MODSIM I11°

The Language for Object-Oriented
Programming

Reference Manual

Products Company

3333 North Torrey Pines Court, La Jolla, California 92037 « (619) 824.5200 « Fax (619) 457-1184
Watchmoor Park, Riverside Way, Camberley, Surrey GU15 3YL, UK « 1276 671 671« Fax 127/66/0677
1600 Wilson Blvd., 13th Floor, Arlington, Virginia 22209 « (703) 875-2900 « Fax (703) 875-2904

MODSIM Reference Manual

Copyright O 1996 CACI Products Co.
December 1996

All rights reserved. No part of this publication may be reproduced by any means without written permission from
CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:
CACI Products Company CACI Products Division
3333 North Torrey Pines Court Watchmoor Park
La Jolla, California 92037 Riverside Way
Phone: (619) 824.5200 Camberley, Surrey
Fax: (619) 457-1184 GU153YL, UK

Phone: 1276 671 671
Fax: 1276 670677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the
responsibility for any consequences resulting from the use thereof. The information contained herein is subject to
change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS Il and MODSIM |11 are registered trademarks of CACI Products Company.

cContents

FIGURES. oot ettt et e et e e e e e e et e et e et e et e et e eaaeeaaneeenns iX
PREFACE. ... oottt e et e et aaans a
WHAT IS MODSIM L2 et e e et e e et e e e et e e e e e eaaennaes a
MODSIM 1] DOCUMENTATIONitutiteti ettt et e e et e et et e et eeae e e et e et e s e eaneeaee s e et e snsaneeseenaesnaesnesneeens a
FREE TRIAL & TRAINING. ...t uiititieiie e e et e e e et e e et e et et e e e e e e et et e et e aa et e et e eaeaneesneeneesnaenesnneens b
1. INTRODUCGTION ..ottt e e e e et e et e e et e e et e e et e eaaeeeaaa e et e estaeeeraeesans 1
1.1 OVERVIEW OF MODSIM T ..o e e e e e e e e ans 2
1.2 OBJIECT-ORIENTED FEATURES.uituiitiiiiei et et e et e e e e e e e et e et et e e et e e it e et e e esneeanaenneens 4
1.3 DISCRETE-EVENT SIMULATION FEATURES. ... cuuiiiiiiiiiie et e e e e e e e et e e et e eae e e eens 4
I |V o o T = PRSP 5
1.5 THE MODSIM DEVELOPMENT ENVIRONMENT ...uuituiiteiiieteet e ieeieet e eie e e et e e eaeeaeeneesneenasnneens 5
SECTION I. MODSIM 111 - SYNTAX AND STRUCTURE ..o 7
2. STRUCTURE OF MODSIM I PROGRAMS ... 9
2.1 PROGRAM LAY OUT ..ttt e et e e e e e et e e et e e et e et e et e aae e s e ea e e e et aeaeenneens 9
2.2 IDENTIFIERS, RESERVED WORDS AND STANDARD PROCEDURES.......uccuiiiiiieiieeieeieeeeteeaeennaas 11
2.3 BLOCK STRUCTURE AND SCOPE OF VARIABLESuuituiitiiiiieieieeiee e e e et e et e e et e e eeneeaaennaen 13
2.4 NESTING OF BLOCKS . .. ittt ettt e e e e e e et e e e e e et e et e e e s e et esneeaaennen 14
2.5 REDEFINITION OF IDENTIFIERS ...uuituitueiteteete et e te et e et et e et e et e e e et e et e e et eenssnaesnaenesnaesnaennnes 15
2.6 DELIMITERS ..tuitiitieteit e et et e ettt et e et e et e et e et e et et e et e et e e et e et e eassnseanssnsesnaenasnaesnannnnen 15
2.7 SEPARATORS ...ttt ettt et et e et e e et e et et e e ettt e ea et e et et e et e eaaetaeetneetaeteetaernaetneeraaranaes 16
N < B O(0] Y 1LY 1= N T U UPRPPRN 17
3. SIMPLE DATA TYPES AND THEIR OPERATORS ..o 19
B WWHAT 1S A D AT A T PE 2 e ettt e e e et e e et e et e et e e et e ea e e etaennen 20
3.2 INTERNAL REPRESENTATION OF DATA ..outiiiiiii ettt et e e e e e e et e et e enaa e 20
3.2.1 Representation of NUMErCal Data...........ccouuuuuiiiiieiiiiii e 21
3.2.1.1 TYPE INTEGER. ...ttt e e e e e e eet b aeaeaeees 21
3B.2.1.2 TYPE REAL .ottt e e ettt a e e e e ear e e aaaaae 21
3.2.2 Representation Of TeXtUal Datal........cooeeeiiiiiiiiiiiie et aeeeees 22
3.2.2.1 TYPE CHAR e oottt e e e e e ettt e e e e e e e aeaea e e aaaaaae 22
3.2.2.2 TYPE STRING ...ttt e e e e e e e ettt e e e e e e e aeeesaaa e aaaaaeees 23
3.2.3 Representation of TRUE / FALSE or Boolean Data............ccoooveeiiiiiiiiieieieceiiiiieee e 23
3.2.3.1 TYPE BOOLEAN ...ttt e ettt e e e e e e e ettt e e e e e e e eeeeban e e e aaaeees 24
3.3 USER-DEFINED Y PE S . cuiiiuiiiiiiie et e e e ee e e et et e et et e e et e et e e e et e et s s e st e eaesnaesneenaeneesannnaen 24
3.3.1 ENUMETALEA TYPES. .. ceiituuiieeeeeeeeettte e e ettt e e e e e e et e atta e e e e e e eetttaa e e e eaeeeeessbnnaaeaaaeees 24
3.3.2 OrdiNaAl DAA TYPES ..ceeettuuieeeeeeetettta e e e e e eettt e e e e e e eeatta e e e e aeeetttaa e e e eaaaeeeseannnaaaaaeeees 25
3.3.3 SUBIANGE TYPES .. it ettt e e e e et ettt e e e e e e e et b e aaaaeee 25
3.4 EXTERNAL REPRESENTATION OF DATA ...ttt e e e e e et e en e 26
3.4.1 INTEGER LITEIAIS ... civieiie ettt e e e e e et e et e e et e e e s e aaeeeen 26
3.4.2 REAL LItEIaAlS....u ittt et e e et e et e e e e e et e e et e e et e e et e eeaneees 27
3.4.3 CHARACTER LItEIAlS .. cvueiiiceee et e et e et eeaaeeean 28
3.4.4 STRING LItEIAIS.un ittt e e et e e e et e et e e eaeeeaeeeaaeeeen 28
3.4.5 BOOLEAN LItEIalS .. .couiiiiiiiiieiie ettt et e e e e e e et e et e e et e e et e eaeeeen 29

MODSIM Reference Manual

R I = o TU 10 =T = 110 1 PP PTRPPRt 29
R I O] =] = 27N 0] =3 T PSP 29
3.5.1 ASSIGNMENT OPEIALOTceeeieiiiie e ettt e e e e ettt e e e e e e eeetaa e e e e aeeeebbaa e e aeeaeeeesnnnnnnaans 30
3.5.2 ArithmMEetiC OPEIALOIS ... iiieiiiiiiee ettt e e e e e e e et e e e e e e eeebbb e e e e e e eeeeenanaaaeas 30
3.5.3 RelatioNal OPEIALOrS.ciiiiiiiiiee ettt e e et a e e e e e e et b a e e e e eeeeran e as 31
R I W o [[or= I @] o 1] =101 £= TSP 32
3.6 BUILT-IN PROCEDURES AND FUNCTIONS ... cuuittiiiieiiie i eei e e e e et e e e e et e e e ae e s e e e s e et eeneesneeanns 32
4, DECLARATIONS, EXPRESSIONS AND PRECEDENCEccoiiiiiiiiieeeeeeeeeeeeeee e, 35
o R B | =l 1YY 27y 1 (o] N £ 3 PPN 35
4.1.1 CONSTANt DECIAIALIONS ...vuiitiiiiiieeiiee et e e e e et e e e e eaeeeaaaees 35
4.1.2 TYPE DECIAratiONScouciiiiiiiieiiiee ettt e e e e et e et e e et e e e s e eaeeeraeeeen 36
4.1.3 VARIADIE DECIAratiONS......ouciiriiiiieeiiiee e e et e e e ean 37
4.1.4 PROCEDURE DECIAratiONScuueiitiiiiiieiiiiee i e et e et e et e et e e ebeeeaaeeees 38
4.1.5 PROCEDURE Variable DeCIaratiOnscoeeuiiiieiiiieeiiieeeee et e e e eaeeee 38
4.2 AUTOMATIC INITIALIZATION OF VARIABLESouitiiiiiiieet e e e et e e e e et e e et e et e e e e e e eneesneesaennnes 38
4.3 EXPRESSIONS. . tuitiit it e e ee e et ettt et e e e e et et e e e e et e et et e et e ea et e ea e ea et en e e e et eenaerneeaaennaes 39
4.4 OPERATOR PRECEDENCEctuiitiiiiiiieit e e e et e e e et e e et e et e e et e et e e e et e et e s et e enesnaesnaennen 39
4.5 TYPES OF EXPRESSIONSuitiiitiiiiiei et e ee et e e et e et et e et e et e et e s e ea e s et e eaesnaeaneenneenaasnaennaen 40
4.5.1 Evaluating BoOolean EXPreSSIONSiie i ettt e e e e eeeiiiiaa e e e e eeeestaia e e e aaeeeeranaaaaaaaaaees 40
5. STRUCTURED DATA TYPESttt e et e et e et eeaeeen 43
5.1 USING STRUCTURED DATA TYPES. ...ttt et e e e e e e e e et e e e et e e e it e et e e eaneeanns 43
5.1.1 Dynamic Versus FiXed SrUCIUIES..........uii ittt ee s 46
5.2 MEMORY MANAGEMENT OF DYNAMIC DATA STRUCTURES......cuiitiiiieiieeieieeiiee e eeete et e e eaneennas 47
5.2.1 The CLONE FUNCHON ...ttt ettt e e e e e e e e et e eeanas 50
5.2.2 OrPhan@d DAta.........oieeeiieiiiiiiiee et e et a e et e e b a e e e ar b s 51
5.2.3 The DISPOSE PrOCEUUIEccuueiiieeie ettt ettt e e e et e e e et e e e e s e e st e eaneesannns 51
5.2.4 HaNgING REFEIENCESottt a e e e e e e e 51
.8 REC ORDS. . et et e e e e et e e et et et e et etaeaeetaeraaaaaaaas 52
5.3.1 Using NEW to Allocate RECORDSiiiiiiiiiiiiiiiiae et 52
5.3.2 ANYREC, ANYOBJ @nd NILOBUJcou ittt e s 55
5.3.3 Operations 0N RECORDS ...t e e e e e eaeaa s 56
LI N LT N = TSNP 56
5.4.1 Operations 0N ARRAY S ...t e et b e e e e e e e s 59
5.4.2 Using the NEW Procedure to Allocate an ARRAYoooiiiiiiiiiii e 59
R B ¥ To o [=To [N Sy Y TSP 60
5.4.4 The HIGH and LOW FUNCHONScouuiiiiiieiie et et e e et e e e e e e eaanas 61
R I O =] =0 F= T PSSP 62
5.6 DECLARATIONS REVISITED ...uiiuiiiiiiiei e e e e e e e e e e e e e e et e e e e et e s et e et e eneesn e et eenasnaennns 62
5.6.1 ANONYMOUS TYPES. . .euiiiitiie ettt e et e et e ettt e e et et e e ettt e e e et e e e etta e eeesnaaeeennnaaaennnaaae 63
5.7 FIXED DATA STRUCTURES.ctuituiitiei et et ee e e e e et e et e et et e et e et eaae et eeaesne et aeaaesnaesneenaasnaennns 63
5.7.1 The FIXED RECORD Ty .ttt e e e e e e et a e e e e e eesena e eas 64
5.7.1.1 Declaring FIXED RECORD TYPES ...uuuuuiiieiiieiiiiiiiaa e eeeeeitieas e e e e e e eeesania e e e e e eeesnnnaaeeas 64
5.7.2 The FIXED ARRAY TYPE ..ttt e e e e e e e etb e e e e e e e e eenanaa e eas 64
5.7.2.1 Declaring FIXED ARRAY TYPES ...ceutiuuiiiiaaiieiiiiiiaa e e ettt a e e e eeetaa e e e e e e eeeanaaa e eas 65
5.8 REFERENCING THE ARRAY AND RECORD......ccouiie e 66
6. STATEMENTS AND TYPE COMPATIBILITY ..ottt 69
6.1 TYPE COMPATIBILITY «tuitueiteieet et e e et e et et e et et e e e e s e et e s eeanesaesn et eeaesneesnaenesnaesnasnaesnaennns 70
B.1.1 TYPE CONVEISION ...ttt e e ettt e e e e e e e e et b r e e e e e e eeebbaa e e e e e aeeeesnanaaaeas 71
6.2 THE ASSIGNMENT STATEMENT .. ituiititteete et ee e et et et e et e et e seete et esaeeaaeeaaesneetasnaesnaesneenaesnaennns 73
6.3 PROGRAM FLOW CONTROL .utuitieiteii et et e e et e ee et e et e et e et e et e et e aaeea e eaeesneeaeenaesnaesneenaasnaennns 73

(O I T | N == N R 73

Contents

6.4.1 Comparing REAL Values in a Boolean EXPreSSioNccooeeeiieeiiiiiiieeeeeeeeiiiiiae e 74
5.5 THE C A SE ST ATEMENT .. ttitti ittt e et et e e et et e e et et e s e e s e et e eaaesaeeassneesneeaesnaesnaenasnaesannnaen 76
6.6 ITERATIVE STATEMENTS ..iuiiiiiteiteet e et ee e e et ettt e te et et etaee s e et e eaaesneeassneetaennssneesnaenasnaesannnaen 77

6.6.1 The WHILE StatemMeNt.......covuiiiiiiiii et e e e et e e et e e et e eaaeees 77

6.6.2 The REPEAT StalemMeENt ... ccuu it e e et e et e e et e e et eeaneees 78

6.6.3 The FOR StatemMENt. ... ittt e e e et e e e et e et e e et e e et eeaneeen 78

6.6.4 The FOREACH StatemMeENtcoouiiiiiiiiie e e e e e e e et e e et eeaaeeees 79

6.6.5 The EXIT StAlEMENTiveiiii ettt et e et e et e et e et e e et e e et eeanneeen 81

6.6.6 The LOOP SEAtEMENTcvuiiiiiieii et e e e e e e e e e et e e et e e et e eeaaeeeanneees 81

6.6.7 The Other Control StAtEMENEScovuiiii e e e ee 81
7. PROCEDURES AND FUNCTIONS oot e e e e e e e 83
7.1 FORMAL PARAMETER QUALIFIERS: IN, OUT, INOUT ...t 84
7.2 INVOKING PROCEDURES. ... ituiitiitiet e e e et et e e et e e et e et e et e et e et e et e s e st e eaesneesnaennasnaesannnaen 85
7.3 DECLARING PROCEDURESucituiitiiteit et et et et e et et e e et e et e e e et e et et e et e et esneesnaeaasnaesnaennaen 86
T4 RETURN ST ATEMENT ettt et et e et e e et e e et et e e et e et e s e et e eaesnaasneenasnaesaennaen 86
7.5 THE FORWARD QUALIFIER ..etuuittiiiitiiettieetie e et s et s e et s e sts e et e esanesaaaeaase st aesaseesnaesneesnneesnns 87
7.6 PROCEDURES WITH EMPTY PARAMETER LISTS ..uiuiiiii e et e et e e a e e 88
8. MO DULESoc e et et e et e e e e ettt a e aaan 89
8.1 FACTS ABOUT IMIODULES ...uuituiitiii et e e e et e et e e e e et e et e e et e e e s e et e ea e s esneenesnaesnaennen 89
8.2 THE IMP OR T ST ATEMENT «.tuittieii et ee e et e e et et et e e et e et e e et e et st e et e eassnaesnaenesnaesnaennaen 90
8.3 MAIN IMODULE ... ettt et e e e et e e et e e e e et e et e e e s e et e eaa et eeneaneesnaennnes 92
8.4 DEFINITION MODULE ..ucctiiiiteeet ettt ettt e et e et e e e et e e et e e et e eaaeeeaaeeaaneetaeerans 92

8.4.1 CYCIE DEPENUENCIESevuuiieeeeieieittte ettt e e ettt e e e e e e e ettt e e e e e e e eeesban e aaaaaeees 93
8.5 IMPLEMENTATION MODULE .. .ctuiitiiiitteitie et e ettt et ee et e et e e et e e e et e e e b e et e eaaeesanneeeans 93
8.6 THE MODINIT PROCEDUREcttiitiiieiiet e et et et et et e e et e et e e et e et s s e et e eaesneesnaenasnaesnaennaen 94
8.7 FILE NAMING CONVENTIONS FOR MODULEScuuiiuiiiieiiiei et e e et e e e et et e e e e e et e eaaenna e 94
8.8 INCLUDING C/C++ CODE INAMODSIM PROGRAMccuuiiiiiieiiieeeieeeie et aans 95
SECTION Il. OBJECT-ORIENTED PROGRANMMING ...ttt 99
9. OBJIECTS IN MODSIM HI.uuiitiiiiiee ettt et e e et e et e e et e e et e eaneeen 101
9.1 OBJECT TYPE VERSUS OBJIECT INSTANCEuiitiiiiii e e e e e e e e et e e e e e e aaeeans 102
9.2 SCOPE OF AN OBJIECT'S FIELDS .. cuiiiiiiiiei et e e et e e et e et e et e e et e e e e et e eaeeneans 102
9.3 OBJECT TYPE DECLARATION / OBJECT DECLARATION.uiitniiitieeitieeeteeeteeetaeeeteeereeerneeesnaees 102
0.4 METHOD DECLARATIONS ...tuitiitie et e e e e e e et e e e e et e et e et e e e s e ea e s e et e eaesneesnaenneennaens 104
9.5 SCOPE OF FIELDS AND VARIABLES IN OBJECTS .uiuiiiiiieii et eeiieeee et e e e et e e e ene e e e eaneeneeans 105
0.6 OBJECT REFERENCE VARIABLES ...uuituiitteii et eet e eee e e e e et e et e e e e et e et e s e et e en e saeeanaenneannaens 105
9.7 CLASS VARIABLES (FIELDS) AND METHODSuuiieiiiiiiitiia e e e e e eeetiia e e e e e e e eeataaa e e e e e aeeeesnaaaaeeas 107
9.8 OBJECT TYPE CHECKING AND THE ANYOBJ TYPE. ..ottt 108
9.9 ALLOCATING AND DEALLOCATING OBJIECTS ... uuituiitiiieiteeteeite et e ee e et e et eseeteeaeeneesnaenaeenaeens 109
.10 OBIINIT & OBJITERMINATE ...ttt et et e e et et e et e et e et et e et e et e e e e s ea et eeteenesnaesnaenneennaens 110
.11 OBICLONE . euiteit et et e et e e et e et et e e e et et et e et e ea et et et etaeeteeneeteetaaenaaraaaans 110
.12 PROTIO OBIECT S ittt iiii e i e e e e et e e e e et e et et e e et e e et e et e et e s et e eaneeneeanaenaesnaens 111
10. METHODS AND FIELDS OF OBUJECTSi ittt e s 115
10.1 INVOKING AN OBJECT'S ASK AND TELL METHODS ... 115
10.2 BUILT-INREFERENCE CONSTANT SELF ... e 118
10.3 REFERENCING AN OBJIECT'S FIELDS ... ituiiiiiiiii et e e e e e et e e et e e aaeaaa e 118
10.3.1 MONITORING OF FIELDS OR VARIABLEScuituiiiei et eete e e et e e et e et e eeeane et e eaeteeaeennnes 120

10.4.1 Example of Static MONITOIINGccuuuruieeaee et eeeeera s 121

10.4.2 Defining Monitoring ODJECESceeuiiiiiie e 121

MODSIM Reference Manual

O S V01 - PSPPI 121

F0.4.4 SEMANTICS ..ivtiiiiii et ee e ee e e et e et e et e et ee et e e st e e st e e st e e st e st essaessneeetneeernaeen 122
10.5 IMPLEMENTATION FEATURES FOR MONITOR METHODScuuiitiiiiiiceieeieeiee e e et e et e e e eanas 122

ORI A S V01 - PSSR 122

F0.5.2 SEBMANTICS ..ivtiiiiiie ettt e e et e et e e e et e et e e et e e et e e et e e san e et e et e erteaaaaaeen 122
10.6 ATTACHING A MONITOR OBJECT TO A VARIABLE OR FIELD.....cuiiuiiiiiieciceeeeeeeeee e 123

10.6.1 Syntax for SIMPIE FIelUSuueue e eeeeeeaaas 123

10.6.2 Syntax fOr MONITOE TYPES...ccuutuuii ettt ettt e et e ee e e e e e e eeebba e e e e e aaeeseennns 123

F0.6.3 SEBMANTICS ..ivtiiiiii et ee e ee et et e et e et e et e e et e e st e e st e e et e e et e e st e st eeaneeetneaerneaeen 123

10.6.4 DYNAMIC MONITOIS ...ttt ettt e e e ettt e e e e e e e ettt s e e e e e e eeeebana e e e eaeaeeeennnns 124
T2, INHERITANCE ... et e et e et e et e e e e et e et e e b eeaans 125
11.1 HIERARCHICAL OBJIECT TYPES ..iuituiiiiiieii e ee e e e e e et e e e et e e e et e et e e e et e et eenaesnaennns 125
11.2 COERCION OF OBJIECT S iuuituiitiiieiteit et e et et e e et e et e e et e et et saaeeaesaaete et eanaesnaesnaenaesnaennns 127
11.3 OBJIECT INHERITANCE ...tuitiiitiei et et e e et et e et e et e et e e e e et e ea e sa e e e et e aa et e et eanesneesnaenaesnaennns 128
11.4 OVERRIDING IMETHODSuituiitiiieit e et e et et e e et e e e e et e et e s e s e et e s e et e et eeneesnaesneenaesnaennns 129
11.5 EXTENDING INHERITED BEHAVIORSuiiiiiiii et e e et e e e e e e e et e et e e e et e et e e e seeanns 130

11.5.1 Overriding the ODbjINit MEthodcoooiiiiii e 131
12.6 MULTIPLE INHERITANCE «....ctuiittt et e et et e et e et e et e et e et e s e et e et e sa e s e ea e sae et e et eeneesneesnaenesnannnns 132

11.6.1 Declaring Multiple BaSE TYPES. ... cciiiiiiiiiiaie ettt e e e e e e e e e e eeeeenans 132
11.7 RESOLVING CONFLICTING FIELD NAMES ... cuuiiiiiiiiie et e e e et e e e e e e e eaaas 132
11.8 RESOLVING CONFLICTING METHOD NAMES. .. .uuitiiiiiiiieiee e e et et e e e e e e et e et e ee e e ennas 133

11.8.1 Combining Multiple Inherited Methods ..., 135

11.8.2 Overriding the Objlnit Method in Multiple Inheritanceccoooooiiiiiiiee, 135
11.9 CONFLICTING FIELD AND METHOD NAMES ... ottt et e e e et e et e e e e eaaas 136
12. DATA HIDING AND DATA SHARINGottt e aans 137
12.1 PRIVATE FIELDS AND METHODSucuiiiiiiieie ettt e e e e e e e e e et e et e e et e et e e eanaennas 137
SECTION HI. SIMULATION L.ttt e e e e e e e e et e et e e et e e et e eateeennnss 139
13. PROCESS-BASED DISCRETE-EVENT SIMULATIONciiviiiiiiceieeee e 141
13,1 SIMULATION TIME .. ctniiiieii e ettt e et e e e et e e e e et e et e s e et e et e ea et e et e enesneesaasnaesnaennns 141
13.2 THE SYSTEM'S PENDING LIST - OBJECTS' ACTIVITY LISTS..uuiiiiiiiiii et eeanas 142
13.3 PROCESS-ORIENTED VS EVENT-ORIENTED SIMULATIONctuiiiiiiiiieeieeieeieeteeeeeteeneeeneesneennns 142
13.4 TIME ELAPSING METHODS - THE WAIT STATEMENTuiiiiiiiii e e e et e et e e e eanas 144
13,41 THE WAIT STATEMENT Lttt e ee e et et et et et e e et e et e e e s e ea e s e et e et eanaesnaesnaenaesnaennns 144
13.5 THE ASYNCHRONOUS TELL AND WAITFOR CALLSiiuiiiiiieeee e aeeaaas 145
13.6 SYNCHRONIZING ACTIVITIES «.euuitueiteiteee et et e e et e et et e et e et e sae et e et e eae st e et eanessnaeaneenaesnaennns 148

13.6.1 The Terminate StatemMENT.........ciiiiiii e e e e e eaeeees 149
13.7 ARBITRARY SYNCHRONIZATION WITH TRIGGER OBUJS......uiiiiiiiiiiiieiiceieeieeieeeee et e e e e eanas 150
13.8 MULTIPLE PROCESS ACTIVITIES .uituiitiiteei et eee e et e et e et e e e e et e et e e e s e et e s e et aeseenaesnaennns 151
13.9 ACTIVITY TIE-BREAKINGctuiitiiieeteit et e et e et e e e et eete e e et e et e e e e e et e s et e et eanassneesnaenesnannnns 151
13.10 INTERRUPTING ACTIVITIES .. iutitueiteit e eet et e e et e et e et e et e et e s eeaae et e ea et e et eaneesneennaenaesnaennns 153

13.10.1 Interrupting Methods and ACTIDuuuiiiiiaieeeei e eeeeeaans 154
14. GROUPING OBUIECTS ..ottt ettt ettt e e et et e et e et e e e e s e e s e eaans 157
14.1 USING GROUP OBJIECTS .uuituiitiiieiteit et eet et e et e et e e et e et e saee s e et aetaeetaetaanaesneesnaenaesnaennns 157
14.2 THE QUEUE GROUP ...uuiiiiiiiiettie et e et e e tseets e st e et e et e e st e e et e et e et e et e e s e eaaeesan e et neesnns 158
14.3 THE STACK GROUP ...cutiiiiit e ee et et e et e e e e et e e et e et e et e ea e et e et e e et e et eenaesnaesnaenaesnaennns 159
14.4 THE RANKED GROUP......uitiiiiiiii it e et e e e e e e e e et e et e e et e et e e et e et e e esneeanaenernaennns 159
14.5 STATISTICAL GROUPS ... cuitiiii it e e e e e e et et e e e et e et e st e e e et e s et e et eeneesneesnaenaesaennns 160

14.6 ITERATING THROUGH A GROUP ... ettt e e e ettt et s e st st st st ea et e s s ans s saneasaeans 161

Contents

15. STATISTICAL DISTRIBUTIONS: RANDOMOBUIouiiiee e 163
16. RESOURCE OBJIE CT S ..o et e e e et e e et s e et e et s et s e e s e aanes 167
16.1 ACQUIRING RESOURGCES.....uiuiitiiiitiiiiie ettt et e e e e et e et et et et et e b e s e eaesaeaas s snssnaanannes 167

16.1.1 Difference Between Requesting Methods. ... 168
16.2 CHANGING THE SET OF RESOURCESuititiitiitiitiiiie et e e et e es et st et et ea et e ss s stssaaaeans 169
16.3 STATISTICS OF RESOURGCES ... cuiiuiiuitiiiiiiet ettt et e et e e ettt et et e it et et eaeeaeanesasssaaaaans 170
SECTION IV. INPUT/OUTPUT .ottt et e e e e e e e e e s e et e e e aaeeens 171
O 1NN L 2 O O 10 N = O N N 173
17.1 INPUT & OUTPUT STATEMENTS uituititiitiitiitiiteitetetetsea et eaeenssstaessaesasteenssnstssaesiesaenes 173
17.2 STREAM /O USING STREAMOIBI ...ueuiiiiiteeeet e e et e e e e et e et s aae e s s et s st st eeassaessneeanseanes 175
17.3 ASK METHODS OF STREAMOIBI ... uuiiuiiitiiiitiit et ie et e e ettt e eae e et st s s et et easensanssnssnssaaeans 175
17.4 PROCEDURES OF IOMOD ..uuiuiitiiiiiiiii ettt et e e e e e e et et et e e et e e b e ea s aas s s s s aneaneanns 176
18. GRAPHICS AND ANIMATION ittt e e e et et st e et e e e s e eaneeanes 179
YN od = T B (O S 181
AP PENDIX A, GLOS S A RY et e e e e et e e e e e e aaaa e 183
APPENDIX B. RESERVED WORDS ...ttt e e e e e e e e e et s eaaa e 187
APPENDIX C. BUILT-IN PROCEDURES ... oot 205
APPENDIX D. STANDARD LIBRARY MODULES ...t e e 213
D.1 MODULE NAME: DEBUG ...tuittitiitiiiiieie e ettt e e e e et e et e e st et e b e b e s e eaesaesaetnssnsanaaeaaes 214
D.2 MODULE NAME: GRPIMOD ...uiitiitiiiiiiii ettt et e e e e et e e et e e et e e et e b e aeeaeeassnssnssnssneanannes 216
D.3 MODULE NAME: IOMOD ...tiititiiiiii ettt e e e e et et et e e et et e b e b e s e ea e eaesnssnssnsanaaeaaes 218
D.4 MODULE NAME: LISTIMIOD ...ttititiiiiiiiii ettt e et e et e et et et e b et e ea e ea s s st s sasanaanaaas 220
D.5 MODULE NAME: MATHIMOD ...ttt e et e et e e et e b e b e b e ea e en s e e s s s s anaanaaans 221
D.6 MODULE NAME: OSMOD ... iuiitiitiiiiiiii et e e e et et ea et et et e b et eaeeasanesnssnsanaaneanes 224
D.7 MODULE NAME: RANDMOD ...cuiitiitiiiiii i e e et et e s et e b e s b e b e ea e ea e s s s s sasanaanaaaas 234
D.8 MODULE NAME: RESIMOD ...uiiuiitiiiiiiii et e et e et e e e e e et e et e e a e ea e e et s s s anaaneaes 235
D.9 MODULE NAME: SIMMOD ...ttt ettt et e e e et e et e ea e e s s s sanaanenas 236
D.10 MODULE NAME: STATIMOD ..ttt e et et et et et e e a e et e e s e s s s s s anaanaanns 240
D.11 MODULE NAME: UTILIMOD ...iuiiiiitiiiii ettt ettt e e et et e e s e st s s s anaanaaaas 242
D.12 MODULE NAME: VERSIONittititiitittiteteteteetstnsaststsseaeeseeseastaesnstesaeseenessesnsrnsssssesaesnes 245
YN o o S N ID] D R O] SN] L O I T 247
1NN N 339

Vi

MODSIM Reference Manual

Figures

Figure 2-1. Syntax of an IdeNtifier...........coooi e 12
Figure 2-2. Syntax of a Program BIOCKuuuiiiii e 13
FIQUIE 2-3. DEIMILEIS ...ttt e e e et ettt e e e e e e e et ataa e e e e e e eeabann e eeas 16
Figure 3-1. SIMPle DAt@ TYPES ... eeeeiiiiiie ettt e ettt e e e et e et e e e e e e et taaa e e e e e e aeeesnnnanaas 19
Figure 3-2. Syntax of an INTEGER Literalccooo i 26
Figure 3-3. SyntaxX Of REAL LItEIalS........coooiiiiiiiieii et e e s 27
Figure 3-4. Character LIEIalScouuuuui et a e e e e e e as 28
Figure 3-5. Syntax of String LItEIalS.........ccoiiiiiiiiiii e e 29
Figure 3-6. ArithmetiC OPEratorsSccooeeiieieeeeeeee e 31
Figure 3-7. Relational OPerators......coooeieiieeeeeeeeee e 31
[To [Tt T Mo To o= @ 0T=T = o] £ 32
Figure 4-1. Syntax of a Constant DeCIarationcoooiiiiiiiiiiiiieiece e 36
Figure 4-2. Syntax of a TYPe DECIaration.ccoeeeeiiieieieieeeeeeee e 37
[To [SRR e T @ o T=T = (o = (=Tot=To (=] o o] 40
[To [SRR B g o A O T {011 1 o o 41
Figure 5-1. Memory Before ASSIGNMENTS.....cccoiiiiieieieeeeee e 49
Figure 5-2. Memory After ASSIGNMENTSccoiieiiiiieeeeeeeeeee e 49
Figure 5-3. Memory Before CLONE & ASSIGNMENTccoiiiiiiiieeieeececceceeee e 50
Figure 5-4. Memory After CLONE & ASSIGNMENT......ccoiiiiieeiieeeeeieeeeeeee s 51
Figure 5-5. Linked List Of RECORDScooiiiiiiiiiieeeeeeeeeee e 54
Figure 5-6. Syntax of an Array Type Declarationcooooiiiiiiiiiiiiieee e 57
LT L ST A AN o A 4 - 58
[To USRS T AN = - Vo To =T Y = 2 61
Figure 5-9. FIXED ARRAY Type DeCIaration.........ccoouieiiiiieeiiececcee e 65
Figure 6-1. Type Conversion Procedures / FUNCHONSccooooiiiiiiiiieiccccieece e 72
Figure 6-2. Examples Of TYPE CONVEISIONSccoeeeiieeieeeeeeeeeeeee e 72
Figure 6-3. Syntax of the IF...END IF Statement.cccooiiiiiiiiiiecececeeeee e 74
Figure 6-4: Syntax of the CASE .. END CASE Statement........ccooveiiiiiiiiieiiiiiice e 76
Figure 6-5. Syntax of the WHILE .. END WHILE Statement...........coooovieiiiiiiiieiiiee e 77
Figure 6-6. Syntax of the REPEAT...UNTIL Statement.cccooeiiiiiiiiiiiieiieie e 78
Figure 6-7. Syntax of the FOR ... END FOR Statement..........ccoooiiiiiiiiiiiiiiiiee e 79
Figure 6-8. The FOREACH StatemMeNtcoooiiiiiieieeceeeeeeeee s 80
Figure 7-1. Syntax of a Procedure DecClarationcoooiiiiiiiiiiiieieie e 86
Figure 7-2. A RIGhE Trangle ...cooieeeeeeeeeeeee s 87
Figure 7-3. Syntax of the Procedure BIOCKcoooiiiiiiiiiiiee e 87
Figure 7-4. EMpty Parameter LiStSccooooiioiieiieieceeieeeeeee s 88
Figure 8-1. Syntax of an IMPORT Stat@mentccoooeiiiiiiieieiieeeeeeee e 91
Figure 8-2. Syntax of @ MAIN MOGUIE.......cooiiiiiiieieieeeeee e 92
Figure 8-3. Syntax of a DEFINITION MOAUIE........cccooiiiiiiieieieecceeee e 93
Figure 8-4. Syntax of an IMPLEMENTATION MoOAUIEccoooiiiiiiiiieiccceccccee e 94
Figure 8-5. File Naming Conventions for MOUIESccooiiiiiiiiiiiecceee e 95
Figure 8-6. MODSIM TYPES VS C/CH+ TYPES oiiiiiiieieieeeeeeeeeee e 96
Figure 9-1. Syntax of an Object Type Declaration..........ccoooeeioiiiiiiiieiiie e 103
Figure 9-2. Syntax of an Object DECIarationccooeiiiiiiiiiiiieecee e 104
Figure 9-3. Syntax for Substituting a Replaceable TYPe......ccoooiiiiiiiiiiiiieeei 111
Figure 9-4. Syntax for INNEIIE SPEC.....coii i 112
Figure 10-1. Method INVOCALIONcooiiieieeeeeeece e 115
Figure 10-2. Syntax of the ASK StatemeEntccooiiiiiiiiiiiceeieeeee e 116
Figure 10-3. Syntax of the TELL Statement........ccooooiiiiiiiiieiieceece e 117
Figure 10-4. Syntax for a Monitor Object Inherited from a Monitor Object..............cceeeeieiiieennn. 121
Figure 10-5. Syntax for Declaring a MONItOr TYPE ...oooeiiieiiieeeeeeeeeeee e 122

MODSIM Reference Manual

Figure 10-6.
Figure 10-7.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 14-1.

Syntax for SIMple FIelds ... 123
Syntax for MONITOr TYPESt e e e e eee e as 123
Object Type HIIarChy ... 126
Multiple-path INNEITANCE.coiiieiei e 132
COMMON ANCESTONvvtiiie ettt e e e e e s 134
I AT =T 010 [T To T] PPNt 142
Syntax of the WAIT Statement..........coovviiiiiiiiiii 145
Syntax of the TELL Call.......coovvvviiiiiiiiii 146
BUII-IN GrOUPS ..o 157

Preface

What Is MODSIM I11?

MODSIM Il is a general-purpose, modular, block-structured high-level programming
language which provides direct support for object-oriented programming and discrete-
event simulation. It can be used to build large process-based simulation models through
modular and object-oriented devel opment techniques.

MODSIM 11 is supported on a variety of machine architectures and operating systems.
MODSIM |11 programs are highly portable from one machine to another.

MODSIM Ill Documentation
These documents pertain to MODSIM I11:

« MODSIM Il Reference Manual - (This document) The language reference.
Contains information about the syntax and structure of MODSIM 111 as a pro-
gramming language. Also covers object-oriented programming, simulation,
and 1/0.

e MODSIM 11l User's Manual - Contains information about: release-specific
features; use of the compilation manager; use of the MODSIM development
environment, and MODSIM compiler options; and debugging MODSIM.

e MODSIM I11 Tutorial - Provides a broad overview of the language features
of MODSIM and then concentrates on the object-oriented programming and
simulation capabilitiesin MODSIM.

* SIMGRAPHICS |1 User’'s Manual for MODSIM I11 - Contains information
about SIMGRAPHICS 11, the companion to MODSIM 111 that provides easy
access to presentation graphics and animation.

This manual is organized to give you a quick overview of each of MODSIM IlI's fea-
tures, followed by a comprehensive discussion of each.

