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Abstract

We present a new symmetric traveling salesman problem tour construction heuristic. Two sequential matchings yield a
set of cycles over the given point set; these are then stitched to form a tour. Our method outperforms all previous tour
construction methods, but is dominated by several tour improvement heuristics.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

STSP heuristics—we use TSP and STSP syn-
onymously unless otherwise indicated—are gener-
ally classi6ed into two categories: tour construction
[2–4,11,22] and tour improvement [6,7,16,19,21].
Tour construction heuristics execute a sequence of
operations until a valid tour is obtained, at which
point the heuristics stop and report the constructed
tour. Tour improvement heuristics start with a valid
tour (e.g., the output of a tour construction heuristic
[2]) and iteratively improve the tour cost, typically via
local search, until some stopping criterion is reached.

While tour improvement techniques produce
near-optimal tours as measured by the gap from the
Held-Karp lower bound [14,15], the solution quality
achieved by tour constructions is signi6cantly worse.
According to results reported by [1], the best tour
constructions are approximately 8% worse than the
best tour improvement methods. The proposed STSP
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tour construction achieves unprecedented results in
narrowing this gap. We relax the tour structure con-
straints to allow formation of multiple cycles and then
join the cycles together to form a tour. While this
strategy has been pursued before for the asymmet-
ric traveling salesman problem (ATSP) [10,18] and
MAX TSP [9,12,13], it has not been applied to the tra-
ditional STSP. This is because the assignment phase
from ATSP construction is ineBective in the STSP; it
simply yields a minimum-cost matching, i.e., all cy-
cles are of length two. In this paper, we propose a new
way for constructing a less trivial set of cycles in the
STSP, as well as new ways to compose these cycles
into a tour.

• The 6rst phase of our approach, cycle construc-
tion, uses two sequential matchings to construct
the cycles. The 6rst matching returns the usual
minimum-cost edge set with each point incident
to exactly one matching edge. We then remove all
these edges and execute a second matching. The
second matching eBectively repeats the matching
process subject to the constraint that none of the
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edges chosen in the 6rst matching can be used
again. The results of the 6rst and second matchings
together form a set of cycles.

• The second phase of our approach stitches the con-
structed cycles to form the TSP tour. We de6ne
stitching as the process that composes all cycles to
form one tour, while patching is the process that
only composes a given pair of cycles to form a larger
cycle. We discuss two methods for patching a given
pair of cycles. The 6rst method is exact but slow;
the second is approximate but oBers a considerable
speedup. Based on the costs of patching every pair
of cycles, a minimum spanning tree (MST) calcu-
lation determines a way to stitch all cycles into a
tour. We also report results from using the PATCH
heuristic [18].

The eBectiveness of our proposed tour construc-
tion methodology is con6rmed by application to the
TSPLIB [1] benchmarks. For example, we construct
a tour for the largest instance (pla85900) that is only
1.91% over the Held–Karp (HK) bound. Our empiri-
cal results outperform all reported results of tour con-
struction heuristics including [3] and its variants [17].
We also compare our results to a number of tour im-
provement heuristics: for all but a few benchmarks
(e.g., u2319 and pla33810) our heuristic is dominated
by some of these techniques. In the following discus-
sion, Section 2 formulates the STSP, while Section 3
discusses Phase I (cycle construction), and Section 4
discusses Phase II (cycle stitching). Section 5 gives
experimental results and closes with directions for fu-
ture research.

2. TSP formulation

Let P= {p1; p2; : : : ; pn} be the given set of points,
and let E be the set of edges forming a complete graph
over P. For each edge e={pi; pj} ∈E, we are given a
weight we that we can view as the distance between its
endpoints. If �(pi) is the set of edges incident to point
pi, and xe is a 0–1 variable indicating the inclusion
of edge e in the tour, then the STSP problem can be
formulated as

min
∑

e∈E
wexe (1)

subject to
∑

e∈�(pi)
xe = 2 ∀pi ∈P (2)

and

T = {e∈E : xe = 1} forms no subtours: (3)

The 6rst phase of our technique constructs a set of
cycles meeting objective (1) and constraint (2) but
ignores constraint (3). The second phase stitches the
subtours (cycles) produced by the 6rst phase to yield
a tour satisfying (3).

3. Phase I: cycle construction

The cycle construction phase produces a set of dis-
joint cycles C= {C1; : : : ; Cm} such that every point in
P is incident to exactly two edges of some cycle in
C. The set of edges F =

⋃m
i=1 Ci of C are typically

referred to as a 2-factor. The concept of 2-factor is
generalizable: a set of edges is an f-factor if every
point is incident to exactly f edges.

Fact 1. The minimum-weight f-factor is computable
in polynomial time ([20, Chapter 10]).

The method of [20] relies on transforming the
original graph instances into a new weighted
graph with O(E) new vertices, and then 6nding
a minimum-weight matching in the new graph. A
minimum-weight 2-factor can be computed in O(n3)
time [23, p. 523].

