG aphi c(nylcon);
ASK wi n TO Draw,
{ wWait for user to click in w ndow }

79

MODSIM Tutorial

i nput := ASK win TO Accept | nput;
END MODULE.

This short program illustrates a powerful feature of SIMGRAPHICS I1I. The graphic
which the program displays is first drawn by the programmer using the SIMDRAW
graphics editor, and is then saved to afile. When the program runs, it loads this descri p-
tion of the image into a library and then associates that image with a graphical object
cadled myl con and drawsit in the Window. If the program had a menu bar or used dialog
boxes for user interaction, these could also be built using theraphics Editor.

SIMGRAPHICS Il also alows the programmer to make calls to the graphics libraries and
draw images, dialog boxes, menus, etc. programatically.

Unlike many windowed systems, SIMGRAPHICS Il does not bind the graphic objects to
its executable. They exist in a separate file, in this case nypi cs. sg2, and are loaded by
the program when the program is run. This means that changes to icons and dialog boxes
can be made without recompiling and linking the program.

12.5 SIMDRAW - the Graphics Editor

SIMDRAW s the editor provided by the SIMGRAPHICS Il system to create and edit
graphic images, charts and graphs and user interface items such as menu bars, dialog
boxes and palettes. The editor is portable across al systems on which MODSIM 111 is
available. It produces graphics files which are also portable.

SIMGRAPHICS Il provides al of the methods and procedures needed to create and
modify graphic items programatically, but, since it is much simpler to do this kind of work
with SIMDRAW, the capability is usually used only when graphics or user interface items
must be created or changed by a program “on the fly”.

Graphic items are built from primitives such as lines, circles, polygons, etc. Typicaly
these parts are grouped together for convenience in handling. Each group and primitive
can have a name and integer ID. These are used as “handles’ to identify the graphic o b-
jects when they are in a graphics library or when they are part of another graphics object.

Any graphics itemcan be saved in agraphicslibrary.

SIMDRAW's main window is shown below. This window categoricaly lists al objects
contained in the currently loaded library file. From this window you can create and edit
images, graphs (2-D charts, level meters, etc.), dialog boxes, menu bars, and paettes. A
separate window is created for each object being edited. This allows you to copy parts of
an object into the clipboard and paste them into another object of the same type. To add
an object to the library, select one of the palette buttons on the left side of the window.
Editing an existing object can be accomplished by double clicking on its name in the list-

ing.

80

Chapter 12: SIMGRAPHICS I

| Save to curent " zg2" file |De|ete selected object from Iihrafy|

| Dpen an existing '.=g2" file ‘ Duplicate selected object |
| Create a new ".sg2" file |\ / Irvake editar for selected object |
L

\Slmarqw D\\demus\al purl‘-,afrpurt..égZ |'|IA ET—
Eule\gqt ‘I-lu;ert“: |Optioy; Aﬁﬂﬂt“fx Help L andImages in

zame windaw

-

S;

| Create a Dialog Box |%

‘ Create & Menu Bar |9
| Create a Palette |%

airport.sg2 |v| —

v

| Categories of ubiect$| "/ \

Double clicking on an image in the listing will invoke a separate window called the Image
Editor which will contain only that image. Images are composed of circles, polygons, se c-
tors, arcs, polylines, text, and bitmaps. Primitives are added to the image by selecting a
primitive type from the Mode palette on the left. Bitmaps are added using the File/Import
option. Exiting primitives can be repositioned, resized, flipped, and rotated. The style
and color of a selected primitive can be changed using the Color palette on the bottom and
the Style palette on the right side of the Editor. Points defining a polygon or polyline can
be added, removed and repositioned.

A Layout Editor allows you to position and resize any number of images and graphs within
the same window.

The Graph Editor alows you to edit variety of 2-D charts, pie charts, clocks and meters.
Clicking on the Bar Chart palette button on the left side of the List window will present

the followingdiaog:

81

MODSIM Tutorial

= Select Graph Type

....................

Pie chart Cancel

=
-

Analog clock
Drigital clock.
Dial

Lewel meter

Dgital dizplay

1T Ty T T 1T

T et meter

The 2-D Chart is a standard x/y plot which can be either static or dynamic. It can have
many data sets and be a bar graph, histogram, surface chart or line graph.

