
Euler and Hamilton Paths 
 
 

 
The town of Königsberg, Prussia (now know as Kaliningrad 
and part of the Russian republic), was divided into four 
section by branches of the Pregel River. These four sections 

included the two regions on the banks of the Pregel, 
Kneiphof Island and the region between the two branches 
of the Pregel. In the eighteenth century, seven bridges 
connected these regions. 
 
The following diagram shows the position of the bridges on 
the Pregel in the town of Königsberg.  
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Figure: Seven Bridges of Koinigsberg



As for an European country, the town folks used to walk 
round the town on the Sundays, and every time they 
wondered if there was any means to go round the city 
without crossing these bridges twice, and return to the 
starting point. 
 
Swiss mathematician Leonhard Euler solved this problem 
and published that in 1736. In his solution, he used graphs 
for the first time to solve this problem. His key points in 
the solutions were taking the regions as vertices, and the 
bridges as the edges between the vertices – thus making a 
multigraph. 
 
His multigraph solution is in the following figure: 
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This diagram rephrased or showed the problem of travelling 
across every bridge without crossing any bridge more than 
once. Now, we may ask if we can draw a simple circuit from 
this multigraph that will contain all the bridges in the 
original diagram? That means, can we draw a simple graph 
that contains every edge of the multigraph. 
 
Euler Circuit: An Euler Circuit in a graph G is a simple 

circuit containing every edge of G.  
 
Euler Path: An Euler Path in G is a simple path 

containing every edge of G. 
 
 
 

Necessary and Sufficient Conditions for 
Euler Circuits and Paths 
 

What is the condition if a connected multigraph has an 
Euler circuit? This is done if we can show that every vertex 
must have even degree. 
 
Let us suppose that one Euler circuit begins with a vertex a, 
and continues with an edge incident to a, say {a, b}. The 
edge contributes 1 to deg(a). Each time the circuit passes 
through a vertex it contributes 2 to the vertex’s degree. This 
is because the circuit enters from an edge incident with this 
vertex and leaves via another such edge. Finally the circuit 



terminates at the point it originated: say at vertex a, 
contributing 1 to deg(a).  
 
Therefore, deg(a) must be even, because the circuit 
contributes 1 when it begins, and 1 when it ends, and 2 

every time it passes through a. A vertex other than a has 
even degree because the circuit contributes 2 to its degree 
each time it passes through the vertex. 
 
We conclude that if a connected graph has an Euler circuit, 
then every vertex must have even degree. Now we shall try 
to investigate if this necessary conditions is also sufficient 
for making an Euler circuit. 

 
Suppose that G1 is a connected graph. All its vertices have 
even degree values.  
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In the above graph G1, the direction of the connected edges 
are: {a, b}, {b, c}, {c, f}, {f, a}. That is, the edges of the 
circuit begins from a, then passes through the vertices b, c, f 
and ultimately ends in a. If we study this graph carefully, we 
see that one edge enters to a vertex and then use another 
edge to come out from that vertex. That is why, for any 
vertex of the directed path of G1 graph, there is an edge that 
is incident on that vertex (enters) and incident from that 
vertex (comes out). 
 

If we consider vertex f, we see {c, f} and {f, a} are two 
edges that are incident to this vertex. Therefore, the degree 
of this vertex is 2, i.e., deg(f) = 2. 
 
In the graph G1, we did not show any direction for the 
other smaller connected paths for the vertices c, d, e. Let us 
suppose that these vertices {c, d, e} makes up another 
subgraph if we delete vertices {a, b, f}. Let us name this 
subgraph as G2.  
 
Now, let us suppose a circuit in the graph G2 as we had 
drawn in G1. Let the circuit begins from vertex c, then goes 
to d, then to e, and finally ends in c. The circuit is: c, d, e, c. 
And they make a path in the graph G2. 
 
If we consider the graph G1, the circuit would be: a, b, c, d, e, 
f, a. 
 



 
Theorem: A connected multigraph has an Euler circuit if 

and only if each of its vertices has even 
degree. 