While the 2-factor is the union of a set of cycles, this
does not impose any limits on the size of the cycles
except that they are greater than 2. The set of cycles
will better resemble a tour if we require a minimum
number of points in a cycle. A 2-factor is k-restricted
if none of its cycles has k or fewer points. Ultimately,
a minimum-weight (|P| − 1)-restricted 2-factor is an
optimal TSP tour.

Fact 2. The problem of 6nding a minimum weight
k-restricted 2-factor in a weighted complete graph is
NP-hard for k¿ 4 [8,24].

Fact 3. The hardness status of the 3-restricted
“triangle-free” minimum weight 2-factor problem
remains unknown [8,12, Chapter 12].
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Phase I of our approach may be viewed as con-
structing a heuristic 3-restricted minimum-weight
2-factor by using two sequential matchings. In the
6rst matching, we apply minimum-weight (1-factor)
matching to produce a set of edges M1. Before ap-
plying the second matching, we remove M1 from E,
yielding a graph with edge set E \M1, and then reap-
ply minimum-weight matching. The second matching
eBectively repeats the 6rst matching under the con-
straint that none of the edges of M1 can be chosen.
This constraint can be practically enforced by setting
the edge weights of M1 to ∞. Let M2 denote the set
of edges in the second matching. The two sets of
edges M1 and M2 comprise a disjoint set of cycles
C={C1; : : : ; Cm}. That is,M1∪M2=

⋃m
i=1 Ci, such that

Ci∩Cj=∅, 16 i; j6m, i 
= j. An important property
of such cycles is stated in the following lemma.

Lemma 1. The two sequential matchings with
edges M1 ∪ M2 produce a set of even-length cycles
C = {C1; : : : ; Cm} with |Ci|¿ 4, 16 i6m.

Proof. Color the edges from M1 red and those from
M2 blue. No two edges in M1 ∪ M2 that share an
endpoint can have the same color by de6nition of
matching. Thus all cycles must be even and of length
at least 4.

An immediate consequence of Lemma 1 is that
the two sequential matchings can be considered
as a heuristic for constructing a minimum weight
3-restricted 2-factor with the additional property that
all cycles are of even length. Using the two sequen-
tial matchings, we construct a set of disjoint cycles in
polynomial time O(n3) for general TSP instances. For
Euclidean instances, [17] reports that the observed
runtime for Euclidean matching is proportional to
n1:25. For the second matching, we trap the edge
weight calculation function, reporting a large number
(∞) whenever this function is called with an edge
from M1. There is no noticeable increase in observed
runtime due to this modi6cation. The cycles formed
from the two matchings are stitched together into one
tour as described in the next section.

4. Phase II: cycle stitching

Recall that the set of edges of the two matchings
form a disjoint set of cycles (subtours). In this section
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Cycle patching for STSP(b)Cycle patching for ATSP(a)

Fig. 1. Patching for ATSP versus patching for STSP.

we investigate ways to stitch the cycles of C to form
one tour T . First, we extend the concept of patching
as practiced in the ATSP domain to the domain. Then,
we give two algorithms that patch any given pair of
cycles. These two algorithms represent a trade-oB be-
tween patching runtime and solution quality. We then
give a minimum spanning tree (MST) based approach
for stitching all cycles into a single tour, and 6nally
present the overall outline of the stitching process.

4.1. Patching a pair of cycles in STSP

Suppose that we wish to compose cycles Ci and
Cj into one larger cycle by eliminating edges e1 =
{u1; v1} ∈Ci and e2 = {u2; v2} ∈Cj. In the ATSP do-
main, the two cycles can be composed in only one
way: this is traditionally called patching and is illus-
trated in Fig. 1a. The cost of patching the two cycles
at the speci6ed edges is

p(e1; e2) = d(u1; v2) + d(u2; v1)

−d(u1; v1) − d(u2; v2): (4)

While cycle patching in the ATSP oBers only one way
to compose two cycles, the STSP oBers two ways as
shown in Fig. 1b, with patching cost

s(e1; e2) = min(d(u1; v2) + d(v1; u2); d(u1; u2)

+d(v1; v2)) − d(u1; v1) − d(u2; v2): (5)

We note that in Euclidean instances a non-
intersecting patch always has the least cost.