The first chapter of this Reference Manual contains several self-explanatory MODSIM
Il programs which illustrate the basic structure of the language and its use in simulation.
The remainder of the manual is organized into four sections:

l. MODSIM 11l - Syntax & Structure: Lexical structure, procedures, func-
tions and flow of control. MODSIM IlI's automated compilation manager
and other project management support facilities.

MODSIM Reference Manual

. Object-Oriented Programming: Objects, their fields and methods. Encap-
sulation and polymorphism. Inheritance and multiple inheritance.

[11. Simulation: Object-oriented, process-based, discrete-event simulation. A
review of MODSIM IlI's facilities for simulation.

IV. Input / Output: MODSIM IlI's stream oriented, random access and indexed
1/O facilities. Formatted I/O. Object oriented 1/0O features.

Appendices
A. Glossary
B. Reserved Words
C. Built-in Procedures
D. Standard Library Modules
E. Standard Library Objects

I ndex

Free Trial & Training

MODSIM Il is available exclusively from CACI Products Company. MODSIM Il1 can
be sent to your organization for a free trial. We provide everything needed for a com-
plete evaluation on your computer: software, documentation, sample models, and imme-
diate support when you need it.

Training courses in MODSIM |11 are scheduled on a recurring basis at the following lo-
cations:

LaJolla, California
Washington, D.C.
London, United Kingdom

For information on free trials or training, please contact any of our offices.

1.

Introduction

MODSIM 11 is a modular, object-oriented, strongly typed, block-structured simulation
language. This description touches on the severa ways in which MODSIM |11 differs
from traditional languages.

Modular: MODSIM Il programs may be (but are not required to be) divided
into “modules’. Each module is stored in a separate file. The advantages of this
approach are that these modules may be compiled separately, saving time when
only one of them is edited, and that a single module may serve multiple pro-
grams. This is because modules can import constructs and definitions from each
other. Readers familiar with Modula-2 and Ada will recognize this approach.
The modular concept formalizes the notion of libraries of reusable code.

MODSIM 11, itself, makes use of this feature. Many commonly-used features of
the language, such as Input/Output and simulation, are described in “library mod-
ules’ and are imported for use by a program.

MODSIM Il modules may be compiled separately. This means that if you alter
one module in a program, only that module needs to be recompiled. This is a
powerful time-saving feature which greatly speeds program development and
evolution. Separate compilation is distinct from independent compilation in that
dependencies between modules are checked. As a result, any module which re-
quires re-compilation as a result of edits to another module can be identified and
also scheduled for compilation. The C/C++ language allows independent compi-
lation of files, but offers no assistance in analyzing the effects of an editing
change to one module. Even in Modula-2, it is the user's responsibility to assess
the consegquences of a change to one module.

Object-oriented. An "object” is an encapsulation of a data record which de-
scribes the state of the object and procedures called methods which describe its
behaviors. Objects are more concrete than most programming constructs. They
interact through a clearly defined protocol and the fields of an object instance are
private. A new object type can inherit the attributes of an existing object type and
elaborate on the fields and methods of its ancestor type. Finaly, objects are ca
pable of polymorphism. A group of objects which share common ancestry can
also share a method, yet each implements it differently. Thus, if we take a col-
lection of objects which share Vehicle Object as their ancestor and ask each to re-
fuel, the Car Object might take on unleaded gas, the Truck Object diesel fuel and
the Mule Object would eat hay.

Strongly typed: Every expression, assignment statement and parameter is type
checked at compile time for consistency. This eliminates errors which can go un-

MODSIM Reference Manual

discovered until runtime in untyped languages. The concept of types also allows
users to define their own types and to then declare variables of those types.

» Block-structured: Pascal, Modula-2 and Ada are examples of block-structured
languages. A block is made up of declarations and executable statements. It may
contain smaller blocks. The important feature of block-structured languages is
that the scope or visibility of variablesis restricted to the block in which they are
declared and any subsidiary blocks. This control of scope of variables is funda-
mental to contemporary software engineering practices.

e Simulation: Simulation capabilities are provided both in library modules and di-
rectly through the language. These modules provide direct support for all capa-
bilities needed to program discrete-event simulation models. All MODSIM 111
objects have the capability of using Process methods. A "Process’ method is a
method which can elapse ssimulation time. This is the meaning used throughout
the manual. A process might WAIT in simulation time and interact at specific
simulation times with other processes.

Each of these issuesis discussed in greater depth in this Reference Manual. The topics of
object-oriented programming and simulation are additionally covered in detail in the
MODSM I11 Tutorial.

1.1 Overview of MODSIM llI

MODSIM is the result of evolutionary language development. It combines the best fea
tures which have emerged from contemporary programming language design and soft-
ware engineering research and development. It serves as a complete development envi-
ronment for large software projects.

Before proceeding into a detailed description of MODSIM's syntax and structure, it will
be useful to provide a short sample of MODSIM code. The general structure and syntax
should look familiar to anyone who has had contact with Algol, Pascal, Modula-2 or
Ada. Indeed, anyone who has used a contemporary procedural language should have no
problem understanding what this program does and how it works.

MAI N MODULE Sanpl el;

VAR
sum nunber : REAL;
count . | NTEGER;
BEG N

OUTPUT(" Thi s program conputes the average of a sequence
of ")
QUTPUT("positive nunbers. Enter a sequence of nunbers...");
QUTPUT(" Term nate the sequence with a negative nunber:");
I NPUT(nunber) ;

Chapter 1: Introduction

VWHI LE nunber >= 0.0
INC(count); { increnment the count }
sum : = sum + nunber;
I NPUT(nunber) ;

END WHI LE;

IF count > O
QUTPUT(count, " nunbers were entered");
OUTPUT(" Average is ", sum/ FLOAT(count));

ELSE
QUTPUT(" Not hi ng was entered.");

END | F;

END MODULE.

We see from this code:

MODSIM programs can consist of just one main module.
» All variables used in aMODSIM program or module must be declared by type.
* Therearel NPUT and OQUTPUT statements to support simple, free-form 1/0O.

» Sequences of statements are delimited by the control and choice statements such
asthel F/END | F instead of aBEQ N/ END (Algol, Pascal) or { /} (C).

* Control statements are symmetric... | F / END | F, WHI LE/ END WHI LE.

* In mathematical expressions, as in Pascal and Ada, al type conversion is speci-
fied explicitly by the programmer.

* MODSIM has basic built-in types such as REAL and | NTEGER.

Not apparent from this example, MODSIM also supports built-in BOOLEAN, CHAR and
STRI NG types. In addition to the built-in scalar and STRI NG types, MODSIM supports
the structured types ARRAY and RECORD, OBJECT types, subrange types, enumerated
types and user defined types.

MODSIM 11, like Pascal and Ada, is a strongly typed language. This means that ex-
pressions, assignments statements and parameters passed to procedures and methods are
checked for type consistency. Inconsistent usage of variables is discovered and flagged
at compile time. This leads to more reliable code and speedier development since errors
are caught sooner. For example, if aprocedure is expecting an | NTEGER as an incoming
argument and it is passed a STRI NG, the compiler will flag this as an error. If this were
not caught at compile time, then, when the program was run, the STRI NG would be in-
terpreted as if it were an | NTEGER and the program would behave incorrectly. Errors
such as this are often difficult to track down. Indeed, they may not show up in testing.

MODSIM Reference Manual

MODSIM 11 is a general-purpose, procedural programming language which can be used
to write traditional style computer programs. But there is obviously more to it than that.
Its distinction is as an object-oriented language and as a discrete-event simulation lan-
guage. Finaly, it ismodular and provides support for large-scale software devel opment.

1.2 Object-oriented Features

Objects are dynamically allocated data structures coupled with routines, called methods.
The fields in the object's data structure define its state at any instant in time while its
methods describe the actions which the object can perform. The values of the fields of
an object are modified only by its own methods.

The utility of an object isthat it is analogous to an object in the real world. It has a set of
attributes, its fields, and a set of behaviors, its methods. There is a well-defined interface
to each object type. The objects methods, or behaviors, are invoked by sending a mes-
sage to the object. We can define new object types based on existing object types. Fi-
nally, we can give disparate objects a behavior, or method, with the same name. Each
object, when asked to perform the behavior which goes with that name, can perform a
unique behavior. This powerful concept, which is known as polymorphism, allows
“generic’ calls.

1.3 Discrete-event Simulation Features

All modern simulation languages support some construct for keeping track of simulation
time and scheduling events relative to that ssimulation time. Simulation time is the clock
which a simulation language uses to keep track of events and the ordering of these
events.

In MODSIM lI1, simulation is supported by a library module which contains a number of
objects and support procedures. All objects are alowed to perform actions which elapse
simulation time. A method of one object might include a statement to WAIT until some
future time before proceeding to the next statement, or it might send a message to an-
other object so that the message arrives at that object at a specific smulation time.

The simulation paradigm supported by MODSIM s that of the process. The process is
capable of carrying on multiple, concurrent activities each of which can elapse ssmula-
tion time. The activities can operate autonomously or they can synchronize their opera-
tion. Any or all activities of a process can be interrupted, if necessary.

The process approach elaborates on the traditional technique of discrete-event smulation
in avery important way. It alows a related group of activities to be coded in one rou-
tine. When it is necessary to elapse simulation time, the routine suspends execution until
the stated amount of simulation time has elapsed and then the routine resumes execution.
The traditional approach requires a separate routine for each event which can occur. This
process-based view of ssmulation is similar to that supported by SIMSCRIPT 11.5.

Chapter 1: Introduction

1.4 Modules

MODSIM |1l programs can be divided into library modules, each of which supports
some particular functionality. Any module can import data constructs or procedures
from other modules. A library module can be shared by many programs. New, more
elaborate objects can be built from objects imported from library modules.

Any module can be compiled separately. This means that it iS not necessary to re-
compile a whole program after changes have been made to a module. Only affected
modules need be re-compiled. This capability is known as separate compilation.

1.5 The MODSIM Development Environment

The MODSIM 111 development environment consists of a suite of tools which include a
compilation manager, interactive debugger, graphics drawing package (SSMDRAW) and
a comprehensive help system.

The MODSIM debugger is a fully functional interactive source level debugger which in-
cludes the ability to set break points, step through MODSIM code and browse MODSIM
data structures. In addition, the debugger is aware of the simulation features of the
MODSIM language.

SIMDRAW is an interactive graphics package which is used to create graphics files for
use with SIMGRAPHICS II. SIMDRAW can be used to design the Graphical User In-
terface (GUI) to your MODSIM program, including specification of menus, dialog
boxes, palettes, charts, graphs and images.

MODSIM I11 source and object code management is supported by a compilation man-
ager. The compilation manager provides a variety of services to assist in the manage-
ment of large and small projects. At the simplest level it manages the automatic compi-
lation of programs. Given the name of a MAIN program module, the compilation man-
ager will assess the status of each module which comprises the program. It will then
compile each module which requires compilation because it has been edited or because it
is dependent on another module which must be re-compiled. 1t links the resultant object
modules and produces an executable.

The MODSIM development environment is fully documented in the MODSM I11 User's
Manual.

MODSIM Reference Manual

Section I. MODSIM Ill - Syntax and Structure

MODSIM Reference Manual

2. Structure of MODSIM Ill Programs

In this chapter we will describe the general layout of a MODSIM |11 program. For sim-
plicity, we will treat a MODSIM program as a single module contained in one file. Most
large programs will consist of a number of library modules in separate files. However
the discussion of library modulesin MODSIM will be deferred until Chapter 7 to allow
more elementary language concepts to be covered first.

By program structure we mean the layout of the component parts of a program such as
type and variable declarations, procedure declarations and actual program code. Also
implied in this topic is the concept of scope, locality and visibility of variables and the
related concept of blocks.

Lexical components such as identifiers, literal constants and operators are the most basic
parts of a program. The term which describes all of these componentsis token. A pro-
gram consists of a sequence of tokens. As the compiler examines the tokens it finds that
some are reserved words such as | F and ELSE, others are operators such as * and +,
some are literal constants such as 5 or 67. 32, some are delimiters such as BEG N and
END and, finally, some are separators such as the comma, space or semicolon.

Tokens are used to build statements. Statements are used to construct larger lexical com-
ponents such as declaration blocks or procedure bodies. These larger lexical components
are then used to build modules. Finally, aprogram is built from one or more modules.

In discussing program structure we will necessarily use terms which may not be com-
pletely familiar to readers who have no previous exposure to languages of this type such
as Algol, Pascal, or Ada. If you fall into this category, it might be worth skipping ahead
to Chapter 3 at this point to scan the information about types, variables, constants and
literals.

Finally, MODSIM is a strongly typed language. This means that all variables which are
used in a program must be declared by type and that variables passed into procedures are
checked for type consistency. This reduces errors in user code and ensures that they are
caught at compile time instead of showing up later as run-time errors which can be very
hard to find.

2.1 Program Layout

Although large MODSIM programs are usually organized into a number of separate
modules, the smplest MODSIM program can be completely self-contained in one MAI N
MODULE.

Constant, type, variable and procedure declarations come at the beginning of the MAI N
MODULE followed by the actual program code. The following sample of MODSIM code
illustrates how a program is structured. MODSIM is a case sensitive language. Note

MODSIM Reference Manual

also that reserved words and built-in procedures in the language are all capitalized so
they stand out from the user's identifiers.

MAI N MODULE Sanpl e2;

{ Thisis acoment } (* Sois this *)

{ Comments can be nested and can conti nue on
as many lines as needed. { This is a nested
comment. } }

{ decl aration sections start here }
CONST { constant declarations }
Number OF Trucks = 45;

TYPE { wuser-defined type declarations }
Day Of Week Type (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
Wor kDay Type [MOn .. Fri];

VAR { wvariable declarations }
sum nunber : REAL;
count . | NTEGER;
Wor kDay : Wor kDayType;

PROCEDURE foo(IN x : REAL); { procedure declaration }
BEG N

{.. procedure code here }
END PROCEDURE; { foo }

BEG N { program "sanpl e2" execution starts here
i.e the "main" routine }

f00(47.83)

END MODULE. { program "sanpl e2" ends here }

There are sections for constant, type, variable and procedure declarations. These are all
optional and appear only if the program requires them. In fact a ssmple program could
have no declarations.

MAI N MODULE hel | o;
BEG N

QUTPUT("Hel l o, world!");
END MODULE.

Every module has a name. A MODSIM program takes its name from the MAI N
MODULE. This one is called hello. The executable produced by the compiler will be
called hello. Module names are case sensitive as are the names of executables.

There can be any number of constant, type, variable and procedure declaration sections.

The declaration sections can appear in any order. The only restriction to the ordering,
and it is an important one, is that declarations build one upon the other. In other words,

10

Chapter 2: Program
Structure

if auser-defined type is used to declare a variable, the type's declaration must precede its
use in avariable declaration.

In general, MODSIM, like other languages of this type expects each thing it sees to have
been previously defined. There are severa areas in which this requirement has been re-
laxed as a convenience to the programmer, but the principle is important. 1f the compiler
can not recognize something it sees, it draws attention to the potential error. This helps
ensure that code is correct and error free by identifying errors at compile time.

Once dl of the declarations have been made, a BEG N statement marks the end of the
declarations and the beginning of the program's executable code. In actual practice it is
desirable to have all declarations grouped together to enhance program readability. Usu-
ally the declaration sections are organized in the following order:

CONST
TYPE

VAR
PROCEDURE

The reason for this ordering becomes obvious quickly. We use the constant definitions
in declaring types, and then use the type definitions in declaring variables and finally use
all of these pieces in coding the procedures. However, the language does not require this
ordering provided everything is declared before it is referenced.

2.2 ldentifiers, Reserved Words and Standard Procedures

Every statement in the language is comprised of a number of tokens. These include
identifiers, literals, operators, delimiters and separators. ldentifiers are names the pro-
grammer supplies to refer to such user-defined constructs as variables, types, constants,
procedures, and modules.

Discussion of literals, operators, delimiters and separators will be deferred, but because
they are so basic, identifiers are introduced here.

An identifier must begin with an alphabetic character optionally followed by any number

of alphabetic or numeric characters. MODSIM is a case-sensitive language, so upper and
lower case letters are distinct.

11

MODSIM Reference Manual

letter

v

tanl

digit

Figure 2-1. Syntax of an Identifier

Following are examples of identifiers:
nunber & Trucks, A32, a32, x, count , Count

Note: The identifiers count and Count are different because MODSIM is case sensi-
tive.

Here are afew illegal identifiers:
A 32, 3beanSal ad, $JCL, | nprovenent % zot . com
|dentifiers are used to name the following elements of MODSIM programs:

Modules, Procedures, Constants, Types, Variables, Enumerations, Records,
Record Fields, Objects, Object Fields, Object Methods

The definitions of these language elements will be covered later in this manual but the
common thread is that identifiers are used to name each of these constructs.

Thereisasimple rule about the use of identifiers:
| dentifiers must be unique within a scope.

If the programmer has used an identifier called nunber O Tr ucks to name a procedure,
the same identifier cannot be used in the same scope for another purpose, for instance, to
name a variable. However, when the concept of scope is discussed shortly, we will see
how identifiers can be reused for a different purpose within a particular scope.

Reserved words are identifiers such as BEG N, | F, THEN, etc. which the MODSIM lan-
guage itself has already used to define its syntax. These reserved words, which are listed
in Appendix B, cannot be used as identifiers, as variables, or as any other user defined
name by the programmer for obvious reasons. Although the compiler might be able to
keep reserved words distinct from user's identifiers because of their context, it would lead
to code which is difficult to read and maintain.

MODSIM also has defined a number of standard procedures such as MAXOF, DI SPCSE,
OUTPUT, etc. whose identifiers also can not be used by the programmer. These are listed
in Appendix C. The identifiers used for the reserved words and standard procedures in

12

Chapter 2: Program
Structure

MODSIM are al in upper-case letters. By convention, MODSIM programmers should
avoid composing identifiersin all upper-case. This helps the reader of the code to distin-
guish user-defined items from reserved words.

Finally, there is no limit on the length of an identifier in MODSIM, but the computers on
which MODSIM runs may have linkers which truncate long names. See the discussion at
the end of Chapter 8 for more information on this subject.

2.3 Block Structure and Scope of Variables

The block is the main structural unit of a MODSIM Il program. A block is made up of
constant, type, variable, and procedure declarations followed by executable code.

A 4

=:]BEG|N R statement _@_,
sequence

Figure 2-2. Syntax of a Program Block

A simple MODSIM program can consist simply of a block inserted inside a heading for a
MAI N MODULE. We can seethisclearly in Sanpl e2:

MAI N MODULE Sanpl e2;

block
END MODULE.

The block is used in several other ways as well. A PROCEDURE, which is equivalent to a
routine, sub-routine, sub-program or function in other languages, consists of a procedure
heading and a block. Later, when the concept of modules is covered in more detail, we
will see that modules are also built from blocks.

There are three important characteristics about blocks:

» Theidentifiers which name constants, types, variables and procedures in a block
are known or “visible” only within that block. We say that their scope is limited
to that block.

* Memory for variables declared in a block is allocated automatically upon entry to
a block and deallocated automatically when leaving a block. Since the block
which defines a module is never entered or left, the variables defined in the mod-
ule remain in place throughout the execution of the program.

When the concept of strong typing is combined with the concept of scope several impor-
tant benefits are realized:

13

MODSIM Reference Manual

» Program reliability is enhanced since many more errors in coding can be now
detected by the compiler.

* Memory management is improved since memory is allocated for variables only
when needed.

» Access to types, variables and procedures is more tightly controlled since they
cannot be accessed from outside of their scope.

2.4 Nesting of Blocks

Since in MODSIM 111 one block can be placed within another, we have explicit control
over the scope or visbility of identifiers. As an example, we can examine a program
skeleton. The blocks in this example are numbered, but there is no corresponding ability
or need in the language to give a name to a block.

MAI N MODULE Sanpl e3;
VAR
X, Y. REAL;

PROCEDURE f 00;
— VAR
a, b: REAL;
X | NTEGER;
2 BEG N
X :=b5;
QUTPUT(" Second tine x=", X);

END PROCEDURE:

BEG N { main programcode starts here }

1 X 1= 12.34:
QUTPUT("First tinme x=", X);
f oo;

OUTPUT("Third time x=", x):

END MODULE.

In Sanpl e3 the REAL type variables x and y and procedure f oo are visible throughout
the entire program, in this case block 1. We say that their scope is global. The REAL
type variables a and b are visible only within procedure f oo, i.e. block 2.

14

Chapter 2: Program
Structure

2.5 Redefinition of Identifiers

The code in Sanpl e3 illustrates another important point about the scope of identifiers
and, consequently, the entities to which they provide a name. Note that the identifier for
the REAL type globa variable x, which is defined in block 1, is reused to name an
| NTEGER type within block 2. The original variable called x is visible everywhere in the
program except within block 2 where the new variable called x has been defined. Note
that the local definition of a new variable called x in block 2 does not affect the global
variable called x. Within block 2 the local definition applies. Outside of block 2, the
original definition applies. If we run Sanpl e3, it outputs the following:

First tine x = 12. 34
Second tine x = 5
Third time x = 12.34

The point to note is that the local definition of x in block 2 temporarily overrides the
original definition. Although the global variable called x is not visible within block 2,
the value stored in that global variable is secure and will once again be available when
the program exits from block 2.

It is important to note that the uniqueness and reuse of identifiers is applicable across all
identifiers, regardless of the kind of construct they are identifying. Thus, if a globally
visible procedure called f oo exists, it is possible to use f oo to name an | NTEGER vari-
able within a block. Within that block, the procedure would not be visible since its name
had been usurped to name a variable.

Within a block any attempt to reuse an identifier already defined in that block will be
flagged as an error.

2.6 Delimiters

A delimiter is aprogramming el ement which marks the beginning or end of some part or
component of a program. Following is a complete list of symbols which serve as delim-
iters:

15

MODSIM Reference Manual

Delimiter

Meaning

BEG N
END . ..

()

* A —
N e

marks start of a block

Marks end of a construct

start and end of parameter lists
and list of enumerated constants
array index brackets

subrange brackets

comments

comments

marks end of amodule

string delimiter

character delimiter

2.7 Separators

Figure 2-3. Delimiters

A separator is atoken which separates two other tokens. For instance:

| F SoneSt at us <carriage return>
QUTPUT(" St atus was TRUE. ") ; <carriage return>
OUTPUT() ; <carriage return>

END | F,

In the code above, spaces, tabs, and a carriage return were used to separate the elements
of an IF statement. A space was used to separate the reserved word “1 F” from the identi-
fier “SonmeSt at us”, so that it would not be mistaken for “I FSoneSt at us”. Finaly, a
semicolon at the end of the statement separates it from the following statement.

Any number of the following separators may be inserted between tokens anywhere in a

program to disambiguate the meaning, or to improve readability:

* A space character

* A carriagereturn or new line character

* A tab character

* A comment (discussed below).

Statements must be separated by semicolons. Any number of semicolons may be placed
before or after any statement, and have no effect, but at least one must be placed between
any two statements to separate them.

16

Chapter 2: Program
Structure

2.8 Comments

A comment is an arbitrary sequence of characters which serves to document or comment
on the code, but is ignored by the compiler. Comments are delimited by either the curly
bracket or brace symbols “{* and “}”, or by “(*” and “*)”. MODSIM alows nested
comments. That is, the following:

{{ This is a coomment } within a comment! }
or
{(* This is a comment *) within a coment! }

will al be treated as a comment. Comments may extend over any number of lines.
Comments may be nested to any depth. The symbols used to delimit any one level of
comment must match. In other words, the delimiters used on either end of a comment
cannot be mixed. Nested comments are particularly useful when it is desired to comment
out a section of code which might already contain comments.

17

MODSIM Reference Manual

18

3. Simple Data Types and Their Operators

In this chapter we discussthe simple datatypes. These are characterized by one common
trait. They are used to hold a single unit of data. This data might be a number, a char-
acter, atext string, a Boolean flag or one value chosen from an enumeration of values. In
Chapter 5 we will discuss the more complex structured data types which are used to hold
multiple units or aggregates of data.

MODSIM 11 supports the following built-in simple data types:

I NTEGER, REAL, BOOLEAN, CHAR, STRI NG

There are aso two user-defined simple data types:

enuner ati on, subrange

Using these simple data types, it is possible to declare structured data types, arrays, rec-
ords and objects, which are based on these built-in types.

A subset of the ssimple data types can be referred to as scalar types because they can be
used to scale or measure things. A further subset of the scalar types are known as ordinal
types because they have a particular ordering and a known sequence. The figure below
shows the relationships.

Ordinal Types

e

Scalar Types

Figure 3-1. Simple Data Types

19

MODSIM Reference Manual

To store data in a program, the programmer must declare a storage area called a vari-
able. Thisisdone by supplying an identifier which names the variable and by specifying
the data type. All units of data which can be manipulated in a program are either these
variables or literal constantssuch as“7” or “93. 57”.

This chapter starts by discussing what a data type is and how it is represented in the com-
puter's memory. Later we describe how each data type is represented externally; for in-
stance when it is written or printed out.

For each simple data type the language defines a set of operators which can be used to
manipulate variables and constants of that data type. These operators are discussed in
this chapter. The chapter finishes by giving a brief description of the built-in procedures
which alow more elaborate manipulation of data.

3.1 What is a Data Type?

The term type describes the nature of data and how it will be represented internally in the
computer's random-access memory. Data which is stored and manipulated in digital
computers typically can be placed into one of three categories:

Numbers
Textual information
Flags or Switches which are TRUE or FALSE

MODSIM defines a number of built-in data types which can be used to represent each of
these categories of data. First we will discuss how these data types are influenced by the
way in which a computer internally represents each category of data. Then we will show
how each category of datais expressed in MODSIM.

3.2 Internal Representation of Data

Hardware and memory limitations in earlier computer systems strongly influenced early
language design in the representation of data. The tendency was to provide several alter-
natively sized representations of each category of data so the programmer could mini-
mize the amount of memory used to store numerical data. This concern for minimizing
memory use often led to the use of storage representations which lacked the accuracy to
support precise mathematical computation.

In contemporary digital computers, data are typically represented internally using the bi-
nary number system. Unfortunately, the binary number system cannot exactly represent
real or fractiona numbers from the base 10 number system. When a real number is
trandated into the binary system, only an approximate value can be represented. How-

20

Chapter 3: Simple Data Types

ever, the greater the number of binary digits, or bits, used to represent the number, the
greater the accuracy of representation.

When a smaller number of binary digits is being used in the computer to represent a
number, the approximation error will be greater. Large accumulative errors can creep
into repetitive calculations. These are known as approximation errors or round off
errors.

Earlier languages typically represented real numbersin 32 bits and provided “double pre-
cision” 64 bit representations where accuracy was more important. Similarly there were
a number of different ways to represent whole or integer numbers. MODSIM had the
advantage of being designed at a time when computer hardware was more mature. The
designers decided to specify a larger number of binary digits to represent both real and
integer numbers and to do away with alternative ways of expressing the same data type.
This means that MODSIM provides accurate numerical representation while simplifying
program design since there is only one way to represent each category of data.

3.2.1 Representation of Numerical Data

MODSIM II1 provides two built-in data types which can be used to represent numerical
information:

| NTEGER and REAL

The | NTEGER type is used to represent whole numbers. The REAL type is used to repre-
sent fractional or floating point numbers.

3.2.1.1 Type INTEGER

The | NTEGER type provides an exact representation of each whole number. All imple-
mentations of MODSIM use at least 32 bits to represent each integer. This means that
base 10 numbers in the range -2,147,483,648 to 2,147,483,647 can be exactly repre-
sented. This capability is equivalent to a type often called “long integer” in many lan-
guages.

3.2.1.2 Type REAL

The REAL type is used to represent fractional or floating point numbers. MODSIM uses
at least 64 bits to represent each real number. Although the handling of real numbers can
be hardware specific, this typically means that real numbers in the range -1.7E308 to
+1.7E308 can be represented. Thisis equivalent to a type often called “double precision
floating point” in many languages. The capability afforded by this 64-bit representation
becomes apparent when compared to 32-bit representations which can typically represent
numbers in the range +3.4E38 to -3.4E38. Not only is the range of values which can be
represented larger, but the accuracy with which they can be represented is also greater.

21

MODSIM Reference Manual

There are two built-in functions called MAX and M N which determine the largest and
smallest possible values for each type on a given machine. On typical machines which
implement type | NTEGER in 32 bits, MAX(| NTEGER) would return a value of
2,147,483,647. Likewise MAX(REAL) would yield 1.7E308.

3.2.2 Representation of Textual Data

MODSIM provides two built-in data types which can be used to represent textual infor-
mation:

CHAR and STRI NG

3.2.2.1 Type CHAR

The CHAR type is used to represent a single character. Each character is stored in one
byte, which is 8 bits. This means that the CHAR type can represent 256 possible character
values. The ASCII (American Standard Code for Information Interchange) character set
is used in al implementations of MODSIM. This means that the characters from 0 to
127 are as defined by the ASCII standard. The characters from 128 through 255, how-
ever were not included in the original ASCII standard, so their interpretation and appear-
ance will vary from computer to computer and printer to printer. The ASCII character
set is sometimes referred to as the ANSI (American National Standards Institute) char-
acter set. For some time ANSI has considered a draft standard for the upper 128 charac-
ters, but has not taken any action.

Although the ASCII character set is in very wide use throughout the world, the interna-
tiona standard is the “ISO 646" (International Standards Organization) character set.
Unfortunately it is not possible to easily use this character set with MODSIM. It is a
subset of the ASCII character set and lacks the following characters which are used in the
language:

[] " { }

Although its native character set is ASCIl, MODSIM can be used with katakana or kanji
I/0O devices and with devices which output the Chinese character set. This is because it
supports eight bits in the CHAR type in all situations where the hardware and operating
system allow this type of support.

Pre-defined MODSIM functions associated with the type CHAR include CAP, CHR, DEC,

I NC, ORD, MAX, M N, and VAL. A brief description of these functions follows at the end
of this chapter. A full description of these functionsis provided in Appendix C.

22

Chapter 3: Simple Data Types

3.2.2.2 Type STRING

The STRI NG type is used to represent any sequence of characters. The STRI NG type is
fully dynamic. This means that the programmer does not need to specify the size, in
number of characters, of the text string to be stored in a STRI NG type. This type is a
powerful feature of the language. Most high-level languages do not support dynamic
strings. They typically require the programmer to manipulate arrays of characters to
achieve the effect of stringsin aprogram.

Among languages which do not support dynamic strings are: FORTRAN, Algol, Pascal,
Cand Ada.

Some languages which do support dynamic strings are: MODSIM Ill, BASIC,
SIMSCRIPT 11.5 and PL/I.

There are several important characteristics of strings in MODSIM. The characters which
make up strings are numbered from 1, not 0. In the string “orange”, the '0' is at position
linthestring. The'g isat position 5. The length of the string is 6. An empty string is
known as anull string. It has alength of 0.

The CHAR type is a conformant type to the STRI NGtype. This means that a CHAR can be
used anywhere a STRI NG is expected. A CHAR istreated in these situations as a STRI NG
of length one.

A conformant type is one which is completely type compatible with another. For in-
stance, the CHAR type is conformant to the STRI NG type because any single character is
logically equivalent to a string of length one. The opposite is not true however. The
STRI NG type is not conformant to the CHAR type because a string may, and usually does,
consist of more than one character.

Built-in MODSIM functions associated with the type STRI NG include STRLEN, SUBSTR,
POSI TI ON, | NSERT, REPLACE, UPPER, LONER, | NTTOSTR, STRTO NT, REALTOSTR,
STRTOREAL, STRTOCHAR, CHARTOSTR and SCHAR. A brief description of these func-
tions follows at the end of this chapter. A full description of these functions is provided
in Appendix C.

3.2.3 Representation of TRUE / FALSE or Boolean Data

MODSIM provides a built-in data type which can be used to represent TRUE / FALSE or
Boolean information:

BOOLEAN

23

MODSIM Reference Manual

3.2.3.1 Type BOOLEAN

The BOOLEAN type is used as a switch or flag to represent a TRUE or FALSE state. Al-
though this information can be represented in one bit, the information is actually stored
in one byte on most implementations. A whole byte is used because that is the smallest
unit of data which can be efficiently manipulated in most machines. To pack the data
into bits and manipulate the bits would result in poor performance. Since memory limi-
tations are becoming less of an issue, the trade-off between performance and efficient use
of memory has been resolved in favor of better performance.

3.3 User-defined Types

There are a number of user-defined types. We will cover the two simple types here and
defer discussion of the more complex ones until arrays and records have been covered.

3.3.1 Enumerated Types

The enumerated type is a completely user-defined type. The programmer explicitly lists
al of the possible values for the enumerated type in a specified order. The values are
described using standard identifiers. Up to 256 values can be specified in an enumerated
type. In other words, an enumeration consists of an ordered collection of values ex-
pressed as valid MODSIM identifiers. The TYPE declaration below illustrates the use of
enumerated types:

TYPE
dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
conpassType = (North, South, East, West);

di rectionType (Up, Down);

An enumerated type may contain any unique, valid identifier. Note that identifiers may
not belong to more than one type since they would then be ambiguous. The ordinal value
of any element is available from the built-in function ORD, which will return a value from
0 to n- 1 where n is the number of elements defined for that enumerated type. For in-
stance, ORD(Tue) would evaluate to 2.

Other functions which can operate on enumerated types are MAX, M N, DEC, | NC, and
VAL. These are documented in Appendix C.

Having defined an enumerated type we can then declare a variable of that type. The
variable holds one possible value at atime. |f we had a variable called whi chway of
typedi recti onType, it could hold either the value Up or thevaue Down a any one
time.

Relations between values of enumerated types can be checked in Boolean expressions:

Tue <Wed iSTRUE
Tue > Wed iSFALSE

24

Chapter 3: Simple Data Types

Values from two different enumerated types cannot be compared because that would be
meaningless. For instance the following expression:

Tue > North
would be flagged by the compiler as an error.

Unlike other languages which have enumerated types, MODSIM has provisions for out-
put. For instance:

| F Tday = Thurs
QUTPUT(Tday) ;

Now that we have introduced the enumerated type, it is worth observing that the
BOOLEAN type can be considered to be a built-in enumerated type with the following
definition:

TYPE
BOOLEAN = (FALSE, TRUE);

3.3.2 Ordinal Data Types
The following subset of scalar data types are known as ordinal types.

| NTEGER, CHAR, BOOLEAN, Enuneration, Subrange

These data types are characterized by a common trait. Each takes on only discrete values
and each has a known ordering. In other words, given the integer value seven we know
that the next possible value is eight and the previous value is six. This certainty in or-
dering is not possible with real numbers. Given the real number 98. 632491 we cannot
say what the next or previous value is. Similarly, given the string " Hel | 0" we cannot
say what the next valueis.

Why the formal definition of ordinal types? Because they are used in several contextsin
the language. They are used as indices in arrays, choices in CASE statements and to de-
fine subrange types.

Before leaving the subject of ordinal types it is worth noting that the expected ordering

for type CHAR is that given in the ASCII character set. The order for type BOOLEAN is as
follows: FALSE, TRUE.

3.3.3 Subrange Types
A subrange type is simply a subset of an ordinal datatype. For instance:

25

MODSIM Reference Manual

TYPE
scoreType
gr adeType

Given an enumerated type definition, we can define a subrange of that type since it is
also an ordina type:

TYPE
dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
weekdayType = [Mon .. Fri];

The advantage of the subrange type is that many logic errors in a program can be caught
at run-time. Assigning a value which is out of bounds to a variable of a subrange type
causes a run-time error. If we had a variable of type gr adeType and tried to assign a
gradeof ' M , thiswould result in an error.

3.4 External Representation of Data

For each of the simple data types just described, MODSIM specifies formats which are
used to express values of that type. These are known as literals. Literals of each data
type are used in three contexts:

* In program code to express constant values
» For input to a program from aterminal or text datafile
» For output from a program.

The formats for literals have been designed so that the type of data being described is ap-
parent from examination of the literal.

3.4.1 INTEGER Literals

There are two ways to express integer numbers. They may be expressed as decimal (base
10) or hexadecimal (base 16) literals. In all cases, they are internally represented in the
computer as binary numbers. The syntax of an integer literal is asfollows:

g

digit >

digit 7Y » H N

hexadecimal digit [¢—

Figure 3-2. Syntax of an INTEGER Literal

26

Chapter 3: Simple Data Types

The numeric digit described above may be (0-9) for decimal or (0-9, A-F) for hexadeci-
mal. A sign prefix (+ or -) may optionally be added. Hexadecimal literals must begin
with adigit (0-9) and end with the character H. To express a hexadecimal number which
begins with (A-F), a leading “0” must be supplied. Note that the radix indicator H for
hexadecimal and the digits A-F used in hexadecimal literals must be in upper-case.

Thus the decimal number two hundred twenty eight can be expressed in the following
ways.

decimal 228
hexadecimal OE4H

Both of these literals will be stored internally as the binary number 011100100.

3.4.2 REAL Literals

There are two ways to express real numbers. They may be written in the familiar deci-
mal notation or using exponential notation which is sometimes called scientific or engi-
neering notation.

Decimal notation consists of an optional sign, 1 or more decimal digits, a decimal point
and 0 or more decimal digits.

Exponential notation consists of an optional sign, 1 or more decimal digits, a decimal
point, O or more decimal digits, E (for Exponent), an optional sign and a decimal integer.

v

Figure 3-3. Syntax of REAL Literals

Examples of REAL literals are:

23. 45 1.2 0.3 34. 56E12 -13.4E-7 0.0

27

MODSIM Reference Manual

3.4.3 CHARACTER Literals

There are two ways to express character literals.

Any printable character (alphanumeric or symbol) can be expressed by enclosing it in
apostrophes (single quotes).

"A ta' e ‘¢ =
Control characters which are not printable can be expressed using a format similar to that
for decimal integers. The decimal (i.e. base 10) value of the character is written followed
by the letter C. The C must be in upper-case.