The Level Meter is a "thermometer” type graph used to show the value of avariable. Itis
updated dynamicallyas the model runs.

The Dial is the rotary equivalent to the Level Meter. It is analogous to a pressure gauge
with an analog pointer.

The Pie Chart can be either dynamic or static.

The Digital and Text Displays are Smple controls which can contain numeric or text data.
They can be updated dynamically while a program is running.

12.6 Constructing a User Interface

Users of windowed programs perform most interaction through controls such as menus,
palettes and dialog boxes. In the below illustration a menu bar, menu and menu item are
shown. Immediately below the menu bar is the pallete containing palette buttons, each
with anicon. For further information on palettes, refer to paragraph 12.

In SIMGRAPHICS Il menus, paettes and dialog boxes are usualy created using the
SIMDRAW Menu Bar didog box and Palette Editors. The components in the dialog
boxes, menu bars and palettes are then connected to the program’s code. These user i n-
terface items can aso be constructed and modified programatically by making calls to the
SIMGRAPHICS I library.

82

Chapter 12: SIMGRAPHICS I

The most basic interface is the familiar menu bar which usually appears across the top of
the window in most systems. In some systems the menu can appear instead as a small box

containing alist of initial choices. The menu bar is an asynchronous or non-modal control

which is dways available for the user to manipulate. While the user is making choices on
the menu bar, the program continues to operate without interruption.

File Edit VYiew . Project Tools Options Window

|D| = EE‘E. = Al Project...

Directories...

Editor...
Tools...

Like most SIMGRAPHICS Il constructs, the menu is a hierarchical construct. At the
highest level is the menu bar itself. This serves as a container for menus. These are the
choices that appear across the menu bar. Contained within the menus are either additional
menus or “menu items’. These are the actua choices which the user makes to control
some aspect of the program’s operation.

In most cases the menu bar is employed only for the most commonly used or essential as-
pects of a user's interface with the program. More detailed interaction is typically handled
through a dialog box. The dialog box is ssmply a container object in which an assortment
of other controls can be placed. It resizes automatically to fit its contents.

By its nature, the dialog box offers considerable flexibility to the programmer. Inits s m-
plest form it can be a short note to the user with an OK button to clear the dialog box from
the screen once the user has read the note. More complex dialog boxes may fill the user’s
screen with a complex arrangement of information and choices. Although the dialog box
and its contents are called "controls", they are often used smply as a way to organize and
present information to the user.

The controls which can be placed in a SSIMGRAPHICS Il diadog box, the Di al og-
BoxQbj , will be familiar to the user who has experience with contemporary windowed
systems. They include:

But t onObj - Push to indicate a selection. The button has an optional la-
bel.

CheckBoxObj - Presents and receives smple TRUE / FALSE or YES/ NO
input which is toggled each time the check boxs selected.

Text BoxOhj - Receives textual input.

Val ueBoxQbj - Receives numeric input and optionally does range checking
on that input.

83

MODSIM Tutorial

Radi oBut t onCbj - Used to indicate a selection which is mutually exclusive
among a group of radio buttonsin aRadi oBoxQbj .

Radi oBoxQbj - The container for a group of radio buttons.

Li st BoxQoj - Allows the user to scroll through and select from a list of
items. Eachitemisali st Box| t em(bj .

Label Obj - Used to label controls or present information to the user.

Mul ti Li neBoxQhj - Implements a multi-line text edit box.

ConmboBoxhj - Recieves text input but has an attached “drop-down” list
containing a list of alternatives.

Treebj - Used to show a list of items hierarchicaly. Item labels can
have a small bitmap icon next to them to identify their cat e-
gory.

Tabl eQbj - Composed of a 2-D array of selectable fields. Each field

contains a text string. Tables can have selectable row and
column headers and are scrollable if the size of the fidds is
greater the the table size.

Taboj - Helps to organize controls into stacked pages. Only con-
trols on the top page can be seen.

Diaog boxes can be either moda or modeless. When amoda dialog box is placed on the
screen, no other user interactions outside of the dialog box are possible and the MODSIM
[l program pauses execution.

When a modeless didog box is placed on the screen, the MODSIM [11 program continues
to execute and the user can continue to interact with other controls outside of the dialog
box.