4.2. Methods for patching a pair of cycles

Given two cycles Ca and Cb to be patched, we seek
to determine two edges eai ∈Ca and ebj ∈Cb that min-
imize the patching cost as given by Eq. (5). We give
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Fig. 2. A case where alternating patching almost alternates between
all edges of the two cycles.

two algorithms that permit a trade-oB between patch-
ing cost and runtime.
1. Exact patching: This straight-forward method
evaluates the patching cost for every pair of
edges eai ∈Ca, and ebj ∈Cb, with 16 i6 |Ca|
and 16 j6 |Cb|. While this method gives the
minimum-cost patching of two cycles, it has quadratic
runtime of O(|Ca‖Cb|).
2. Alternating patching: This method starts with an
arbitrary edge ea1 ∈Ca and 6nds an edge eb1 ∈Cb that
minimizes the patching cost to ea1 as given by Eq. (5).
We refer to eb1 as the closest edge to ea1 . Ties are bro-
ken by choosing the lexicographically 6rst edge, i.e.,
the edge with the smallest index in the cycle. Denote
the operation of 6nding a closest edge by the operator
B(·; ·), i.e., B(ea1 ; Cb) = eb1 . We proceed to 6nd the
closest edge ea2 ∈Ca to eb1 , i.e., B(eb1 ; Ca) = ea2 . As
shown in Fig. 2, the method alternates between edges
in cycles Ca and Cb, always decreasing the patching
cost, until B(B(eal ; Cb); Ca) = eal . At that point, the
algorithm patches Ca and Cb using the edges eal and
B(eal ; Cb) and terminates. We next prove that this pro-
cedure stops after a 6nite number of alternations.

Lemma 2. The alternating patching heuristic termi-
nates within O(|Ca‖Cb|) runtime.

Proof. We 6rst show that B(·; ·) can be executed at
most once for any edge eai in Ca. (The same argu-
ment also applies to any edge ebi in Cb). If eai is the
6nal edge examined by the algorithm before termi-
nating then B(eai ; Cb) is trivially executed once. To-
ward a contradiction, assume that B(·; ·) is executed
twice for some non-6nal edge eai , hence there exist
3 edges in Cb: ebi−1 , ebi and ebj with j¿ i, such that

B(ebi−1 ; Ca)=eai , B(eai ; Cb)=ebi , and B(ebj ; Ca)=eai .
This implies s(eai ; ebj)¡s(eai ; ebi), a contradiction by
the de6nition of the cost function. Hence B(·; ·) can be
executed at most once for any edge. Since each call
of B(·:·) for an edge eai ∈Ca (resp., ebi ∈Cb) takes
O(|Cb|) (resp., O(|Ca|)) to execute, the total patching
runtime is O(|Ca‖Cb|).

In the worst case, the alternating patching heuristic
would need to consider all pairs of edges (a pair con-
sists of an edge from Ca and an edge from Cb) before
stopping. Our experimental results indicate that in re-
ality the alternating patching heuristic hardly performs
according to the worst case. On the other hand, Fig.
2 shows the worst-case scenario where the alternating
patching heuristic keeps on alternating between edges
of the two cycles until most edges are considered for
patching.

4.3. MST based stitching

Given a set of cycles C={C1; C2; : : : ; Cm} produced
in Phase I, we must stitch all of these cycles together to
form a tour satisfying the no-subtour constraint given
in Eq. (3). Stitching represents the cumulative result
of patching pairs of cycles. Let cij be the patching
cost of cycles Ci and Cj as calculated by either the
exact or the alternating method. We construct a graph
G = (V; E), where vertices v1; v2; : : : ; vm ∈V , respec-
tively represent cycles C1; C2; : : : Cm ∈C. We connect
every pair of vertices vi; vj ∈V by an edge {vi; vj} hav-
ing weight cij. The stitching objective is achieved by
constructing a MST of G. The outline of our stitching
algorithm is given in Fig. 3.

In this algorithm, Lines 1–3 calculate the patching
cost between every possible pair of cycles using ei-
ther EXACT (Exact patching) or FAST (Alternating
patching). Line 4 constructs the MST. Lines 5–6 carry
out the stitching process by examining the MST. If
there are two cycles to be patched and any of them
has been already patched before, we re-calculate the
patching cost between the two cycles, as given in Step
6b. We keep track of the patched cycles by using the
function !(·). If !(i) = i, where i is the cycle index,
then the cycle has never been patched before; other-
wise, it has been patched and its new patched cycle
index is !(i). The intuition behind re-calculating the
new cost is that perhaps the newly stitched cycle(s)
oBer better patching cost. Another alternative we have
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Fig. 3. Overall stitching algorithm.

tried is to re-construct the MST every time two cycles
get patched. This basically converts the MST-based
stitching algorithm into a greedy one. We have found
negligible improvements in quality with this alterna-
tive, at the expense of increased runtime. However,
we do resort to greedy stitching in some situations, as
will be explained in Section 5.

For complexity analysis, we notice that constructing
G requires calculation of patching cost between all
pairs of cycles, which takes

∑m
i=1 |Ci|

∑m
j=1; i �=j |Cj|=∑m

i=1 |Ci|(n−|Ci|)=O(n2) time. Stitching all cycles is
achieved by constructing the MST of G. Constructing
the MST takes O(m2) using Prim’s algorithm, where
m6 n=4. The overall runtime of the stitching phase is
O(n2).

In addition to the MST-based heuristic, we can also
use the PATCH heuristic [18] for stitching all cycles.
In this heuristic, the two largest cycles are repeatedly

patched until one tour is formed. We try this heuristic
using both exact and alternating patching in the next
section.