13C b carriage return 7C b bell 27C b escape

To refer to the apostrophe character itself in a CHAR literal, the enclosed apostrophe must
be repeated. The following character literal:

will evaluate as:

Figure 3-4. Character Literals

3.4.4 STRING Literals

String literals in MODSIM consist of any sequence of printable characters on one line
enclosed in quotation marks.

"The rain in Spain falls mainly on the plain."

To use the quotation character inside a string literal, place two quotation marks wherever
asingle oneis needed in the string. For instance:

"He said ""Thank you" e
will evaluate as:

He said "Thank you"

28

Chapter 3: Simple Data Types

! —

Figure 3-5. Syntax of String Literals

3.4.5 BOOLEAN Literals

There is one format for Boolean literals. The possible values are TRUE and FALSE.
These identifiers are reserved words, and must be in upper-case. Note that these are lit-
erals, not strings, so it is not correct to do the following:

|F Status = " TRUE"
The correct useis:
|F Status = TRUE

3.4.6 Enumerations

An enumeration consists of an ordered collection of values expressed as valid MODSIM
identifiers. Therefore aliteral for an enumerated typeis ssmply aMODSIM identifier.

3.5 Operators
An operator is a symbol or reserved word which specifies an action or operation to be

performed. “+”,“- " and “DI V' are examples of operators. A complete list of reserved
wordsisgiven in Appendix B.
The operations which can be performed on variables and constants of each data type dif-
fer with the data type. For example, it is obvious that the “+” operator can be used to
add two integer constants together:
2 + 2
but it would not be appropriate to use the same operator with two Boolean constants:
TRUE + FALSE
This has no meaning.
This section lists the operations which may be performed on variables and constants of

each built-in data type. Later, in the sections which cover expressions and assignment,
some of thisinformation will be described in greater detail.

29

MODSIM Reference Manual

In addition to these fundamental operators which allow for the basic manipulation of
data, MODSIM supports a rich collection of built-in procedures to perform more spe-
cialized and/or elaborate operations on data. Examples of these procedures include the
SUBSTR functions which return a substring of the input string and the ROUND function
which rounds real numbers to the nearest whole number. These built-in procedures are
described in detail in Appendix C.

Finally, MODSIM provides a standard set of library modules from which more special-
ized support procedures and objects can be imported for use in a program.

3.5.1 Assignment Operator

The assignment operator is used to assign the value of a constant, variable or expression
to avariable for storage. The assignment operator is the colon followed immediately by
the equal sign:

Many languages use the equal sign alone for assignment, but since the = operator is used
for logical comparison the := operator more clearly denotes the intended action. As a
note of historical interest the = symbol was in early drafts of the ASCII character set. It
was intended to be used as the assignment operator. It may help to enforce the notion of
assignment to think of the := symbol as an equivalent to the = symbol. Thus,

x := 13.5 isequivalent to x = 13.5

The assignment operator isvalid for al types, both built-in and user-defined.

3.5.2 Arithmetic Operators

The arithmetic operators are used to manipulate variables and constants of the | NTEGER
and REAL types. Figure 6 shows alist of the arithmetic operators and the types to which
they can be applied.

Note that some operations apply only to one type or the other. Thisis because MODSIM
isastrongly typed language and some operations are meaningful only with that type.

The modulus operator returns the remainder of an integer division. Thus, the expression
33 MOD 7 would evaluate to 5. Likewise the expression 33 DI V 7 would evaluate to a 4.
The expresson5.0 / 2. 0 would evaluateto 2. 5.

Most of the operators are “binary” operators, i.e. they take two operands, one on either
side. The unary plus and minus operators are used to change the sign of a variable.
These take only one operand which is to the immediate right. Thus, if x evaluates to
5. 3, then - x evaluatesto - 5. 3.

30

Chapter 3: Simple Data Types

Operator Meaning Applicable Types
+ addition | NTEGER, REAL
- subtraction | NTEGER, REAL
* multiplication | NTEGER, REAL
/ real division REAL
DV integer division | NTEGER
MCD modulus | NTEGER
+ unary plus | NTEGER, REAL
- unary minus | NTEGER, REAL

Figure 3-6. Arithmetic Operators

The two operands of each binary operator must be type compatible and that type must be
appropriate for the operator. Thus, the following combinations of operands and opera-
torsarelegal:

©UIN N
go+o
<~N+
NN
o o

while the following are not legal:

2.0 + 2 P mixed REAL and | NTEGER operands
5.0 DIV 7.0 b operand typesincompatible with operator
51/ 7 b operand types incompatible with operator

3.5.3 Relational Operators

The relational operators are used to perform comparisons of values. They are al binary
operators which take an operand on either side. Like arithmetic operators, the operands
used with relational operators must both be of the same type. The result of the expres-
sion is of type BOOLEAN.

Operator Meaning Applicable Types
= equal All types
<> not equal All types
< less than All scalar typesand STRI NG
<= less than or equal All scalar typesand STRI NG
> greater than All scalar typesand STRI NG
>= greater than or equal All scalar typesand STRI NG

Figure 3-7. Relational Operators

31

MODSIM Reference Manual

3.5.4 Logical Operators
There are three logical operators which can be applied to Boolean expressions:

NOT, AND, OR
NOT is a unary operator which takes one operand on its right. AND and OR are binary op-

erators which take two operands, one on either side. The following table summarizes the
effect of each logical operator:

NOT TRUE b FALSE
NOT FALSE b TRUE
TRUE AND TRUE b TRUE
FALSE AND TRUE b FALSE
FALSE AND FALSE b FALSE
TRUE OR TRUE b TRUE
FALSE OR TRUE b TRUE
FALSE OR FALSE b FALSE

Figure 3-8. Logical Operators

MODSIM uses "short circuit" evaluation of Boolean expressions. This means that only
as much of an expression is evaluated as is needed to determine the value of the expres-
sion. Thistopic will be covered in more detail later.

There is another operator which we will mention here for completeness. We will defer
discussion of its use until expressions and structured types have been covered.

The*“. ” isused to construct qualified identifiers which refer to individual fields of are-
cord.

3.6 Built-in Procedures and Functions

MODSIM provides a number of predefined or built-in procedures and functions. Below
is a partia list of these procedures. Appendix C provides a complete listing in greater
detail of each procedure and function.

Function Use
ABS(Num) Absolute value of | NTEGER or REAL number.
CAP(Chr) Returns the upper-case equivalent of the character
Chr.

32

CHARTOSTR(ArryCf Char)
CHR(I nt)
CLONE(Ref)

FLOAT(I nt)
H GH(Arry[])
I NTTOSTR(I nt)

LONArry[])
LOVER(St r)

MAX(Scal r Typ)
MAXOF(Scal r TypLi st)
M N(Scal r Typ)

M NOF(Scal r TypLi st)
CDD(Num)

ORD(Or di nal)

POSI TION(Str1, Str2)
REALTOSTR(Rl Num)
SCHAR(Str, pos)
STRLEN(Str)

STRTO NT(Str)
STRTOREAL(Str)

SUBSTR(posl, pos2, Str)

TRUNC(Real Num
UPPER(St r)

VAL(Or dType, O dNum

Chapter 3: Simple Data Types

Returns the STRI NG representation of an ARRAY
OF CHAR

Returns the character with the given | NTEGER
ordinal value.

Returns a copy of the ARRAY, RECORD or OBJECT
instance referred to by Ref .

Converts | NTEGER to REAL.

Returns the high bound of an array element.
Returns the STRI NG representation of | nt .
Returns the low bound of an array element.
Returns a string in which all characters in Str
have been changed to lower case.

Returns the highest allowed value of a scalar type.
Returns the highest value from the list.

Returns the lowest allowed value of a scalar type.
Returns the lowest value from the list.

Returns TRUE if odd, FALSE if even.

Returns the particular ordinal value of an ordinal
type.

Returns the position of Str2 inStr 1.

Returns the STRI NG representation of Rl Num
Returns the character at position pos inStr.
Returns the length of string Str .

Returnsthe | NTEGER representation of Str.
Returnsthe REAL representation of Str.
Returns substring of Str from posl to pos2.
Truncates a REAL value to | NTEGER.

Returns a string in which all characters in Str
have been changed to upper-case.

Returns the Or dType vaue which has ordinal
value Or dNum

33

MODSIM Reference Manual

Procedure
DEC(Ord [, n])
DI SPOSE(Ref)

HALT
INC(Ord [,n])

I NPUT(Varl,...)
I NSERT(Str1, pos, Str2)

NEW(Ref)

OUTPUT(Var1,...)

Use

Decrements an ordinal variable by n. n defaults
to 1 if omitted.

Dedllocates the instance of the ARRAY, RECORD or
OBJECT referenced by Ref .

Terminates a program.

Increments an ordinal variable by n. n defaults to
1 if omitted.

Reads values from the standard input.

Inserts St r 2 at position pos in Str 1.

Allocates an instance of Ref , and returns a refer-
ence to it. Can be used with ARRAYS, RECORDs
and OBJECTSs.

Writes values to the standard output.

REPLACE(Str1, posl, pos2, Str2)

STRTOCHAR(Str, ArryO Char)

34

Replaces the part of Str1 from posl to pos2
with St r 2.
Converts St r to an ARRAY OF CHAR.

4. Declarations, Expressions and
Precedence

The previous chapter discussed built-in data types and how to express values of each data
type. This chapter discusses how to declare constants, declare user-defined types which
are based on the built-in types, how to declare variables of any type and, finally, how to
use variables and constants in expressions. Before describing data structures and show-
ing how they are declared we first need to discuss what a declaration is and why it is
needed.

4.1 Declarations

Declarations are statements placed ahead of executable code in a program or block which
describe the nature of the data which is to be manipulated. The language uses these dec-
larations to allocate and organize the memory which will be used to store the data and to
check for consistent use of that data. For example, if we have declared that a variable
named X will be used to store REAL numbers, then x : = "Hel | 0" will be caught as an
error when the program is compiled.

Another type of declaration is a procedure declaration which describes a procedure or
routine which will be called later by the program's code.

To review the information in Chapter 2, there are four categories of declarations: con-
stant, type, variable and procedure. They can actually appear in any order, but, since the
declarations tend to build one upon the other, they are usually found in the order just de-
scribed. It is aso worth noting that the declarations need not be grouped in only one
declaration section. For instance, there could be several VAR declarations sections.

4.1.1 CONSTant Declarations

A constant declaration defines an expression which is substituted at compile-time for the
specified identifier everywhere it occurs. Constants are useful for several reasons:

* Program code becomes more readable when we refer to something by name
rather than by value — i.e NunEnpl oyees vs. 57. Instead of sprinkling program
code with meaningless literal constants, the programmer uses a constant with
good mnemonic value.

e If a value used throughout the program needs to be changed, it needs to be
changed only once in the constant declaration section if a constant has been used
throughout the code instead of once for each use of aliteral.

» A constant expression is evaluated only once at compile time, not every time the
constant is used in a program.

35

MODSIM Reference Manual

A constant is declared in a constant declaration block as shown in the syntax diagram
below.

CONST
. e . . h] A 4 >
identifier =]—Dl expression ; J >

Figure 4-1. Syntax of a Constant Declaration

It consists of the reserved word CONST followed by pairs of identifiers and expressions
connected with the equal sign. A constant declaration block ends when another declara-
tion block such as a variable declaration block starts or when a BEG N statement is
reached.

Once a constant has been declared, its value cannot be altered. Since a constant may be
defined by an expression (such as 2 + 3) one declaration can build on another. For in-
stance:

CONST
pi = 3. 141592654;
ArraySi ze = 25;
circ = 2.0 * pi;
t woPi = circ;
hell o = "Hel | 0";

Only a constant or aliteral may be used in the expression which defines a constant.

4.1.2 TYPE Declarations

The TYPE declaration is used to create new data types which build upon the existing
built-in types or other user-defined types. The only user-defined data type we have in-
troduced so far is the enumeration. So we will use the enumeration to show how type
declarations are expressed. Later, when the structured data types ARRAY, RECORD and
OBJECT have been introduced, we will revisit the subject and elaborate on TYPE decla-
rations.

TYPE
car Type = (Chrysler, Ford, Porsche, Saab);
col orType = (red, yellow, green);

36

Chapter 4. Declarations, Expressions, and Precedence

TYPE

identifier N\ . r_\ v
] = » le type > . >
- —>l] simp > ; '
— record type >
—> object type >
— array type >

Figure 4-2. Syntax of a Type Declaration

Note that the identifiers used to name the user-defined enumeration types both end with
theword Type. Thisis simply a convention which helps make code more readable. The
word Type, when appended to the word col or gives the identifier some mnemonic
content. The identifier is being used to name a type definition which holds information
about colors. This convention helps to distinguish type identifiers from variable identifi-
ers.

4.1.3 VARiable Declarations

Variable declarations are the statements which reserve memory space to hold a program's
data and which assign names to these data storage areas. The syntax is straightforward.
One or more identifiers is listed followed by a colon and the data type. Note that some
of the variable declarations below draw on the type definitions we declared above.

VAR
n, j, k : | NTEGER;
X, Yy . REAL;
filenanme : STRI NG
car . carType;

trafficLight : colorType;

For each identifier listed on the left of a colon, memory space appropriate for the data
type specified on the right of the colon is reserved.

37

MODSIM Reference Manual

4.1.4 PROCEDURE Declarations

Finally we have procedure declarations. These are the definitions for user-defined pro-
cedures. Constant, type and variable declarations describe data. Procedure declarations
specify the internal data and executable code which will be used to execute the proce-
dure. User-defined procedures will be covered in detail in Chapter 7.

4.1.5 PROCEDURE Variable Declarations

You can declare a type or variable as a procedure type. Variables of this type may be
assigned a procedure that returns the specified type. To invoke the procedure using such
a variable, the variable is preceded by the CALL keyword and followed by an argument
list.

Note: No type checking will be performed on the argument list as to either the number of
types or the number of arguments. For example:

VAR
p: PROCEDURE BOCLEAN,

PROCEDURE | sl nRange(I N x : INTEGER) : BOOLEAN;
BEG N

{ I'nplenentation code }
END PROCEDURE;

BEG N { MAI N}
p: = I sl nRange;
| F CALL P(49)

END MODULE.

4.2 Automatic Initialization of Variables

MODSIM provides for the automatic initialization of all variables. Each variable is
automatically initialized to a specific value at the timeit is declared. | NTEGER and REAL
variables are initialized to zero. Variables of ordina types such as CHAR, BOOLEAN and
enumerations are initialized to the value of that type which has ordina value zero. For
CHAR this is the ASCIlI NUL character, for the BOOLEAN type this is FALSE and for
enumerated types it is the first value in the list. Subrange variables are initialized to the
lowest value in the subrange. Finally, variables of type STRI NG are initialized to the null
string. A null string is a string of length zero.

38

Chapter 4. Declarations, Expressions, and Precedence

4.3 Expressions

An expression is a collection of variables, constants or sub-expressions connected by op-
erators. Once all of the operations have been performed one value results. Here is a
simple expression:

2 + 2

Once the addition operation on the two constants has been performed we are left with the
result 4.

Expressions can yield numerical, textual or Boolean results. Since an expression is al-
ways evaluated to one resulting value, an expression always yields results of one type.
For the moment we will concentrate on numerical expressions as we explain the evaua-
tion rules.

Here is a more complicated expression which includes the previous expression as one of
its components:

S+ (3*(2+2))

Note that we used parentheses to clarify our intention for evaluation of this expression.
In this case we evaluate the subexpression 2 + 2 yielding aresult of 4 and then evaluate
the remaining expression, and so on until we have one resulting answer.

5+ (3*(2+2))bP 5+ (3*4)
5+ (3*4) P 5+ 12
5+ 12 b 17

4.4 Operator Precedence

The above operations were performed in a certain order. There are precedence rules for
the operators. The rule for evaluating expressions is that the innermost parenthesized
portions are evaluated first. Within any one level of parenthesization the operations are
performed in a specific order. The following table gives the order of precedence for the
operators. The highest precedence, those which are performed first, are at the top.
Within any group of operators at the same level the precedence is from left to right. The
operator precedence in MODSIM is described below:

39

MODSIM Reference Manual

highest @) function calls . [] NOT
Y * / DIV MDD AND
3 + - R

lowest = <> < <= > >=

Figure 4-3. Operator Precedence

4.5 Types of Expressions

The expressions shown above are mathematical expressions. There are two types of
these: those which yield an | NTEGER result and those which yield a REAL result. These
have adirect analog in traditional mathematical expressions.

Another type of expression is one which yields a STRI NGtype. For example:

"To be or " + "not to be." P "To be or not to be."

Expressions can yield CHAR types. For example, if we use the built-in | NC function to
increment a character, we get the next character:

INC(*A) P 'B
One of the more useful expression types is the Boolean expression which, of course,

yields a BOOLEAN result. Boolean expressions are used wherever a TRUE or FALSE an-
swer is expected. The most common place to find them isin an | F statement.

IF x <=0

QUTPUT("x was | ess than or equal to zero");
ELSE

QUTPUT("x was greater than zero");
END | F

The NOT, AND and OR operators can be used to build more complex expressions:
(x<=0) AND(y >13) OR(day = Thurs)

4.5.1 Evaluating Boolean Expressions

MODSIM optimizes evaluation of Boolean expressions by using short-circuit evalua-
tion. A complex BOOLEAN expression is evaluated only as far as is necessary to deter-
mineitsvalue. The following truth tablesillustrate this:

40

Chapter 4. Declarations, Expressions, and Precedence

X AND y result
FALSE not evaluated FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

X OR y result
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE not evaluated TRUE

NOT X result
FALSE TRUE
TRUE FALSE

Figure 4-4. Short Circuit Logic

This feature is important to the programmer for two reasons:

» Asan optimization it avoids evaluating portions of a potentially complicated ex-
pression which will not contribute to the answer.

» It alows the programmer to check a variable to see if it falls within some value
range before proceeding to use it in an expression. This is particularly useful in
preventing divide by zero errors.

Consider :

IF (x <= 37) AND (SoneFunction(k) / SQRT(x) < 21.0)

In some languages, both expressions will be evaluated even if X is greater than 37.
Short-circuit logic will prevent this by not evaluating the second operand if the first is
false, thus short-circuiting the statement. In other words, in an AND expression the an-
swer will be falseif either operand is false, so there is no need to continue once it is clear
that the first operand is false.

Next consider:
IF (X<>0.0) AND(Y/ X<20.0)

In this case, if the variable X contains a value of zero, the first operand of the AND evduetes
to false and the rest of the expression isignored. In this case ignoring the rest of the ex-
pression is desirable. Otherwise, when the expressionY / X is evaluated, we would be
dvidng by zero and this could cause a run time error. Without short-circuit evaluation of
Boolean expressions we would have to construct a nesed | F datement which first checked
to seif X contaned the value zero before checking the next | F ddemat to seeif Y / X <
20. 0.

41

MODSIM Reference Manual

42

5. Structured Data Types

There are times when the built-in simple data types described earlier are not adequate for
some programming tasks. Often it is desirable to build and use more complex data
structures. The structured data type fills this need. It is a user-defined type which is
composed of more than one data element.

There are three structured data types:

ARRAY An ordered set of data elements referenced using an index or indi-
ces. All elementsin an array are of the same type.

RECORD A user-defined data structure composed of some number of built-
in types or other data structures. Each element is afield which has
aname and can be referenced individually.

OBJECT Objects in MODSIM are dynamically allocated data structures
coupled with routines, called methods. Objects have fields, as rec-
ords do. The object's fields define its state at any instant in time
while its methods describe the actions which the object can per-
form. Objectswill be discussed in Section |1 of this manual.

We will examine how these structured data types are used, and will then discuss alterna-
tive ways of managing their memory allocation before covering each one in detail.

5.1 Using Structured Data Types

To provide a framework for the discussion on the use of structured data types, we will
contrive a simple problem and examine a number of waysin which it can be solved.

Problem: We want to store and retrieve information about the names and
ages of a family's children and to be able to do this conveniently.

The family we use in this example has four children:

Who Age
Joe 28
Sue 25
Tim 18
Ana 16

Using the simple data types we have discussed so far, our choices are few. Hereis the
code we could write:

43

MODSIM Reference Manual

VAR
nanel, nane2, name3, name4 : STRI NG
agel, age2, age3, age4 . | NTEGER
BEG N
nanel := "Joe"; agel : = 28;
'.hane4 = "Ana"; age4 : = 16;

Thisis how it would appear in memory:

namel Joe age 128

name4 Ana age4 16

But thisis not very useful. In order to discover Anas age we would have to know that it
was stored in the variable age4. We would like to be able to say, "Give me the age of
the fourth child in the family". This is where the array can be useful. When there is
some natural ordering we can use as an index, the array becomes very useful:

name age
1|Joe 1128
2 | Sue 2|25
3|Tim 3|18
4 | Ana 4116

Here we have constructed two arrays. One holds the names and the other the ages of the
children. We need two arrays, because an array can hold only one data type. Thus, we
must store the names in an ARRAY OF STRING and the ages in an ARRAY OF
| NTEGER. Now, we can look up the "age of the fourth child in the family" by checking
the fourth entry in the age array. This is how this problem would be solved in a lan-
guage like FORTRAN.

44

Chapter 5: Structured Data Types

More contemporary languages, however, would use a record to hold the related name and
age information. First, we would define a record with two fields: nane and age. Then
we would make an array of these fields. Hereisthe record:

name| age

And hereis an array of these records filled with the data about our family:

name age
1 Joe 28
2 Sue 25
3 Tim 18
4 Ana 16

This is a more useful structure because we can find the record at index location 4 in the
array and then query about any of the information in that record. We do not have to look
in a separate array for each item of information about the sibling.

So far so good. But there is a nagging problem. How big should we make the array so
that it can handle any size family? Languages typically require arrays to be declared
with information about the size of the array. This information is fixed at the time the
program is written and cannot be changed or specified while the program is running.

What about a family with 13 children? Or how would we handle the family where a
widow and widower, each with 13 children, married. Now we have to alow for 26 en-
tries. This seems quite wasteful when the average family might only have 2 or 3 chil-
dren.

MODSIM provides a solution to this problem. Its arrays are dynamic. They are allo-
cated explicitly by the program while it is running. The required size of the array can be
computed by the program and specified at the time it is allocated.

But we till have a problem to solve. We have been indexing into the array of records
using the inherent ordering in a family's children: "What is the age of the fourth child in
the family?'. The combined family of 26 children has two orderings. The fourth child in
the father's original family and the fourth child in the mother's original family. What
now? In fact thisis afairly common situation. We are often presented with data which
has no natural ordinal index.

45

MODSIM Reference Manual

The solution involves the use of records. We simply store the information for each child
in arecord and then link the records together. We can link them together by making one
record point to the next. We can do this because a reference to arecord isalegal field in
arecord. The advantage is that we can string together an arbitrary number of these rec-
ords without having to state in advance how many there will be.

Even with dynamic arrays we eventually reach a moment of truth when we have to fi-
nally decide how big to make the array. A dynamic array cannot be grown in size once it
is alocated. With records, each one is allocated individually. This means that we can
link together any number of recordsinto alinked list. Hereis arecord to which we have
added afield pointing to the next record in the list:

name

age next

Now we can allocate an instance of this new record type, fill it with data and link it to the
next one. We end up with a structure which looks like this:

Joe Sue Tim Ana

v

28 > 25 > 18 16 NILREC

The NI LREC in the next field of the last record indicates that there is no record follow-
ing that one.

Refer to Chapter 14 for adiscussion of linked listsin MODSIM.

5.1.1 Dynamic Versus Fixed Structures

The point of the discussion above was to demonstrate the advantage of the dynamic data
structure when compared to fixed data structures. When records and arrays use fixed al-
location like the | NTEGER and REAL types, then all information concerning the number
and size of these structures must be stated at the time the program is written. By contrast
the size of dynamically alocated arrays can be decided while the program is running.
With dynamically allocated records, new instances can be alocated as needed and linked
to alist of records. Objectsin MODSIM aso behave in the same way.

Because the dynamic structured data type is normally the more useful, MODSIM sup-
ports the ARRAY, RECORD and OBJECT types as dynamically allocated types. For the
more limited occasions when fixed allocation may be more appropriate, MODSIM pro-
videsthe FI XED ARRAY and the FI XED RECORD.

46

Chapter 5: Structured Data Types

In the remainder of this chapter, we will first discuss how dynamic data structures are
allocated and deallocated, and then we will cover the RECORD and ARRAY types. Finally,
we will discussthe FI XED ARRAY and the FI XED RECORD.

5.2 Memory Management of Dynamic Data Structures

The built-in and user defined data types we have discussed so far, such as the | NTEGER,
REAL, STRI NG, CHAR, BOOLEAN and enumerations, share several important attributes
which characterize the way they are used:

* A variable of the desired type must declared. Conceptually, this variable will
contain the data.

» The memory which is used to store variables of each type is automatically allo-
cated when the program enters the block in which the variable has been declared.

* The memory is automatically deallocated when the block is exited.

» For each piece of memory which holds data, there is one and only one identifier
which refersto it.

* When we assign one variable to another, the value of the data in one is copied
into the other. Two copies of the data then exist.

We can describe these as “fixed” data types. The storage requirements are fixed at the
time the program is written and cannot be changed while the program isrunning. A pro-
grammer can perform alarge variety of tasks with these data types. There is one limita-
tion, however. All data storage requirements must be known and stated in advance using
variable declarations.

MODSIM supports three “dynamic” data types. ARRAY, RECORD and OBJECT. These
types bring with them a number of capabilities not available with the fixed data types
discussed so far. In particular, they provide a dynamic memory management capability.
This capability is particularly important in the case of structured data types because they
can occupy significantly larger amounts of memory than the simple data types which
only contain one element of data.

There are several ways in which these dynamic data types differ from the fixed data
types.

 Memory is explicitly allocated and dedlocated by the programmer using the
built-in procedures NEwand DI SPOSE.

» There can be more than one identifier which refers to a particular dynamic data
structure.

47

MODSIM Reference Manual

* A dynamic data structure can exist with no identifier referring to it.

This last point is very important. It means that the programmer can allocate an instance
of an OBJECT, RECORD or ARRAY and place it inaMODSIM group or build a linked list
with it. It is not necessary to declare a variable for each instance of a data structure
which might be created by a program while it runs.

The variables which refer to dynamic data structures in MODSIM are called reference
variables. In one sense they act like pointers do in many languages. A dynamic data
structure can have any number of reference variables referring to it, or it can have none.

MODSIM's dynamic data types, their reference variables and the way they are used, dif-
fer from pointers in one important respect. It is not necessary to employ a special syntax
to reference this datain MODSIM. References to these structured data types are made in
the same way as for ssimple data types.

Despite the significant added utility of these dynamically allocated structured data types,
there are only two ways in which their use differs from the fixed data types:

* The programmer controls the allocation and deallocation of instances of this type.

* The effect of an assignment of reference variables differs from assignment of
fixed data types where an actual copy of the datais made.

Since structured data types can contain significant amounts of data, making a copy of
that data during an assignment is inappropriate. Instead, the reference variable being as-
signed to it is simply made to refer to the same instance of structured data. The follow-
ing code fragment illustrates the difference:

TYPE
SomeRecType = arecord type declaration;
VAR
j, k @ I NTEGER,
a, b : SoneRecType;
ko= 4;
NEWb); { allocate an instance of b }
b := somerecorddata { fill record b with data }

k; { a copy of the value inkis stored inj }
b; { aand b nowrefer to the sane record
i nstance }

j
a :

48

Chapter 5: Structured Data Types

Here is a diagram which illustrates how the data is organized in memory before the last
two assignments are made:

’—~a NILREC !—~j o]

SomeRec Type INTEGER
Reference

SomeRec Type INTEGER
Reference

some data

SomeRec Type
Instance

Figure 5-1. Memory Before Assignments

After the assignments are made thisis how the data is organized:

& o4

SomeRec Type INTEGER
Reference

INTEGER

SomeRec Type
Reference

some data

SomeRec Type
Instance

Figure 5-2. Memory After Assignments

The important point to remember is that variables of type ARRAY, RECORD and OBJECT
are reference variables. They contain no data. Instead, they simply refer to an instance
of a structured data type which does contain the data. While a variable for a simple data
type uniquely names a particular storage area, a reference variable for an ARRAY,
RECORD or OBJECT typeisaway of referring to unnamed data structures of that type.

49

MODSIM Reference Manual

5.2.1 The CLONE Function

There are times when the programmer does, in fact, want a copy of a dynamic data type.
MODSIM provides a built-in function called CLONE for this purpose. It works with the
three dynamic data types: ARRAY, RECORD and OBJECT.

The CLONE function takes a reference variable as an argument. It then allocates space
for a new instance of the same type and copies the values of every element of the original
into the new instance. Finadly, it returns a reference to the new copy. CLONE does not
always copy all fields. Refer to paragraph 9.11.

The user could accomplish the same effect by alocating a new instance and explicitly
copying element by element, but the CLONE function provides a short-cut way of ex-
pressing this functionality and accomplishes the copy more efficiently.

To illustrate the CLONE function we will revisit the previous example and substitute a
call to the CLONE function instead of using an assignment statement.

TYPE

SomeRecType = arecord type declaration;
VAR

j, k @ I NTEGER,

a, b : SonmeRecordType;

k 4,
NEWb); { allocate an instance of b }
b somedata { fill record b with data }

k; { a copy of the value in k is stored inj }
CLONE(b); { a nowrefers to a copy of b }

j
a :

FNILF[EC |]— 0
someRecType INTEGER
Reference
La— L —
SomeRecType INTEGER
Reference
SHE G
SomeRecType
Instance

Figure 5-3. Memory Before CLONE and Assignment

50

Chapter 5: Structured Data Types

After the CLONE and assignment are done, the data is organized as follows:

SomeRecType
Reference

INMTEGER

INMTEGER

SomeRecType
Reference

SomeRecType
Instance

SomeRecType
Instance

Figure 5-4. Memory After CLONE and Assignment

5.2.2 Orphaned Data

Since a dynamic data structure can be referred to by zero, one or many reference vari-
ables, it is possible for an instance to become “orphaned” or fal into limbo. If an in-
stance of data has no reference variable referring to it and is not being kept in some
linked list or group, then it is orphaned. It isno longer possible to reference that data, yet
it still exists and is using memory.

In the code above, if the reference variable a had been referring to some instance of data,
and it was the only reference, then any assignment to a would cause the original instance
of datato be orphaned.

If this occursin aloop or some other construct which is executed repeatedly, the program
will eventually run out of memory. Thisis caled amemory leak.

5.2.3 The DISPOSE Procedure

The key point to remember is that the memory used by the lost datais no longer available
during the remainder of the time that the program is running. If the data is no longer
needed, then the instance of data should be returned to the system using the built-in pro-
cedure DI SPOSE. The DI SPOSE procedure takes an ARRAY, RECORD or OBJECT in-
stance and destroys it. The memory previously used for the instance of data then be-
comes available for allocation with NEwand the reference variable is re-initialized.

5.2.4 Hanging References

Just as there can be orphaned instances of data, there can be reference variables which
refer to an instance of data which has been deallocated with DI SPOSE. This is not a
problem as long as the programmer is aware of this fact and does not try to reference part

51

MODSIM Reference Manual

of the disposed data. In fact these hanging references occur whenever more than one ref-
erence variable refers to the same instance of data. For instance, if we have two RECORD
reference variables, r ecA and r ecB, each referring to the same instance of data and we
make the following call:

DI SPOSE(r ecA) ;

Thenr ecAwill contain NI LREC which indicates that it is not referring to any record, but
recB will still refer to the now defunct data. If the programmer tries to reference any
datareferred to by r ecB the results are undefined.

5.3 Records

A record is a user-defined aggregate data structure composed of some number of built-in
types or other data structures.

Each element of arecord is called afield. In arecord, the fields are typically of severa
different types. One field may be an integer, the next an array of real and the next a
string. Instead of using indices to access individual elements, they are referenced by
their field name. Individual fields are referenced by appending a period and the name of
the field to the name of the record variable. The following RECORD type declaration and
code illustrate how thisis done:

TYPE
positionType = (first, second, third, pitcher,
shortstop, outfielder, catcher);
pl ayer Type = RECORD
Nanme :

. STRI NG
Bat Avg . REAL;
Team . STRI NG
Position : positionType;
END RECORD;
VAR
Pl ayer1: pl ayer Type;
Pl ayer 1. Team = "Padres";
Pl ayer 1. Bat Avg = 0. 225;
Pl ayer 1. Position : = pitcher;
= "Smth"

Pl ayer 1. Nane

5.3.1 Using NEW to Allocate RECORDs

The following example uses the pl ayer Type record type declaration from the earlier
example. It shows how a number of records can be allocated and then be organized into
alist. There are only two RECORD reference variables involved in this code. However,
the list could be grown to any length. Thisis an example of the reference variable's util-

ity.

52

Chapter 5: Structured Data Types

Note in the example that the pl ayer Type which is being defined is used as one of its
own fields. Thisis arelaxation of the rule that any identifier used must first be defined.
The rule is relaxed in the same way for the object type which will be discussed in the
next section.

TYPE
pl ayer Type = RECORD
name : STRI NG
bat Avg REAL;
t eam STRI NG
position positionType;
next Pl ayer pl ayer Type;
END RECORD;
VAR
t eam

pl ayer : playerType;

NEW pl ayer) ; { Allocate nenory for a
pl ayer Type record and make
pl ayer refer toit }
team : = pl ayer; { now both player & team
refer to the sane record }
NEW pl ayer) ; { Al'l ocate anot her playerType

pl ayer . next Pl ayer
team : = pl ayer;
NEW pl ayer);

pl ayer . next Pl ayer
team : = pl ayer;
NEW pl ayer) ;

pl ayer . next Pl ayer
team : = pl ayer;

record }
t eam { newrecord refers to first }

{ Al'l ocate anot her playerType
record }
t eam { new record refers to second }

{ Al'l ocate anot her playerType
record }
t eam { newrecord refers to third }

53

MODSIM Reference Manual

The figure below shows the sequence of steps that built the player records:

player NILREC

team

player

NILREC
team
player) > NILREC
[]
[]
[]
team
player ° > L > ® > NILREC

Figure 5-5. Linked List of RECORDs

The code creates four player records and links them together. Thisis called alinked list.
We could make this list arbitrarily long by simply adding new player records and pre-
sumably filling them with some useful information as well. We would still need only the
two reference variables.

The following sequence of code is worth examining to illustrate again the difference
between the behavior of fixed and dynamic data types :

NEW pl ayer);
team : = pl ayer;

In the first line a memory area appropriate to a pl ayer Type, i.e. a player record, is al-
located and the variable called pl ayer is made to refer to it. In the second line the vari-
able caled t eam is made to refer to the same memory area. If we contrast this to the
way variables for fixed data types work, we see a significant difference:

1 - VAR

2 - a, b : |INTEGER
3 -

4 - a .= 4;

5 - b := a;

54

Chapter 5: Structured Data Types

Here, in the fourth line, the value 4 is stored in avariable called a. In the fifth ling, the
value which is stored in the variable called a is copied to a variable called b. There are
now two different memory locations storing the value 4.

To summarize the difference between variables for fixed and dynamic data types:

A memory storage area for afixed data type can only be referred to by one vari-
able. No two variables can refer to the same storage area.

* A memory storage area for a dynamic data type can be referred to by one, many
or no reference variables.

Reference variables for records are automatically initialized to the value NI LREC. This
means that they are referring to nothing. The programmer can aso explicitly assign the
built-in constant NI LREC to any RECORD typed reference variable to indicate that it is
currently not referring to arecord.

5.3.2 ANYREC, ANYOBJ and NILOBJ

The predefined type ANYREC is simply a generic type for any record type. It isused in
cases where the programmer wants to refer to something without worrying about the
type. The value stored in any record type reference variable can be assigned to a variable
of type ANYREC and vice versa.

There are restrictions on the use of type ANYREC. It cannot be used in a call to the built-
in procedure NEW This is because there is no information associated with the type
ANYREC which would tell the system how much and what type of memory to allocate.
On the other hand, a record of type ANYREC can be passed to the DI SPOSE procedure.

The key to its usefulness is that it is compatible with all RECORD types. Thisis desirable
when writing genera purpose procedures or methods which must deal with all record
types. Although we haven't studied procedures yet, this example illustrates the point:

PROCEDURE SwapRecor ds(| NOUT recordl, record2: ANYREC);

VAR
temp : ANYREC,

BEG N
tenmp = recordl;
recordl := record2;
record2 : = tenp;

END PROCEDURE;

The code above will swap two records of any type. MODSIM does not check the type of
the records being passed, so only one routine need be written for all possibilities.

Since the record reference variable of type ANYREC circumvents MODSIM's strong type
checking, it is atwo-edged sword. It should be used only where it is really necessary to

55

MODSIM Reference Manual

defeat type checking as in the above example. Consider what would happen, for in-
stance, if two different record types were passed in to the SwapRecor ds procedure.
One would be a player record we have already described and the other would be a per-
sonnel record:

personType = RECORD

name : STRI NG

sal ary : REAL;

age . | NTEGER;
END RECORD;

Once they were swapped and we attempted to ask for the age field of a record which was
actualy a player type, a serious and probably mysterious run-time error would occur.
We might ssmply get a strange answer, or the computer might crash.

The moral of the story is that safety features are there for a reason and should be circum-
vented reluctantly and with the advance knowledge that trouble might ensue.

We mentioned the built-in constant NI LREC earlier. NI LREC is a built-in constant of
type ANYREC.

There is one other “generic” type which also has a pre-defined constant. ANYOBJ is a
generic type used to circumvent type checking of objects. The constant NI LOBJ is of
type ANYOBJ. It is used to indicate that an object reference variable is referring to no
object. These are mentioned here for completeness, but both will be covered in more
detail in the section on objects.

5.3.3 Operations on RECORDs

Individual fields of records are referenced using the dot notation. A field of arecord can
be used in the same way as a variable of the same type can be used.