12.7 Palettes

A palette (as shown below) contains rows and columns of selectable palette buttons. A
palette button is a square button containing a bitmap “picture” on its face. These buttons
can be used as a short cut for the menu bar, or to show which mode or style the program
is currently using. Palette buttons can “toggle”’ (stay down or up until the next time they
are selected), or be “momentary” and pop back up after being pressed.

The palettes themselves can be attached to any side of your window or be “floating” and
behave like adialog box. On MS Windows systems, palettes are “dockable” meaning that
they can be detached from one side of the window and reattached to another side with the
mouse.

Pal ette separators can be added to a palette in the appropriate spot to create a gapd
tween pal ette buttons.

84

Chapter 12: SIMGRAPHICS I

Help ¥
g e
b enu bar
o
"]
=] | i
9‘3'0 Btk
x ﬂ'rl-{'lﬂ [=
— J|—
Falette @ —CF Cut
L Copy
aste
Frop
g 7
Y| o2]
— 1 j
Button 3 [T

85

MODSIM Tutorial

86

13. An Animated Airport Model

The simple airport model presented its results as a set of dry statistics at the completion of
amodel run:

Simulation Run is Finished at Siniinme 1466. 567241

Mean interarrival rate used for arrivals & departures: 6.000000

of arriving AC. 243 # of departing AC. 230

of go arounds = 4

Max # ACwaiting to takeoff & Mean # waiting to takeoff: 25 - 10.467890
Mean tine spent departing: 60.910749

Max # ACwaiting to land & Mean # waiting to land: 6 - 1.344961

Mean tinme spent |anding: 6.098950

The statistics were averaged over the entire run but lacked information about variance in
the data. They also provided no feel for the interaction of the objects in the model. We
might learn something if we could observe the model in action. Thisis the motivation for
an animated model.

= Airport Model ~|=
Controls Window Info
m

25
Time Waiting 1
; <1 Holding
" Area
0
Landing Q

2

Takeoff @ -l

It would aso be advantageous if the user could specify more of the operating parameters
and perhaps be able to adjust them while the model is running.

87

MODSIM Tutorial

Finally, it would be nice to have the statistics presented in a more meaningful manner.
Often, histograms will tell much about the data being observed that would not be apparent
when presented as a simple mean and variance.

The design goals for the animated airport model took into account all of the above factors
and added a few more goals and constraints:

It had to be based on the simple airport model
It should be useful as a demonstration model
It should have afairly accurate appearance

Its animation speed should be adjustable so that results can be seen in “real time”
or X timesreal time.

The resulting model has about 815 lines of code as opposed to 340 in the smple version.
Surprisingly, it is not animation which accounts for most of the code inflation but the a d-
dition of considerable user interaction.

The requirement to make appearance accurate resulted in the construction of a graphical
gueue object which was fairly complex. This could have been omitted from the model
with absolutely no effect on model results or usability.

13.1 The Model Design Process

To add animation to the program we first had to decide on a background against which to
present the model. In this case an aeria photograph was chosen and scanned as a bit-map.
It was imported into SIMDRAW and used as the backdrop for the remainder of the work.
SIMDRAW was used to draw in an airport runway, taxiway and terminal facilities. It was
also used to draw the aircraft, the paths to be followed for takeoff and landing and the
delay histograms. Findly, SIMDRAW was used to design the menus and dialog boxes
which make up the user interface.

After this work was done, code was written to connect this graphical world with the pr o-
gram’s existing code. The most important item was to import Dynl nageObj so the air-
craft object could inherit from it the ability to be animated.

FROM Ani mat e | MPORT Dynl nageQbj ;

When the aircraft executes its Qbj | ni t method, we added code so that it could load it
graphical representation from the graphics library:

ASK METHOD QojlInit; { generic }
BEG N
| NHERI TED Obj I ni t;
LoadFroniLi brary(lib, "plane");
ASK W ndow TO AddG aphi c(SELF) ;
Set Aut oRot at i on(TRUE) ;
startTime := Sinmlinme();
END METHOD;

88

Chapter 13: An Animated Airport Model

We aso changed the design of the aircraft object family by making it a descendent of the
Dynl mageQbj . There are few other changes to the aircraft type declarations. Most of
the fields and methods needed to animate them are inherited frobynl mageObj .