5. Practical considerations and experimental
results

The overall TSP construction methodology is pre-
sented in Fig. 4. Since a perfect matching can be
attained only if the number of points is even, i.e.,
|P|%2 = 0, we must drop one point prn from P when
|P| is odd. Steps 1 and 2 drop one point randomly. For
reproducibility of our results, we drop the last point
in any TSPLIB benchmark suite having odd size (we
later examine how to re-incorporate this point). Step
3 executes the Euclidean matching algorithm [5] of
Cook and Rohe, and stores the resultant matching in
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Fig. 4. Overall TSP construction methodology.

M1. Step 4 sets all weights of M1 to ∞. This can be
enforced in Rohe’s code by trapping the edge length
calculation function and returning a large number
whenever an edge in M1 is passed to the function as
an argument. Step 5 re-executes the Euclidean match-
ing procedure under the previous constraint. The
result of Step 5, M2, together with M1 comprise the
edges of a disjoint set of cycles constructed in Step
6. If |P| is odd, then Step 7 reinserts the randomly
dropped point prn into one of the constructed cycles.
The cycle and position of the augmentation are cho-
sen such that minimum increase in total cycle length
is attained. This is realized by examining every pair
of consecutive points in the cycles and calculating
the increase in cost due to insertion of prn between
the points of this pair. Then, prn is inserted between
the pair that attains the smallest increase in tour cost.
Finally, Step 8 invokes the stitching algorithm of Fig.
3. If the MST is too large to be allocated in memory,
the stitching process is switched into a greedy mode
where each cycle is stitched with the best cycle to

stitch. This stitching is repeated until there is only one
cycle left. The stitching algorithm executes in either
the exact stitching (ES) mode or the fast alternating
stitching (AS) mode. For Euclidean instances, the ob-
served matching runtime is proportional to n1:25 and
hence the total observed complexity is proportional
to n2. In general, the total complexity is O(n3) as it is
dominated by the matching calculation.

Our implementation platform is an Intel Xeon
1:4 GHz processor with 2 GByte RAM. We use gcc
version 2.96 with -O3 optimization, integrating Cook
and Rohe matching code [5] as well. We execute our
tour construction heuristic on the TSPLIB Euclidean
benchmarks. While our technique applies to both
Euclidean and non-Euclidean instances, we restrict
our experiments to the Euclidean benchmarks. Since
we have two diBerent stitching algorithms: (i) the
MST-based computation and (ii) the PATCH heuris-
tic, as well as two patching methods: (i) exact and (ii)
alternating, we have a total of four heuristic variants
to evaluate. These are described in Table 1. We use
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Table 1
Description of the diBerent variants of the MTS heuristic

Flow Description

MTS-1 Sequential matchings to form cycles + PATCH heuristic using alternating patching
MTS-2 Sequential matchings to form cycles + PATCH heuristic using exact patching
MTS-3 Sequential matchings to form cycles + MST stitching heuristic using alternating patching
MTS-4 Sequential matchings to form cycles + MST stitching heuristic using exact patching

Table 2
Results of all variants of the Match Twice and Stitch (MTS) heuristic on the TSPLIB instances