There are a number of operations which can be performed on the record as a whole. In
addition to the assignment statement which was discussed above, a record can be used in
Boolean expressions with the = and <> operators.

5.4 Arrays

An array is an ordered set of data elements referenced using an index or indices. The
elements which compose an array can be of any type, but all elements in an array are of
the same type. Thisisknown as the base type of the array.

An array can have any number of dimensions. Each dimension is referenced by its own

index. Theindex is defined with a subrange which specifies its lower and upper bounds.
Each index may be of any ordinal type.

56

Chapter 5: Structured Data Types

The power of an array is that a program can compute an index into the array to effi-
ciently reference specific elementsin a collection of data.

Like arecord, an array structure is dynamically allocated using the NEWprocedure. Ar-
rays in MODSIM are not only allocated dynamically, but they are also sized dynami-
cally. Thisis done by passing the NEW procedure information about the desired upper
and lower bounds of each index using a subrange expression.

Thisisthe syntax for an array type declaration:

base
type

ARRAY v | ordinal
type

Figure 5-6. Syntax of an Array Type Declaration

The code below declares two arrays, allocates and sizes them and then assigns values to
some of their elements:

TYPE
dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
VAR
val Li st : ARRAY | NTEGER OF REAL;
dai | yCount : ARRAY dayType OF | NTEGER;
n : | NTEGER;
n := some calculation
NEW val List, 1..n) { allocate space for valList }
val List[3] := 4.14159;

NEW dai | yCount, Mon..Fri) { allocate spacefor dail yCount
} dailyCount[Thurs] := 97;

Since the information about the size of an array is specified dynamically by the program
at run-time, this means that declarations for array types are ssmpler in MODSIM. For
instance, in Pascal the variable declaration of val Li st would look like this:

val Li st: ARRAY [1..10] OF REAL;
In other words, since it is not possible to dynamically size an array in Pascal, we must

specify the bounds of each dimension of the array at the time it is declared. In MODSIM
the programmer need only specify the following information to declare an array type:

57

MODSIM Reference Manual

the type of the index for each dimension and the base type of the array. The information
about the bounds for each dimension is provided at run-time, when the array is allocated
with the NEWprocedure.

So the MODSIM equivalent to the above statement would be:
val Li st : ARRAY | NTEGER OF REAL;
NEW val Li st, 1..10);

But the bounds of the array are specified using constants, so we have gained little utility
when compared to Pascal. If we use variables to specify the upper and lower bounds of
the array:

NEW val Li st, a..Db);
the utility of dynamically sized and allocated arrays becomes apparent.
When variables or expressions are used to specify the upper and lower bounds, the value
of the first must be less than or equal to the second. This is consistent with the concept

of subranges.

Multi-dimension arrays are demonstrated below:

TYPE
squar e = (blank, X, O; { enunerated type }
tictacType = ARRAY | NTEGER, | NTEGER OF square;
or
tictacType = ARRAY | NTEGER OF ARRAY | NTEGER OF squar e;
VAR

tictacBoard : tictacType;

NEWtictacBoard, 1..3, 1..3)

tictacBoard[1, 3] := X
tictacBoard[2][2] := G { alternative syntax for referenc-

i ng an el enent }

58

Chapter 5: Structured Data Types

2 O U tictacBoard

Figure 5-7. An Array

Note that we can either declare a two-dimensiona array or we can declare an array of
arrays. In either case, the ways in which a single element can be referenced are the same.
There is no specified limit to the number of dimensions which can be declared.

5.4.1 Operations on ARRAYs

As demonstrated above, individual array elements are referenced by using the array name
followed by the indices in brackets:

schedul e[nont h, day] := booked,;

An element of an array referenced in this way can be used in the same way that avariable
of that base type can be used.

There are a number of operations which can be performed on arrays as awhole. One ar-
ray reference can be assigned to another. Thus, if schedul e2 is an array of the same
type as schedul e above, we can do the following:

schedul e2 : = schedul e;

After this assignment, both schedul e and schedul e2 refer to the same array. If we
desire a copy of the array, we can do the following:

schedul e2 : = CLONE(schedul e);

After the CLONE is performed, there are two distinct copies of the array each referred to
respectively by schedul e and schedul e2.

In addition to assignment, an array can be used in Boolean expressions with the = and
<> operators. For two arrays to be considered equal, they must meet the following crite-
ra

e The number of dimensions must be the same.

59

MODSIM Reference Manual

* Theindex type and bounds of each dimension must be identical.

» The contents of each element of the two arrays must be equal.

5.4.2 Using the NEW Procedure to Allocate an ARRAY

The NEWprocedure is used not just to allocate an array, but to determine its size. For
each dimension of an array, the NEWprocedure takes an extra parameter which gives the
lower and upper bounds of that dimension. If the elements of an array are a dynamic
type (such as a RECORD or OBJECT type), each entry in the array must be NEWed sepa-
rately. You do not have to new each entry for fixed allocation types (such as REAL or
| NTEGER).

ARRAY type reference variables are automatically initialized to NI LARRAY. NI LARRAY
isabuilt-in constant which is compatible with all array types.

5.4.3 Ragged ARRAYs

The NEWprocedure can be used to allocate an array in piecemeal fashion to build a rag-
ged array. An example of this would be the allocation of atriangular array:

VAR
b : ARRAY | NTEGER, | NTECER OF REAL;

NEW b, 1..5);
FORk :=1TO5

NEW b[K], 1..K);
END FOR;

a b~ wWDN PR

12345

The semantics of the NEWprocedure when invoked for arrays is that indices can be allo-
cated piecemeal only as we go from left to right in the declaration. Given the array b
which we described above, we cannot do the following:

NEWDb, , 1..10); { illegal allocation! }

60

Chapter 5: Structured Data Types

When an array is allocated with NEW each element of that array is initialized just as indi-
vidual variables of that base type would be.

The built-in procedure DI SPCSE is used to deallocate arrays. After DI SPOSE has been

used on an array variable, the value of the reference variable which was passed in is
NI LARRAY.

61

MODSIM Reference Manual

5.4.4 The HIGH and LOW Functions

The two functions HI GH and LOwWcan be used to discover the high and low bounds of any
dimension of an array:

H GH(<array var >); LON <array var>);
XArr : ARRAY | NTEGER, | NTEGER OF REAL;

Given the above declaration, Hl GH(xAr r) would return the high bound of the first di-
mension of array xArr. H GH(xArr[2]) would return the high bound of the array at
position xArr[2]. H GHand LOWare type compatible with any scalar type variable.
To be less abstract, we can alocate aragged array as follows:

NEW xArr, 1..3);

NEW xArr[1], 1..5);

NEW xArr[2], 2..3);

NEW xArr[3], 1..4);

Thiswould yield the following array:

U xArr

a A W N P

Figure 5-8. A Ragged Array

62

Chapter 5: Structured Data Types

Having done this we will get the following results from calls to H GH and LOW

LOW XArr)

H GH(xArr)
LON xXArr[1])
H GH(xArr[1])
LON XArr[2])
H GH(xArr[2])
LON XArr[3])
H GH(xArr[3])

U UTUUTUUTUUUTU
AP OWOWDNOOORFP WPRE

5.5 Objects

Object types are mentioned here for completeness. They have fields just as records do.
But they are a special type and the entire second section of this manual is devoted to
them. Object types can be manipulated in the same way as other dynamic data types.
We can have arrays of objects or use object types as fields of records.

5.6 Declarations Revisited

Now that structured types have been described, the potential uses of the TYPE and VAR
declaration have been considerably expanded. To tie loose ends together, we will com-
bine several previous declarations together and build more complex structures.

CONST
startYear = 1940;
t hi sYear = 1990;
TYPE

positionType = (first, second, third, pitcher,
shortstop, outfielder, catcher);

pl ayer Type = RECORD
name ;. STRI NG
bat Avg . REAL;
t eam . STRI NG
position : positionType;
END RECORD;
t eaniType = RECORD
manager ;. STRI NG
pl ayers : ARRAY | NTEGER OF pl ayer Type;
win, loss : | NTEGER
END RECORD;
| eagueType : ARRAY | NTEGER OF teaniflype;
VAR

statistics : ARRAY | NTEGER OF | eagueType;
X : ARRAY | NTEGER OF | NTECGER;

63

MODSIM Reference Manual

NEW statistics, startYear..thisYear);
{ etc, etc.... }

5.6.1 Anonymous Types

Note that we have declared arrays in two different ways above. In some cases we have
explicitly declared an array type and then declared a reference variable of that type. In
other cases, such asthe variablesx and st ati sti cs above, we have smply declared a
variable and described the specifics of the array. The declarations for the arrays called x
and statistics usewhat is known as an anonymous type declaration. The array
type is bound to the variable declaration and it has no name. Thus, it is anh anonymous

type.
Arrays and enumerations can be declared this way but records and objects cannot.

Programmers often ask which is the “preferred” way to declare an array—using an ex-
plicit type declaration and then declaring a variable of that type, or using the anonymous
declaration.

On the one hand, the anonymous type declaration is a shortcut which yields a perfectly
usable array variable and saves the extra step of declaring an array type. Anonymous
arrays cannot be used as parameters.

On the other hand, declaring an explicit type is a more general approach. Since the type
has aname it can be used to specify parameters to procedures. Also assignments of array
reference variables can only be accomplished when the two variables involved are of the
same exact type. When anonymous types are involved, this condition cannot be satisfied.

Thereis no ssimple answer. It depends on how the variable will be used.

5.7 Fixed Data Structures

At the beginning of this chapter we made the case for using dynamic data structures.
While they are the preferred choice for most programming needs, there will still be occa-
sions when the programmer may prefer to use the fixed data structures. These are the
FI XED RECORD and FI XED ARRAY. Variables of these types are alocated and deallo-
cated automatically by the system in the same way as | NTEGER and REAL typed vari-
ables are.

The variables associated with these two types are the same as variables for the other fixed
data types; e.g. | NTEGER, REAL, etc. This means that there is one and only one identi-
fier associated with each fixed data structure. It also means that there is no way to string
FI XED RECORDS together into alinked list since there are no reference variables associ-
ated with thistype.

64

Chapter 5: Structured Data Types

The fixed data structure has another feature which distinguishes it from the dynamic data
structures. Every element of a FI XED ARRAY or FI XED RECORD is of a fixed size.
This means that its base type or its fields must be of a predetermined size. The fields or
base type cannot be a reference variable which refers to some other structure.

The intent is that the information which these two data types carry is completely con-
tained within a known memory area of known size. There are no strings of indeterminate
length and no references to other data structures. This means that the FI XED RECORD
can be used as a template for random access file 1/0 since each record has a known size
and al information pertinent to that FI XED RECORD is contained in the record itself.
This is an important feature since random access files are characterized by a known,
fixed record size.

5.7.1 The FIXED RECORD Type

The FI XED RECORD type can be declared with fields of the following type: | NTEGER,
REAL, CHAR, BOOLEAN, enumeration, subranges, FI XED ARRAY, FI XED RECORD. This
means that it cannot have fields of type: STRI NG, RECORD, ARRAY or OBJECT.

A fixed record can be used in an assignment. A copy of the record on the right side of
the assignment statement is made and copied into the record variable of the same type on
the left side of the assignment.

A fixed record can be passed as an | N parameter to a procedure. A copy is made and
passed in. In other words, it behaves like any other fixed data type.

5.7.1.1 Declaring FIXED RECORD Types

The syntax used to declare a FI XED RECORD type isidentical to that used for a RECORD
type except that the STRI NG, RECORD, ARRAY and OBJECT types cannot be used as
fields. Other FI XED RECORD types may be used as fields, but the FI XED RECORD type
cannot use itself as a field, unlike the RECORD, since this would be like placing two mir-
rors facing each other. As with the RECORD type, anonymous FI XED RECORD declara-
tions are not allowed. This meansthat a FIl XED RECORD must be declared as an explicit
type and not simply as part of avariable declaration.

5.7.2 The FIXED ARRAY Type

Like the FI XED RECORD, the FI XED ARRAY type can be declared with the following as
its base type: | NTEGER, REAL, CHAR, BOOLEAN, enumeration, subranges, FI XED
ARRAY, FI XED RECORD. This means that it cannot use the following as its base type:
STRI NG, RECORD, ARRAY or OBJECT.

A fixed array cannot be used in an assignment statement. If this were allowed, it would

mean that the entire contents of a fixed array would have to be copied. Elements of a
fixed array can obviously be used in assignment statements. So, if it is necessary to

65

MODSIM Reference Manual

make a copy of one fixed array to another, this can be accomplished in the traditional
way using aloop which iterates through the array copying one element at atime.

When a FI XED ARRAY isused as an | N parameter, it is treated as if it had been passed
with the | NOUT qualifier. A copy is not passed to the invoked routine. The invoked
routine simply refers to the origina array. In addition, a FI XED ARRAY cannot be
passed as an OUT parameter.

5.7.2.1 Declaring FIXED ARRAY Types

Since the FI XED ARRAY type must specify the size of each of its dimensions in the dec-
laration statement, it has a slightly more complex syntax than the ARRAY type which need
only specify the type of each dimension's index. Anonymous type declarations of the
FI XED ARRAY are allowed.

e
y o

—(FIXED ARRAY ¥+ type identifier —» OF }—{ fixed datatype +—p
anonymous

"| enumeration type

anonymous
subrange type

Figure 5-9. FIXED ARRAY Type Declaration

For each dimension of the fixed array the following information which fixes the size of
that dimension must be provided:

* Ananonymous subrange
* Ananonymous enumeration type

* A typeidentifier of either an enumeration or a subrange.

66

Chapter 5: Structured Data Types

It is not possible to declare a ragged fixed array since each element of each dimension
must have the same size. Here are some examples of fixed array declarations:

CONST
| ast = 47;
TYPE
squar e = (blank, X, O;
tictacType = FI XED ARRAY [1..3], [1..3] OF square;
dayType = (Sun, Mon, Tue, Wed, Thurs, Fri, Sat);
dai | yCount = FI XED ARRAY dayType OF | NTECER,
VAR
val List : FI XED ARRAY [1..10] OF REAL;
mul ti . FI XED ARRAY [-4..15], [20..last] OF REAL;

5.8 Referencing the ARRAY and RECORD

Since arrays and records can themselves be composed of structured types, it is worth re-
viewing how we can refer to a particular element of an array or a particular field of are-
cord in these more complex cases. The following code fragment gives severa type dec-
larations and follows them by examples showing how elements of the structures can be
referenced. Note that the ARRAY and FI XED ARRAY types are referenced identically.
The RECORD and FI XED RECORD types are also referenced identically.

TYPE
positionType = (dayManager, niteManager, clerkl, clerk2);

XArr Type = ARRAY | NTEGER OF REAL;
personRecType = RECORD

| ast Name . STRI NG
age . REAL;
payByMont h : xArr Type;
END RECORD;
j obRecType = RECORD
per sRec : personRecType,;
j obDescnum
nmont hsl nPos : | NTEGER
END RECORD;

storeType = ARRAY positionType OF jobRecType

VAR

per son : personRecType,;
position : jobRecType;
store . storeType
person.lastNane := "Smth";

67

MODSIM Reference Manual

per son. payByMont h[5] := 867. 75;

position. persRec. | ast Nane := "Jones";
posi tion. persRec. payByMont h[12] : = 965. 45;

store[ni teManager] . persRec. payByMont h[11] : = 1256. 75;
store[clerkl] := position;

68

Chapter 5: Structured Data Types

69

6. Statements and Type Compatibility

Statements are the executable code which perform actions in a program. Statements are
used in the block of a program, procedure, or method. The ease or difficulty of coding
programs in a language is strongly influenced by the way in which a language handles
the concept of a sequence of related statements which perform some action. It is worth
digressing here to examine how a number of languages have handled this notion. We
will look at the | F statement to see how alternative sequences of statements are handled.

In each language we show two | F statements. The first has only one statement per
choice, the other has a statement sequence for each choice. In all cases, if the Boolean
expression is true, Statementl and Statement2 are executed followed by Statement5. |f
the Boolean expression is false, Statement3 and Statement4 are executed followed by

Statementb.

MODSI M

Pascal :

IFx <0

St at ement 1;
ELSE

St at ement 3;
END | F;
St at ement 5;

IFy >0
St at ement 1;
St at ement 2;
ELSE
St at ement 3;
St at ement 4;
END | F;

St at ement 5;

if x < 0 then
Statement 1
el se
St at ement 3;
St at ement 5;

if y >0 then
begi n
St at ement 1;
St at ement 2;
end
el se
begi n
St at ement 3;
St at ement 4;
end;

St at ement 5;

Adais similar

Algol issimilar

71

MODSIM Reference Manual

if (x <0

St at ement 1;
el se

St at ement 3;
St at ement 5;

if (y > 0)
{

St at ement 1;
St at ement 2;

}

el se

St at ement 3;
St at ement 4;

}s

St at ement 5;

The important thing to note is that MODSIM 111, like Ada, delimits statement sequences
using the control structure itself. Pascal and C use the begi n “ end and { “ }, respec-
tively to delimit these sequences. The significance is that control statements like the | F
statement have a different appearance in these languages depending on the number of
statements included in a choice. In MODSIM the appearance of control structures is
consistent in al cases.

6.1 Type Compatibility

Before examining statements in detail we will discuss type compatibility in more detail.
This manual has emphasized that MODSIM is a strongly typed language. Assignment
statements, expressions and parameters passed to procedures and methods are checked
for consistency. Here are the specific type compatibility rules which govern the use of
variables and constants. Wherever the notation Typel or Type2 is used we mean a vari-
ableor literal constant.

Lo

Typel and Type2 are the same type, e.g. they are both of type | NTEGER.

2. Typel and Type2 are explicitly defined to be equal in a TYPE statement, e.g.
TYPE Typel = Type2;.

3. Typel isasubrange of Type2, e.g. Typel isasubrange|[4.. 23] and Type2is
of type | NTEGER or vice versa. Note that | NTEGER is not considered to be a
subrange of REAL.

4. Typel and Type2 are both subranges of the same base type.

5. The CHARtypeis a conformant type to the STRI NGtype. This meansthat a CHAR
type may be used anywhere that a STRI NG type is expected. The reverse is not

72

Chapter 6: Statements and Type Compatibility

true. A STRI NG type cannot be used where a CHAR type is expected, even if it is
of length 1.

6. An object type value may be assigned to an object variable of an underlying type.
This subject will be covered in detail in Section Il of this manual.

7. Any record type value may be assigned to a variable of type ANYREC or vice
versa

8. Any object type value may be assigned to a variable of type ANYOBJ or vice
versa.

9. Any array type value may be assigned to a variable of type ANYARRAY, or vice
versa.

6.1.1 Type Conversion

By type conversion, we mean the conversion of a value from one type to another while
maintaining the conceptual meaning. For instance, conversion of | NTEGER to REAL or a
STRI NGto an | NTEGER. In some cases it is possible for a conversion to result in essen-
tially the same resulting value. An example would be the conversion of the integer 14 to
areal. Therea valuewould be 14. 0. If, however, we convert the real value 37. 557 to
an integer we would get 37 if we truncated, or 38 if we rounded.

The type conversion procedures are useful in a number of contexts. In some cases ex-
pressions are made up of severa different types, so it is necessary to convert some ele-
ments to the expected type for the whole expression.

The table below briefly reviews each of the type conversion procedures which MODSIM

provides for type conversion. Appendix C contains a detailed description of these proce-
dures and functions.

73

MODSIM Reference Manual

Procedure / Function Use

Real Num : = FLOAT(| nt Num) I NTEGER P REAL

I nt Num : = TRUNC(Real Num REAL P | NTEGER
I nt Num : = ROUND(Real Num REAL P | NTEGER
Char = CHR(I nt Num [0..255] P CHAR
Int Num : = ORD(Ordinal Val) Odinal P | NTEGER
Odinal := VAL(Odinal Type, IntNum) |INTEGER P Ordinal
I nt Num := STRTO NT(Text) STRING P | NTEGER
Text = I NTTOSTR(I nt Num I NTEGER P STRI NG
Real Num : = STRTOREAL(Text) STRING P REAL
Text = REALTOSTR(Real Num REAL P STRI NG
STRTOCHAR(Text, ArrayOf Char) STRING P ArrayO Char
Text := CHARTOSTR(ArrayOf Char) ArrayOf Char P STRI NG

Figure 6-1. Type Conversion Procedures / Functions

Note: MODSIM does not support the concept of type casting in which the data repre-
sentation of one type is treated as if it were another type. This concept is extremely ma-
chine specific and leads to non-portable code. Instead, the explicit conversion proce-
dures above ensure portability.

Below are some examples of the use of these type conversion procedures and functions:

TYPE

condition = (excellent, good, fair, poor);
VAR

yesO No : BOOLEAN;

equi pStat : condition;

letter . CHAR

i nt Num . | NTEGER,

real Num : REAL;

t ext : STRI NG
i nt Num = ORD(FALSE) ; P 0
i nt Num = TRUNC(4. 999); b 4
real Num = FLOAT(i nt Nun; P 4.0
equi pStat := VAL(condition, 2); P fair
letter = CHR(65); P "A
letter = VAL(CHAR, 66); b 'B
yesOr No = VAL(BOOLEAN, 1); b TRUE
i nt Num = ORD('D); P 68
t ext = "34.56"; b "34. 56"
real Num = STRTOREAL(text); P 34.56

Figure 6-2. Examples of Type Conversions

74

Chapter 6: Statements and Type Compatibility

In addition to those library modules discussed above and in earlier paragraphs, the library
modules contain many useful functions and procedures which may be explicitly imported
for use.

6.2 The Assighment Statement

In each of the preceding paragraphs the assignment statement was used in examples. In
most cases, this statement ssimply assigns to the variable on the left, the value obtained by
evaluating the expression on the right. The expression on the right of the assignment
statement must be type compatible with the variable on the |eft.

variable := expression

6.3 Program Flow Control

The normal sequence of execution in a program is simple. Each statement is executed in
turn. All procedural programming languages provide constructs which can alter this
normal flow of program control. MODSIM provides a rich variety of these constructs
each of which is described below. MODSIM does not require or provide a GOTO state-
ment.

6.4 The IF Statement

The | F statement is perhaps the simplest and most often used of control structures. We
have already seen examples of its use.

IFx <0 IFy >= 30
y = 13; X =X + 5
END | F; ELSE
X := X - b;
END | F;

The following example illustrates a multiple choice | F statement and should be self-
explanatory:

IF nonth <= 3

quarter := "1st Quarter";
ELSIF mbonth <= 6

quarter := "2nd Quarter";
ELSIF mbnth <= 9

quarter := "3rd Quarter";
ELSE

quarter := "4th Quarter”;
END | F;

Of course, a any place where one assignment statement has been used above, we could
substitute a sequence of statements. Hereisthe formal definition of an IF statement:

75

MODSIM Reference Manual

statement

expression
sequence

. statement
expression
ELSIF P sequence

A 4

A 4
A 4

\ statement
' ELSE) > sequence x { END H IF]—’

Figure 6-3. Syntax of the IF...END IF Statement

If the Boolean expression following the | F evaluates to TRUE, the statements up to the
next ELSI F, ELSE, or END | F are executed, after which program control jumps to the
statement following the END | F. If the Boolean expression is FALSE, each ELSI F, if
any, is evaluated until one is found which evaluates to TRUE. If none of the clauses
evaluates to TRUE, the statements following the EL SE are executed.

The ELSI F structures and the terminating ELSE structure are optional. If there is no
ELSE in the statement, it is possible for none of the clauses to be TRUE and the statement
does nothing.

6.4.1 Comparing REAL Values in a Boolean Expression

We mentioned earlier that REAL values cannot be represented exactly in digital comput-
ers because the binary number system used for interna representation can only approxi-
mate the floating-point decimal values being manipulated. Because of this, programmers
should always avoid making comparisons with exact REAL values.

This topic of numerical representation and approximation errors in computer programs is
not one to be taken lightly! The whole discipline of numerical analysis has grown up
around the problem. Suffice to say that any programmer wishing to indulge in serious
mathematical calculation on adigital computer should consult a good text on the subject.

The small program below illustrates some of the pitfalls associated with REAL numbers.
The program is followed by its output. The program starts the variable a at zero and
then adds 0. 2 to it amillion times:

MAI N MODULE sanpl e4;

VAR

a: REAL;

k: | NTEGER;
BEG N

76

Chapter 6: Statements and Type Compatibility

CUTPUT("NCDSIM Progran1 sanpl e4' ") ;

VWHI LE a < 200000.0 a:=a+ 0.2
I NC(k) ;
IFa=10
QUTPUT("a should = 1.0 - actually is =", a);
END | F;
IFa=14
QUTPUT("a should = 1.4 - actually is =", a);
END | F;
IFa=16
QUTPUT("a should = 1.6 - actually is =", a);
END | F;
IFa=18
QUTPUT("a should = 1.8 - actually is =", a);
END | F;
IF (a > 999.99999) AND (a < 1000.00001)
QUTPUT("a should = 1000.0 - actually is =", a);
END | F;
END WHI LE;
QUTPUT("Qut of loop - k=", Kk);
QUTPUT(" Fi nal value of a nlnus 200000 = ",a - 200000.0);
END MODULE.

MODSI M Pr ogram ' sanpl e4

a shoul d 1.0 - actually is 1. 000000

a shoul d 1.4 - actually is 1. 400000

a should = 1000.0 - actually is = 1000. 000000
Qut of loop - k= 1000000

Fi nal value of a m nus 200000 = 0. 000003

We would expect a to have a value of 200, 000. 0 when we finish, but it actualy has a
value of 200, 000. 000003. In many cases this is an acceptable amount of cumulative
error after doing a million calculations.

But there is another, much more serious problem here. Note that the two | F statements
which are looking for values of 1. 6 and 1. 8 fail. This means that by the time we have
added 0. 2 to the variable a only eight times, we have already accumulated enough error
that the Boolean expressiona = 1. 6 evaluatesto FALSE! On the other hand, the Boo-
lean expression (a > 999.99999) AND (a < 1000.00001) evauates to
TRUE. The moral of the story is obvious. When writing a Boolean expression which
wants to match areal value, always include an epsilon to allow for error in representation
of real numbers.

Another item of interest is the fact that the system output shows a value of
1000. 000000 for the variable a when we know that the actua value was not exactly
equal to 1000. 0. When debugging a program with OQUTPUT statements, you should be
aware that the OUTPUT statements will show only a certain amount of precision and they
will often round the figure in the last decimal place.

77

MODSIM Reference Manual

In fact, if we used the more precise St r eanObj Wit eReal method to print out a more
exact representation of a - 200000 at the end of the program, the value printed would
have been 0. 0000026657650.

6.5 The CASE Statement

The CASE statement provides a convenient method for branching on various values or
ranges of values of a single expression. We can rewrite the example used with the | F
Statement as:

CASE nont h
VWHEN 1. . 3:
quarter

WHEN 4, 5,
quarter
WHEN 7. . 9:
quarter
OTHERW SE
quarter
END CASE;

"1st Quarter";

U alternative syntax
"2nd Quarter";

o

"3rd Quarter";

"4th Quarter";

The syntax is:

-CASE expression
i - oo) statement
¥ WHEN case labe —P' : '—’ sequence
_’[OTHERWISE]—> statement END H CASE '—>
sequence

Figure 6-4. Syntax of the CASE .. END CASE Statement

&

The type of the expression in a CASE statement can be any ordinal type, or STRI NG. The
expression cannot be of type REAL. The case | abel cannot be a variable. The
OTHERW SE clause is optional. If the OTHERW SE clause is not included in a CASE
statement and none of the stated choices are selected, then a run-time error will be issued.
REAL is not allowed in CASE statements because comparisons of exact REAL values are
not reliable in binary computers where REAL numbers are represented by approxima-
tions. The case labelsin a WHEN clause need not be contiguous. Here are some more
examples:

CASE nont h
WHEN 1, 3, 5, 7..8, 10, 12:
days := 31,

78

Chapter 6: Statements and Type Compatibility

WHEN 4, 6, 9, 11:
days : = 30;
OTHERW SE
| F | eapYear
days := 29;
ELSE
days : = 28;
END | F;
END CASE;

6.6 lterative Statements

MODSIM Il provides a rich variety of loop statements: WHI LE, FOR, REPEAT, and
LOOP. In MODSIM the EXI T statement may be used in any of these loop constructs to
leave the loop and continue execution at the first statement which follows the loop con-
struct.

6.6.1 The WHILE Statement

The WHI LE statement is a loop which is repeated O or more times. As long as the Boo-
lean expression at the head of a WHI LE construct remains true, the enclosed statements
are executed. For example:

n:= 2;
WH LE n <5

QUTPUT("n =", n);

INC(n); U { same as n :=n + 1}
END WHI LE;

Thisloop would output the following:

n
n
n

2
3
4

The enclosed statements will be repeated until n equals 5. They would not have been
executed at al if n was greater than or equal to 5 to begin with. In other words, if the
Boolean expression evaluates to false on entry to the WHI LE statement, the enclosed
statements are never executed. The syntax of the WHI LE statement is:

_.[WHILE]—b expression »f Statement —b(END H WHILE]—>
sequence

Figure 6-5. Syntax of the WHILE .. END WHILE Statement

79

MODSIM Reference Manual

6.6.2 The REPEAT Statement

The REPEAT statement is a loop which is repeated one or more times. The Boolean ex-
pression is located at the end of the statement and is not evaluated until the body of the
loop has been executed at least once. An exampleis:

REPEAT
QUTPUT("This statenment will print at |east once.");

INC(A); U { sameas A= A + 1}
UNTIL A > 5;

The above statement will repeat until Aisgreater than 5. If A is greater than 5 before the
loop begins (or greater than 4, in this case), then the statement sequence will be executed
only once. The syntax of the REPEAT. . . UNTI L statement is:

v

REPEAT statement UNTIL expression
sequence

Figure 6-6. Syntax of the REPEAT...UNTIL Statement

6.6.3 The FOR Statement

The FOR statement is a loop statement which increments (or decrements) a variable by
some integral value until it has iterated through a specified range, each time repeating the
enclosed statements. An exampleis:

FORn :=1 TO5
QUTPUT(" The next number is:", n);
END FOR;

The loop variable may be of any ordinal type. The loop may step by increments different
than one by adding the optiona BY statement. It may also step backward by replacing TO
with DOANTO (leaving the increment positive). The stepping value may be any expres-
sion compatible with type | NTEGER. For example:

FOR Letter:= "z' DOANTO 'a' BY 2
QUTPUT(" st eppi ng down t he al phabet by two. ", Letter);
END FOR;

80

Chapter 6: Statements and Type Compatibility

—.[FOR]_. identifier _.[=]

o]

expression " TOJ =—» expression —{BY]—. expression
—i' DOWNTO '

> statement _.' END '—»‘ FOR '—»
sequence

y

A 4

Figure 6-7. Syntax of the FOR ... END FOR Statement

It is important to know the semantics of the FOR statement. The expressions which give
the starting point, the end point and the increment are evaluated only once, at entry to the
FOR loop. Changing any of the variables involved in specifying the start, end or incre-
ment of the loop variable will have no effect on the loop while the loop is executing.
Changing the value of the loop variable itself will not alter the execution of the loop, al-
though it will affect the value of the loop variable for that iteration.

The bottom line is that all bookkeeping in FOR loops is done externa to the loop. If itis
necessary to leave the loop before it has finished iterating, the programmer can aways
use the EXI T statement under control of an | F statement. If it is necessary to alter the
increment value or the end point of aloop while it is executing, the programmer must use
one of the other loop constructs.

6.6.4 The FOREACH Statement

The FOREACH statement provides an easy mechanism for iterating over the contents of a
group object (defined in the MODSIM library module G- pMbd) or any object derived
from a group object. The FOREACH statement will iterate over the members of the
group even if agroup contains the same object more than once.

The form of the statement is as shown in figure 6-8.

81

MODSIM Reference Manual

—{FOREACH] | object variable [—{ IN }f group variable H—{ REVERSED -+

statement sequence —D[END]—D[FOREACH]—'

Figure 6-8. The FOREACH Statement

A 4

In figure 6-8 obj ect vari abl e is avariable declared to be an object type compatible
with the object types stored in the group vari abl e type. The group vari able
may be a variable declared to be a type derived from any of the group objects defined in
'Gr pMbd' including QueueObj, StackCbj, RankedObj, BTreeObj and their re-
spective statistical definitions.

The obj ect vari abl e will contain the first member of the group upon entrace to the
loop. If the group is empty, the statements within the FOREACH block will not be exe-
cuted at all. Upon each iteration of the loop the obj ect i nstance vari abl e will be
updated to contain the next member of the group, even if the current obj ect
var i abl e value has been removed from the group. If the optional keyword REVERSED
is included in the statement, the members of the group will be iterated from the last
member to the first.

In addition to objects defined from 'Gr pMbd', it is possible to use the FOREACH statement
to iterate over user defined groups. To do this, the user group object must define the
methods: Fi rst, Next (for forward iteration) and/or Last, Prev (for reverse itera
tion), e.q.:

MyG oupCbj = OBJECT
ASK METHOD First : Aobj;
ASK METHOD Next (IN obj : Aobj) : Aobj;
ASK METHOD Prev (IN obj : Aobj) : Aobj;
ASK METHOD Last : Aobj;

END OBJECT,

PROCEDURE iterate (IN grp: MG oupObj);
VAR
a . Aobj;
BEG N
FOREACH a IN grp
{Use "a' }
END FOREACH;
END PROCEDURE;

82

Chapter 6: Statements and Type Compatibility

The FOREACH statement can also be used to iterate over the RECORD groups defined in
"Li st Mod'.

6.6.5 The EXIT Statement

The EXI T statement immediately transfers control to the first statement after a loop con-
struct. The EXI T statement can be used with any loop construct.

6.6.6 The LOOP Statement

The LOOP statement simply loops forever. The only way to stop this loop is to use the
EXI T statement. This loop construct is quite versatile since the EXI T statement(s), and
any corresponding Boolean expression, may be located at the beginning, end, or any-
where within the body of the loop. For example:

LOOP
OUTPUT(" bread") ;
I NC(I nt Var) ; { sane as IntVar:= IntVar + 1 }
IF IntVar > 5
EXIT;
END | F;
QUTPUT(" cheese and turkey");
END LOOCP;

The example above will always create a valid sandwich (bread at both ends) as long as
I nt Var isinitialy lessthan 5.

6.6.7 The Other Control Statements

There are three other control statements which will be covered later. For completeness
we will summarize their use here.

The WAI T statement is used to elapse ssimulation time. Its syntax is similar to the | F
statement. It will be covered in Section Il of this manual. The RETURN statement is
used to end the execution of a procedure or function before reaching the end of the rou-
tine. In the case of functions, it is also used to specify the value which will be returned.
It will be covered in the next chapter

Finally, the TERM NATE statement is used in simulations to end the execution of a chain
of method calls. 1t will be covered in Section 111 of this manual.

83

MODSIM Reference Manual

84

7. Procedures and Functions

Procedures are named blocks of code which may be invoked from other parts of a pro-
gram. Every procedure must have a BEG N, even if it is empty. Procedures have a pa-
rameter list which is used to communicate information to and from the procedure. Cer-
tain types of procedures may act like expressions since they yield a value when executed.
Terms used to describe this type of functionality in other languages are:

ROUTINE, SUBROUTINE, SUBPROGRAM, FUNCTION

There are two kinds of procedures in MODSIM. Proper procedures are those which do
not yield a value when executed. Function procedures yield a value when executed and
can be used like a variable in expressions. They are defined in much the same manner,
using the reserved word PROCEDURE. When a function procedure is defined, its return
type is specified. The return type of a function procedure can be any type except for the
FI XED ARRAY type. MODSIM supports recursive procedure calls.

Throughout the text we will use the terms, procedure and function, in the following
ways.

Procedure: Refers to either a proper procedure or a function procedure. If the
distinction is important, the correct one will be specified.

Function: Refers to a function procedure.
Procedures have optional parameter lists which are used to communicate data between
the invoker and the procedure. The number, type and order of parameters in the proce-
dure declaration and the procedure call of user-defined procedures must match exactly.
Several built-in procedures relax these rules. For instance, the MAXOF procedure takes
any number of arguments, either | NTEGER or REAL, and returns the value of the largest
argument. The OUTPUT and | NPUT procedures take any number and severa types of
arguments in any order.
Within a procedure, the parameters which have been communicated through the pa
rameter list are treated like variables. When declaring a procedure, the programmer
specifies, for each parameter in the parameter list, the following three pieces of informa-
tion:

e Anidentifier which will name the parameter

* Thetype of parameter

e Thedirection in which information will flow: | N, OQUT or | NOUT

85

MODSIM Reference Manual

Whenever a procedure is invoked, the parameters are type-checked for consistency with
the declaration. There are two kinds of parameters:

Formal parameters: These are the parameters which are detailed in the declara
tion of the procedure.

Actual parameters: These are the parameters which are actually passed in to a
procedure when it is invoked.

7.1 Formal Parameter Qualifiers: IN, OUT, INOUT

MODSIM, like Ada, requires a distinction between input and output parameters. The
formal parameter qualifier affects how the variables are treated and assists in document-
ing program code.

Each parameter must be declared with one of the three possible qualifiers:

I N: The value may only be passed in to the procedure from the caller (pass by
value). When the | N qualifier is specified, a copy is made of the value
and the copy is passed in to the procedure. This means that the actual pa-
rameter and the formal parameter are two separate copies. If the formal
parameter is changed inside the procedure this will have no effect on the
actual parameter. The | N qualifier may be used with al types. In al
cases except for the FI XED ARRAY, a copy of the data stored in the vari-
able is made and passed in. The FI XED ARRAY is treated as if it had the
qgualifier | NOUT. See the note below about subtleties of behavior when
dynamic types are passed with the | N qualifier.

I NOUT: The value may be passed in either direction (pass by reference). This
means that no copy is made. The formal parameter is ssmply an alias for
the actual parameter. If the formal parameter is modified inside the pro-
cedure, this change will affect the actual parameter.