Aircraft Cbj = OBJECT(Dynl mageQbj)
t askSpeed : REAL; { speed for takeoff or approach }

startTime : REAL; { simtinme at which AC starts Land or TO}
OVERRI DE

ASK METHOD Obj I nit;

ASK METHOD StopMtion; { logic to reset Mdtion flag }
END OBJECT;

Takeof f Obj = OBJECT(AircraftQbj);
TELL METHOD Takeof f;
OVERRI DE

ASK NMETHOD Objlnit; { set takeoff perfornance attributes }
END OBJECT;

LandOQhj = OBJECT(AircraftObj);

landPriority : priorityType; { normal or goAround }
TELL METHOD Land;

TELL METHOD GoAr ound;
OVERRI DE

ASK NMETHOD Objlnit; { set landing performance attributes }
END OBJECT;

The next most obvious change is that the aircraft no longer simply waits for time to pass
while it pretends to takeoff or land. The new code actually makes the aircraft move from
one point to another. Simulation time passes while the aircraft moves.

Hereisthe aircraft’s landing code from the simple model:

VWAI T DURATI ON t askTi me

END WAI T;

TELL Controller Cl ear O Approach;

IF (runway <> clear) { is runway clear? }
GoAr ound;
RETURN;

END | F;

runway : = inUse;

WAl T DURATI ON ovhdTime { roll out tine }

END WAI T;

TELL Controller C ear O Runway;

DI SPOSE(SELF) ;

Now examine the aircraft’s landing code from the animated version of the model. In this

version, every action of the aircraft as it approaches, lands, rolls out and taxis off the ru n-
way is modeled

Set Speed(t askSpeed) ; { approach / landing speed }
Set Aut oRot ati on(TRUE) ; { align in direction of novenent }
WAI T FOR SELF TO MoveTo(3.5, 2.0);

END WAI T;

TELL Controller Cl ear O Approach;
IF (runway <> clear) { is runway clear? }

89

MODSIM Tutorial

GoAr ound;
RETURN;
END | F;
ASK ArriveGen LogConpletion(startTine);
runway : = inUse;
Set Speed(taskSpeed * 0.7); { initial rollout }
WAI T FOR SELF TO MoveTo(2.5, 2.0);
END WAI T;
Set Speed(taskSpeed * 0. 3); { final rollout }

WAI T FOR SELF TO MoveTo(1.8, 2.0);

END WAI T; Set Rot ati onSpeed(- 2. 8);

WAI T FOR SELF TO RotateTo(1.4); { -090 degrees as radians }
END WAI T;

WAI T FOR SELF TO MoveTo(2.0, 2.2);

END WAI T;

TELL Controller C ear O Runway;

Set Speed(10.0 / 60.0); { all planes taxi at 10 Kits }
WAI T FOR SELF TO MoveTo(2.6, 2.8);

END WAI T;

DI SPOSE(SELF) ;

Notice that the speed of the aircraft isfirst set, and then the aircraft is told to move (from
its present position) to a new position. The positions in this model are expressed in naut i-
cal miles on an X-Y grid. When the aircraft is ready to taxi off the runway, its rotation
speed is set and we wait while it turns and starts taxiing. Not only does this code result in
an accurate animation of the aircraft, but it also adds to the accuracy of the model since
the time taken to complete each separate action is accounted for automatically by the sy s-
tem.

90

Glossary

activity:

basetype:

behavior:
BNF:

class:

component:

conflicting methods:

derived type:

dynamic binding:

encapsulation:

enumeration:

field:

function method:

group:

inheritance:

instance:

A WAI T statement in a TELL method. The place in an object's
TELL method where simulation time elapses.

The immediate ancestor or the immediate underlying object type
of an object type.

A method of an object implements the object's behavior.

Backus-Naur Form. The notation used to describe the syntax of
the language. Note that this notation is not capable of describing
semantics or semantic limitations of the syntax.

Asin “object class’. Meaning is the same as “object type’. The
term is used to describe the type definition for an object in lan-
guages which have a weak notion of types such as C++.