 

 
 
Königsberg Bridge Problem 

 
Now let us try to solve the Königsberg bridge problem. Let 
us see the Euler’s graph of the Königsberg bridges here 
again: 
 
This graph has four vertices of odd degree: deg (a) = 5, deg 
(b) = 3, deg (c) = 3 and deg (d) = 3. So it does not have an 
Euler circuit. There is no way to start from one point, cross 
each bridge once, and then come back to the starting point. 
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Fleury’s Theorem: If the originating vertex of a 
multigraph is arbitrarily chosen, it forms a circuit by 
choosing edges successively. Once an edge is chosen, 
that edge is removed. Edges are chosen successively so 
that each edge begins where the last edge ends, and so 
that this edge is not a cut edge unless there is no 
alternative. 

 
 
The theorem in logical steps is given below: 
 

Step 1: Choose a starting vertex, say u. 
Step 2: Traverse any available edge, choosing an edge 
that will disconnect the remaining graph only if there is 
no alternative. 
Step 3: After traversing each edge, remove it (together 
with any vertices of degree 0 which result) 
Step 4: If no edge remains, stop.  Otherwise, choose 
another available edge and go back to step 2. 

 
Theorem 2:  A connected multigraph has an Euler path 

but not an Euler circuit if and only if has 
exactly two vertices of odd degree. 

 
Let us suppose the following graphs G and H: 
 
The graph G is an Euler Circuit: all the vertices are of degree 
2. 



 
The graph H, according to the theorem 2, has Euler path but 
has no Euler circuit, as two of its vertices are of degree 3. 
Those tow vertices are a and c. 
 
 
Hamiltonian Paths and Circuits 
 

So far we had developed necessary and sufficient conditions 
for the existence of paths and circuits that contain every 
edge of a multigraph exactly once. Here, with the help of 
Hamiltonian Paths and Circuits, we shall try to see if there 
exists any simple paths and circuits containing every vertex 
of the graph exactly once. 
 
This terminology comes from a puzzle invented in 1857 by 
an Irish mathematician Sir William Rowan Hamilton. He 
was devoted to non-commutative algebra, and worked a lot 
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in this area. Though, he made important contributions to 
the optics, abstract algebra and dynamics. He invented 
“Icosian Game” based on his work in non-commutative 
algebra. The puzzle in the example 5 is the representation 
of that game. 
 

Before moving to examples, let us see the definition of 
Hamiltonian Path and Hamiltonian Circuit. 
 
Hamiltonian Path: A path x0, x1, . . ., xn-1, xn in the 

graph G = (V, E) is called Hamiltonian Path if V 
= {x0, x1, . . ., xn-1, xn} and xi ≠ xj for 0 ≤  i ≤  j ≤  
n. 

Hamiltonian Circuit: A circuit x0, x1, . . ., xn-1, xn  (with  
n>1) in a graph G = (V, E) is called a 
Hamiltonian circuit if x0, x1, . . ., xn-1, xn is a 
Hamiltonian Path. 

 
 
 

Qn is a Hamiltonian circuit. 
 
Let us suppose a simple graph G as depicted in the 
following figures: 
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Figure G:  The Hamiltonian circuit is present in this 

graph. The circuit is a, b, c, d, e, a. 
 
Figure H:  No Hamiltonian circuit is present: for a 

Hamiltonian circuit be present here, that must 
contain the edge {a, b} twice. 

  But there is a Hamiltonian Path: a, b, c, d. 
 
Figure M: No Hamiltonian Path or Hamiltonian 

Circuit is present here. At least one vertex is 
left out of Hamiltonian Path, and circuit is 
not possible. 

 
Some necessary and sufficient conditions for Hamiltonian 
Circuits and Paths 
 
There are no known simple necessary and sufficient 
theorems for the existence of Hamiltonian circuits.  



Still there are some properties can be devised that may 
provide some give necessary conditions for Hamiltonian 
circuits. One of such property says that: A graph with a 
vertex of degree 1 cannot have a Hamiltonian Circuit. 
This is only because a Hamiltonian circuit, each vertex is 
incident with two edges in the circuit. 
 
Another property says that if a vertex in the graph has 
degree 2, then both edges that are incident with this vertex 
must be part of any Hamiltonian Circuit. 
 
Also note that, when a Hamiltonian circuit is being 
constructed and this circuit has passed through another 
vertex, then all remaining edged incident with this vertex, 
other than the two used in the circuit, can be removed from 
consideration. 
 
Furthermore a Hamiltonian circuit cannot contain a 
smaller circuit within it. 
 
 

Sufficient conditions for existence of Hamiltonian circuit: 
If G is a connected simple graph with n vertices where n ≥3, 
then G has a Hamilton circuit if the degree of each vertex 
is at least n/2. 
 