QUT: The OUT qualifier operates identicaly to the | NOUT qualifier with one
extra property. The variables passed with the OUT qualifier are re-
initialized as they are passed in. This enforces the notion that information
only flows in one direction.

Note that when a reference variable for a dynamic data type is passed by value using the
I N qualifier, a copy of the actual parameter, and not the data structure, is made and
passed as a formal parameter to the routine being called. The formal parameter refers to
the same structured data instance as the actual parameter did. So the behavior in this case
isthe same as if the | NOUT qualifier had been used, as long as no assignments are made
to the actual parameter. This means that any changes made to the structured data in-
stance will be reflected outside of the procedure call.

86

Chapter 7: Procedures and Functions

Constants and literals cannot be used as OUT or | NOUT parameters for the same reason
that they cannot be used on the left side of an assignment statement. The following ex-
ample illustrates the point and gives us a preview of a procedure declaration:

PROCEDURE i ncrenment (I NOUT n : | NTEGER);
BEG N

n:=n+ 1;
END PROCEDURE;

If we were to call the procedure with a literal, e.g. i ncr enent (3), this has the same
effect astrying to do the following assignment: 3 : = 3 + 1.

Procedures are defined in MODSIM much as they are in Pascal, and Ada. They are
specified as declarations before the body of the main program. User-defined procedures
and functions are invoked in exactly the same way as the built-in procedures. A user-
defined procedure with the same name as a built-in procedure will replace the built-in
procedure.

Methods, as mentioned in the introduction, are the procedures which an object can exe-
cute as part of its behavior. We will cover methods in detail in Section |1 of this manual.
However, it is worth noting that the way in which methods are defined is nearly identical
to the way in which procedures are defined.

There are two aspects of procedures to be covered in this chapter. How to call or invoke
procedures and how to declare them. Since invoking procedures is straightforward, and
there are already many built-in procedures to use, this topic will be covered first.

7.2 Invoking Procedures

We have aready used several built-in procedures in examples of code. One of these, the
OUTPUT procedure, is a built-in procedure which prints a list of variables and constants.
To invoke the procedure we simply use its name and supply parameters on which it can
operate:

QUTPUT("Hel l o there");

Note: We do not have to explicitly use the term “CALL" to invoke a procedure.

Functions are invoked by placing them in the same context as an expression. In other
words, anywhere an expression is allowed a function may be used or included as a term
of the expression.

n := ROUND(35. 5556)

or

OUTPUT(ROUND(35. 5556))

87

MODSIM Reference Manual

7.3 Declaring Procedures
The following trivial program shows how a procedure is declared and then used.

MAI N MODULE Sanpl e5;
VAR
textLine : STRI NG

PROCEDURE Printlt(IN Str: STRING);
BEG N

OUTPUT(Str);
END PROCEDURE;

BEG N
textLine := "This is a VERY sinple program"”;
Printlt(textLine); { Call the procedure defined above }
END MODULE.

A PROCEDURE heading identifies the beginning of a procedure block. The syntax of a
procedure heading is:

l

PROCEDURE | identifier l formal
I parameters
|—’ : formal type

Figure 7-1. Syntax of a Procedure Declaration

When the optional function result type is specified in the procedure declaration, it indi-
cates that this is a function procedure, and a RETURN statement must be specified in the
body of the procedure to exit and return the specified function result.

7.4 RETURN Statement
The RETURN statement has two purposes:

* |t can be used to exit from a procedure and return to the invoker before the end of
the procedure is reached.

e It must be used in afunction procedure to communicate the return value to the in-
voker.

To illustrate the points we have made so far, here are two procedures which use the Py-
thagorean theorem to compute the length of a hypotenuse given the length of two sides of
aright triangle. Hypl is implemented as a proper procedure and returns the answer
through its parameter list. Hyp2 is implemented as a function procedure which returns
the answer as avalue.

88

Chapter 7: Procedures and Functions

/ AR B

o 2 2

\ 90 deqgrees

b

Figure 7-2. A Right Triangle

PROCEDURE Hypl(IN a, b : REAL; OUT ¢ : REAL);
BEG N

c := SQRT(a*a + b*b);
END PROCEDURE;

PROCEDURE Hyp2(IN a, b : REAL) : REAL;
BEG N

RETURN SQRT(a*a + b*b);
END PROCEDURE;

To use these we could do the following:
Hypl(3.0, 4.0, answer); or answer := Hyp2(3.0, 4.0);

So far we have shown only the simplest of procedure declarations. In actual use, a pro-
cedure may declare its own local variables. The formal definition of a procedure decla-
ration states that we use a procedure heading followed by a subblock. What is this sub-
block? It is amost identical to the syntax for the block which makes up the main pro-
gram. The main difference is that it may not contain the declarations of other proce-
dures, objects or types. This means that we can declare any constants and variables
needed by the procedure, and then any sequence of executable statements.

J BEGIN statement I;;\ID
[i sequence |
simple
declaration [¢—

Figure 7-3. Syntax of the Procedure Block

7.5 The FORWARD Qualifier

There may be times when a procedure needs to be used before it has been defined. When
it is desireable to do so, ssimply put the procedure heading in the declaration section fol-
lowed by the reserved word FORWARD ahead of the first place where it will be used.

89

MODSIM Reference Manual

Later, in the same module, provide the full declaration in the usual way. If we had
wanted to provide aforward declaration of Hyp1, thisishow it would look:

PROCEDURE Hyp1(IN a, b : REAL; OUT ¢ : REAL); FORWARD

7.6 Procedures With Empty Parameter Lists

A procedure with no parameters can be declared and invoked with or without using an
empty parameter list. We can illustrate this by showing how each of the procedures
whose headings are listed below would be called:

PROCEDURE Proci; U procedure headings
or
PROCEDURE Procl();

PROCEDURE Proc2() : | NTEGER
or
PROCEDURE Proc2 : | NTEGER,

Proci; U procedure invocations
or

Procl();

n := Proc2();
or

n := Proc?2,

Figure 7-4. Empty Parameter Lists

90

8. Modules

Up to this point we have explained MODSIM's language features from the viewpoint of a
traditional language such as Pascal, in which all of the components of a program are
found in one file which is compiled as a unit.

One of MODSIM's strong points is its modular structure which allows programs to be
constructed from library modules. Any part of a program can import types, variables,
constants and procedure definitions from these library modules as needed. Each module
can be compiled separately to facilitate program maintenance and reduce devel opment
time.

8.1 Facts About Modules

Since so many features of modules are interdependent, it is difficult to cover the topic in
a strictly sequential fashion. To make things easier, we will list a number of brief facts
about modules and then discuss them at greater length.

* Every MODSIM program must contain a MAI N module.
» Asthe name implies, there can only be one MAI N module in a program.
* Every MAI N module must have aBEGQ N, eveniif it is empty.

* MAI N modules and | MPLEMENTATI ON modules may have Modl ni t procedures.
Modl ni t procedures may be used to initialize modules before the first statement
of aprogram is executed.

» Each moduleis named using a standard identifier.

* A program may consist of any number of modules. Each module is stored in a
separatefile.

» There are three types of MODSIM modules. MAIN, DEFI NI TI ON, and
| MPLEMENTATI ON.

* Any module can be compiled separately.

* A library consists of two modules: DEFI NI TI ON, and | MPLEMENTATI ON. Each
is named with the same identifier.

* Any constant, type, variable or procedure declared in a DEFI NI TI ON module
may be imported by other modules.

* Any constant, type, variable or procedure declared in a DEFI NI TI ON module is
implicitly visible in the accompanying | MPLEMENTATI ON module.

e There can be no executable codein a DEFI NI TI ON module.

» If aprocedure or object method is defined in a DEFI NI TI ON module it must be
coded in the accompanying | MPLEMENTATI ON module.

91

MODSIM Reference Manual

* Nothing in an | MPLEMENTATI ON module is visible anywhere else, including
within that library's DEFI NI TI ON module.

* Nothing can be imported from an | MPLEMENTATI ON module.
* Nothing can be imported from a MAI N module.

* Anything imported into a DEFI NI TI ON module is implicitly visible in that li-
brary's | MPLEMENTATI ON module.

e | MPORT statements must be the first statements in any module. They may be
preceded only by comments.

8.2 The IMPORT Statement

We discuss the | MPORT statement first because it is possible to use MODSIM without
taking advantage of user-defined libraries; yet MODSIM, itself, provides a number of
built-in libraries from which the user may wish to | MPORT.

The | MPORT statement can be used in any kind of module to selectively import any con-
stant, type, variable or procedure definitions from a DEFI NI TI ON module. Here is an
example of an import from MODSIM's built-in Utility and Math modules:

FROM Uti | Mod | MPORT, Get Conput er Type;
FROM Mat hMbd | MPORT SIN, COS, pi;

or
FROM Mat hMod | MPORT SIN AS sine, COS AS cosine, pi;

In the | MPORT statements above, pi is a constant and the remainder of the imported con-
structs are procedures. Note that we simply use the identifier of the construct whose
definition is to be imported. If the identifier which names the imported construct would
conflict with an identifier already in use, the imported construct can be renamed using
the AS clause to rename it . As the example above shows, this renaming feature can be
used arbitrarily for aesthetic reasons as well. The renaming of the variable applies only
within the module which has imported the variable.

92

Chapter 8: Mod-

FROM id —»(IMPORT]—

]

[

e N e

¢ Pof i} HENERN
) J

AS }[id]_

Figure 8-1. Syntax of an IMPORT Statement

Note in the syntax diagram above that MODSIM allows considerable flexibility in the
importing of enumerated types. Here is an enumeration which is defined in | Ovbd,
MODSIM's built-in input-output module:

TYPE
Fil eUseType = (Input, CQutput, InQut, Append, Update);

To illustrate ways in which enumerations can be handled in an | MPORT statement we will
show four different ways to handle imports from that definition:

FROM | OMbd | MPORT ALL Fil eUseType;

FROM | Ovbd | MPORT Fi |l eUseType(I nput, Qutput);

FROM | Ovbd | MPORT Fi | eUseType(I nput AS in, Qutput);
FROM | Ovbd | MPORT ALL Fil eUseType(Input ASin);

AWN P

1. Imports the type definition for the enumeration and al of its individual
enumeration values.

2. Imports the type definition for the enumeration and two specific enumera-
tion values.

3. Imports the type definition for the enumeration and two specific enumera-
tion values. It renames one of the enumeration values which isimported.

93

MODSIM Reference Manual

4. Imports the type definition for the enumeration and all of its individual
enumeration values. It renames one of the enumeration values which is
imported.

An attempt to import one of the enumeration values without its parent type will be
treated as an error.

8.3 MAIN Module

The MAI N module contains the main routine of the program. It is the only required mod-
ule.

—" MAIN]—{ MODULE]—-l id I_{ ;)

| . :{BEGIN)—D block —{ END H MODULE |—>|])
L e ‘J

statement eclaration

Figure 8-2. Syntax of a MAIN Module

The MAI N module consists of a module heading followed by optional | MPORT statements
and a block.

8.4 DEFINITION Module

A DEFI NI TI ON module contains a set of definitions for export to some other module or
modules. These definitions must be explicitly imported by the other modules which need
them. If a procedure or object method is defined in a DEFI NI TI ON module, then a cor-
responding | MPLEMENTATI ON module must be provided and an implementation of any
procedures must be provided. An | MPLEMENTATI ON module is needed even if it is
empty except for the header and ending statements. The | MPLEMENTATI ON module
contains the executable code for procedures and methods defined in the DEFI NI TI ON
module.

Any construct defined in a DEFI NI TI ON module will automatically be visible in the cor-
responding | MPLEMENTATI ON module. In other words, definitions are implicitly im-
ported to the corresponding | MPLEMENTATI ON module.

94

Chapter 8: Mod-
ules

DEFINITION MODULE]—» identifier —»Ll_J
3 J vy J " EnD MODULE .

IMPORT
— statement

definition

Figure 8-3. Syntax of a DEFINITION Module

When a procedure is defined in a DEFI NI TI ON module, only the procedure heading is
listed. The actua procedure declaration takes place in the corresponding
| MPLEMENTATI ON module. Asan example, if we were to place the procedure Hypl ina
DEFI NI TI ON module called Tri g so it would be available for export, we would do the
following:

DEFI NI TI ON MODULE Tri g;

CONST
gol denSection = 3.0 / 5.0;

PROCEDURE Hyp1(IN a, b : REAL; OUT ¢ : REAL);
END MODULE.

Note that we also defined a constant which will be available for export. The layout of a
definition module is nearly the same as the layout of a block except that procedures are
not fully defined. Only their heading is listed. We can include constant, type, variable
and procedure declarations.

8.4.1 Cycle Dependencies

MODSIM |11 does not require users to identify cyclic relationships between definitionsin
various modules. Users can simply import types, constants and variables as needed
without regard to such dependencies.

8.5 IMPLEMENTATION Module

An | MPLEMENTATI ON module contains the actual code for the objects and procedures
whose interfaces are specified in the DEFI NI TI ON module. In other words it contains
the full declarations for any procedures or object methods whose headings are listed in
the DEFI NI TI ON module. The | MPLEMENTATI ON module must have the same name as
its corresponding DEFI NI TI ON module. Any constants, types or variables declared in
the DEFI NI TI ON module are automatically visible in the | MPLEMENTATI ON module.

95

MODSIM Reference Manual

{ IMPLEMENTATION].(MODULE)—» identifier a@
T_ :L‘ END l MODULE .
I_ IMPORT J declaration 4]

statement

Figure 8-4. Syntax of an IMPLEMENTATION Module

An | MPLEMENTATI ON module may also contain declarations of constants, types, vari-
ables or procedures which will be used strictly in that module to implement its capabili-
ties.

An | MPLEMENTATI ON module may import any constructs it needs from other
DEFI NI TI ON modules. If a construct is imported into a DEFI NI TI ON module it will
automatically be visible in the corresponding | MPLEMENTATI ON module. In other
words, items defined in a DEFI NI TI ON module are implicitly visible in the accompany-
ing | MPLEMENTATI ON module, and items imported into the DEFI NI TI ON module are
implicitly visible in the | MPLEMENTATI ON module.

8.6 The ModInit Procedure

MAI N modules and | MPLEMENTATI ON modules are alowed to have a Modl ni t proce-
dure. Modl nit procedures are procedures guaranteed to be executed before the pro-
gram'sfirst statement is executed. They are a useful tool for initializing modules.

To define a Mbdl ni t procedure, one need only to include a definition for a procedure
named Modl nit somewhere in the module. The Mbdl nit procedure must have zero
arguments.

No guarantee is given as to the order in which the Modl ni t procedures of a set of in-
cluded modules will be executed.

8.7 File Naming Conventions for Modules

MODSIM IllI's compilation manager and other system utilities expect that a certain
naming convention will be used for files which contain modules. MODSIM source files
are expected to have the extension . nod. The file name is composed by preceding the
module name with an M for MAI N module, D for DEFI NI TI ON module and | for
| MPLEMENTATI ON module. The . nod extension is then added. The examples below
show how thisis done:

96

Chapter 8: Mod-
ules

Module Name File Name
MAI N MODULE Al pha MAI pha. nod
DEFI NI TI ON MODULE Bet a DBet a. nod
| MPLEMENTATI ON MODULE Bet a | Bet a. nod
C++ code for Beta Bet a. cpp

Figure 8-5. File Naming Conventions for Modules

Note that the naming conventions extend to C++ source code files which may be part of a
library. In other words, part of the implementation code may be provided in C++. When
this is done, naming conventions for the procedure headings in the DEFI NI TI ON module
must be followed. These naming conventions will be covered shortly.

The file systems on some computers allow only very short file names to be used. The PC
FAT file system is one of these. It allows filenames to be at most eight characters in
length. For systems such as these, the file names for modules having long names will be
truncated. Thus, MAIN MODULE Al phabet Soup must be stored in a file named
MAl phabe. nod. This means that no two modules may have names with the same first
seven characters. Even though their modules names were unique, they could end up with
identical file names. This restriction does not apply to Windows NT or Windows 95 op-
erating systems when they are not using the MS-DOS based FAT file system.

Finaly, file names for MODSIM modules are case sensitive on computers which recog-
nize case in file names, which includes UNIX, Windows NT and Windows 95.

8.8 Including C or C++ Code in a MODSIM Program

The preferred way to include C/C++ routinesin a MODSIM program is to provide a pro-
cedure heading in the DEFI NI TI ON or | MPLEMENTATI ON module which is followed by
the keyword NONMODSI M The C/C++ code is then provided in a file which follows the
naming conventions outlined above.

The following table lists the MODSIM type and the matching type in C/C++ code. The

file' modsi m h' , which is part of the MODSIM distribution should be checked in case
a specific implementation of MODSIM deviates from this table.

97

MODSIM Reference Manual

MODSIM C/C++
| NTEGER l ong

REAL doubl e
BOOLEAN char

CHAR unsi gned char

STRI NG char *toC
ANYREC M5_RECORD
ANYOBJ M5_OBJECT

enuner ati on i nt
ARRAY OF CHAR stringfromC

Figure 8-6. MODSIM Types vs C/C++ Types

Below isaMODSIM DEFI NI TI ON module followed by C++ and C files which include
the implementation code. The procedure heading for a routine which will be provided in
C++ isfollowed by the keyword NONMODSI M In addition the NONMODSI M keyword can
be followed by an optional string literal which distinguishes between different language

linkage conventions. At present the strings "C" and "C++" are valid.

Note: NONMODSI Mwithout any string literal defaultsto C++.

DEFI NI TI ON MODULE Sanpl e6; U fileDSanpl e6. nod
PROCEDURE foo1(IN x : REAL) : | NTEGER, NONMODSI M

PROCEDURE fo002(I N x: REAL) : | NTEGER;, NONMCDSI M “C’;

END MODULE;

| MPLEMENTATI ON MODULE Sanpl e6; U file 1 Sanpl e6. nod
END MODULE;

#i ncl ude <nodsi m h> U file Sanpl e6. cpp

MS_| NTEGER f 001(MS_REAL x)

MS_I NTEGER n;

Cout << IIX - n << X << ll\ nll;
return n;
}
#i ncl ude <nmodsi m h> U file Sanpl e6. c

MS_| NTEGER f 002(MS_REAL x)

MS_| NTEGER n;
printf ("x = %\n", X);
return n;

}

Note: The examples aboveinclude' nodsi m h' . Thisisthe preferred way to interface
MODSIM to C++ code as it helps ensure that C++ code will link without problems, and

will be compatible with future releases of MODSIM.

98

Chapter 8: Mod-
ules

When passing parameters to a C/C++ routine it is important to note that | NOUT and OUT
parameters are handled as pointers. Here is a MODSIM procedure heading and the
matching C++ function to illustrate the point:

DEFI NI TI ON MODULE Sanpl e7;

PROCEDURE Proc7(IN X REAL,
INOUT n : INTEGER) : CHAR, NONMODSI M
END MODULE.

MS_CHAR Proc7(MS_REAL x, MS_| NTEGER* n)
{

}

Because the MODSIM STRI NG type is fully dynamic, it carries with it some bookkeep-
ing information for memory management. Because of this, it must be interfaced to C++
code carefully. This means that strings can be passed between C++ and MODSIM only
in routines which are identified to the compiler as NONMODSI M This ensures that mem-
ory management bookkeeping is done correctly.

The MODSIM STRI NG type can be passed directly into a C++ char* variable. The
MODSIM STRI NG type is null terminated. Strings passed in this way must not be dis-
posed of, or modified by the C++ routine.

Strings coming from C++ to MODSIM must be passed into a MODSIM ARRAY OF
CHAR or FI XED ARRAY [0..n] OF CHAR. The ARRAY OF CHAR can then be con-
verted into a MODSIM STRI NG type using the built-in procedure CHARTOSTR. The
C++ string must be null terminated. A C++ string must never be passed directly into a
MODSIM STRI NG type variable. If this is done, the results are unpredictable, but in-
variably bad since the C++ strings lack the memory management fields used in
MODSIM strings.

The example below illustrates passing a MODSIM string to C++ code and passing a C++
string back to MODSIM:

PROCEDURE foo(IN str: STRING ; NONMODSI M U file Itest. nod

TYPE
Arr = ARRAY | NTEGER OF CHAR

PROCEDURE Test (I N cstr: Arr);

VAR
str : STRI NG

BEG N
str := CHARTOSTR(cstr); { convert to MODSIM string }
QUTPUT(" C++ string: ", str);

END PROCEDURE;

99

MODSIM Reference Manual

PROCEDURE Test Stri ngs;

VAR
str: STRI NG
BEG N
str := "a MODSIM string";

foo(str); { pass string to C++ routine foo }
END PROCEDURE;

#i ncl ude <nodsi m h> U file test.cpp

extern void test_Test(MS_CHAR* astr);
voi d foo(M5_STRING str)
{

cout << "MODSIM string: " << str << "\n";

char* cstr = "a C++ string”;
test _Test ((MS5_CHAR*)cstr); // calling MODSI M PROCEDURE Test
}

It is also possible, but not recommended, to use a C++ routine without following the
naming conventions for file names and without identifying the procedure as NONMODSI M
in a DEFI NI TI ON module. In this case, the link would have to be handled by the user.
The user would then have to use the naming conventions followed by the compiler. The
routine Pr oc 7 would then look like this:

M5_CHAR Sanpl e7_Proc7(MS_REAL x, MS_| NTEGER *n)
{

}

The MODSIM compiler uses the following conventions:

types : <nodul enanme>_<t ypenane>

gl obal vari abl e : <nodul enane>_<vari abl enane>
procedure : <nodul enanme>_<pr ocedur enane>
met hod nane : <nmet hodnanme>_

| ocal variables : <variabl enane>_

Although MODSIM |11 has no inherent limit on the length of identifiers, linkers often do
have limits. Many machines have linkers with a 32 character limit. Users should keep
thisin mind. If the combined length of the module name and identifier exceeds 29 char-
acters (32 minus the 3 underscore characters), it is possible that names which are unique
in the MODSIM code would not be unique when rudely truncated to 32 characters by the
machine's linker. When this happens, the linker may warn that duplicate symbols have
been encountered.

100

Section Il. Object-Oriented Programming

101

MODSIM Reference Manual

102

9. Objects in MODSIM Il

Objects in MODSIM are dynamically allocated data structures coupled with routines,
called methods. The fields in the object's data structure define its state at any instant in
time while its methods describe the actions which the object can perform. The values of
the fields of an object can be modified only by its own methods, but the values of the
fields can be “read” by any part of the program. We refer to the fields and methods of an
object collectively asits properties.

The programmer declares an object type by specifying its fields and its methods. The
OBJECT type is consistent in behavior to other types. Its closest relative is the RECORD.
Object types can be used as fields of records or as fields of other objects. An array of
objects can be declared. The object type can be used as a parameter in procedures and
methods.

The OBJECT type is a dynamic data type, which means that it behaves in the same way as
arrays and records behave. Object instances are allocated and deallocated by the pro-
grammer using NEwWand DI SPCSE.

We introduced a number of these aspects of the object data type in the first section of this
manual. Thiswas to draw attention to the many similarities between object types and the
traditional data types. But in some ways it is a large leap from simpler types to object
types because objects add severa new programming capabilities to the programmer's
toolbox. Although these new capabilities are more easily classified as evolutionary than
revolutionary, the effect of their introduction on programming technique and style has
been profound.

Some of the new capabilities provided by objects are:

* Encapsulation of data and code: Tying together the fields which describe the
object's state with the procedures (called methods) which define its behaviors.
Controlling access to the fields.

* Inheritance: Once an object type has been defined, new types can be defined
based on the existing type. Each descendant in the hierarchy can add its own
fields and method definitions to those of its ancestors.

* Message passing: An object's methods are invoked by sending a message to the
object asking it to perform a specific method.

» Polymorphism: Allowing differing object types in a hierarchy to share the same
method name but provide their own implementation of that method. This results
in a generic invocation producing different behaviors appropriate to the object
being referenced.

103

MODSIM Reference Manual

» Hierarchical types. A descendant istype compatible with any of its ancestors.

When a variable of type OBJECT is declared, the result is areference variable. The ob-
ject's reference variable behaves in the same manner as reference variables for arrays and
records.

9.1 Object Type Versus Object Instance

Once an object type has been declared, instances of that type of object are created using
the built-in procedure NEW The object type serves as a template or specification from
which individual object instances are created by NEW Each object instance has its own
set of fields of the type and number described in the object type declaration.

9.2 Scope of an Object's Fields

Within an object's methods, al of its fields are visible. In other words, the object's fields
are global in scope to the object's methods. Variables declared within an object's meth-
ods, of course, are local to that particular method.

9.3 Object Type Declaration / Object Declaration

An object type declaration is similar to a record type declaration in that each includes a
list of fields, but an object type declaration also includes the headings for any methods
the object will define. A METHOD is nearly identical to a PROCEDURE except that it is
encapsulated in an object:

TYPE

Vehi cl eObj ect = OBJECT U object type declaration
cour se [0.. 359];
speed . | NTEGER;

position : PositType;
ASK METHOD GoTo(I N destination : PositType);

END OBJECT;

OBJECT Vehi cl ebj ect ; U object declaration
ASK METHOD GoTo(I N destination : PositType);
BEG N

executable code goes here

END NETHOD:
END OBJECT:

Object types are declared in the TYPE section of a module. For each METHOD heading
which is mentioned in the object type declaration there must be a full METHOD decla-
ration in a separate object declaration. The object declaration is a separate, named
block which contains all of the METHOD declarations. So there are two elements involved
in defining an object.

104

Chapter 9: Objects

OBJECT

identifier

D

| field/method
list

<

OVERRIDE method list
CLASS fleld/rlrizthod

field/method

A

OVERRIDE method list

A

—
—{ ENDH OBJECT) - >
—.[;)—»{ FORWARD }

Figure 9-1. Syntax of an Object Type Declaration

The obj ect type declaration contains the “interface” to the object. All fields are defined
here and the heading for each METHOD is listed.

105

MODSIM Reference Manual

OBJECT identifier —'D—
METHOD D_
f —
declaration

Figure 9-2. Syntax of an Object Declaration

v

The object declaration is a separate and distinct block which bears the same name as its
corresponding object type declaration. Its only purpose isto hold the full METHOD decla-
rations for the object type.

It is reasonable to ask why the object declaration has been split into two pieces. In most
large MODSIM programs, the object type declarations would be placed in a
DEFI NI TI ON module and the object declaration, which contains the declaration of the
methods, would be placed in an | MPLEMENTATI ON module. This allows the definition,
or interface, of an object to be made visible in a DEFI NI TI ON module while hiding its
implementation in the | MPLEMENTATI ON module. In a program which consists of only
amain module, the object type declaration would come first, followed later by the object
declaration.

A method which returns a function result is referred to as a function method. A method
that does not return a function result is known as a proper method. In the previous ex-
ample, GoTo is a proper method.

The method may optionally include a list of parameters. The syntax of the parameter
list, the type of the parameters, the parameter qualifier and the type of afunction method,
follow the same rules as procedures.

9.4 METHOD Declarations

Other than the use of the keywordS ASK METHOD, TELL METHOD or WAl TFOR METHOD
instead of PROCEDURE, methods are defined using a syntax similar to procedure decla-
rations. Their heading is listed in the object type declaration and their full declaration is
placed in the object declaration block.

The declaration of the method, or the body of the method which contains the executable
code, isfound in the corresponding object declaration block.

106

Chapter 9: Objects

After an object type has been declared, its methods must be declared in a corresponding
object declaration block. Typicaly, the object type declaration is placed in a
DEFI NI TION MODULE, and the corresponding object declaration is placed in an
| MPLEMENTATI ON MODULE.

For example, the corresponding object declaration for the Vehi cl eCbj ect type decla-
ration could look like this:

OBJECT Vehi cl eCbj ect;
ASK METHOD GoTo(I N destination : PositType);
BEG N

implementation code . . .
END METHOD;
END OBJECT;

9.5 Scope of Fields and Variables in Objects

We mentioned that objects are typically declared and used in a library module. Thisisa
good place to digress a bit and review the scope of fields and variables from the perspec-
tive of objects defined in modules:

* Any variable declared in a module externa to any object type declaration or ob-
ject declaration block is global to the entire module. There will be only one copy
of the variable. The variable is visible to the methods of every object instance as
well as every procedure in the module. If the variable is declared in the
DEFI NI TI ON module instead of the | MPLEMENTATI ON module, it will also be
visible to any other module which imports it.

» Any field declared within an object type declaration will be visible in the usual
sense within that object's methods. Each instance of an object type has its own
separate copies of all of the fields. In other words there will be a separate copy of
each field for each object instance which is created. From outside the object, we
can ASK the object for the value of any of the fields, but we cannot directly
change their value with an assignment.

* Any variable declared within the body of a method will be visible only within
that method. There will be a unigue copy of that local variable for each invoca-
tion of that method.

9.6 Object Reference Variables

The declaration of an object type implicitly defines a new data type of the same name,
known as the reference type. Variables declared to be of areference type are known as
reference variables. When areference variable for an object is declared, it is initialized
to NILOBJ. NI LOBJ is a built-in constant which is analogous to NI LREC and
NI LARRAY. It means that the object reference variable is not referring to any object.

107

MODSIM Reference Manual

Objects are like records in that they are created and destroyed dynamically, at run-time,
by the built-in procedures NEWand DI SPOSE. Each object which is created by NEW ac-
cording to the type specification for that object type, is called an object instance. Like
arrays and records, once an object type has been defined, multiple instances of objects of
that type can be dynamically created.

Objects are like arrays and records which have been dynamically created with the NEW
procedure. They are not tied to a particular variable. An object instance can be referred
to by one, many or no reference variables. Likewise, a reference variable can refer to
one object or to NI LOBJ, i.e. no object.

A reference variable contains a reference value which identifies a particular instance of
an object type. Programs will often have many instances of a given object type. All of
these instances share an identical structure, but each will have distinct values in its fields
to represent its current state.

For example, defining the object type Aircraft Cbj ect implicitly defines a corre-
sponding reference type Ai r cr af t Obj ect :

TYPE
Aircraft Cbject = OBJECT
altitude : | NTEGER

wi ngAC : Aircraft Object;
TELL METHOD Land;
END OBJECT;

VAR
Squadron: ARRAY | NTEGER OF Aircraft Object;

PROCEDURE Ai r Control ;
VAR

Ti ger 20, Punma33: Aircraft Object;
BEG N

END PROCEDURE:

In the above example, the field wi ngAC, the elements of the global variable Squadr on,
and the local variables Ti ger 20 and Puna33 are al reference variables for objects of
type Ai rcr af t Obj ect . Note that the declaration for Ai rcr af t Obj ect uses the type
Ai rcraftObject asoneof itsown fields. The identifier is used before its own defi-
nition is complete. Thisis one of two contexts in the language where this rule is relaxed.
The other context isin fields of records.

Reference variables can be used in a manner similar to other types of variables. The
variable declaration:

Squadron : ARRAY | NTEGER OF AircraftObject;
is an example.

108

Chapter 9: Objects

Fields of objects containing reference variables can indicate relationships between ob-
jects. In the example above, the field wi ngAC is a reference variable of type
Aircraft Ooject which is used to access an aircraft's accompanying wing aircraft,
which is another object instance of type Ai r cr af t Cbj ect .

9.7 Class Variables (Fields) and Methods

Class variables and methods are specific to an object declaration just as object fields and
methods are. The difference is that only a single instance of a class variable ever exists,
as opposed to object variables (fields) which are duplicated for each instance creation of
the object type. If an object type declaration contains class variables and/or fields, then
the object description itself may be considered an entity or meta class. Class variables
and methods may be referenced directly from the object type itself.

Class variable and method declaration is part of an object's declaration. The keyword
CLASS follows all instance field and method declarations including any OVERRI DE or
PRI VATE sections. Following the CLASS statement, class fields (variables) and meth-
ods may be declared. This section may contain an OVERRI DE and PRI VATE section as
well. Class variables and methods are inherited just as instance fields and methods are
inherited, and class methods may be overridden to modify their behavior as appropriate
for the derived object type.

For example:
Pl aneCbj = OBJECT
LoggedHour s : REAL;
Al titude : REAL;
Desti nati on : CityType; (* declared el sewhere *)
TELL METHOD FlyTo(IN city : CityType);
CLASS
Pl aneQueue © QueueQbj;
ASK METHOD Creat eQueue;
END OBJECT;

Suppose we desired an object type that could limit the number of instances ever ssimulta-
neously in existence; for example, a pool of resources where each member of the pool is
aresource object itself. We could declare the following object type:

Resour cePool Gbj = OBJECT(Resourcej)
OVERRI DE
ASK METHOD Qbj I nit;
ASK METHOD hj Ter m nat e;

CLASS
nunber Al | owed : | NTEGER;
ASK METHOD Set Number Al'l owed(I N num : | NTEGER) ;
END OBJECT;

OBJECT Resour cePool Obj ;
ASK METHOD Obj I nit;

109

MODSIM Reference Manual

BEG N

DEC(nunmber Al | owed) ;
END METHOD;
ASK METHOD hj Ter m nat e;
BEG N

I NC(nunmber Al | owed) ;
END METHOD;
ASK METHOD Set Number Al'l owed(I N num : | NTEGER) ;
BEG N

nunber Al |l owed : = num
END METHOD;

END OBJECT;

In our intialization statements we can then instantiate the object type so that it will keep
track of the availability of resource objects:

ASK Resour cePool Obj TO Set Nunber Al | owed(34) ;

Notice that the type name itself is used as areference for the ASK construct. Thisis only
allowed for class variables and methods. If an instance of Resour cePool Obj had been
created it could be used to reference any class variables or methods as well. Also, note
that within an object type's methods class variables and methods may be referenced and
class variables assigned as if they were regular fields or methods of the object type.

When we are ready to create a new instance of Resour cePool Cbj we check the
nunber Al | owed field and proceed accordingly:

VAR
Resource : Resour cePool Ooj ;
BEG N
| F ASK Resour cePool Obj nunber Al |l owed > 0
NEW Resour ce) ;
ELSE
(* appropriate processing *)
END | F;

In addition to ASK methods, both TELL and WAITFOR methods may be delared as

CLASS methods.

9.8 Object Type Checking and the ANYOBJ Type

The special type ANYOBJ provides an escape from strict type checking of reference vari-
ablesin MODSIM. It isanalogous to the type ANYREC for records.

A variable of type ANYOBJ can be used to hold a reference value of any object type. No
type-checking is performed during an assignment to or from a variable of type ANYOBJ.

110

Chapter 9: Objects

It is away to circumvent MODSIM's type checking. There may be circumstances when
thisis necessary. Usually the relaxation of type checking is used when building general
purpose procedures or methods which are designed to operate on any object instance,
without regard to itstype. For example:

PROCEDURE Swi t chObj ects(I NOUT firstCbj : ANYOBJ;
I NOUT secondObj: ANYOBJ);

VAR
temp : ANYOBJ;

BEG N
tenp = firstObj;
firstCObj = secondQbj ;
secondOhj : = tenp;

END PROCEDURE;

The procedure above will exchange objects of any type. This saves us the chore of writ-
ing a separate switch procedure for each object type. This ability is used in many of the
library modules. Of course, as with the ANYREC type, this powerful capability is a two-
edged sword. Since it circumvents strong type checking of parameters, it leaves the
careless programmer vulnerable to run-time errors which may be difficult to debug.

Just asit is not possible to reference fields of a record which has been assigned to a vari-
able of type ANYREC, it is not possible to reference fields of an object which has been
assigned to a variable of type ANYOBJ. This is because the ANYOBJ typed variable car-
ries no information about the structure of the object it is referring to.

9.9 Allocating and Deallocating Objects

An object instance is allocated by calling the standard procedure NEW which takes as its
argument a reference variable of the desired type. The reference value for the object in-
stance is returned in the argument, and each field of the instance is automaticaly initial-
ized as appropriate.

For example:

VAR
Ti ger20: AircraftQoject;

NEV\(Ti ger 20) ;

The above call allocates an object instance of type Ai rcraft Obj ect and returns its
value in the reference variable Ti ger 20.

Note: It is not sufficient to ssimply declare the reference variable to obtain access to an
object instance. The reference variable contains NI LOBJ (analogous to NI LARRAY and
NI LREC) until it is assigned a reference value by a call to NEWor by an assignment
Statement.

111

MODSIM Reference Manual

An object instance is deallocated by calling the standard procedure DI SPOSE, which
takes as its argument an object reference variable.

For example:
DI SPOSE(Ti ger 20) ;
deallocates the object instance which was allocated in the previous example.

An object stored in a variable of type ANYOBJ can be passed to DI SPOSE. Since objects
carry their actual type information with them, DI SPOSE is able to identify the object and
handle it properly.

9.10 Objlnit & ObjTerminate

Some object types may require initialization of their instances before they are used. If a
method called Qbj | ni t has been defined for an object type, then the method will be in-
voked automatically by NEW

A complementary method called Obj Ter mi nat e is used to perform “cleanup” before

deallocating objects. This method is called automatically, if it exists, by DI SPOSE be-
fore it deallocates the object instance.

9.11 ObjClone

The built-in CLONE function can be used to make a copy of an object instance. When
CLONE is passed an object instance to copy, it will do the following:

1. Allocate space for a new object instance of the same type passed in.

2. Copy the valuesin the fields of object instance passed in to the new copy.

3. Invoke the new object instance's bj | ni t method if one exists.

4. Invoke the abject type's Obj Cl one method, if one exists.
The Obj C one method is analogous to the Gbj I nit and Obj Ter m nat e methods.
The Obj C one method can be used to perform any more complex behaviors which the
user wants to associate with the copy.
If the programmer overrides an existing Cbj Cl one method, the overridden method must

be invoked with the | NHERI TED statement to ensure that all behaviors associated with
copying defined by ancestors are carried forward.