Either afield or method for an object

This occurs when two or more of the base types in a multiple
inheritance have a method with the same name.

An object type defined in terms of one or more existing object
types; each of these typesis a base type

The type of each operand and operation is determined at
run-time; most object-oriented languages, including MODSIM,
are based on dynamic binding. MODSIM uses dynamic binding
only for field references and method calls, not for other oper a
tions such as+, - , AND, etc.

Packaging the fields which define the state of an object and the
methods which define its behaviors within one object definition.

A user-defined ordered set of literal values
eg. workday = (Mn, Tue, Wed, Thu, Fri)

One of the variables associated with a particular object or record
type.

A method which returnsavaue. Only ASK methods can return a
value Therefore, TELL methods cannot be function methods.

A structure used to associate objects. Examples are: St ack-
bj , Queuej , Rankedbj, BTreeCbj . Comparable to
SIMSCRIPT 11.5's SET or a Smalltalk Collection.

The definition of one object type in terms of another, aready-
existing object type.

One particular object of an object type.

91

MODSIM Tutorial

invoke:

member:

message:

method:

object:

ordinal type:

pass by reference:

pass by value:

private property:

process:

proper method:

property:

public property:

qualified inherited call:

92

To call aprocedure or method. To cause a procedure or method
to execute.

An object which is contained within a group.

The name of a method; “sending message A to B” is an equiva
lent way of saying “ask object B to perform method A” or
“perform method A with object B”.

A routine which describes an object's behavior. Similar to apr o-
cedure However, a method isalwaysassociated with an object.

A dynamic data structure that includes an associated list of
methods.

A type which has a known ordering. In other words, given one
value which belongs to the type, it is possible to state what the
next or previous value would be. The following are ordina
types: | NTEGER, CHAR, BOOLEAN, enumerations and
subranges.

When a parameter in a parameter list is shared by both the i n-
voking and the invoked routine. Parameters with the | NOUT and
QUT qualifier are passed by reference.

When a copy of a parameter in a parameter list is made and
passed in to the invoked routine. Parameters with the | N quali-
fier are passed by value.

A property with a scope limited to the methods of an object type
or derived object types. If afield or method of an object isde-
clared to be private, it cannot be accessed or invoked except
from the object itself.

Process-based simulations allow methods of objects to describe a
series of related activities rather than being limited to defining
simply one event per method.

An untyped method that has no return value. Can be either a
TELL or ASK method.

A characterigtic or attribute of an object type. Specifically either
amethod or field of the object type.

A property of an object that is available for use outside the
methods of that object type.

In a multiple inheritance, an invocation of an inherited
method of a specific base type, asin

| NHERI TED FROM Sone(Qbj ect aMet hod;

Glossary

record: A data structure which consists of a collection of fields which
may be variables of differing types

reference type: Each object type has a reference type, which is used to define
variables that reference a specific object of that type - analogous
to a pointer type in other languages.

routine: A general term for a sub-routine, procedure, function or method.

scalar type: A type which has only one element or component part and can
be used to scale, measure or quantify things. The following are
scalar types. | NTEGER, REAL, CHAR, BOOLEAN, enumerations
and subranges. An example of something which would not be a
scalar typeis an array, record or object type.

SELF: Built-in reference variable which is defined within every method.
It allows reference to the object instance from within its own
methods.

shared variable: A variable which is shared by all the methods of a particular o b-

ject type. In other words a variable defined outside the scope of
an object so that it will be visible to all instances of that object
type. Usudly a shared variable is defined globdly, within a
module.

strong typing: The type of each operand, parameter and operation is fixed at
compile-time. MODSIM Ill, Ada, Pascad and Modula2 are
characterized by strong typing.

TELL method: A proper method which is executed asynchronoudy. It can
elapse smulation time. If it has a parameter list, only | N pa
rameters are alowed. WAI T statements are alowed in TELL
methods.

time-elapsing method: A TELL METHOD which contains at least oneMAl T statement.

underlying type: If type A is derived from type B, or from some type which isin
turn derived fromB, then B is said to be an underlying type of.

Virtual object type: An object type which is not used directly. It exists only to serve
as a base type from which other objects are derived. It often
serves as an “anchor” to relate two other object types.