Instance Cities Cycles Cycle MTS-1 MTS-2 MTS-3 MTS-4
cost

Tour Time Tour Time Tour Time Tour Time

dsj1000 1000 58 1.48 8.12 0.78 6.68 0.98 6.06 0.87 5.41 1.31
pr1002 1002 86 0.10 9.09 0.26 7.65 0.51 9.57 0.32 5.46 0.87
u1060 1060 54 1.53 6.63 0.31 5.79 0.48 5.71 0.38 5.06 0.72
vm1084 1084 40 1.81 7.57 0.23 5.81 0.44 6.02 0.27 5.18 0.73
pcb1173 1173 26 2.29 4.49 0.21 3.28 0.46 4.59 0.22 3.20 0.77
d1291 1291 57 −0.41 10.14 0.74 9.06 1.18 9.68 0.82 8.15 1.71
rl1304 1304 60 1.43 8.74 0.45 5.81 0.79 6.49 0.51 5.33 1.25
rl1323 1323 51 1.03 6.34 0.37 5.01 0.80 6.59 0.46 4.70 1.29
nrw1379 1379 59 1.34 5.57 0.29 3.48 0.75 4.01 0.38 2.86 1.37
Q1400 1400 76 −4.09 10.67 1.32 9.76 1.80 9.81 1.40 9.36 2.43
u1432 1432 76 0.98 4.82 0.32 3.31 0.83 3.02 0.42 1.89 1.50
Q1577 1577 104 −2.42 12.95 1.39 11.89 1.99 16.23 1.48 15.18 2.77
d1655 1655 67 1.48 8.15 1.19 5.93 1.88 6.58 1.32 5.10 2.66
vm1748 1748 79 2.50 6.92 0.52 5.66 1.23 5.66 0.65 4.80 2.15
u1817 1817 93 2.23 10.25 0.48 7.36 1.34 8.52 0.67 5.89 2.41
rl1889 1889 98 1.34 8.55 0.70 7.06 1.36 9.14 0.84 6.69 2.55
d2103 2103 50 −1.23 7.48 1.08 6.86 2.34 4.92 1.15 3.69 3.79
u2152 2152 140 0.29 10.96 0.70 7.16 1.95 7.50 0.97 5.66 3.53
u2319 2319 79 0.16 1.09 0.40 0.19 1.84 0.97 0.74 0.16 3.59
pr2392 2392 129 2.40 11.80 0.66 10.15 2.22 7.94 0.82 6.38 4.13
pcb3038 3038 95 1.84 4.89 0.78 3.31 3.31 3.71 1.06 2.84 6.15
Q3795 3795 142 −0.40 8.65 13.44 8.08 17.15 7.76 13.79 5.23 21.55
fnl4461 4461 149 1.63 4.15 1.51 2.81 6.18 3.65 2.35 2.73 11.99
rl5915 5915 164 2.36 7.26 3.04 5.77 9.94 5.40 3.82 4.53 18.16
rl5934 5934 195 2.49 7.86 3.57 6.04 10.70 6.93 4.55 5.60 19.82
pla7397 7397 292 1.47 5.41 22.66 4.02 38.59 4.33 25.45 3.57 58.96
rl11849 11849 465 1.91 7.63 11.59 5.06 49.20 5.75 15.19 4.27 95.62
usa13509 13509 577 1.50 5.65 19.43 4.41 69.64 5.26 26.86 4.00 130.92
brd14051 14051 504 1.67 4.71 23.16 3.04 78.02 3.65 31.12 2.80 141.29
d15112 15112 517 1.50 4.30 15.59 2.77 74.77 3.53 24.68 2.67 143.60
d18512 18512 645 1.67 4.62 20.10 2.90 117.60 3.82 34.07 2.72 223.91
pla33810 33810 1116 0.96 4.67 71.51 2.62 495.14 2.88 90.28 1.65 900.07
pla85900 85900 3392 0.72 4.08 413.36 2.46 3169.94 2.66 696.85 1.91 5746.59

7.10 632.14 5.49 4165.35 6.01 984.76 4.69 7560.16

Cities is the instance number of cities. Cycle is the number of cycles produced from the two sequential matchings. Cycle cost is the total
cycle cost in terms of percentage over the HK bound. Tour is the tour cost as percentage over the HK bound. Time is the non-normalized
CPU time in seconds. In the last line we give the average tour cost as percentage over the KH bound and the total CPU time in seconds.



506 A.B. Kahng, S. Reda /Operations Research Letters 32 (2004) 499–509

Table 3
Comparison of the proposed TSP tour construction heuristic against all TSP tour construction techniques that are within 15% of the HK
bound [1]

Instance cost FI FA+ Savings CCA CR-S CR-G CR-HK CR-JM CR-R MTS-1 MTS-2 MTS-3 MTS-4

u2319 tour(%) 6.77 6.85 7.24 7.18 11.45 6.82 7.02 8.98 9.24 1.09 0.19 0.97 0.16
CPU(s) 0.55 0.32 0.04 29.63 0.12 0.12 1.69 0.07 0.29 0.60 2.76 1.11 5.38

pr2392 tour(%) 14.49 14.62 13.51 12.72 13.65 9.03 7.47 9.71 16.84 11.80 10.15 7.94 6.38
CPU(s) 0.54 0.29 0.05 43.70 0.17 0.18 1.69 0.08 0.33 0.99 3.33 1.23 6.20

pcb3038 tour(%) 16.12 16.27 11.80 11.65 14.00 9.46 6.78 11.05 14.54 4.89 3.31 3.71 2.84
CPU(s) 0.77 0.42 0.07 70.42 0.21 0.21 1.97 0.11 0.33 1.17 4.96 1.59 9.23

Q3795 tour(%) — — — — — — 8.34 — 10.59 8.64 8.08 7.76 5.23
CPU(s) — — — — — — 2.09 — 0.59 20.16 25.72 20.68 32.33

fnl4461 tour(%) 2.24 12.31 11.12 10.32 14.85 9.73 7.12 10.73 15.25 4.15 2.81 3.64 2.73
CPU(s) 1.10 0.62 0.11 151.74 0.35 0.36 2.89 0.17 0.39 2.27 9.27 3.53 17.98

rl5915 tour(%) 24.49 24.70 12.44 15.11 11.62 7.80 7.07 9.89 12.75 7.26 5.77 5.40 4.53
CPU(s) 1.55 0.79 0.13 612.33 0.29 0.30 5.00 0.23 0.40 4.56 14.91 5.73 27.24

rl5934 tour(%) 22.04 22.11 12.86 14.44 12.13 7.80 6.75 9.52 13.82 7.86 6.04 6.93 5.60
CPU(s) 1.57 0.81 0.14 560.57 0.34 0.35 4.87 0.23 0.41 5.35 16.05 6.82 29.73