112

Chapter 9: Objects

9.12 Proto Objects

MODSIM provides a special object type declaration facility that allows programmers to
design and implement objects in a general purpose and high-level way, while allowing
the use of these objects to be refined as appropriate to individual applications. For exam-
ple, group objects (queues, stacks, btrees, etc) are provided in the MODSIM runtime li-
brary support. These objects have been implemented so that any object may be placed in
such a group. When used in applications, groups generally contain only one kind of ob-
ject or objects derived from a single ancestor object type. However, the compiler cannot
ensure that only instances of the “correct” object type are added to a user's groups since it
has no way of knowing which types to include or exclude. For this purpose proto-
objects are employed.

A proto- object type declaration is amost identical to aregular object type declaration.
But, with proto-object types the user can indicate that certain field, method return and
formal argument types are replaceable. Replaceable types may be any object type in-
cluding the built-in generic ANYOBJ or the built-in generic ANYREC. A replaceable type
may only be replaced with a compatible type. In the case of ANYOBJ, any object type
may be used. Similarly, for ANYREC any record type may be used. If the replaceable
type is a specific object type, then only object types derived from the replaceable type
may be used.

Any field, method parameter or method return type may be declared as replaceable. An
example of a proto-object declaration is shown below:

bj = OBJECT

field : #Aobj;

ASK METHOD foo(IN a : #Aobj) : #Aobj;
END OBJECT;

Here, 'fi el d'isan Aobj which is replaceable and the method 'f oo’ has a parameter of
type ACbj and returns an AQbj , both of which are replaceable.

To derive a substitute replaceable type the syntax shown in figure 9-3 is used.

"—b[inherit spec]——»[)]—»

Figure 9-3. Syntax for Substituting a Replaceable Type

where 'inherit spec' is:

113

MODSIM Reference Manual

[identifier |——>[1]—>

—-| identifier H []4L>| identifier |—>(: } TI

Figure 9-4. Syntax for 'inherit spec’

For example:

If we want to have a queue that could contain only Pl aneObj s or object types derived
from planes, we can restrict QueueCbj so that the compiler will ensure that only the
correct type of object can be added to the queue:

Pl aneQueueObj = OBJECT(QueueOhj [ANYOBJ: Pl ane(bj])
(* any additional fields and nethods needed *)
END OBJECT;

Remember that the replacement type must be compatible with the replaceable type. Any
use of the new type will cause the compiler to ensure that the correct type object (or rec-
ord) instances are passed to the queue object's methods and that its return values (from
Rermove(), for example) are assigned to variables of a compatible type.

The following example illustrates how to derive and substitute multiple levels of proto-
objects:

Pl aneCbj = OBJECT
(* field and net hods *)
END OBJECT;

Jet Obj = OBJECT(Pl anebj)
(* fields, nmethods and overrides *)
END OBJECT;

Pl aneQueueObj = OBJECT(QueueObj [ANYOBJ: #Pl ane(j])
(* notice that QueueObj is a PROTOwith the *)
(* replaceable type ANYOBJ *)
(* this object substitutes PlaneObj for ANYOBJ -*)
(* thereby restricting this queue to hold only *)
(* PlaneObj things. By placing '# before *)
(* PlaneObj in the substitution, subsequent *)
(* derivations may replace PlaneObj with their *)
(* own object derived froma PlaneChj *)

END OBJECT;

114

Chapter 9: Objects

Jet Queuej = OBJECT(Pl aneQueueObj [Pl aneObj : Jet Obj])
(* in this declaration a further refined queue *)
(* is defined by substituting JetCQhj for *)
(* PlaneOj. since Jet(Obj is NOT preceded *)
(* by "# no further substitution would be *)
(* enabled. however, if desired a '# could *)
(* precede JetQj in order to allow *)
(* further refinenents. *)

END OBJECT;

Proto-object types may be used “asis.” That is, it is not required that users derive their
own type or substitute types for the replaceable types. If the proto-object type is used
without replacements, the object type will use the replaceable type(s) as a default. Also,
if a proto-object type specifies more than one replaceable type, the user may selectively
replace zero, one or more of them.

115

MODSIM Reference Manual

116

10. Methods and Fields of Objects

The object type declaration must be accompanied by an object declaration which includes
the full declaration of the object's methods. The heading of each method is listed in the
object type declaration, but the full definition of the method is done in the object decla-
ration block.

A METHOD differs from a PROCEDURE in several important ways:

» The method is tied to an object. It can only be invoked by sending a message to
an object instance requesting that the method be performed.

* Unlike procedures, there can be any number of methods named with the same
identifier. Each one can have different implementation code. They can be distin-
guished from each other because each is tied to a different object type.

* Some methods can elapse simulation time but procedures cannot.

Methods come in three forms: ASK methods, TELL methods, and WAl TFOR methods.
The form is specified when they are declared. There are important distinctions between
ASK, TELL, and WAI TFOR as pertains to simulation, but for now we will simplify the
distinction somewhat. Since WAI TFOR methods may only be called as part of the WAI T
FOR statement we will defer showing examples of WAI TFOR method invocations until we
discussthe WAI T FOR construct in Section 111.

10.1 Invoking an Object's ASK and TELL METHODs

Methods differ in one crucial way from procedures; they are always invoked with refer-
ence to a specific object:

ASK | TELL object [TO] nmethod [(paraneter list)]

or

value := ASK object [TO] nethod([paraneter list]);

Figure 10-1. Method Invocation

TOisa"“noise word” which can be optionally specified in method calls to make the code
more readable, but it has no effect during execution.

An ASK statement behaves exactly like a procedure call. When the ASK statement is

executed, the object is requested to invoke the method. The calling code then waits for
the invoked method to finish execution before proceeding past the ASK statement. ASK

117

MODSIM Reference Manual

methods are not allowed to pass any simulation time, so, in a ssimulation, the action just
described takes place at one instant of simulation time.

Sincethe ASK METHOD is like a procedure, it can either be a proper method or a function
method which returns a value.

—»[ASK]—’ expression
A 4

|) — R actual A >

TO)—» identifier i parameters -

Figure 10-2. Syntax of the ASK Statement

The TELL method is adso known as a delayed method call. It is essentially an
asynchronous call. The calling code executes the TELL statement which requests the
object to invoke the method. The calling code then proceeds past the TELL statement
without waiting for the invoked method to complete execution or, for that matter,
even to start. TELL methods are allowed to pass simulation time.

The TELL METHOD is only available in one form; the proper method. It is not possible
to define a TELL method which acts like a function method and returns a value. Since
the TELL method is called asynchronously and there is no further connection between the
calling code and the TELL method, there would be no place to which areturn value could
be passed. Actually there is a place in the invoker's code to which a return could be
made, but the invoking routine is not waiting there to regain control. It has continued
execution past that spot in the code. For the same reason, | NOUT and OUT parameters are
not allowed in TELL methods. In Section I11 we will cover the TELL method and asyn-
chronous calls in more detail.

The WAI TFOR method has characteristics of both the TELL method and the ASK method.
Its use is constrained to the WAI T FOR statement. As with TELL methods, WAl TFOR
methods are allowed to pass simulation time by means of the WAI T statement. Unlike
TELL methods, WAI TFOR methods may pass values back through I N and | NOUT pa-
rameters. In Section 111 we will revisit the WAl TFOR method and discuss the WAI T FOR
conditional control construct.

118

Chapter 10: Methods and Fields

—" TELL]—P expression
A 4
- identifier > actual
° parameters

\ 4

. A 4
expression

Figure 10-3. Syntax of the TELL Statement

v

Note that the syntax of the TELL statement allows options not covered here. These will
be discussed in Section I11.

Here are two examples of method invocations; i.e. sending messages to objects request-
ing that methods be performed:

TELL Aircraft TO Fl yTo(OHare);
| ocation := ASK Ship position();

The first statement is an asynchronous call. We are asking the object instance named
Aircraft toexecuteits method called Fl yTo. We have provided an input parameter,
presumably telling it where to go.

The second statement is a synchronous call of a function method. We are asking the ob-
ject instance named Shi p to execute its method called posi t i on. Presumably thiswill
return the ship's current location, which is then assigned to the variable | ocat i on.

ASK and TELL methods of an object are invoked from outside of the object using the
ASK or TELL keyword, the object's reference value, the method name, and any arguments
to the method. Note that the reserved word TOis optional. It is one of the few optional
elements of MODSIM's syntax:

ASK { or TELL } object [TO] nethod();
There is also a short-cut notation which can be used to invoke ASK and TELL methods of
an object. It is not necessary to use the ASK or TELL syntax within any of the object's

methods to invoke its own methods. Methods can be invoked as if they were locally de-
fined procedures.

119

MODSIM Reference Manual

10.2 Built-in Reference Constant SELF

If it is necessary to refer to the object itself, within one of its methods, we use the built-in
reference type constant SELF.

If the three statements above had been placed respectively within methods of an
Aircraft and Shi p object, they would look like this:

Fl yTo(CHar e) ;

or
TELL SELF TO Fl yTo(OHare);

| ocation := position();

or
| ocation := ASK SELF position();

SELF may also be used when an object wants to identify itself to another object, asin:

TELL Ti ger20 TO Report Di st ance(SELF);
Thiswould request Ti ger 20 to report its distance from the object making the request.

Note: The usua rules which apply to constants also apply to SELF.

10.3 Referencing an Object's Fields

The ASK method is aso used for another purpose. In order to determine the value of an
object instance's fields, the ASK method is used in a manner similar to afunction call. In
essence we ask the object for the value of its fields. However, the value of an object in-
stance's fields can only be modified within its own methods.

Theformis:

ASK object field

For example:

range : = ASK Car fuel Left * ASK Car MPG

This statement requests the value of two fields of the object instance named Car. An
expression is formed from the two requests and the car's range is computed based on its
remaining fuel and its mileage rate. Note that, in contrast to invoking a function method,
no empty parameter list is used since these are fields which are being referenced.

There is also a shortcut notation which can be used to reference fields of an object in-

stance. Within any of the object's methods, it is not necessary to use the ASK syntax.
Fields can be referenced asif they were local variables.

120

Chapter 10: Methods and Fields

If the statement above had been placed within a method of a Car object, it would look
like this:

range = fuel Left * MPG
or
range = ASK SELF fuel Left * ASK SELF MPG

Here is another example which shows how fields of an object are referenced from outside
the object:

| F ASK Ti ger20 position <> HoneBase
TELL Tiger20 TO ProceedTo(HoneBase) ;
QUTPUT(" Not at home base, but returning");
ELSE
QUTPUT(" Al ready at hone base");
END | F;

If the same piece of code were in one of the object's own methods, it would look like
this:

| F position <> HoneBase

ProceedTo(HoneBase) ;

QUTPUT(" Not at home base, but returning");
ELSE

QUTPUT(" Al ready at hone base");
END | F;

In the second line above we could also have used:

TELL SELF TO ProceedTo(HoneBase);

There is a shorthand version of ASK. Occasionally, you may have nested ASKs and the
notation can get a bit cumbersome. The"." (dot) may be used to access fields and/or ASK
METHODS of an object instead of or in combination with the ASK specifier. This alterna-
tive has been provided to simplify nested ASK expressions in code.

Example:

ASK (ASK obj ect group) nunberln;
ASK (ASK obj ect group) Renove();

may be replaced, respectively, with:

obj ect . gr oup. nunber | n;
obj ect . gr oup. Renove();

121

MODSIM Reference Manual

10.4 Monitoring of Fields or Variables

Monitoring is a group of powerful features that allow behavior to be attached to the oper-
atations of accessing or setting the value of any variable or field. The monitoring opera-
tion is separate and hidden from the processing that uses or sets the value.

You can use monitoring in many ways. For example, you can monitor a variable and
update a screen plot whenever the value changes. You could also represent a value in
storage in a different form that you use for processing the value, e.g., an encrypted or
compressed form. Monitoring can also be used as a debugging tool, allowing you to
watch over certain key variables or fields without altering the main flow of program
logic. Monitoring can also allow you to separate the operation of a pure simulation
model from the statistics gathering that obtains simulation results.

A variable or field (whether of an object or record) may be monitored. Monitoring may
be specified as being left, right, or left and right. Left monitoring means that any time a
value is given to the variable or field, the monitoring methods that you have specified
will be invoked (i.e., that variable or field is on the left hand side of an assignment).
Right monitoring invokes the specified methods whenever the variable or field is refer-
enced (i.e., the variable or field is on the right hand side of an assignment).

Y ou perform monitoring by replacing the data type of a variable or field with a monitor
type that has been declared for the desired data type. Any valid data type can be moni-
tored, including ennumeration type, subrange type, INTEGER, REAL, STRING,
BOOLEAN, object type, record type, and array type.

As well as providing all capabilities of the desired data type, monitoring also invokes
your LMONI TOR and/or RMONI TOR methods for the monitor type.

In order to obtain the benefits of monitoring you must provide three elements:

1. Define a monitor object.
2. Provide an implementation of the monitor methods.

3. Attach the monitor object to avariable or field.

Monitoring can be either static or dynamic. Static monitoring is part of the program's
complete run while dynamic monitors can be added or removed during a run.

Monitoring is a rich feature because it can support type structures and inheritance. For
instance, you can use dynamic monitoring to attach a monitor to a field of a single ins-
stance of some object. This marked spy object participates in operation of a simulation
model, but can gather a trace of its own unique history or provide special reports.

122

Chapter 10:
10.4.1 Example of Static Monitoring
MAI N MODULE MonXnp;
Moni t or Sanpl e = MONI TOR | NTEGER OBJECT
LMONI TOR METHOD Set Newval ue;
RVONI TOR METHOD Get O dVal ue;
END OBJECT;
OBJECT Moni t or Sanpl e
LMONI TOR METHOD Set Newval ue;
BEG N
OUTPUT(" Set Newval ue to ", NEWALUE);
END METHOD;
RVMONI TOR METHOD Get O dVal ue;
BEG N
OUTPUT(" Get A dval ue, which is ", VALUE);
END METHOD;
END OBJECT;

VAR
gueuel en : LRVMONI TORED | NTEGER BY Moni t or Sanpl e;

BEG N

gueuel en : = 0;
gueuel en : = queuelen + 1;
END MODULE

10.4.2 Defining Monitor Objects

Methods and Fields

A monitor object type is declared with the full generality of any other object type decla-

ration, as shown in figure 9-1.

10.4.3 Syntax

—O—

—{ MONITOR)—> type —{ OBJECT]—l—D[(}" » identifier

field/method list —{ END]—»(OBJECT)—»

Figure 10-4. Syntax for Monitor Objects

123

MODSIM Reference Manual

10.4.4 Semantics

A monitor type may have as many left- and right-hand monitoring methods as desired.
When there is more than one monitoring method for a given direction they will be called
in the order in which they are defined.

A monitor type may inherit from other objects. The parents of a monitor type may be
either monitor types or non-monitor types. An object that inherits from a monitor object
must be a monitor object and must be for the same data type. Only a monitor type may
have monitor methods.

A monitor type may be constructed for another monitor type, and a variable or field may
be monitored by more than one monitor object.

10.5 Implementation Features for Monitor Methods

10.5.1 Syntax

(LMONITOR

METHOD)—» identifier —{ ;]—‘

(RMONITOR

N

method block

END METHOD

Figure 10-5. Syntax of Monitor Methods

10.5.2 Semantics

A monitor method can access three special quantities: VALUE, NEW/ALUE, and
UPDATEVAL UE.

VALUE may be accessed from all monitor methods. It provides the last contents of the
monitored variable or field. Itstypeisidentical to the declared monitor object type.

NEW/ALUE is available in LMONI TOR (left monitor) methods. It gives the value that the
variable of field is scheduled to acquire.

UPDATEVAL UE may be called from LMONI TOR methods. Such calls allow the method to
modify the NEWVAL UE of the variable or field. Subsequently invoked methods will have
the modified NEW/ALUE. After al left monitor methods have been invoked the variable
or field will be assigned the value of NEWWAL UE.

124

Chapter 10: Methods and Fields

10.6 Attaching a Monitor Object to a Variable or Field

10.6.1 Syntax for Simple Fields

LRMONITORED

Figure 10-6. Syntax for Simple Fields

10.6.2 Syntax for Monitor Types

LRMONITORED

Figure 10-7. Syntax for Monitor Types

10.6.3 Semantics

To declare asimple monitored variable or field use the syntax for simple fields. You can
also declare an entire type to be monitored using the syntax for monitor types.

The"BY" listis optional. When present it isalist of one or more monitors. All of these
monitors must be monitors for the same data type. The listed monitors, also known as
the "static monitors' have monitor objects created for them automatically and are auto-
matically attached to the monitored variable. In addition static monitors are automati-
cally disposed when the monitored variable goes out of scope.

Because monitors are full-fledged objects, the Obj | ni t method (if provided) will allow
them to initialize, and Obj Ter mi nat e (if provided) will alow them to clean up grace-
fully.

When avariable or field is declared as LMONI TORED or LRMONI TORED, each LMONI TOR
method of all of its attached monitor objects will be invoked. Similarly, when a variable
of field is declared as RMONI TORED or LRMONI TORED, all of the attaached RMONI TOR
methods will be invoked.

125

MODSIM Reference Manual

10.6.4 Dynamic Monitors

During a run, additional monitors may be added to a variable or field that has been de-
clared to be monitored. Thisis done by creating (with NEW a monitor object of the cor-
rect type and using the ADDMONI TOR procedure to add this "dynamic monitor” to the
variable's monitor objects. By default, the monitor is enabled, that is, ADDMONI TOR per-
forms ACTI VATE.

During a run, you can use the ACTI VATE and DEACTI VATE procedures, as appropriate,
to turn the operation of a monitor object on or off.

You are responsible for deallocating the dynamic monitor object, so before you
DI SPOSE of a RECORD or OBJECT containing a monitored field, you should see that
DEACT! VATE and REMOVEMONI TOR are performed, as appropriate.

Since each monitor object has its own fields and methods, it may behave just as any ob-
ject.

GETMONI TOR is provided to obtain the reference to one of the monitor objects of a
monitored variable or field. The built-in procedure GETMONI TOR takes two arguments. a
monitored variable or field and a monitor object type name. It returns the object of the
specified type. The return value can be used to access fields and methods of the monitor
object.

Because of inheritance, it is possible that a given field will have monitors for its type and
its base types. It is also possible to use ADDMONI TOR to attach several monitor objects for
the exact same type. When this is done al of the monitors will operate. The
GETMONI TOR function will only return the first monitor for any specific type. If there
are more, or if you add a dynamic monitor for a type that has a static monitor, you may
need to do additional bookkeeping.

126

11. Inheritance

A new object type can be defined in terms of an existing object type. Thisis called in-
heritance. The newly derived object type is then termed a derived type of that base
type. The derived type will have all the fields and methods of the base type.

The derived type will typicaly define additional fields and/or methods not present in the
base type. It may also override the implementation of a method defined in an underly-
ing object type and replace it with its own.

MODSIM I11 aso supports aform of inheritance known as multiple inheritance in which
anew object type is defined in terms of two or more existing object types.

A method in a derived type can invoke a method of the same name in an underlying or
base type, by use of the | NHERI TED keyword. This is useful when the programmer
wishes to append new code to an old method of the same name. The | NHERI TED key-
word effectively inserts the entire old method in the new method with one statement.

Any method not explicitly overridden by the derived type is automatically inherited from
the base type. Similarly, the derived type also inherits all fields of its base type.

While a derived type can override and replace inherited methods, it cannot redefine in-
herited fields. It can, however, add new fields and new methods of its own.

Attempts to cast down object references to an object type which is not an ancestor will
always cause a runtime error.

11.1 Hierarchical Object Types

The object type is specia in a number of ways. The capability to inherit the fields and
methods of an object and elaborate on them is a powerful feature. If the language were
to impose the traditional type rules on the objects involved in an inheritance hierarchy,
this would limit the usefulness of objects.

Because of this feature, an object in a hierarchy is considered to be compatible with the

type of any of its ancestors. The following figure shows a hierarchy of objects al de-
scended from one common object, the Power edbj .

127

MODSIM Reference Manual

Simple Objects

PoweredObj S Uindfesfiing e

Yehicle Ohj gase £
| Lot fiiny frg

ShipOhj AjroraftObj

HelicopterOhj| < feriwd fipe

Complex Objects

Figure 11-1. Object Type Hierarchy

If welook at the object hierarchy tree from the perspective of the Ai r cr af t Obj , we can
describe the relationship of objectsin the tree in the following way.

All of the types above Ai r cr af t Obj in the tree are known as underlying types. They
arethe ancestorsof Ai rcraft Obj .

Vehi cl eObj , the object immediately above Aircraft Cbj, from which it was de-
scended, is the base type of Aircraft Cbj. AircraftObj inherited al of its fields
and methods from Vehi cl eQj .

Finally, any connected object below Ai r cr af t Obj inthetreeisaderived typeof Ai r -
craft Qbj . They are descendantsof Ai r cr af t Obj .

The hierarchical type rules for objects state that a reference value for an object can safely
be assigned to a reference variable of one of its underlying object types. The converseis
not true.

If we had an object instance of type Hel i copt er Obj , we could safely assign it to a
variable of type Vehi cl eObj and then invoke its methods or check the values of its
fields. Thisis because the Hel i copt er Obj has inherited all of the fields and methods
of Vehi cl ebj .

MODSIM 111 will not allow the programmer to assign an object instance of type Vehi -
cl eObj to avariable of type Hel i copt er Obj . Consider that the Hel i copt er Obj

128

Chapter 11: Inheritance

had defined a method call Hover. The Vehi cl eGbj would not know what to do if
asked to execute the Hover method. Serious trouble would ensue.

The hierarchical type rules we just described apply in al situations. Thus, if a procedure
or method was expecting a parameter of type Vehi cl eObj , we could safely and legally
invoke the routine with a variable of type Hel i copt er Obj .

11.2 Coercion of Objects

MODSIM I11 alows explicit type coercion of objects, so that carefully crafted code may
employ a direct and safer mechanism to accomplish assignment of parent (base) class
object instances to child (derived) class variables and vice versa. Type checking will be
performed to ensure that the coercion type is either an ancestor or child of the instance
type. Coercion is specified by preceding the instance variable to be coerced by the de-
sired type name and surrounding the instance variable with parentheses.

Exanpl e:
parent = OBJECT
foo : |INTEGER
END IGIBLJECT;
child = OBJECT(parent)
bar : REAL;
END OBJECT;
VAR
p : parent;
c : child;
(1) c :=child(p); (* force p to be accepted as a

child type object *)
parent(c);(* force ¢ to be accepted as a
parent type object *)

o
I

Coercion should be used sparingly and very carefully. Remember that regardliess of the
type of the left-hand side of an assignment, the right-hand side remains an instance of the
object class from which it was NEWed. It is not necessary to expressly cast child class
objects when assigning them to parent class variables, but for clarity of code it is useful
to do so. When assigning parent class object instances to child class variables explicit
casting is required. This is a potentially dangerous, although occasionaly necessary, op-
eration since you are “fooling” the compiler into allowing reference to fields and/or

129

MODSIM Reference Manual

methods that the parent class instance may not actually have. In the above example, after
the first assignment (1) the compiler would allow:

ASK c¢ bar;

However, ¢ might have been NEW'ed as a parent class object which does not have a bar
field. This type of problem would not express itself until runtime and would cause a run-
time error to be generated.

11.3 Object Inheritance

As we mentioned earlier, most of the object types a programmer uses are built upon the
definitions of other object types, either those from the standard MODSIM library, or
user-defined object types. Thisisacommon way to define an object type.

To show how a new object type inherits the attributes of its ancestor and builds upon it,
we can continue with the example shown in the type hierarchy tree above. Consider how
the Hel i copt er Obj was defined based on the existing Ai r cr af t Obj . For that matter
it isworth examining the entire hierarchy:

DEFI NI TI ON MODULE Movi nghbd,;

TYPE
fuel Type = (Unl eaded, Diesel, AvGas, JetFuel);

| ocati onType = RECORD

| atit ude,
| ongtitude : REAL
END RECORD;
Engi neCbj = OBJECT
power : | NTEGER;
fuel . fuel Type;

knmPer Ltr : REAL;
TELL METHOD ConsuneFuel ;

END OBJECT;

Vehicl eObj = OBJECT(Engi neCbj)
position : |ocationType;
course [0..359];
speedKm : | NTEGER;

fuel Level : REAL;
TELL METHOD GoTo(I N destination: |ocationType);
TELL METHOD St op;

END OBJECT;

Aircraft Gbj = OBIJECT(VehicleOoj)

altitude : | NTEGER
END OBJECT;

130

Chapter 11: Inheritance

Hel i copter Obj = OBJECT(AircraftOoj)
i nHover : BOOLEAN;
TELL METHOD Hover (I N posit : |ocationType;
IN alt : | NTECER) ;

END OBJECT;
END MODULE.

The derived object has access to all of the properties of its base type, in addition to its
own unique properties, so we could implement the Hover method using properties of
both Ai rcraft bj ect and Hel i copter Obj ect. Hel i copt er Cbj ect isacom-
posite of all of its ancestors plus the fields and methods it has declared on its own. This
means that it has the following fields and methods:

power . | NTEGER;

fuel . fuel Type;
kmPer Ltr : REAL;
position : |ocationType;
cour se [0..359];
speedKm ;| NTEGER;

fuel Level : REAL;
altitude : | NTEGER

i nHover : BOOLEAN;

TELL METHOD ConsuneFuel ;
TELL METHOD GoTo(I N destination: |ocationType);
TELL METHOD St op;
TELL METHOD Hover (I N posit : |ocationType;
IN alt : | NTECER) ;

11.4 Overriding Methods

There will be occasions when one of the methods a derived object type has inherited is
not appropriate or needs to be changed in some way. In this case, the new object type
declaration can explicitly state in the object type declaration that it is overriding the in-
herited method. It must then provide a replacement for the overridden method in its ob-
ject declaration block.

Assume that the Vehi cl eCbj type defines a St op method which looks like this:

TELL METHOD St op;
BEG N

speedKm : = 0;
END METHOD;

If it were necessary to provide a more elaborate St op method for the Ai rcraft Ob-
j ect, thisis how the object type declaration would look:

" AircraftObj = OBJECT(Vehicl eObj)
altitude : | NTEGER
OVERRI DE

131

MODSIM Reference Manual

TELL METHOD St op;
END OBJECT;

Then we would provide a replacement method declaration with new code in the object
declaration block:

OBJECT Aircraftnj
TELL METHOD St op;

BEG N
... make sure we're on the ground first!
altitude := 0O;
speedkKm : = 0;
END METHQOD;
END OBJECT;

This is how polymorphism is achieved. The Vehi cl eObj has a method called St op
which simply setsits speed to zero. The Ai rcr af t Gbj also has a method called St op,
but this method executes some code to ensure that the aircraft is back on the ground be-
fore it sets the speed to zero. Each object executes a different behavior when sent the
message to stop. It will aways be appropriate to do the following:

TELL SonmeCbj TO St op;

aslong as SoneObj iseither aVehi cl eQbj or isderived from Vehi cl ej .

11.5 Extending Inherited Behaviors

In some cases, the overriding method completely replaces the method from the underly-
ing type. Thisiswhat we just did with the St op method for Ai r cr af t Obj . However,
in other cases, it may be desirable to merely extend the underlying method. In these
cases the new method can invoke the overridden method as part of its behavior and then
provide additional code which further describes its behavior.

To invoke the overridden method from the base type we precede a standard method invo-
cation with the reserved word | NHERI TED.

For example, to implement the proper method GoTo for an Ai rcraft Obj, it may be
easier to build upon the existing GoTo code defined for its base type, Vehi cl ej .
Once the inherited GoTo method has been overridden in the object type declaration, a
replacement is provided which calls the original method.

132

Chapter 11: Inheritance

OBJECT AircraftOject;

TELL METHOD GoTo(l N destination: |ocationType);
BEG N

{ some flying-specific code }
| NHERI TED GoTo(desti nati on);
{ more flying-specific code }

END METHOD; END OBJECT;

Thus, the GoTo method for an Ai r cr af t Obj would perform some unique calculations,
and then invoke the GoTo method from the underlying object type; in this case,
Vehi cl eQbj .

An inherited call can be performed for a function method as well. Such a method might
contain a statement such as:

ASK METHOD Fuel Amount (I N TankNum | NTEGER) : REAL;
SomeVar: = R Num * (1 NHERI TED Fuel Amount (TankNum)) - 4. 0;

Operations to be performed “before” and “after” a particular method can be handled in
MODSIM by the ordering of code before and after the inherited call. In general, each
method that uses inherited code will take the form:

BEG N

{ code preparing for the inheritance }
I NHERI TED t hi sMet hod(ar gs);

{ code using the inheritance }
END METHQOD;

This mechanism is both simple and versatile, and is appropriate for al single-path in-
heritance combinations of methods. When an object inherits methods from more than
one object type, a somewhat more complex approach is necessary. This will be de-
scribed in the following sections on multiple inheritance.

11.5.1 Overriding the Objlnit Method

There will be occasions when the new object defined through inheritance will want to
elaborate the bj | ni t method of its ancestor. The Obj | ni t method can be overridden
just like any other method. However, if thisis done, the original Obj | ni t method must
be invoked with an inherited call. Thisis also true for Obj Cl one and Obj Ter mi nat e.
It is very important to ensure that any previously defined Obj | ni t methods are invoked.
If this rule were not observed, then some crucial part of an object's initialization could be
inadvertently omitted. This is particularly important with objects imported from librar-
ies. The user may not be aware of the initialization requirements for these objects.

133

MODSIM Reference Manual

11.6 Multiple Inheritance

MODSIM 111 alows an object type to be defined in terms of more than one base object
type. Thisiscaled multipleinheritance.

When a new object type is defined in this way, it has a copy of each field and each
method of each of its base types. Like powerful features in any system, this can be a
two-edged sword. If the base types from which the new object type have been derived
have used the same identifiers to name any of their fields or methods, we are left with an
ambiguous situation. MODSIM provides facilities to resolve these conflicts.

11.6.1 Declaring Multiple Base Types
To define an object type in terms of multiple base types, each base type is listed in the
object type declaration:

M ssil eCbj = OBJECT(AircraftQoj, WaponObj)
define more fields and methods here...

END OBJECT;

Simple Objects

PoweredObhj

VehicleOhj

I I I
ShipOhj AfrcraftObij WeaponOhj
I I I
Helicopterohbj Missile Ohj

Complex Objects

Figure 11-2. Multiple-Path Inheritance

In this case we have used the existing Ai r cr af t Cbj , added all the fields and methods
of WeaponObj and then added more fields and methods unique to the new M s-
sil eQbj .

134

Chapter 11: Inheritance

11.7 Resolving Conflicting Field Names

If field identifiers of the same name exist in two or more of the base types, the derived
object type will contain a field for each one. Obviously, any attempt to reference those
fields in the derived object type would be ambiguous, particularly if some of the fields
with matching names were of differing types. Because of this, MODSIM does not allow
references of this sort and will flag them as a compile-time error.

If afield from a base type must be accessed and some other base type has a field of the
same name, extra code must be provided to disambiguate the field. This code can assign
the reference value of the object to an object of the desired base type, and then unambi-
guously access the desired field.

Consider the situation which would occur if the Ai rcraft Cbj and the WeaponQbj

fromwhich M ssi | eObj was derived each had a weight field. And just to make things
more difficult, the WeaponObj 's weight field is of type REAL and expressed in kilo-
grams. The Aircraft Qbj's weight field is of type | NTEGER and is expressed in
pounds.

Assume we have three reference variables called Ai r cr af t , Weapon and M ssi |l e to
match their respective types. If we assign an instance of M ssi | eObj to al three ref-
erence variables, we have the following situations:

Mssile = ASK arnory TO | ssue(Crui seM ssile);
Aircraft := Mssile;
Weapon = Mssile;

ASK M ssile weight U illegal reference
ASK Aircraft weight U ngetsAircraft'sweight (an| NTEGER)
ASK \Weapon wei ght U x getsWeapon's weight (a REAL)

n :
n :

11.8 Resolving Common Method Names

Cases where two or more of the base types have methods of the same name are permitted
only when the method is derived from a common ancestor. If there is not a common an-
cestor, the MODSIM compiler produces an error message.

The definition of the object that joins the ancestors must override the common method if
any of the intervening ancestors overrides it. Otherwise, polymorphism will not be able
to work for this method and the MODSIM compiler will produce an error message.

Y ou can supply a completely new method implementation or, as with normal inheritance,
the inherited method can be invoked as part of the implementation. When the method is
inherited from multiple ancestors, a qualified form of the inherited method invocation
can be used to specify the desired version of the method.

135

MODSIM Reference Manual

PoweredObj
VehicleObj CompulﬂngObj
I
Sr|1ip0bj IAircraftObj WeaponObj
I
HeIicopteIrObj MilssiIeObj

Figure 11-3. Common Ancestor

As an example, we can consider the M ssil eObj which was derived from an
Ai rcraftObj and a WaponObj . Assume that each of the base types has a method
called Fi ndTar get . Observe that the Fi ndTar get method is itself a method of some
Conput i ngObj from which both Ai r cr af t Obj and WeaponObj inherit:

DEFI NI TI ON MODULE . ..

Conmput i ngObj = OBJECT
ASK METHOD Fi ndTarget (I N eneny: Vehicl eCbj);
END OBJECT;

AircraftObj = OBJECT(Vehicl eCbj, ComputingQbj)
" OVERRI DE
ASK METHOD Fi ndTarget (I N eneny: Vehiclej);
END OBJECT;
WeaponOhj = OBJECT(Conputi ngQbj)
OVERRI DE

ASK METHOD Fi ndTarget (I N enemy: Vehicl eQbj);
END OBJECT;

The inheriting object must override the common method and provide its own:

M ssil eCbj = OBJECT(AircraftQoj, WaponObj)
OVERRI DE

ASK METHOD Fi ndTarget (I N eneny: Vehicl eQbj);
END OBJECT;

136

Chapter 11: Inheritance

If the common method is to be invoked in the implementation of the inheriting object, a
qualified inherited call must be used. The qualified inherited call explicitly specifies the
desired version of the method.

Continuing with the previous M ssi | eObj as an example, the implementation might
provide the following method:

OBJECT M ssil eObj;
ASK METHOD Fi ndTarget (I N eneny: Vehicl eCbj);
BEG N

| NHERI TED FROM Ai rcraft Cbj Fi ndTar get (eneny);
END METHOD;
END OBJECT;

A qualified inherited call requires the qualifier to be a base type of the object that is be-
ing defined. The | NHERI TED FROM syntax cannot be used to access methods of unre-
lated objects. In the example above this means that the inherited call for the
Fi ndTarget method can only be qualified by one of the two base types of
M ssi | eQbj ; either WeaponObj or AircraftCbj. We could not inherit the Di ve
method from Submar i neQObj , since we are not descended from it.

11.8.1 Combining Multiple Inherited Methods

In many cases, it may be useful to invoke the inherited methods from multiple ancestors
in the derived type's method. This can be done since the | NHERI TED statements are
qualified to avoid ambiguity.

Elaborating on the previous example, we could do the following:

OBJECT M ssil eQbj;

ASK METHOD Fi ndTarget (I N eneny: Vehicl eCbj);
BEG N

| NHERI TED FROM Ai rcr af t Qbj Fi ndTar get (eneny);
| NHERI TED FROM WeaponQbj Fi ndTar get (eneny);
END METHOD;

11.8.2 Overriding the Objlnit Method in Multiple Inheritance

It is aways necessary to ensure that the Cbj I ni t method for an object is invoked if it
exists. Thisensuresthat all initialization code for an object is accomplished. In multiply
inherited objects it is necessary to override any existing Obj | ni t methods, and to then
invoke each of the inherited methods. Thus, if we defined a new object type in the fol-
lowing way:

137

MODSIM Reference Manual

c = OBJECT(a, b);
OVERRI DE

ASK METHOD Qbj I nit;
END OBJECT:

In the object declaration block where method declarations are placed we would do the
following:

OBJECT c;
ASK METHOD Obj I nit;
BEG N
| NHERI TED FROM a Obj I nit;
| NHERI TED FROM b Cbj I ni t;
END METHOD;
END OBJECT;

Of course, we might want to add additional initialization code appropriate to the new
object type, but, at a minimum, we would have to do this much in the replacement Cb-
j I'ni t method.

11.9 Conflicting Field and Method Names

If a method name from one base type is the same as a field name from another base type,
MODSIM flags this as a compile-time error. There is no way to resolve this conflict ex-
cept by renaming one of the fields. Thisisintentional.

No conflict resolution mechanism has been provided in this case since it would lead to

code which, although it could be understood by the compiler, would be confusing or
misleading to those responsible for code maintenance.

138

12. Data Hiding and Data Sharing

The modular organization of MODSIM programs encourages the separation of the defi-
nition of procedures and methods from the details of their implementation. Since other
modules can import from the definition module but cannot see the implementation mod-
ule, this provides both a data hiding and data sharing capability.

Data sharing is also available from the perspective of a single module. Since any con-
stants, types, procedures or variables defined in a module are visible throughout that
module, this allows data sharing between any object types defined in that module.

Data hiding is aso available from the perspective of a single module. There are occa-
sions when some fields or methods of an object type should not be used except by the
object itself. The data hiding requirement for an object-oriented language parallels that
for other software engineering efforts, and thus MODSIM supports encapsulation both
indirectly through modules and directly through PRI VATE fields and methods.

Fields or methods declared as PRI VATE can be referenced only within methods of the
object itself, or within methods of derived object types.

12.1 PRIVATE Fields and Methods

Here is an expansion of the previous object type declarations. We have added a few more
methods and one field. One method and one field have been declared to be private to
this object:

TYPE
AircraftCbj =
OBJECT(Vehicl eOoj)
altitude : | NTEGER
TELL METHOD C i mbTo(I N hei ght: REAL);
TELL METHOD Circl e;
ASK METHOD Fi ndTarget (I N eneny: Vehicl e(j);
PRI VATE
|iftCoefficient : REAL;
ASK METHOD Cal cLi ft Coef f;
WAl TFOR METHOD Depl oyLandi ngGear ;
OVERRI DE
TELL METHOD St op;
END OBJECT;

The PRI VATE section lists al of the fields and methods which are part of the object type
declaration, but which cannot be accessed from outside of the object.