93

MODSIM Tutorial

94

Index

SG2..iieee e e 77
2
2-D Chart....ccooeeieieieieeeeee e 80
3
3-D GraphiCs......ccoeereeriieiiieenei e e 75
A
BCHVILY oo e 49-50, 56
ACtVItYLISt. i e 56
A 59
AdAATLEN e 60
AddBEfOre... ..o 60
BUTPON .ttt e 63
Allocating ObjeCtS........ceeeieeiiieieees e 25
ANIMALTON....eiiiiiie e e 75, 86
ARRAY tYPe...oiiiiiiiieierieiesee et e 12
ASK e s 9,29
Assignment compatibility............cccoeeeninnnnen. 38
ALIDULES. ... e 19
AULOCA......co i e 75
B
base type.......ccoeiieieie e 22,35
behavior........ocoovii e 9,19, 21
Binary filles.. ..o e 7
bit-mapped graphicCs.........ocoeveiiiinieiie s 75
BlOCK StrUCLUNE.......ccouvieeiiieeeeee e 3
DUQ. ..o e 72
DULLON.....coiiieie e e 81
button click detection............cccceviveieniien e 77
BUtONOD) ... e 81
C
CASE...c e 6
CASE SENSITIVE ...ttt e 3
ChaIS ..o 78
ChECK DOX.....ciiiiiiieieiee e 81
CheCkBOXOD).....ccceiiieeiiieieesieest e 81
CITCIES ot e 78
ClOSE ..ttt e 7
ComboBOXOD).......cooieeiiiiiiiiee v 82
compilation Manager.........ccoceeeerieeenenne e 14
COMPII..iiee e e 14
computer SImulation...........cccecveereenenne e, 14

CONCUITENT ...t e 15
concurrent activities........ccoeeeeveeereeineen 49, 53
conflicting field names
iNINNErtanCe.covveieeiie e e, 44
Continuous Simulation...........cceceereeeieeeniee e 14
CONEIOIS...eeeeii ettt e 81
ControlVOD).......ceieeeieeeeee s e 76
D
datahidingccooeviiiiiiiie e, 45
data StruCtUre........ccoeeieeieerieeeee e 11,21
Jat@tYPES. ... et e 4
deallocating Objects.........ccoeierieiiiiiec e, 25
declaring ObjeCtS.....ccouiiieiiieee e e 22
Defining Methods...........cocoviiiiiiiienie e, 31
definition module...........ocooviiiiiniinnn e 12,45
delayed method call.........ccooeiiiiiiiiiiinn e, 29
DElEte.. ..o e 7
DeleteFile.. ... e 8
derived type ... e 22,35
0ESIgN PrOCESS.coviieieieieriee et e 86
Dial . e 80
dialog bOX.....coveieiiiiieieee e 76, 78, 81
Digital display......cccoooeeeieriieeieiie e 80
Discrete-event simulation...........ccccceeveeeeennee 14
display WindOW..........ccceeiueiiiieieniis s 76
DISPOSEooiiieieerreeee e e 26
DURATION. ..ottt e 51
dynamic binding.........ccccooeviiniiiiiin e 20
Dynamic Structured type..........ccceeeeeevieenennnne 4
E
edit graphic images.........cccooveeveiinncies e, 78
ELSE. ... 5
ELSIF .. e 5
eNCaPSUl AT ON......ociueeieieiie e e 9
END CASE.....oooiieieeeees e 6
END FOR.....coiiiiiieteeeees e 6
END LOOP.......ccoiiiiiriiiieienie e 6
END WHILE........coiiiiieee e 6
Enumerated type.......cccoveeeieniieeneee e 4,11
ENUMENBEION ...eveiieeei e e 11
VBN ..ot e 49
event-oriented..........coceereiiiinniie s, 15
EXISSFIl@.c.eieieeeee e 8
EXIT et e 6
F
FIEldS. e 9,11, 19
FIFO. ..o e 59