pla7397 tour(%) 14.57 14.89 10.09 11.17 12.23 8.20 8.59 9.60 13.79 5.41 4.02 4.33 3.57
CPU(s) 2.01 1.09 0.16 533.03 0.57 0.58 9.17 0.33 0.55 33.99 57.89 38.17 88.44

rl11849 tour(%) — — — — — — 6.91 — 14.32 7.63 5.06 5.75 4.27
CPU(s) — — — — — — 10.84 — 0.71 17.38 73.80 22.79 143.43

usa13509 tour(%) — — — — — — 7.38 — 20.16 5.65 4.41 5.26 4.00
CPU(s) — — — — — — 16.85 — 0.92 29.14 104.46 40.29 196.38

brd14051 tour(%) 11.82 11.91 11.61 11.12 14.59 9.52 6.42 10.85 18.68 4.71 3.04 3.65 2.80
CPU(s) 4.25 2.12 0.38 1923.91 2.98 2.95 10.29 0.67 0.90 34.74 117.03 46.68 211.94

d15112 tour(%) 12.32 12.40 11.63 11.32 14.22 9.50 6.79 10.99 18.35 4.30 2.77 3.53 2.67
CPU(s) 4.67 2.33 0.41 2578.46 1.65 1.65 14.14 0.73 1.09 23.38 112.16 37.02 215.40

d18512 tour(%) 12.21 12.29 11.21 11.08 14.58 9.27 6.79 11.16 18.45 4.62 2.90 3.82 2.72
CPU(s) 5.32 2.77 0.44 3867.29 2.67 2.69 14.23 0.82 1.12 30.15 176.40 51.11 335.87

pla33810 tour(%) 17.78 17.97 10.87 10.38 16.50 9.62 6.90 11.83 19.38 4.67 2.62 2.88 1.65
CPU(s) 9.84 4.77 0.62 21100.84 3.88 3.82 50.10 1.54 3.16 107.27 742.71 135.42 1350.11

pla85900 tour(%) 15.32 15.49 9.96 — 15.46 9.50 7.42 11.52 20.79 4.08 2.46 2.66 1.91
CPU(s) 26.40 12.82 1.36 — 31.78 29.51 177.89 3.90 11.12 620.04 4754.91 1045.28 8619.89

All runtimes are normalized. We use the naming convention of the TSP Challenge website: Savings is the Clarke–weight savings heuristic
[4]. CCA is the Golden–Stewart convex hull, cheapest insertion, angle selection algorithm [11]. FI is the farthest insertion algorithm
[2]. FA+ is the farthest augment addition algorithm [2]. CR-S is the classical Christo6des MST-based tour construction method [3]. The
following are variants of the Christo6des heuristic: CR-G is the greedy shortcut version. CR-HK is a version where the one-tree of the HK
bound is combined with greedy shortcuts. CR-JM is an approximate, greedy version. CR-R is the Rohe’s half-LK standard version. MTS1
through MTS4 are the proposed matching-based cycle construction technique followed by diBerent types of stitching as described in Table 1.

the acronym MTS (match twice and stitch) to refer
to the proposed tour construction methodology.

Table 2 gives the results of all four variants of our
technique. In this table, we report non-normalized run-
times. From the table, we can conclude that none of
the four variants dominates the others. They repre-
sent a trade-oB between quality and runtime with the
MTS-4 variant oBering the best tour quality, and the
MTS-1 variant oBering the best runtime (about 10x
improvement over MTS-4) but sacri6cing tour qual-
ity by about 2.5% in average. The results also indi-

cate that performance, as measured by excess over the
HK bound, generally improves as the instance size in-
creases. For the largest instance, pla85900, the tour
length is only 1.91% over the HK bound.

Table 3 compares our heuristic with previous TSP
construction heuristics that produce tours that are
within 15% of the HK bound [1]. All runtimes are
normalized according to the TSP Challenge website
procedure. For space limitations, we only compare
results for the largest 15 instances of the TSPLIB
benchmarks. From the table, the proposed approach
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Table 4
Comparison of the proposed TSP tour construction heuristic against tour improvement heuristics [1]

Instance cost Tabu-SC 2Opt-JM 2.5Opt 3Opt-JM LK LK-JM Helsgaun MTS-1 MTS-2 MTS-3 MTS-4
-DB -40b -B -40 -ABCC -40-BD

u2319 tour(%) 0.34 1.98 2.15 1.77 0.51 0.42 0.09 1.09 0.19 0.97 0.16
CPU(s) 434.76 0.34 0.24 0.34 0.32 0.52 35.27 0.60 2.76 1.11 5.38

pr2392 tour(%) 1.83 6.65 8.47 4.81 4.56 3.09 1.45 11.80 10.15 7.94 6.38
CPU(s) 955.97 0.32 0.35 0.35 0.18 0.77 34.87 0.99 3.33 1.23 6.20

pcb3038 tour(%) 1.71 5.58 5.73 3.70 2.99 1.85 0.97 4.89 3.31 3.71 2.84
CPU(s) 1154.97 0.42 0.40 0.45 0.25 0.74 55.85 1.17 4.96 1.59 9.23