When an object type is imported from a definition module, all of its field and method
identifiers are also imported, except those which have been declared to be PRI VATE.

139

MODSIM Reference Manual

Thus, if we had imported Ai r cr af t Gbj into amodule and declared a reference variable
of that type called pl ane, we could do the following:

fuel Left := ASK pl ane fuel Level;
TELL plane TO Cli nbTo(2500. 0);
ASK pl ane TO Fi ndTar get (t ank) ;

Becausel i ft Coeffi ci ent isaprivatefield and Cal cLi f t Coef f isa private method
of type Ai r cr af t Gbj we could not do the following:

ASK pl ane TO Cal cLi ft Coeff;

or
coeffOFLift := ASK plane |iftCoefficient;

140

Section lll. Simulation

141

MODSIM Reference Manual

142

13. It?rocess—based Discrete-Event Simula-
ion

MODSIM has powerful and flexible capabilities for dealing with discrete-event simula
tion. Each object is capable of carrying on multiple, concurrent activities, each of which
can elapse simulation time. An activity is an event scheduled by an object instance using
aTELL or WAI TFOR method which is capable of elapsing simulation time. The activities
can operate autonomously or they can synchronize their operation. Any or al activities
of an object can be interrupted, if necessary.

Not only can one object instance have multiple TELL and/or WAI TFOR methods carrying
on activities smultaneously with respect to ssimulation time, but any one method of the
object instance can be invoked multiple times. Each of these method invocations can be
carrying on an activity at the same time.

In MODSIM all of the bookkeeping to schedule activities and later execute them is taken
care of by the system.

13.1 Simulation Time

Before going any further we need to discuss the concept of ssmulation time. A discrete-
event ssimulation program models a sequence of events. Typically, we are concerned
with the model only at certain points in simulation time when an event occurs which may
change the state of objects in the model.

The units of time used by the simulation are dimensionless. They can represent whatever
granularity of time is appropriate for the ssmulation - years, months, days, hours, min-
utes, seconds, milliseconds, or nanoseconds. It is up to the user to explicitly perform any
unit conversions.

Simulation time is automatically maintained by MODSIM. The current ssimulation time
can be determined by invoking the real-valued function Si nili me() , which may be im-
ported from Si mvbd.

At any instant of simulation time there can be multiple, concurrent activities. In redlity,
on traditional sequential computer architectures, the activities which appear to be hap-
pening at the same point of simulation time are carried out sequentially by the computer
in actual “wall clock” time. Once al of the activities scheduled for a particular instant of
simulation time have been carried out, the simulation clock is advanced to the next point
in simulation time when an activity has been scheduled.

143

MODSIM Reference Manual

13.2 The System's Pending List - Objects' Activity Lists

To keep track of al activities which have been scheduled, MODSIM keeps a pending
list. The pending list is an ordered list of all objects which have scheduled activities.
The object with the most imminent activity is ordered first in the list.

Each object instance, in turn, keeps its own list of activities which it has scheduled. The
object instance's activity list is ordered by the most imminent activity. Thus, we have a
two-dimensional structure.

«——— Pending List ———=

’r BCiB7 Bl Zcind AEE

75 73,3 73,45 T25.3

T [Hcs Zoizd ECI5E

T [TE7 75,3 e
l Bcig
750.4

Figure 13-1. The Pending List

13.3 Process-oriented vs Event-oriented Simulation

The classical approach to discrete-event simulation is event-oriented. In this approach,
individual routines are written to describe each discrete event in the operation of a sys-
tem. For instance, in asimple bank model the event routines might be:

. Customer arrives

. Customer entersqueue

. Customer engages services of teller
. Customer leaves

No time passes during any event routine. Instead, passage of time is handled by sched-
uling the next event routine for the object currently being manipulated. In the simple

144

Chapter 13: Simu-
lation

bank model, the event routine “ Customer engages services of teller” would schedule the
next event routine, “Customer leaves’, at some future time.

This event-oriented approach is adequate for smaller models, but in larger models it is
often difficult to follow or modify the flow of logic which describes the behavior of an
object, such as a customer. Consider the simple bank model if we added a janitor, a se-
curity guard and some management functions. There would be many unrelated event
routines. Following the logic flow which describes the behavior of a customer would be
like tracing through a sequence of GOTO statementsin alarge BASIC program.

The process approach ssimplifies larger models by alowing all of the behavior of an ob-
ject in a model (e.g. bank customers) to be described in one or more TELL and/or
WAI TFOR methods which allow for the passage of time at one or more points in the
method.

There is a further advantage to the process technique. Once the actions of a class of ob-
jects (such as customers in a bank) have been gathered together in an object, the smula-
tion program can create multiple, concurrent instances of the object instance. In our
bank, for example, the simulation program would generate a new instance of the cus-
tomer object each time a customer arrived. It could also pass information about the cus-
tomer in the parameter list of the object's initialization method. Perhaps it would pass in
information about the sort of customer (young or elderly) and the expected service time
for the customer. While there would be multiple, distinct copies of the customer object
operating simultaneously, each could have different values of their fields to describe the
particular customer's properties.

Finally, process objects can interact. In our example, an instance of the customer object
with the young attribute might yield its place in the queue to a customer object with the
elderly attribute.

This process approach is the one supported in MODSIM. It exploits object-oriented pro-
gramming features to simplify both the original development and the subsequent mainte-
nance of large models.

A simulation model written in MODSIM defines a system in terms of processes because
the process technique provides a powerful structure for expressing most categories of
simulation problems, and provides significant advantages over the direct use of discrete
events.

The advantages of processes are both conceptual and labor-saving. The process state-

ments are expressed sequentially, in a manner analogous to the system being described.
This practice is recommended by standard design methodologies.

145

MODSIM Reference Manual

13.4 Time Elapsing Methods - the WAIT Statement

The time elapsing TELL or WAI TFOR method is the construct which supports this process
oriented approach to simulation. In a TELL or WAI TFOR method it is possible to use a
WAI T statement to indicate that simulation time should elapse at some point or points in
the method.

Each WAI T statement in a method is considered to be an activity of the parent object.
When a WAI T statement is encountered, the TELL or WAI TFOR method suspends execu-
tion. When the specified amount of simulation time has elapsed, the TELL or WAl TFOR
method resumes execution. We say that the object has carried out an activity.

We will examine the syntax of the WAI T statement before examining this capability fur-
ther.

13.4.1 The WAIT Statement

A WAI T statement specifies the reason for the wait, a sequence of statements to be exe-
cuted after the WAI T is successfully completed, and an optional sequence of statements to
be executed if the WAI T isinterrupted.

The structure of a WAI T statement issimilar to that of an | F statement. The syntax is.

WAI'T reason

St at ement Sequence
[ON I NTERRUPT St at enent Sequence |
END WAI T,

where r eason is a keyword, DURATI ON or FOR, followed by any required identifiers.
The ON | NTERRUPT clause is optional. If the WAI T is “successful”, the first statement
sequence is executed. If the WAI T is “not successful”, the statement sequence after the
ON | NTERRUPT is executed, instead. In either case, execution continues after the END
WAI T unless one of the statement sequences alters the flow of control.

With al forms of the WAI T statement, the ON | NTERRUPT clause specifies exception
code to be executed if the WAI T statement is interrupted. The techniques and tools used
to interrupt activities of a process will be covered in the next chapter.

If the optional ON | NTERRUPT clause is omitted and a WAI T is interrupted, a run-time
error will occur.

A WAI T statement can only appear in a TELL or WAl TFOR method. A violation of these
rules will be flagged at compile-time.

146

Chapter 13: Simu-
lation

DURATION)—> expression

expression :i TO '

v

identifier actual
parameters

v

statement
sequence

INTERRUPT]—’ statement ,
sequence
END WAIT

Figure 13-2. Syntax of the WAIT Statement

The most basic WAI T is one for a specific period of time. A wait for a specified period
of simulation time is achieved by the WAI T DURATI ON statement. The syntax of the
statement is:

WAI T DURATI ON ti neval ue

St at ement Sequence

ON | NTERRUPT St at enment Sequence]
END WAI T;

whereti meval ue isan expression of type REAL.

There are two other variations of the WAI T statement which will be covered in more de-
tail shortly. One allows the TELL or WAl TFOR method to wait until another method
which is invoked completes execution. Another variation allows the TELL or WAI TFOR
method to wait until some triggering event occurs.

13.5 The Asynchronous TELL and WAITFOR Calls

Earlier chapters introduced the ASK, TELL, and WAI TFOR method calls for proper
methods. Although al three “send a message” to the receiving object, the three state-

147

MODSIM Reference Manual

ments differ in how they interact with simulation time and in the case of the WAI TFOR
method, where it may be called.

In many cases, when an object is sent a message to invoke one of its methods, we want to
know that the invoked method has completed before we perform the next step. For ex-
ample, for an Ai rcraft Obj to land on a runway, it first must have one properly as-
signedtoit, asin:

ASK controller TO Assi gnRunway(nyrunway, assignoK);

I F assi gnOK
destination := nyrunway;
ELSE
destination := alternateAirport;

END | F,

In this case, the simulation logic requires that the Assi gnRunway method for object
control | er be complete before the following | F statement is executed. The ASK
statement is comparable to an ordinary procedure cal, i.e., the Assi gnRunway method
isrequired to complete before the next statement is executed.

If the activity ssimulated by a method will elapse an interval of simulation time, it may
not be necessary or appropriate for the invoker to pause while that method completes.
The invoking code may wish to send a message to another object, invoking one of its
time-elapsing methods, and then continue, without waiting for the activity to complete.

This capability is provided by the TELL statement. The invoking process executes the
TELL statement and then continues on without waiting for the invoked time-elapsing
method to complete (or even to start) execution. The complete syntax of the TELL
statement is:

TELL object [TQ nethod[(argunments)] [I N delay]

—'[TELL]_' expression

v
' TO '—> identifier > actual ‘
parameters >

. v .
@—’ expression >

Figure 13-3. Syntax of the TELL Call

148

Chapter 13: Simu-
lation

The TELL statement can appear in any method or procedure. It is used to invoke TELL
methods, and may not be used to invoke ASK methods. TELL methods are proper meth-
odswith | N parameters only.

A TELL method cannot be a function method and cannot have OUT or | NOUT parameters,
since there is no place to which this returned information can be passed. The invoking
code has proceeded past the TELL statement without waiting for any return information.

To take an example, the commander of a unit might want to start a unit enroute to a par-
ticular location, using code such as.

TELL METHOD Depl oyTo(I N dest : | ocationType);
VAR

unit: UnitQbj;
BEG N

TELL unit TO flyTo(dest);
END METHOD;

In this case, the Depl oyTo method would complete execution at the same simulation
time it began, no matter how long it eventualy took the unit to f | yTo the destination.
Also note that, though thisis a TELL method, it performs no WAI Ts. Since itisa TELL
method, however, this means that it can be invoked at some time in the future asin:

TELL unit TO Depl oyTo(Poi nt Al pha) I N 20.0;

This is how methods can be scheduled to start execution at some future point in smula-
tion time.

The remaining type of method, the WAI TFOR method, is somewhat of a hybrid between
the TELL and ASK methods. Like the TELL method, the WAl TFOR method may elapse
simulation time. Unlike the TELL method, it may only be invoked by a WAI T FOR
statement and may modify its OUT and/or | NOUT parameters. This is possible because
the invoking method will not continue until the WAI TFOR method finishes. Conse-
guently, there is a place to return to. In these later respects the WAI TFOR method bears
some similarity to the ASK method.

For example, a cashier might need to wait for a customer to pay before turning merchan-
dise over to her/him. Paying could elapse simulation time. However, the cashier's activ-
ity will not resume until the customer has paid. This is an ideal case for a WAI TFOR
method. Simulation time must pass and something is to be passed back:

OBJECT Cashi er;

WAl TFOR METHOD Get Payment (OUT Ant Tender ed: REAL) :
BEG N

149

MODSIM Reference Manual

{ code inplenenting nmethod }
END METHOD;
END OBJECT;

13.6 Synchronizing Activities

In some simulation scenarios, two activities must operate synchronously. One activity
starts a second activity and then suspends its execution and waits over a period of ssmu-
lation time for the second activity to complete before it resumes execution.

To accomplish this, MODSIM providesthe WAI T FOR statement:

VWAIT FOR object [TO] method[(arg)]
St at ement Sequence

[ON I NTERRUPT Statenent Sequence]

END WAI T;

The effect of this statement isto:

TELL object [TQ nethod [(args)];

and then wait for the method to complete. Once the invoked method completes execu-
tion, the statement sequence after the WAI T FOR is executed. If the invoking method is
interrupted while still waiting for the invoked method to complete, the statement se-
guence after the ON | NTERRUPT is executed.

The obvious question to ask is “Why not use an ASK method since it is synchronous?’
The answer is simple... an ASK method cannot elapse simulation time. So we need a
technique like this which overcomes the inherently asynchronous nature of TELL meth-
ods.

WAl TFOR methods are a special case of the TELL method developed specifically for this
case. WAI TFOR methods allow the user to exploit the fact that the invoking method will
not proceed until the method being waited for returns. This guarantee enables WAI TFOR
methods to modify their OUT and/or | NOUT parameters while still allowing simulation
time to elapse.

An | NHERI TED method can be invoked using the WAI TFOR construct:

WAI'T FOR I NHERI TED tel | met hod()

OBJECT TowPl anej ;
WAI TFOR METHOD TakeOf f Cl ear ance(OUT st at: SType);
BEG N
WAI T FOR | NHERI TED TakeOf f Cl ear ance
WAIT FOR glider TO Signal Ready
stat := cleared;

150

Chapter 13: Simu-

lation
ON | NTERRUPT
stat := aborted;
END WAI T;
END METHQOD;
END OBJECT;

Also, an object may schedule one of itsown TELL METHODS for future execution di-
rectly (without the TELL SELF):

tellmethod() INS5.0

13.6.1 The Terminate Statement

Shortly, we will discuss the way in which any of the forms of the WAI T statement can be
interrupted. However, there is a control statement which is unique to the WAI T FOR
statement. It isthe TERM NATE control statement.

The TERM NATE statement is executed from within a TELL or WAl TFOR method, as it
implies, to terminate execution of that TELL or WAI TFOR method. It has an important
further effect. If the TELL or WAI TFOR method which is being terminated was invoked
with the WAI T FOR method, the invoking method is terminated as well. The effect is
recursive. It will continue up achain of WAI T FOR calls.
In the other forms of the WAI T statement two conditions can occur:

* TheWAI T completes normally

* TheWAI T isinterrupted before it is finished.
Inthe WAI T FOR statement a third condition is possible:

* Theroutine invoked by the WAI T FOR terminates, so the method which contains
the WAI T FOR also terminates.

For example:
I F SinTime() >= StopTi ne

TERM NATE;
END | F,

The TELL or WAI TFOR method being waited for can belong to any object.
To illustrate use of the WAI T FOR, suppose a combat simulation includes a logistics ca-

pability. The deployment process for a combat unit might include a method which waits
whilean Ai rcr af t Obj fliesthe unit to its desired destination:

151

MODSIM Reference Manual

TELL METHOD Depl oy(I N dest : | ocationType);

VAR
ourtransport: Transport Qoj;
BEG N
ourtransport := TransportManager. next Transport;

WAI T FOR ourtransport TO Fl yTo(dest)
TELL Hg MyStatusls(Arrived);
ON | NTERRUPT
TELL Hg MySt at usl s(Del ayed) ;
END WAI T;
END METHOD;

When the WAI T FOR statement is encountered, our t r ansport is asked to execute its
FI yTo method. The Depl oy method waits for the FI y To method to complete before it
proceeds to its next statement.

13.7 Arbitrary Synchronization with Trigger Objs

Some processes will need to wait until a specified condition occurs. For these situations,
MODSIM provides a special object type, Tri gger Obj , which, along with the WAI T
FOR statement, allows a method to pause and wait until some condition occurs.

The syntax of the statement is:

WAIT FOR trigger object [TO] Fire
St at ement Sequence

[ON | NTERRUPT
St at ement Sequence |

END WAI T,

Whenthe WAIT FOR ... Fire statement is encountered, the method suspends and
walits until the trigger object's Tri gger method is invoked by some other method. At
that time the statement sequence after the WAIT FOR ... Fire is executed. If the
trigger object's | nt errupt Tri gger method is invoked, the statement sequence after
the ON | NTERRUPT is executed, instead. A trigger object can have any number of
methods waiting for it to Tri gger or I nt errupt Tri gger .

Taking the example of an Ai r cr af t Qbj , a refueling method might prudently wait until
the plane is on the ground before requesting that the tanks be “topped off”, asin:

| andedSi gnal : Trigger Qoj;

| F flying
WAI T FOR | andedSignal TO Fire U i.e. wait until some other
END WAI T; method releases

END | F; trigger | andedSi gnal

ASK airport TO assi gnRefuel er (tankTruck);
VWAI'T FOR tankTruck TO refuel (SELF, fuel Capacity);
END WAI T;

152

Chapter 13: Simu-
lation

13.8 Multiple Process Activities

To construct realistic simulation models, it is often necessary to model a physical object
which can perform several operations simultaneously. A tank in a ground combat model,
for instance, may be required to perform movement, communications and target acquisi-
tion activities simultaneously. Although this is a fairly common situation, it has tradi-
tionally been difficult to model, particularly when the activities may interact.

To support such models, MODSIM allows an object to do more than one activity at once.
For example, a process object may be in the middle of one operation when it receives a
message to perform a different, conflicting operation. In response, the object can:

* Interrupt the conflicting time-elapsing method which iswaiting
* Ignore the new request

» Defer the new request.

13.9 Activity Tie-breaking, Time Advance and Activity Trace

It is sometimes necessary to arbitrate the order of activities (TELL methods) scheduled
for identical simulation times and/or to be notified when simulation time is about to be
advanced. To accomplish these fine-tuning controls, an object called Si nCont r ol Obj
has been provided in the MODSIM runtime library module Si mvbd.

In the case of tie-breaking, to specify which activity should be executed next, an instance
of a Si mCont r ol Obj derivative is created and its method Set Ti eBr eaki ng is in-
voked with a TRUE argument. At any point during the simulation when two or more
methods are scheduled for the current simulation time the ChooseNext method of the
Si mCont r ol Obj derivative instance will be invoked and passed a group containing the
activity records (ACTI D type) of all such methods. By overriding the ChooseNext
method, users can select which method will be activated next. The owner object and
method name of an ACTI D may be obtained by using the Si mvbd procedures Act i v-
i tyOmer and Acti vi t yNane, respectively, passing an ACTI D as an argument. The
user must return one of the ACTI D's from the group, which will be the next active
method. Users may enable and disable this mechanism with calls to Set Ti eBr eaki ng
(TRUE and FAL SE arguments, respectively) at any point in asimulation.

For example:

FROM Simvbd | MPORT SinControl Qbj, ActivityGoup, Activity-
Name, Acti vit yOmner;

TYPE
MyCont r ol Gbj = OBJECT(Si nCont r ol Obj)

153

MODSIM Reference Manual

OVERRI DE
ASK METHOD ChooseNext (I N group: ActivityGoup) : ACTID,
END OBJECT;

MyObj = OBJECT
TELL METHOD t et hi;
TELL METHOD t et h2;
END OBJECT;

OBJECT MyCont r ol Obj
ASK METHOD ChooseNext (I N group: ActivityGoup) : ACTID
VAR
act: ACTI D;
BEG N
QUTPUT("The fol |l owing TELL met hods schedul ed activities");
QUTPUT ("for the sanme tinme");
FOREACH act | N group
QUTPUT(ActivityNane(act), " of ", CBITYPENAME ActivityOaner(act)));
END FCREACH
RETURN gr oup. Last ;
END METHCD,
END CBIECT;

BIECT MQj ;
TELL METHOD t net hi,;
BEA N
QUTPUT("got to tnethl");
END METHCD,

TELL METHD t net h2;
BEA N
QUTPUT("got to tneth2");
END METHCD,
END CBIECT;
VAR
Gontrol oj: MGontrol Qo ;
obj 1, obj2: MQj;

NEW Cont r o)) ;
ASK Control (b TO Set Ti eBreaki ng(TRUE); {turn tie-breaking on }

NEWobj 1) ;
NEW obj 2) ;

TELL obj1 TOtnethl IN 10.0;

154

Chapter 13: Simu-
lation

TELL obj2 TOtneth2 IN 10.0;
StartSi nul ati on;

Time update notification is obtained similarly. An instance of a Si mCont r ol Cbj de-
rivative is created and its method Set Ti neAdvance is invoked with a TRUE argument.
By overriding the Ti meAdvance method, users will be notified when simulation time is
about to change and be passed the value to which simulation time is to be set. Users may
perform any desired behaviors within this method, including scheduling TELL methods
for the current or later ssimulation time. As with tie breaking, notification may be en-
abled and disabled, by callsto Set Ti nreAdvance at any point in asimulation.

Finally, Si mCont r ol Cbj may be used to trace activity calls using the same mechanism
which was used in tie-breaking and time advance. Just before an activity is activated or
reactivated, the 'Acti vi t yTrace' method of Si nControl Obj is caled alowing a
step-by-step trace through the ssimulation. The ' Set Acti vi t yTr ace' method controls
this feature.

Note: When the above features are used together, it is only necessary to derive one in-
stance of Si nCont r ol Obj .

13.10 Interrupting Activities

MODSIM has provisions for interrupting and stopping any or all activities prematurely.
Any time-elapsing method can be interrupted by invoking the I nt er r upt procedure
which takes as its parameters the object reference value of the object to be interrupted
and the name of the particular method to be interrupted. The I nt er r upt procedure is
imported from Si mvbd. For example:

I nt errupt (Puma20, "ProceedTo");

An | nterrupt does not take place immediately, but is scheduled like a TELL method.
If you wish an | nt errupt to take place immediately you should includeaWAI T 0.0
statement. Interrupting an activity that is waiting will cause it to execute the ON
| NTERRUPT clause of the WAI T statement. If there isno ON | NTERRUPT clause, a
run-time error will occur.

In MODSIM, every object maintains an Act i vi t yLi st which is an ordered list of ac-
tivities scheduled for that object. The activities are ranked by the time each activity is
scheduled to finish its WAI T.

An activity record is placed on the object's activity list each time one of the object's
time-elapsing methods executes a WAI T. The activity record contains al of the informa-
tion needed to resume execution of a time-elapsing method after its WAI T is complete or
it has been interrupted. Neither the pending list nor an object's activity list which con-

155

MODSIM Reference Manual

tains these activity records is directly accessible to the user. These are all maintained in-
ternaly by MODSIM. The user's access to these facilities is through procedures (such as
theWAI T, | nt er r upt , TERM NATE) and the facilities of the trigger object.

The I nt er rupt procedure scans the object's activity list and interrupts the most immi-
nent activity which matches the given name. If there are no matches, nothing happens.
We could do the following:

I nterrupt (Puma20, "flyTo");
and the object instance Punma20'sf | yTo method's WAI T would be interrupted.

If a method contains multiple WAI T statements, then whichever one is currently waiting
isinterrupted. If it isimportant to the user to conditionally control which WAI Ts are in-
terrupted, then the method can be broken into separate methods for each activity, or a
status can be set before each wait, and then checked by the interrupting code.

The TERM NATE statement is used by any time-elapsing method which wants to finish
execution prematurely. It not only stops execution of the current method, but also TER-
M NATEs the method which invoked it using a WAIT FOR. The effect of the
TERM NATE is recursive. In other words the invoking routine becomes TERM NATEed
and therefore TERM NATES the method which invoked it. Like the WAI T statement, the
TERM NATE statement may only appear within a TELL or WAl TFOR method.

To summarize:

» Thelnterrupt procedureis used from outside an object's time-elapsing method
to “wake up” the method before it completes the WAI T. The interrupted method
resumes execution by performing the statement sequence after the ON
| NTERRUPT.

» The TERM NATE method is used frominside a process object's TELL METHOD or
WAI TFOR method to prematurely stop execution of the method (and the method
which called this method, if it was invoked using the WAI T FOR construct).

13.10.1 Interrupting Methods and ACTID

The built-in type ACTI D alows users to capture a reference to a specific activation of a
TELL method. Bear in mind that TELLing an object to invoke a method schedules that
method's execution. The method does not actually begin execution until its turn arrivesin
the pending activity list. Similarly, using the WAI T FOR construct schedules the invoca-
tion of an object's method.

If a user wishes to interrupt a particular invocation of a TELL method at a later timein
the application, then a handle with which to reference this invocation must be retained by
the user. This can be accomplished by declaring a variable or field to be of type ACTI D

156

Chapter 13: Simu-
lation

and then using this variable as the left-hand side of an assignment statement and the de-
sired TELL method invocation as the right-hand side.

For example:

VAR
activity : ACTID,
BEG N
activity := TELL anCbject TO doSonething; (1)

After executing (1) activity will contain a reference to the specific instance of
method doSonet hi ng of object instance anChj ect . If the user wantstodoa WAI T
FOR this method, the ACTI D reference may be substituted for the actual scheduling of
the TELL method:

WAI T FOR activity END WAIT;

Asyou can see, if activity were global or afield of an object, then more than one
method could WAI T FOR the same invocation of doSonet hi ng. |If an unassigned ac-
tivity or an already completed activity is used in the WAI T FOR, a runtime error will
result.

In order to interrupt this invocation of doSomnet hi ng you can import the procedure
"I nterrupt Met hod' from the MODSIM libracy module Si mvbd.

I nt errupt Met hod takesan ACTI D asits argument and will notify the method that it
has been interrupted and schedule it to execute in the current simulation time.

Note that since WAI TFOR methods may only be invoked by the WAI T FOR construct,
they may not be used on the right hand side of an assignment statement. Consequently,
WAI TFOR method invocations may not be assigned to ACTI D variables.

THI SMETHOD is a built-in constant of type ACTI D that can only be accessed within
TELL/WAI TFOR methods. For example:

TELL METHOD f oo;
VAR
a : ACTID;
BEG N
a : = TH SMETHOD;

157

MODSIM Reference Manual

158

14. Grouping Objects

A language which makes use of dynamic data structures, such as objects, needs a way to
group related objects in adisciplined way. Thisis especially true for smulations, which
typically group objects queueing for a resource (the proverbial bank teller), or a series of
events scheduled to happen at a specific time. Such associations are referred to as
groupsin MODSIM.

Objects may be selectively added to, or removed from a group. A MODSIM program
can iterate through a group examining the members of that group. Groups are untyped so
that they can hold a mixture of object types. An object can belong to any number of
groups.

When groups are used, the ordering may be either implicit or explicit. The implicitly
ordered, or ranked group, will always have one ordering for the same objects in the
group, regardless of the order in which they were added. These are normally associated
with ascending or descending sorts based on one or more fields, such asalist of activities
sorted on initiation time.

Groups may also have an explicit ordering that depends on how the group is added to.
The most common are the queue and stack groups which are FIFO and LIFO lists, re-
spectively.

Here is the type hierarchy of MODSIM's built-in groups which can be imported from
G pMod.

QueueObj

StackObj RankedObj

Figure 14-1. Built-in Groups

14.1 Using Group Objects

It is often useful in applications to gather objects into some logical association.
MODSIM's library support for this association mechanism is provided through the
groups declared in DG pMbd. nod. There are a variety of grouping types. queue,
stack, ranked, btree. Since these groups are provided as objects, you can easily derive
your own object type and modify the behavior as required.

All groupsin MODSIM are declared as proto-objects with the type of groups that can be

added and removed being replaceable. These groups can, of course, be used “as is’ and
will default to an ANYOBJ type group. This means that the compiler will not check for

159

MODSIM Reference Manual

any particular type of object and will allow any object to be added to such a group and
will assume that any assignment of return values from the group is correct.

Insertion/Removal Order:

QueueObj / St at Queuenj
St ackObj / St at St ackQbj
RankedQbj / St at Rankedbj
BTreeCbj / St at BTr ee(bj

First-1n-First-Out (FIFO)
Last-In-First-Out (LIFO)
User-Determined-In-First-Out

Key-Determined-In-First-Out

User order groups: RankedQbj and BTreeQbj

A RankedObj group will insert new objects into the group based upon the user de-
fined method Rank. In order to usea RankedQbj , users must derive their own ob-
ject from a RankedObj and then override the method Rank, as appropriate to the
objects to be ordered in the tree. The Rank method must return one of -1, 0 or 1 de-
pending on the relative ordering of its two arguments. If the first argument is to precede
the second argument then -1 should be returned. If the arguments are considered equal,
then O is returned. Otherwise, (first argument is to succeed second argument in order) the
value 1 is returned.

Similarly, a BTreeQbj is an ordered group of objects. The underlying structure of a
BTr eeCbj is more efficient for groups that are to be added to, and deleted from, ran-
domly and often. The group members must be identifiable with a STRI NG key, deter-
mined by the user. The key need not be unique, although this is the usually case. If the
key is non-unique, subsequent insertions with the same key will be inserted after already
present objects with that key. You determine the order of the BTreeCbj by deriving
your own object type from BTr eeObj and overriding the Key method. This method
must return a STRI NG which will be the key associated with the object being inserted.
The argument to the Key method is an object reference of an object being added or spe-
cifically removed (RemoveThi s met hod) from the group.

14.2 The Queue Group
The following methods are defined for the built-in QueueCbj object type:

ASK METHOD I ncl udes(I N candi date : ANYOBJ) : BOOLEAN,
ASK METHOD Add(| N NewMenber : ANYOBJ); { behind Last }
ASK METHOD Renove(): ANYOBJ; { renoves First }

ASK METHOD First () ANYOBJ;
ASK METHOD Last () ANYOBJ;
{ First candidate ... Last
<- Prev | Next -> }
ASK METHOD Next (I N candi date : ANYOBJ) ANYOBJ;
ASK METHOD Prev(I N candi date : ANYOBJ) ANYOBJ;

160

Chapter 14: Grouping Objects

ASK METHOD RenmpveThi s(I N menber : ANYOBJ);
ASK METHOD AddBef ore(l N Exi sti ngMenber,

NewiMerber : ANYOBJ);
ASK METHOD AddAfter (I N Exi stingMenber,

NewMenmber : ANYOBJ);

Deletion of objects from the group can be accomplished with either the Renove or
RenoveThi s methods. The Renpbve method always deletes the first object in the
group and returns areference to the deleted member. The RenmpveThi s method takes an
object reference as an argument and removes that particular object (regardless of its order
within the group) from the group. If RenoveThi s ispassed NI LOBJ as an argument or
the object parameter is not a member of this group, a runtime error will occur.

The Add method places an object at the back end of the group, while Renove takes it
from the front of the group. The exact insertion of items can be altered using the
AddAfter or AddBefore methods, rather than the usual Add. RenoveThi s,
AddBef or e and AddAf t er can be used to circumvent the inherent FIFO discipline of
this object. These methods will insert an object just after or just before another object
already in the group. These methods cannot be used with RankedObj or BTreeObj as
they would destroy the group's ability to do normal insertions properly.

First, Last, Next and Pr ev return reference values for those objects without chang-
ing the composition of the group.

The | ncl udes method determines whether a specific object is part of a particular group
without traversing the group. Thisis an important efficiency consideration. Each object
keeps an internal list of groups to which it belongs. The | ncl udes method interrogates
thislist, which islikely to be shorter than most groups, to determine its answer.

QueueObj aso has defined the field nunber | n which can be queried to determine the
number of objectsin agroup.

14.3 The Stack Group

The St ackbj typeinherits all of the fields and methods of the QueueObj . It overrides
the Queuej 's Add method and substitutes an Add method which places objects at the
front of the group instead of the back.

14.4 The Ranked Group

The RankedObj type inherits all of the fields and methods of the Queuebj . It over-
rides the QueueObj 's Add method and substitutes an Add method which inserts new ob-
jectsinto the group using a Rank method to determine the object’s proper position:

ASK METHOD Rank(I N a, b: ANYOBJ) : | NTECER;

161

MODSIM Reference Manual

The user overrides the default Rank method and substitutes one which returns the fol-
lowing values: -1ifa < b,0ifa = band1ifa > b. The user decides how the
comparisons, e.g. a > b, areto be made.

Sincethe | N parameters to the Rank method are of type ANYOBJ, the user will need to
assign the referenced values to variables of the appropriate type before attempting com-
parison of any fields. As an example, the following implementation for method Rank
could be used to rank a group of cargo objects according to their weight field:

Cargophj = OBJECT

wei ght . | NTEGER;
cube ;| NTEGER;
priority : priType;
END OBJECT;
ASK METHOD Rank(I N a, b: ANYOBJ) : | NTECER;
VAR
BoxA, BoxB: CargoQbj;
BEG N

BoxA : = a; BoxB : = b;
| F ASK BoxA wei ght < ASK BoxB wei ght
{Replace -1 with 1 if ordering is descendi ng}
RETURN - 1;
END | F;
| F ASK BoxA wei ght > ASK BoxB wei ght
{Replace 1 with -1 if ordering is descendi ng}
RETURN 1,
END | F;
RETURN O;
{Returning O means it is ranked after the | ast of
ot hers of the sane val ue}
END METHOD;

This ranks the group of objects in increasing order, e.g., 1, 2, 3, 4, To reverse this
order, the two RETURN statements would be switched. Of course, the user could provide
a more elaborate Rank method which based the ranking on the values of more than one
field.

14.5 Statistical Groups

In addition to the three basic group types (QueueQbj , St ackObj , Rankedbj), three
statistically accumulating groups have been added: St at QueueObj , St at St ackQbj
and St at RankedQbj . These new groups will acquire statistical data based upon the
number of objects in the group, both with and without respect to time. Methods have
been provided in order to easily provide this information.

Each group type described in the MODSIM library module G- pMbd has a parallel sta
tistical acquisition group described in the same module. The statistically capable groups
al begin with St at followed by the group type name. For example, QueueQbj is
mirrored by St at QueueQbj .

162

Chapter 14: Grouping Objects

Each of the statistic groups can provide the maximum and minimum number of objects
ever in the group (methods Maxi nrumand M ni nun) . The method Count counts the
number of times that membership in the group has changed. The Mean, St dDev
(standard deviation) and Vari ance may be obtained, as well as W dMean,

W dSt dDev and W dVvari ance. The W d variety means that the statistic is based
upon the length of simulation timethe nunber | n field was a particular value. In other
words, the statistic is weighted with respect to time.

If users require other statistics or operations based upon the number of objectsin agroup,
all statistically acquiring group objects have a MONI TORED | NTEGER field called
nunber. The user may add their own monitors to this field to further capture relevant
information and behavior (see MONI TORI NG section).

These statistical groups function identically to the basic groups.

14.6 Iterating Through a Group

The FOREACH statement is the most general and efficient way to iterate through mem-
bers of agroup. However, if the user wants to go through the members without changing
the group, the following construct is preferred:

VAR
menber : MyQbj ect;
group : QueueQbj;

BEG N
member = ASK group First(); (1)
VWH LE menber <> NI LOBJ
(* performtasks on nenber objects *)
menber = ASK group Next (nmenber);
END WHI LE;

('k *kk k% (R***** *)

menber = ASK group Last(); (2)

VWH LE menber <> NI LOBJ
(* performtasks on nenber objects *)
memnber = ASK group Prev(nenber);

END WHI LE;

This WHI LE loop will go through all the members of a group successively assigning
their reference values to the variable nmenber . In (1) the iteration will go from the be-
ginning to the end of the group (removal order), in (2) the iteration will go from the end
to the beginning of the group (reverse remova order). A runtime error will occur if
NI LOBJ is passed to the method Next or Prev.

If the members of a group are to be successively removed from a group the following
statements may be used:

163

MODSIM Reference Manual

VAR
menmber : MyQbj ect;
group : QueueQvj;
BEG N

VWHI LE ASK group nunberin > 0

menber = ASK group TO Renove();

(* perform processing on 'nmenber' *)
END WHI LE;

Although the examples demonstrate using QueueCbj , any group object type or any
object type derived from a group object type will behave in the same way.

164

15. Statistical Distributions: RandomODb|

Random variables are available in MODSIM 111 through the library object Randonbj ,
which can be imported from Randvbd. The programmer creates an object of type
Randon®bj , and queriesit for successive random numbers.

The random numbers generated by the RandontObj arein the range:

0.0 < Sanple < 1.0

The samples can also be drawn from a number of statistical distributions. The distribu-
tions which are supported are:

Distribution Return Type
Uni f or mnReal REAL

Uni f or m nt | NTEGER
Exponenti al REAL

Nor mal REAL
Gamma REAL

Bet a REAL

Tri angul ar REAL

Er | ang REAL
LogNor mal REAL

Vi bul | REAL

Poi sson | NTEGER
Bi noni al | NTEGER

There are support methods which can be used to set the seed, reset to the origina seed, or
to return the antithetic variate, eg. 1 - Sanpl e instead of Sanpl e.

Each time an instance of Randonbj is created, its Qbj | ni t method will set it to a de-
fault seed. The sequence of random numbers drawn from Randontbj will always be
the same given the same seed. In other words, the RandonObj returns a pseudo-random
number stream.

The random numbers follow from the initial seed number which the RandonObj is
given. A new seed may be set at any time. The following is a simple example:

MAI N MODULE Randi;
FROM RandMod | MPORT Randombj ;

VAR Qur Rand : Randombj ;
Rl Num . REAL;
I nt Num | NTEGER;
BEG N
NEW CQur Rand) ;

FOR IntNum= 1 TO 20

165

MODSIM Reference Manual

Rl Num : = ASK Qur Rand Uni f or nReal (-100.0, 100.0);
OUTPUT(Rl Num) ;
END FOR;
END MODULE.

This program will print 20 REAL typed samples from the Uniform distribution in the
range- 100. 0 < Sanple < 100.0.