MODSIM Tutorial

FilESIZE ..o e 8
BTt e e 59
Fixed Structured type........ccceeceeiiienee i e 4
FOR. ..ot e 6
FOREACH ... e 6, 61
formatted QULPUL...........covceeriiieieies e 8
free formatted [/O.......ccccoveviiiiiiiiie e 8
function method...........ccceevieniniis e 31
G
gENENiC OPEratioNS.......eevueeeeee e s 20
Graph Editor........cccovceeiiiieeniie e 79
GraphicLibODj........ooviiiiiiiie e 77
graphics editor........coveeieei i e 78
Graphics library........ocoeoeeiieneiies e, 77
GraphicVOD)]cccovviiiiiiiie e 76
OrAPNS.....ei i e 78
OFOUP .ttt ettt et eaeee s 59, 78
I
/O e e 7
TCOMS. ettt et 77
L e s 5
IMageOD)........ooviiiiie 77
implementation module...................... 12,32, 45
Implementing methods...........cccoceiiiiiinne e 31
IMPORT ...ttt e 5
IN e e 34
INCIUES.....ceeiiee e 59
iNheritance........cccoveevveeneenenes 9,19-21, 35, 37
conflicting field names..........ccccccceieeieens 44
INNENtaNCe I ..ot e 36
INHERITED......ccoiiiiiiiienieee e 35, 38
INOUT ..ot s 34
INPUL .. e 7,8
Input @and OULPUL.........ceerieeiiieieiies e 7
INSEANCE ...ttt e 15
INTEGER.......coiiiiieiieeeeee e e 4
INLEITUPL ... e 56, 57
INterruptAll ..o 56
TOMOG.... .ot e 7
iterate through a group..........ccccceveeenereiennnnn 61
L
LabelODj.......coviiiiiee 82
LBSE it e 59
Layout Editor.........ccooeeieeiiieeei e 79
Level MEter.......cooovvviiieneeeenee e 80
Library Module..........ccooiiiiiiiiin e 5,12
LIFO. ettt e 59
[INES....ieiiieeeee e e 78
FINK e e 14
(ISt DOX....eceeieeeeeeee e 82
LiStBOXOD].....civieiiiieiiieiesee s e 82

96

LOOP... .ottt e 6
M
Main MOAUIES.........coeieeiiieeieee e 5
make file - NOt!........ccooviiii e 14
MENU DA ..o e 81
IMENUS ..ottt sree et seeeeeseee e seeee e 76, 78
IMESSAGEeeeeeieeeeeireeeeire e e eeesibeeesaaeee e 19, 20
MEthOAS......ccoceeeiiieeeee e 9,19-22, 29
Microsoft Windows.........cocoeveiiienniiin e 77
modal dialog bOX........cocoeeiiiiiiiiiiiie e 82
modeless dialog DOX..........oceeviiiiiniiiie e 82
MOAUIBE2.....ooeieiee e e 3
MOAUIE.......eiiieiii e e 4,12
Monitored TYPe......cocvereeiieerieeries e 4
MOUSE tracking.........ccceveeeieiniiiieis e 77
MSCOMP......ooiiiiiieriee et e 14
MUItiLinEBOXOD)........cooeeiiiiiiiiieees e 82
multiple inheritance.........cococvviiiiniieeie v 41
N
NEW. ..o e 23,25
NEXE ..t e 59
NILARRAY ..ot e 23,25
NILOBUJ ...ttt et 23,25
NILREC......coiiieiiieeee e 23,25
NUMBDENTN L. e 60
o
ODJCIONE... .ot e 26
Object fieldS.....coveeeieie e 9
object implementation block............... 22-23, 31
ODJECE LYPE...eeieii et e 9,19
object type declaration...........ccocceeveeeieeenien e 22
object-oriented programming...........ccccceeeveene 10
ODJECLS....eeitee et e 19
OBJINIT . e 26
ON INTERRUPToccviitiiiiniineee e e 50
OPEN ...t e 7
OSF/MOLIT....cceiiiieieiieieesee e 77
OTHERWISE ..ot e 6
OUT e e e 34
OUEPUL. ..ot e 7,8
OVEITIdE. ..o e 22, 35, 37, 46
P
PAELLE.cviiiieie e e 82
Palette EItoroooeeiieiiiieei e 80
PArAMELEN'Sooiiiieeeiiee e e 34
Pie Chart........ccooiiiiie e 80
POIYGONS.....coiiiiiiiiee e e 78, 80
POSISCIIPLeeeveeeiee et e 75
Prev ... e 60
PRINT ... WITH..ooiiie e e 8