Q3795 tour(%) 5.25 11.03 0.00 9.37 3.32 7.36 7.83 8.64 8.08 7.76 5.23
CPU(s) 15447.66 0.64 0.00 0.69 0.37 28.85 74.06 20.16 25.72 20.68 32.33

fn14461 tour(%) 1.34 4.39 4.71 2.32 2.31 1.68 0.62 4.15 2.81 3.64 2.73
CPU(s) 1717.12 0.63 0.60 0.68 0.43 1.18 129.23 2.27 9.27 3.53 17.98

rl5915 tour(%) 2.61 5.63 5.84 4.04 4.93 2.80 1.95 7.26 5.77 5.40 4.53
CPU(s) 9390.51 0.95 0.63 1.02 0.46 3.29 242.99 4.56 14.91 5.73 27.24

rl5934 tour(%) 2.61 5.69 8.04 3.84 4.03 2.67 1.60 7.86 6.04 6.93 5.60
CPU(s) 11834.26 0.95 0.75 1.05 0.47 3.48 271.67 5.35 16.05 6.82 29.73

pla7397 tour(%) 2.57 4.76 5.67 3.16 2.53 2.05 0.94 5.41 4.02 4.33 3.57
CPU(s) 15862.69 1.28 0.92 1.35 0.76 7.84 452.01 33.99 57.89 38.17 88.44

rl11849 tour(%) 2.44 5.21 0.00 3.48 3.51 2.17 1.37 7.63 5.06 5.75 4.27
CPU(s) 27361.51 1.77 0.00 1.95 1.33 4.33 1311.87 17.38 73.80 22.79 143.43

usa13509 tour(%) 1.79 4.99 0.00 2.85 3.20 1.94 0.88 5.65 4.41 5.26 4.00
CPU(s) 66554.23 1.90 0.00 2.11 1.96 6.15 1133.81 29.14 104.46 40.29 196.38

brd14051 tour(%) 1.91 4.98 4.91 2.86 2.26 1.59 0.61 4.71 3.04 3.65 2.80
CPU(s) 27193.02 2.19 1.97 2.40 1.67 7.27 1674.24 34.74 117.03 46.68 211.94

d15112 tour(%) 1.73 4.93 4.27 2.89 2.35 1.66 0.63 4.30 2.77 3.53 2.67
CPU(s) 35660.20 2.53 1.94 2.73 2.38 4.60 1515.99 23.38 112.16 37.02 215.40

d18512 tour(%) 1.61 4.64 4.32 2.62 2.04 1.59 0.58 4.62 2.90 3.82 2.72
CPU(s) 45269.20 2.70 2.34 2.91 2.49 4.62 3212.32 30.15 176.40 51.11 335.87

pla33810 tour(%) 2.37 6.13 5.38 3.83 2.16 1.88 0.96 4.67 2.62 2.88 1.65
CPU(s) 85225.86 5.43 3.14 5.97 3.48 30.60 7982.09 107.27 742.71 135.42 1350.11

pla85900 tour(%) 2.33 5.64 4.82 3.54 1.60 1.60 1.25 4.08 2.46 2.66 1.91
CPU(s) 113625.25 14.61 7.45 15.83 8.84 46.20 48173.84 620.04 4754.91 1045.28 8619.89

All runtimes are normalized. We use the naming convention of the TSP Challenge website. Tabu-SC-DB is Zachariasen-Dam’s
Tabu-Search Flower/D-B implementation. 2opt-JM-40b is Johnson–McGeoch’s 2-Opt implementation 40 Quadrant Neighbors, Run 2
results. 2.5opt-B is Bentley’s 2.5-Opt implementation. LK-ABCC is Concorde’s version of Lin-Kernighan implementation. LK-JM-40-BD
is Johnson–McGeoch’s Lin–Kernighan implementation. Helsgaun is Keld Helsgaun’s implementation of a Lin–Kernighan variant. MTS1
through MTS4 are the proposed matching-based cycle construction technique followed by diBerent types of stitching as described in Table 1.

clearly outperforms all reported tour construction
heuristics including Christo6des’ heuristic [3] and its
variants [17] by a signi6cant margin. On the other
hand, other heuristics oBer better runtimes.

While the heuristic we propose is a tour construction
heuristic, we also compare it with tour improvement
techniques in Table 4. Due to space limitations, we
cannot compare with all tour improvement heuristics.
Hence, we select a number of the leading techniques
for tour improvement. All runtimes are normalized ac-
cording to the TSP challenge website. From Table 4,
we see that in general the tour improvement heuristics

outperform MTS variants by a small margin, but nev-
ertheless the MTS-4 variant can outperform a num-
ber of leading tour improvement techniques on such
benchmarks as u2319 and pla3381. On the other hand,
most TSP tour improvement heuristics oBer their re-
sults in much less time than the MTS variants. The
Helsgaun heuristic that oBers better tour quality results
in all benchmarks does not dominate MTS-4 since
MTS-4 produce its results in less runtime.