PRIVATE ..o e 45-46
PrOCESS.....cuteieeieeeeetee e ettt ree et e e e s snree e 15
proper method...........ccoooeiiiiiiiiie s 31
PrOPEITY....ceeiieeee ettt e 21
Q
QUEUEOD)......cveeieeecieeee e e 59
R
radio BULLONS.......c.cviieeiieeeee e 82
RadiOBOXOD}....cccuviieeeiiieiieeiee e e 82
RadioBULtONOD).........ccveeeiiiieeiiiee e 82
RaNdMod.........cooceiiiiiiei e 49
random acCess 1/O.......ooveiiiiiiieieeniee e 7
RaNKEAOD)]......cceerviriiiieeieeie e e 59-60
ReadChar........oieeieeiiree e 7
REAAINT ..o e 7
ReadLine. ..o 7
ReadReal........cooeeiiie e 7
ReadStIiNG...ccoveieieiie e e 7
REAL ..ottt e 4
FECONUS. .. itieiie ettt et 11
FEfEreNCe tYPR ...oeeee et e 23
reference variables.........cccooiiiiniennen e 23,25
Referencing fields.........cooooeiiiiiiiiin s 30
REMOVE......oiiiee e 59
ReMOVETIS.....ooiiiiiiiii e e 60
REPEAT ..ottt et 6
FEPIICALIONS ..c..eeiiiieciee e e 71
reserved WOIdS........oovveeriieereeeies e 3
RESMO......cciiiiiiiieeee e e 49
S
sample Programcoceeeeeevieeneeeiies e 3,13
SCAlAr tYPL...eeeeeieieee e e 4
Scope Of reference........ocovvveieeeieeriees e 32
scope of variables........ccocceeiiiiiiiiien e 32
SELF...oii e e 21,29
separate compilation.........ccooceeveeeieeiies e 14
SG2...iiie e 77
SIMAraW...coceeieeeie e e 7- 78, 86
SIMDRAW ..ottt e 78
SIMGRAPHICS [1...ceiiiiiiiciiiieeee e 75
SIMMOG......ooiiiiiie e e 49
simulation CONSLIUCES........ccooeeiieiieeiieee e 63
Simulation time.........cocoooieieniieee e 50, 80
StACKOD] .. e 59-60
startup tranSientoceeveeeeieeneeenes e 72
SEALES. ..ttt e e 24
StAIMOQ. ..ot e 49
SHING LYPE e e 4
Subrange type.......cccoveeneiiieenie e e 4,11
Synchronized process activities..........cccoe... 53
SYNEBX ettt e e inee s 3

Index

T
TablEOD)......o i e 82
TADOD) ... 82
TELL oot e 29, 50, 52
TELL method.......cooeiiiiiieee e 49
TERMINATE. ..o e 54, 57
Text DIsplay....ccccoeveeeieeiieeeee e 80
TeXtBOXOD)....cccviiieieiieiieeee et e 81
Three dimensional animation...............ccc...... 75
traffic generator........c.ocoeveineence e v 68
TreeOD) .o 82
Trigger ODJECE......ccvveieerieieeee e 55
TriggerODb).....co i 55
U
underlying tyPesS.......cceeveeereeiieene e e 22
UNItS Of tiMe....eiiiiiie e 50
UNTIL oo s 6
\Y,
validate amodelcooeieiiiiiiii e 71
ValueBoXOD)........coiiieiiiiieiieee e 81
Variable ... 32
VECLOr graphiCS......oovveveieeiiienee e e 75
virtual object tyPesS.......ccveieriiierieeee e 76
VOB it e 76
w
WAIT oo e 6, 49-50
WAIT DURATION....ccoiiiiii e e 50
WAIT FOR ...t 53
WHEN ... e 6
WHILE ..o e 6
WINOOW. ..t e 76
WiNdowWOD)j......ccceeiiieiiiiierie e e 76
WIHECHANeiiiiie e 7
WIEEXP. ..o e 8
WIHTEHEX .. e 8
W NE. .o 8
WIHTEL N e 8
WILEREE ... e 8
WIESIIING .o e 8
X
X WINAOWS....coiuiiiiiiiiieeecee e 75

97