Similar results for uniform and clustered random in-
stances are given in Table 5, where we also compare
our results against two tour construction heuristics
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Table 5
Summary of results for uniform, clustered and TSPLIB benchmarks for the MTS variants as described in Table 1.

1000 3162 10 k 31 k 100 k 316 k

Heuristic Average Percent Excess over HK Bound
MTS1 Uniform 6.09 8.09 6.23 6.33 6.22 6.20
MTS1 Clustered 8.90 9.96 11.97 11.61 9.45 —
MTS2 Uniform 4.19 4.98 4.73 4.81 4.73 4.70
MTS2 Clustered 8.62 8.76 9.91 10.09 9.46 —
MTS3 Uniform 5.26 5.8 5.55 5.69 5.6 5.6
MTS3 Clustered 8.52 9.5 10.11 9.725 9.46 —
MTS4 Uniform 4.44 4.68 4.46 5.00 4.51 4.43
MTS4 Clustered 6.91 7.96 8.25 8.00 7.36 —
CR-S Uniform 14.48 14.61 14.81 14.67 14.70 14.49

Clustered 12.03 12.79 13.08 13.47 13.50 13.45
CR-HK Uniform 7.55 7.33 7.30 6.74 6.86 6.90

Clustered 7.27 7.78 8.37 8.42 8.46 8.56
LK-JM-40-BD Uniform 1.99 1.88 1.94 1.95 1.89 1.89

Clustered 1.60 2.72 3.62 3.16 3.51 3.63
Helsgaun Uniform 0.9 0.89 0.83 0.83 — —

Clustered 1.25 2.00 3.32 3.58 — —
1000 3162 10 k 31 k 100 k 316 k

Heuristic Average Normalized Running Time in Seconds
MTS1 Uniform Points 0.37 2.56 17.21 213.40 1248.21 11833.82
MTS1 Clustered Points 0.78 4.19 45.09 276.43 1798.15 —
MTS2 Uniform Points 0.72 5.48 54.36 659.09 6265.64 60270.63
MTS2 Clustered Points 1.15 8.22 86.11 772.06 6941.61 —
MTS3 Uniform Points 0.46 3.55 24.65 289.06 2063.29 21716.42
MTS3 Clustered Points 0.84 4.76 49.04 337.31 2213.05 —
MTS4 Uniform Points 1.15 10.15 103.77 1103.78 10537.33 186203.79
MTS4 Clustered Points 1.65 13.50 139.05 1234.53 11124.85 —
CR-S Uniform 0.1 0.3 1.0 4.7 21.3 99.5

Clustered 0.2 0.8 3.2 11.0 37.8 152.8
CR-HK Uniform 1.0 4.0 14.7 51.4 247.2 971.5

Clustered 0.9 3.3 11.6 40.9 197.0 715.1
LK-JM-40-BD Uniform 0.3 0.9 3.0 9.1 27.0 74.1

Clustered 6.3 18.6 52.4 180.9 603.7 1712.7
Helsgaun Uniform 5.6 71.5 861.7 7819.3 — —

Clustered 7.0 70.3 768.3 12812.5 — —

For space limitations, we consider also results from two tour construction heuristics (CR-S and CR-HK) and two improvement heuristics
(LK-JM-40-BD and Helsgaun). The vertical columns (1000, 3162, 10 k, 31 k, 100 k, and 316 k) give the number of points in each
random instance.

and two tour improvement heuristics. The vertical
columns of this table (1000, 3162, 10 k, 31 k, 100 k,
and 316 k) give the number of points in each random
instance. In this experiment, we had to resort to greedy
stitching with the 316k instances due to memory lim-
itations. We summarize our experimental results as
follows.

• The proposed MTS method outperforms all reported
tour construction heuristics, including Christo6des’

heuristic [3] and its variants [17], by a signi6cant
margin but does not dominate most of these heuris-
tics since they oBer better runtimes.

• With the exception of only the u2319 and pla33810
benchmarks, the proposed method is dominated by
some of the leading TSP tour improvement heuris-
tics.

• The proposed heuristic narrows the performance
gap between the class of tour construction and tour
improvement heuristics.
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• The performance of the proposed method improves
as the instance size increases, but runtime grows
quadratically for Euclidean instances and cubically
for non-Euclidean instances.

A number of interesting theoretical questions
emerge from this work. Some of these questions
are: How well do the two sequential matchings ap-
proximate a minimum-weight 3-restricted 2-factor?
What is the approximation ratio of the two sequential
matchings to the optimal tour? Or, more ambitiously,
what is the approximation ratio of the MTS heuristic?
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