The random numbers are reproducible. The following example generates the same num-
bers twice with two different objects:

MAI N MODULE Rand2;
FROM RandMod | MPORT Randombj ;
VAR

Qur Randl : Randonmbj ;

Qur Rand2 : Randonmbj ;

Rl Numl . REAL;

Rl Nun® . REAL;

I nt Num : | NTEGER;
BEG N

NEW Qur Randl) ;
NEW Qur Rand2) ;
FOR IntNum:= 1 TO 20

RINuml : = ASK Our Randl Normal (50.0, 4.0);
R Nun2 := ASK Our Rand2 Normal (50.0, 4.0):
OUTPUT(R Nunt, " " R Nung) ;

END FOR

DI SPOSE(Qur Rand1) ;
DI SPOSE(Qur Rand2) ;
END MODULE

MODSIM 11l uses the same multiplicative congruential pseudo-random number genera-
tor as SIMSCRIPT I1.5. Its period is 231. The behavior of the random number generator
is the same on all machines on which MODSIM is run. Thus, the same random number
streams will result wherever models are run.

There are ten different predefined random number streams, numbered 1..10. By default,
instances of RandomCbj have a seed from stream number 1. MODSIM also defines a
stream number O which isidentical to stream number 1. These predefined random num-
ber streams are identical to those provided in SIMSCRIPT 11.5 and yield the same se-
guence of random numbers.

We can modify the above example by altering the seed of one of the streams, using the
Set Seed method and the Fet chSeed procedure:

MAI N MODULE Rand3;
FROM RandMod | MPORT RandomObj, FetchSeed,;

VAR
Qur Rand1 : Randontbj ;
Qur Rand2 : Randontbj ;

Seed2 : | NTECER;

166

Chapter 15: Statistical Distributions

Rl Numdl : REAL;

Rl Nun® : REAL;

I nt Num : | NTEGER;
BEG N

NEW Qur Randl) ;

NEW Qur Rand2) ;

Seed2 : = FetchSeed(3); {CGet seed from stream 3}
ASK Qur Rand2 TO Set Seed(Seed?2) ;

FOR IntNum:= 1 TO 20

Rl Numl : = ASK Qur Randl Uni f ornReal (-100.0, 100.0);
Rl Nunm2 : = ASK Qur Rand2 Uni f or nReal (-100. 0, 100.0);
OUTPUT(Rl Numt, " ", R NunR);

END FOR;

DI SPOSE(Qur Rand1) ;
DI SPOSE(Qur Rand2) ;
END MODULE.

Note that the Set Seed will take any positive | NTEGER as a parameter. It is not neces-
sary to use one of the ten predefined seeds.

MODSIM 111 also provides a non object-oriented random number generator through a
procedure called Random This procedure uses the particular machine's random number
generator and will vary in the stream it provides on different machines.

Statistics gathering can also be easily accomplished by using the statistical monitor ob-
jects defined in DSt at Mod. nod. This module provides four basic statistical monitor
objects. There are two types of these monitors, one that is not weighted with respect to
time and another that is. Both types are each provided to monitor | NTEGERS and REALS.

Also included in this module are some predefined types that will enable statistics acqui-
sition: SI NTEGER, SREAL (no time weighting), TSI NTEGER, TSREAL (time weight-
ing), Bl NTEGER, BREAL (both no time and time weighted accumulation). As the names
imply, those types with the | NTEGER suffix may be used to define | NTEGER variables or
fields and those types with the REAL suffix may be used to define REAL variables or
fields.

These objects will provide basic statistical values for the monitored data point. If your
application requires additional computations you may derive your own monitor from
these monitor object types and define your own monitored type. As with any monitor
object, statistical monitor objects may be specified either statically or dynamically for
any variable or field declared to be monitored.

Hereis an example using DSt at Mod:
FROM St at Mod | MPORT SI NTEGER, | St at Obj ;

VAR
num S| NTEGER;

167

MODSIM Reference Manual

i | NTEGER;

FORi :=1T0O4
OUTPUT (" Nunber ?")
I NPUT(num ;
END FOR
QUTPUT ("average is ",
ASK (GETMONI TOR (num [StatObj)) Mean ());

168

16. Resource Objects

A common requirement in modeling applications is the notion of a blocking request for
resource acquisition and the companion notion of releasing the resource back to the
available pool. This mechanism is provided in MODSIM's library asthe Resour ceQbj
declared in DResMbd. nod. Since it is provided as an object, any additional require-
ments such as resource preemption or resource contention may easily be added to an ob-
ject derived from this class.

The Resour ceObj has been designed and implemented to afford a great deal of func-
tionality and still remain flexible enough to allow users to derive their own resource ob-
ject types from it. Resour ceQbj is provided as a proto-object so that the user, if de-
sired, can restrict the type of object which may request a particular resource.

A Resour ceObj provides an asynchronous blocking mechanism, meaning that it alows
simulation time to elapse while waiting for a resource. Resources are a finite pool of
elements that may be acquired for some period of smulation time. Once acquired by an
object, a resource is unavailable for subsequent requests until it is returned to the re-
source pool. Applications will usually attach specific meanings to resources, such as
drive devices, machines, labor, etc.

The Resour cebj will automatically accumulate statistics and, if desired, plot a histo-
gram on both allocation history and pending queue history. The default when this object
is created is that statistics are turned off, but methods are provided which will individu-
ally turn on those statistics relevant to your application.

16.1 Acquiring Resources

Resources may be obtained using one of four methods. G ve, Ti nedG ve,

PriorityG ve and Get Resource. Each of these methods takes at least two argu-
ments. an object reference and the number of resources requested. All of the request
methods must be invoked using the WAI T FOR invocation of methods so that the
method can block until the resource is available. When the requesting method returns
normally (i.e., isnot interrupted) from the WAI T FOR, the object reference has acquired
control of the requested number of resources and retains control of them until a Take-

Back or Transfer method is executed. The G ve and PriorityG ve methods
will always, and only, return normally to the requesting (blocked) method. However, the
Ti medG ve and Get Resource methods may return by interrupting the waiting
method. In the case of an interrupt, the requesting object has NOT received the required
resources within the specified smulation time interval and must proceed accordingly.

Users must provide an | NTERRUPT section in the WAI T FOR statement if using the

Ti medG ve or Get Resour ce request methods. Otherwise, if atimeout occurs and the
method is interrupted, a runtime error will result.

169

MODSIM Reference Manual

16.1.1 Differences between Request Methods

The G ve request will block the requesting method until the requested resource(s) be-
come available. This is the simplest and most common request method for
Resour ce(bj s.

If the user has a situation where the request for the resource must be filled within a spe-
cific smulation time period then the Ti medG ve method should be used. This method
will block the requesting method until the resource(s) are available or until the specified
time period has elapsed. In the former case, the requesting method will return normally
from the WAI T FOR. In the latter, the requesting method's WAI T FOR will be inter-
rupted. This indicates to the requesting method that it has not received control of the re-
quested resources and that the specified time period has elapsed.

Another, common requirement for resource acquisition is queuing requests based upon
priority. If thisis a requirement of your application, use the PriorityG ve request
method. This takes, in addition to the basic arguments, a REAL number priority. The
higher the priority the more forward in the pending list the request will be placed. Natu-
raly, if the request can be filled immediately, the priority makes no difference. This type
of request will NOT preempt the resources from an object which has already acquired
them. It is up to the user to coordinate such activity through the methods of the objects
involved in such a transaction. The Tr ansfer and Cancel methods can be useful for
such a situation. Also, the user should be aware that if they are using a variety of request
methods to the same resource object, any request method which does not require priority
specification (i.e., G ve and Ti medG ve) assumes a priority of 0.0.

Finaly, the Get Resour ce request method combines the timeout and priority properties
of TimedG ve and PriorityG ve and alows the user to specify both a time period
and priority for the request. Again, asinthe Ti medG ve, the user must provide an ON
| NTERRUPT clause in the event that the request times out.

To summarize the different methods of resource acquisition:

G ve: block until resourceis available.

Ti medG ve: block until resource is available or specified simulation units have
elapsed (timeout). If timeout occurs, requesting method will be interrupted.

PriorityG ve: block until resource is available but queue object on pending list
based upon priority value — higher numbers get more priority.

Get Resour ce: acombination of Ti mredG ve andPriorityG ve.

170

Chapter 16: Resource Objects

16.2 Changing the Set of Resources

A ResourceObj assumes it has a homogeneous set of resources and that these re-
sources are completely equivalent in that it does not matter which one is given to whom.
To initiate the resource pool the user does a Cr eat e method giving the number of re-
sources to begin with in the pool. This should be done before any requests are made.
Otherwise, the Resour ceObj will consider itself to have zero resources available and
al requests will block.

The number of resources available from the pool is controlled by four methods:

Create

I ncr ement Resour cesBy
Decr enment Resour cesBy
TakeBack

To increase the total pool number of resources the | ncr ement By method is used. This
will make the total number of resources ever available equal to the previous maximum
available plus the increment. If any requests are pending at the time of the
I ncr ement By, they will be filled, if possible. To reduce the total number available use
the Decr enent By method. This method will wait to gather as many resources as speci-
fied and remove them from the available pool. It will wait until they are returned to the
pool if they are not immediately available, and it will decrement the pool before any
pending or new requests are fulfilled.

The maximum number of resources is kept in the ResourceObj field
MaxResour ces. The field Resour ces contains the currently available number of re-
sources and the field Pendi ngResour ces contains the number of resources pending
filling (not the number of requests but the total number of resources requested).

Once arequesting method returns normally from arequest for resources, the object refer-
ence given in the request is considered to have control of the resource(s). To return the
resource(s) to the available pool, the TakeBack method is used giving the owner object
reference and the number of resources being returned. An attempt to return more re-
sources than assigned to an object will result in aruntime error. Rather than returning the
resource(s) to the available pool, the user can decide to transfer the “ownership” of the
resource(s) to another object. Again, any attempt to transfer more resources than owned
by the object will result in a runtime error. The user must provide code to take care of
letting the receiving object know it now has control of the resources and the relinquishing
object no longer has control. Thisisnot done by Resour ceCbj .

If auser wishes to revoke a request for all or some of requested resources by a particular

object, the Cancel method is provided. This method will remove the specified number
of resources from the request of an object on the pending list. Again, the user must pro-

171

MODSIM Reference Manual

vide and invoke the necessary methods to notify the requesting object of the changein its
request status.

16.3 Statistics of Resources

Resour cebj s have the ability to keep statistics on both allocated and pending resource
requests. By default, statistical accumulation is off. To activate it for the allocation list
use SetAllocStats and pass the TRUE value. For the pending list use
Set PendSt at s and pass the TRUE value.

Either of these lists can be set up to accumulate histograms using either
Set Al | ocHi st ogramor Set Pendi ngHi st ogr am

172

Section IV. Input / Output

173

MODSIM Reference Manual

174

17. Input / Output

There are a number of ways in which to do input and output in MODSIM. We have al-
ready seen the free-format | NPUT and OUTPUT statements which allow simple, unfor-
matted input and output to the default 1/0 device (usually a CRT and its keyboard).

MODSIM also provides a standard library module, | Ovbd, which contains a stream 1/0
object called St r eantbj . This object allows the user to stream oriented input and out-
put to other devices and files. | Ovbd aso contains a number of support routines which
interface with the machine's file system. MODSIM also supports two other modes of
I/0O: random access file 1/0 and indexed sequential file 1/0.

At the end of this chapter afew of the I/O routines from | Ovbd are discussed.

17.1 INPUT & OUTPUT Statements

MODSIM 11 provides two standard built-in procedures, | NPUT and OUTPUT for doing
non-object oriented, free formatted 1/0.

The I NPUT procedure takes one or more arguments. The OUTPUT procedure takes zero
or more arguments. The arguments may be any of the following types:

I NTEGER, REAL, CHAR, STRI NG

For example:

QUTPUT(" I nput hei ght & weight for item nunber", n);
I NPUT(hei ght, weight);
OUTPUT;

In addition to the types listed above, the OUTPUT statement accepts and correctly handles
values of user defined enumerated types.

The | NPUT procedure reads values for each argument from the system's standard input, if
it exists. The OQUTPUT procedure writes the value of each argument to the system's stan-
dard output, followed by a newline character. When it is used without arguments, it
writes a newline character alone.

You can include an object reference in an QUTPUT statement. By default the hexadeci-
mal address of the object will be printed. If the user supplies an Obj Pri nt method then
the result of this method will be printed:

nyCbj = OBJECT
Name : STRI NG
ASK METHOD Qoj Print() : STRING
ASK METHOD Set Nanme(I N TestString : STRING) ;

175

MODSIM Reference Manual

END OBJECT
ASK METHOD Obj Print : STRI NG
BEG N

RETURN Name;
END METHOD;

VAR
obj : Mynj
BEG N

NEW(obj) ;
ASK obj TO Set Name(“fo0”);
OUTPUT(obj) ;

The result will be to print “f 0o0”.
MODSIM 11 also provides two procedures for constructing formatted strings:

PRI NT [(expressionlist)] WTH formatstring
SPRI NT [(expressionlist)] WTH formatstring

Both will generate a string based upon the provided formatting string. The formatting
string contains a field specification which indicates field width and, in the case of REALS,
precision. The PRI NT function will automaticaly output the constructed string to
st dout with an appended newl i ne. SPRI NT will return the constructed string as a
MODSIM STRI NG type which you may use, as appropriate.

A format string may be a literal, constant or variable STRI NG. The formatting is indi-
cated by embedding field specifications within the string. Asterisks (*') are used to indi-
cate field widths and, in the case of REALS, precision. Fields may be left, right or cen-
tered justified. The defaults are that numbers and strings are right justified. You may
override or explicitly indicate this by making the last character of your field specification
one of '<', '>' or '~' for left, right or centered, respectively.

Hereis a sample of code using PRI NT:

CONST

forrmt =n * %k k k k %k ***.** ***<
VAR

s . STRING

r : REAL;

i : | NTEGER

str : STRING

176

Chapter 17: Input/Output

BEG N
s := "val ues";
r := 32.854;
i .= 28;

PRINT (s,r,i) WTH format;
str := SPRINT (s,r,i) WTH format;

17.2 Stream I/O Using StreamObj

In MODSIM stream I/O is implemented using the St r eanmObj object. Files may be read
from or written to, but it is not possible to reposition to an arbitrary position in the file.
Below is a simple example of its use in which a text file caled “sanpl e. t xt ” isread
and printed out.

FROM | Ovbd | MPORT St reanbj
Fi |l eUseType(Il nput);

VAR
Strm : Streantbj;
textLine : STRI NG

NEW Strm;

ASK Strm TO Open("sanple.txt", Input);

VWHI LE NOT (ASK Strm eof)
ASK Strm TO ReadLi ne(t extLine);
QUTPUT(t ext Li ne) ;

END WHI LE;

ASK Strm TO d ose;

DI SPOSE(Strm ;

The following pararagraphs contain a partial list of the methods and procedures associ-
ated with St r eambj .

17.3 ASK Methods of StreamObj

Open(I N FileNanme: STRING |IN IGdirection: Fil eUseType)

Description: Opens the specified filename for the specified use. There are three special
filenames: st di n, st dout, and st derr. Stderr isthe system default
device for error messages.

Cl ose
Description: Closes the file associated with the object.

Del ete
Description: Deletes the file associated with the object.

177

MODSIM Reference Manual

ReadChar (OUT ch: CHAR)
Description: Reads a character from the stream.

Readl nt (OUT n: | NTEGER)
Description: Reads an integer from the stream.

ReadReal (OUT x: REAL)
Description: Reads a REAL value from the input file/device. Can read exponential no-
tation as well as standard real notation.

ReadStri ng(OUT str: STRI NG
Description: Reads characters up to, but not including, the next space, tab, carriage re-
turn or end of file.

ReadLi ne(OQUT str: STRI NG
Description: Reads a character string from the current position up to, but not including,
the newline character.

WiteChar (I N ch: CHAR)
Description: Writes a character to the stream.

Witelnt(IN num fieldw dth: | NTEGER)
Description: Writes an integer number to the stream.

WiteHex(IN num fieldw dth: | NTEGER)
Description: Writes an integer in hexadecimal notation.

WiteReal (IN num REAL; IN fieldw dth, precision: |INTEGER)
Description: Writes areal number to the stream.

WiteString(IN str: STRI NG
Description: Writes a string to the stream.

Witeln
Description: Writes a newline character to the stream.

17.4 Procedures of IOMod

Exi stsFile(I N fnane: STRI NG : BOOLEAN
Description: Returns TRUE if the file exists, FALSE if not. f nane can be afull path or
afilename in the current directory.

Del et eFi | e(I N fname: STRING)
Description: Deletes the specified file, if it exists.

178

Chapter 17: Input/Output

FileSize(I N fname: STRING) : | NTEGER
Description: Returns the size of the specified file, in bytes.

ReadKey(): CHAR
Description: Reads one character from the console with no echo. It does not require a
Carriage Return, Enter or Newline before returning the character.

Each Stream 1/0 object aso has two fields which report status:

eof . BOOLEAN;
i oOResult : | NTEGER;

The eof field, which signifies end-of-file, becomes TRUE as soon as the last item has
been read from the file and nothing remainsto beread. Thei oResul t field takeson a
value which indicates the status of the last I/O activity. A norma completion, with no
error, leaves a value of zero in this field. The current implementations place a non-zero
valuein the field to indicate an error.

179

MODSIM Reference Manual

180

18. Graphics and Animation

Graphics capabilities of SIMGRAPHICS Il are available for use with MODSIM. They
include the following features:

Animation: Icons created off-line using the graphical editor move and
orient themselves according to ssmulation logic.

Graphic Editor: Used to create and edit icons, input forms, graphs and
charts.

Presentation Graphics: Used to create charts and graphs off-line using the graphi-
cal editor. The charts and graphs are then tied to variables
in the program.

You will use these features through an object-oriented interface to the various graphic
objects.

These advanced graphical development capabilities are fully documented in the
SIMGRAPHICSII User Manual.

181

MODSIM Reference Manual

182

Appendices

183

MODSIM Reference Manual

184

Appendix A. Glossary

activity:

base type:

behavior:
component:

conflicting methods:

derived type:

dynamic binding:

dynamic data type:

encapsulation:

enumer ation:

field:

A WAI T statement ina TELL or WAl TFOR method. The place in
an object's TELL or WAI TFOR method where simulation time
elapses.

With respect to objects: The immediate ancestor or the imme-
diate underlying object type of an object type.

With respect to arrays. The type of each element in the array.
A method of an object implements the object's behavior.
Either afield or method for an object.

This occurs when two or more of the base types in a multiple
inheritance have a method with the same name.

An object type defined in terms of one or more existing object
types.

The type of each operand and operation is determined at
run-time; most object-oriented languages, including MODSIM,
are based on dynamic binding. MODSIM uses dynamic binding
only for field references and method calls, not for other opera-
tionssuch as+, - , AND, etc.

One of: ARRAY, RECORD, OBJECT. The memory for an in-
stance of each of these types is explicitly allocated and deallo-
cated by the programmer using the NEW procedure and deallo-
cated using the DI SPCSE procedure.

Packaging the fields which define the state of an object and the
methods which define its behaviors within one object definition.

A user-defined ordered set of literal vaues - eg.
wor kday = (Mon, Tue, Wed, Thu, Fri)

One of the variables associated with a particular object or rec-
ord type.

185

MODSIM Reference Manual

fixed data type:

function method:

function procedure:

group:

inheritance:

instance:

invoke:

member:

message:

method:

object:

ordinal type:

186

Oneof: | NTEGER, REAL, STRI NG, CHAR, BOOLEAN, enumera-
tion, subrange, FI XED ARRAY, FI XED RECORD. These data
types are automatically allocated and deallocated on entry to
and exit from the block in which their variables are declared.

A method which returns avalue. Only ASK methods can return
avaue. TELL and WAl TFOR methods cannot be function meth-
ods.

A procedure which returns a value.

A structure used to associate objects. There are three basic
group object types. St ackObj , Queuej , RankedObj .

The definition of one object type in terms of another, aready-
existing object type.

One particular array of an array type. One particular record of a
record type. One particular object of an object type.

To call aprocedure or method. To cause a procedure or method
to execute.

An object which is contained within a group.

The name of a method; “sending message A to B” is an
equivalent way of saying “ask object B to perform method A”
or “perform method A with object B”.

A routine which describes an object's behavior. Similar to a
procedure, however a method is always associated with an ob-
ject.

A dynamic data structure that includes an associated list of
methods.

The subset of scalar types which have a known ordering. In
other words, given one value which belongs to the type, it is
possible to state what the next or previous value would be. The
following are ordinal types. | NTEGER, CHAR, BOOLEAN, enu-
merations and subranges.

pass by reference:

pass by value:

private property:

process:

proper method:

proper procedure:

property:

public property:

qualified inherited call:

record:

reference type:

referencevariable:

routine:

Appendix A: Glossary

When a parameter in a parameter list is shared by both the in-
voking and the invoked routine. Parameters with the | NOUT
and OUT qualifier are passed by reference.

When a copy of a parameter in a parameter list is made and
passed in to the invoked routine. Parameters with the | N quali-
fier are passed by value.

A property with a scope limited to the methods of an object type
or derived object types.

Process-based simulations alow methods of objects to describe
a series of related activities rather than being limited to defining
simply one event per method.

A method that has no return value. Can be either aTELL, ASK
or WAI TFOR method.

A procedure that has no return value.

A characteristic or attribute of an object type. Specificaly ei-
ther a method or field of the object type.

A property of an object that is available for use outside the
methods of that object type.

In a multiple inheritance, an invocation of an inherited method
of a specific base type, asin:

| NHERI TED FROM SoneObj ect alMet hod,;

A data structure which consists of a collection of fields which
may be variables of differing types.

Each array, record and object type has an implicit reference
type, which is used to define variables that refer to a specific in-
stance of that type - analogous to a pointer type.

A variable that references a specific instance of an array, record
or object type; avariable of the reference type.

A general term for a sub-routine, procedure, function or
method.

187

MODSIM Reference Manual

scalar type:

shared variable:

simple datatype

strong typing:

structured data type:

TELL method:

time-elapsing method:

underlying type:

WAl TFOR method:

188

A type which has only one element or component part and can
be used to scale, measure or quantify things. The following are
scalar types. | NTEGER, REAL, CHAR, BOOLEAN, enumerations
and subranges. An example of something which would not be a
scalar typeis an array, record or object type.

A variable which is shared by all the methods of a particular
object type. In other words, a variable defined outside the
scope of an object so that it will be visible to all instances of
that object type. Usually a shared variable is defined globally,
within amodule.

One of the following types: | NTEGER, REAL, CHAR, BOOLEAN,
STRI NG, enumerations, subranges.

The type of each operand, parameter and operation is fixed at
compile-time. MODSIM, Ada and Pascal are characterized by
strong typing.

One of the following aggregate types: ARRAY, RECORD,
OBJECT, FI XED ARRAY or FI XED RECORD.

A proper method which is executed asynchronously. It can
elapse simulation time. If it has a parameter list, only | N pa
rameters are allowed. WAI T statements are allowed in TELL
methods.

A TELL METHOD which contains at least one WAI T statement.

If type A is derived from type B, or from some type which isin
turn derived from B, then B is said to be an underlying type of
A.

A proper method which is executed asynchronously. It can
elapse simulation time. Unlike a TELL method, a WAl TFOR
method's parameter list alows OUT and | NOUT parameters.
WAI T statements are allowed in WAI TFOR methods.

Appendix B. Reserved Words

The following is a complete list, with descriptions, of the reserved words in MODSIM

ACTI D
Example:

Description:

ALL
Example:

Description:

AND
Example:

Description:

ANYARRAY
Example:

Description:

ANYOBJ
Example:

act : ACTID

act := TELL obj TO GoTo(x, Y);
Built-in type which is used to represent simulation activities. Routinesin
the MODSIM run time library (SmMod) can interpret this data type.

FROM SoneModul e | MPORT ALL Col ors;
Specifies that al enumerated constants of the enumerated type are to be
imported.

Exprl AND Expr2

A BOCOLEAN operator. If both BOOLEAN expressions are TRUE then the
entire expression is TRUE. If either BOOLEAN expression is FALSE, the
entire expression is FALSE. If the first expression is FALSE, the second
condition is not evaluated.

anyAr : ANYARRAY;

ar : ARRAY | NTEGER OF STRI NG

anyAr := ar,

ar := anyAr,

Built-in type which can be used to represent any array type. It overcomes

MODSIM's strict typing.

Note: Use with caution.

PROCEDURE foo(IN n : ANYOBJ);

foo(0b))

189

MODSIM Reference Manual

Description:

ANYREC
Example:

Description:

ARRAY
Example:
Description:

AS
Example:
Description:
ASK
Example:

Example:
Description:

Example:

Description:

Example:

Built-in type which can be used to represent any object type. It overcomes
MODSIM's strict type checking.

Note: Use with caution.

n : ANYREC,
rec : MyRec;
rec := n;

Built-in type which can be used to represent any record type. It overcomes
MODSIM's strict type checking.

Note: Use with caution.

VAR x : ARRAY | NTEGER OF REAL;
Declares an array type with the given index type and element type.

| MPORT StreantCbj FROM | Ovbd AS Qut put Obj ;
Changes the name of the imported definition.

ASK hj 1 TO MoveFor war d;

Pos := ASK Tankl Current Pos;

References a field or invokes an ASK method of the specified object.
Since ASK methods are not allowed to elapse simulation time, the invoked
method will be completed before program control passes to the next
Statement.

TYPE
Car Obj = OBJECT
ASK METHOD Move(IN x, y : | NTEGER);
Part of the method heading for an ASK method.

OBJECT Car Obj
ASK METHOD Move(IN x, y : |NTEGER);

Description: Part of the method declaration within an object block.

190

BEG N
Example:
Example:

Description:

BOOLEAN
Example:

Description:

BY
Example:
Example:

Description:

CALL
Example:

Description:

CASE
Example:

Description:

Appendix B: Reserved Words

MAI N MODULE Mai nMbd;BEGQ N... END MODULE.
BEG N ... END PROCEDURE;
| dentifies the beginning of a sequence of executable statements.

i sbone : BOOLEAN;

| F i sDone

END | F;

Built-in type which is used to represent either TRUE or FALSE.

FOR i 0 TO 20 BY 2

FOR i := 20 DOANTO O BY 2

Optional qualifier which describes the size of the increment in a FOR
statement. The control variable of the loop may be of any ordina type,
but the increment must be an integer expression.

CALL procvar(Xx,Y);
Invokes the procedure assigned to procvar passing the optional argu-
ment list.

CASE NewCar
VWHEN Saab, Chrysler:
QUTPUT("Fam |y car");
VWHEN Por sche:
QUTPUT(" Sports car");
OTHERW SE
OUTPUT(" A what ?") ;
END CASE;
Defines a multiple branch conditional statement. The expression after the
word CASE is evaluated. If its value matches any of the choices after the
word WHEN, that statement sequence is executed. If the value doesn't
match any choice, the statement sequence after the OTHERW SE is exe-
cuted.

191

MODSIM Reference Manual

CHAR
Example:

Description:

CLASS
Example:

Description:

CONST
Example:

Description:

DEFI NI TI ON

Example:

Description:

Dl Vv
Example:

Description:

DOANTO
Example:

192

ch :="i";
Built-in type which is used to represent single characters.

TYPE
bj = OBJECT
CLASS
f : I NTEGER
ASK METHOD f 00;
END OBJECT;

ASK Ohj TO foo; { no instances have been created }
i = Qoj.f;

Defines a section in which the fields and methods are independent of any
particular instance of the object, and may be referenced as such.

CONST

Sky = blue; pi = 3.14159;
Precedes a series of constant declarations. The type of the constant de-
pends on the type of the literal or expression used to define it.

DEFI NI TI ON MODULE Transport;

END MODULE.

| dentifies the module as a DEFI NI TI ON module, in which variables, ob-
ject types, etc. are described.

b :=7 DV 2;
Integer division operator. In the example, B will be set to 3. See also
MOD.

FOR k : = 20 DOANTO 0 BY 2

Description:

DURATI ON
Example:

Description:

ELSE
Example:

Description:

ELSI F
Example:

Description:

END
Example:
Example:

Description:

EXIT
Example:

Appendix B: Reserved Words

This indicates that a FOR loop's control variable should be decremented
rather than incremented after each iteration. Note that the increment
amount is always stated as a positive integer.

WAI' T DURATION 4.0

Indicates execution of a TELL or WAl TFOR method should be suspended
for the specified amount of simulation time, unless interrupted. In the ex-
ample above, the WAI T pauses for 4 units of ssmulation time.

| F Door = Open
QUTPUT(" Door was open.");
ELSE
OQUTPUT(" Door was cl osed.");
END | F;
If the Boolean expression evaluates to FALSE, the statement block fol-
lowing ELSE is executed.

| F fuel Level > 12500

status := Conti nueM ssion;
ELSI F fuel Level > 3500

status := ReturnToBase;
ELSE

status : = LowrFuel Ener gency;
END | F;

Included in an | F statement to allow multiple conditions.

BEGA N ... END PROCEDURE;

VWHI LE. .. END WHI LE;

Marks the end of a control statement, structure declaration, block or mod-
ule. Always followed by an identifier which specifies what is being
ended, e.g. END FOR, END MODULE, END METHOD, END RECORD,
END OBJECT, etc.

LOOP

IF n > 37

193

MODSIM Reference Manual

Description:

FALSE
Example:

Description:
FI XED
Example:

Description:

Example:

Description:

FOR
Example:
Description:

Example:
Description:

FOREACH
Example:

Description:

194

EXIT,
END | F,

END LOOP;
The EXI T statement may be used to break out of any of the loop state-
ments. WHI LE, REPEAT, FOR, or LOOP.

VAR
b : BOOLEAN:
b : = FALSE;

One of the two BOOLEAN constants; the other being TRUE.

arr Type = FI XED ARRAY [1..10] OF REAL;
Indicates that the array is a fixed rather than a dynamic array.

recType = FI XED RECORD

nane : STRI NG
age | NTEGER;
END RECORD;
Indicates that the record is a fixed rather than a dynamic record.

FOR Kk :=1 TO5 ... END FOR;

A FOR loop repeats the enclosed statement sequence until the loop control
variable exceeds the terminating value. If no BY statement clause is in-
cluded, the step defaultsto 1.

WAI T FOR SomeChj TO SoneMet hod,;
One of the three optional forms of the WAI T statement, in which one
method waits for another activity to complete.

FOREACH obj I N nmyQueueQbj

END FOREACH,

A construct to allow iteration over a group of objects or records, usually
the group is one derived from Gr pMod (for objects) or Li st Mod (for rec-
ords).

FORWARD
Example:
Description:

Example:

Description:

FROM
Example:
Description:

Example:
Description:

I F
Example:

Description:

Appendix B: Reserved Words

PROCEDURE Recurse(I N n : INTEGER); FORWARD;
Used to declare the existence of a procedure before the full declaration is
specified. Thisisuseful when routines have a cyclic calling pattern.

TYPE

SomeThi ng = OBJECT; FORWARD;,
Used to declare the existence of an object type before its full declaration
so it can be referred to by another object. Useful when two or more object
types have fields which refer to each other.

FROM Gr pMbd | MPORT QueueQbj ;
Specifies the definition module from which a definition is to be imported.

| NHERI TED FROM SoneObj SoneMet hod,
Specifies the base object type from which an inherited method is to be in-
voked.

IFa=3

OQUTPUT(a) ;
END | F;
If the Boolean expression is TRUE, the following statement sequence will
be executed. If it is FALSE, the next clause (if any) will be executed (see
ELSI F, ELSE).

| MPLEMENTATI ON

Example:

Description:

| MPORT
Example:
Description:

| MPLEMENTATI ON MODULE Tr ansport;
END MODULE.

| dentifies the module as an | MPLEMENTATI ON module.

FROM Si mvbd | MPORT Processbj ;
Imports the item named by the identifier from the specified module and
adds its definition to the scope of the importing module.

195

MODSIM Reference Manual

I N
Example:
Description:

Example:
Description:

I NHERI TED
Example:

Description:

I NOUT
Example:
Description:

| NTEGER
Example:

Description:

| NTERRUPT

Example:

Description:

LMONI TOR

196

PROCEDURE Printlt(IN textLine: STRING ;
The | N qualifier appears in a formal parameter list and specifies the di-
rection in which datawill flow. | N parameters are passed by value.

TELL SonmeCbj TO SomeMet hod I N 10. 0O;
The I N qualifier specifies that the method should be invoked in that
many units of simulation time.

ASK METHOD Pr oceedTo;
BEG N

| NHERI TED Pr oceedTo;

END METHOD;

When a new object type is derived from an existing type, and a method is
overridden in the new object, the old method code is still available, and a
call qualified with theword | NHERI TED can be used to invoke it.

PROCEDURE Capi tal i ze(I NOUT text: STRING);
This declares a formal parameter to be both an input and an output pa-
rameter to aroutine. It is passed by reference.

i : | NTEGER

i =5+ 7j;
Built-in type which is used to represent integers (whole numbers).

WAI T DURATI ON 3.0
QUTPUT("Wait conpl eted");
ON | NTERRUPT
QUTPUT("Wait was interrupted");
END WAI T;
If the WAI T statement is interrupted, the ON | NTERRUPT clause is exe-
cuted.

Appendix B: Reserved Words

Example: StrMonGbj = MONI TOR STRI NG OBJECT
LMONI TOR METHOD | access;
END OBJECT;

Description: Declares a method within a monitor object which is called automatically
just before any attempt is made to change the value of a monitored vari-
able.

LMONI TORED

Example: StrMonVar = LMONI TORED STRI NG BY Str MnQbj ;
str : StrMnVar;

Description: Declares a variable type to be left monitored. The LMONI TOR methods of
any monitor objects attached to this variable will be called before the vari-
able changes value.

LOOP

Example: LOOP

IF n > 37
EXIT;
END | F;
END LOOP;

Description: The enclosed code will repeat until an EXI T statement is executed.

LRMONI TORED

Example: StrMonVar = LRMONI TORED STRI NG BY StrMonQbj ;
str : StrMnVar;

Description: Declares a variable type to be left and right monitored. The LRMONI TOR
methods of any monitor objects attached to this variable will be called be-
fore the variable changes value or is read.

MAI N

Example: MAI N MODULE Ai r port Model ;

END MODULE.
Description: Identifies the module as the MAI N module of a program.

197

MODSIM Reference Manual

METHOD
Example:

Description:

MOD
Example:

Description:

MODULE
Example:

Description:

MONI TOR
Example:

Description:

NEW
Example:

Description:

NI LARRAY
Example:

Description:

NI LOBJ
Example:

Description:

198

ASK METHOD Shoot (I N Angl e:
Keyword for a method heading.

REAL) ;

IntNum = 7 MOD 2;
MOD is used to obtain the “remainder” of an integer division. In the exam-
ple above, the | NTEGER variable | nt Numwill besetto 1.

MAI N MODULE Ai r port Model ;

END MODULE.
Used to delimit a module.

Real MonObj = MONI TOR REAL OBJECT

END OBJECT;

Used to declare a monitor object, in which LMONI TOR, RMONI TOR and
LRMONI TOR methods may be declared.

NEW(obj) ;

NEWr ec);

NEWarr, 1..10);

Used to create instances of dynamic data types, objects, records and ar-

rays.

I F arr = N LARRAY
QUTPUT("unal | ocated array");
END | F;

The value of an array reference variable before it is created.

| F obj = NILOBJ
QUTPUT("unal | ocat ed object");
END | F;

The value of an object reference variable before it is created.

Nl LREC
Example:

Decsription:
NONMODSI M
Example:
Description:

NOT
Example:
Description:

OBJECT
Example:

Description:

Example:

Description:

OF
Example:
Description:

ON
Example:
Description:

OoR
Example:
Description:

Appendix B: Reserved Words

IF rec = NILREC
QUTPUT("unal | ocated record");
END | F;

The value of arecord reference variable before it is created.

PROCEDURE f oo; NONMODSI M
Specifies that a procedure heading in a DEFI NI TI ON module defines a
routine which will be provided in C++.

| F NOT (k = 3)
Inverts TRUE and FALSE in a BOOLEAN expression.

TYPE
Boat = OBJECT
END OBJECT;

Used to delimit an object type declaration.
OBJECT Boat ;

END OBJECT;

Used to delimit an object declaration.

VAR x : ARRAY [0..10] OF REAL;
Indicates the type of the elements of an ARRAY.

ON | NTERRUPT . ..
Optional part of aWAI T statement which precedes the code to be executed
when aWAI T statement is interrupted.

(x<35) OR(n>5)
A BOOLEAN operator. If either or both of the BOOLEAN expressions are
TRUE, the expression will be TRUE. If the first condition is TRUE, the
second condition is not eval uated.

199

MODSIM Reference Manual

OTHERW SE
Example:

Description:

auT
Example:
Description:

OVERRI DE
Example:

Description:

PRI VATE
Example:

Description:

PROCEDURE
Example:
Description:

200

CASE NewCar
VWHEN Saab, Chrysler:
QUTPUT("Fam |y car");
VWHEN Por sche:
QUTPUT(" Sports car");
OTHERW SE
OUTPUT(" A what ?");
END CASE;
See CASE. Thisidentifiesthe “default” case in a CASE statement.

PROCEDURE Current Ti me(OUT Tinme: | NTEGER);

Declares a formal parameter of a routine to be for output only. The pa-
rameter is passed by reference, and is initialized on entry to the caled
routine.

TYPE
Bi cycl e = OBJECT

OVERRI DE;
ASK METHOD GOTO(IN x, y : |NTEGER);
END OBJECT;

Indicates that an inherited method is to be overridden. The new method is
then specified in the object block.

Boat = OBJECT
PRI VATE
ASK METHOD Report(IN rpt: STRI NG ;
status: | NTEGER;

END OBJECT;
Declares methods and fields to be accessible only from within the object's
own methods.

PROCEDURE Printlt(IN text: STRI NG ;
Keyword for a procedure heading.

PROTO

Description:

REAL
Example:

Description:

RECORD
Example:

Description:

REPEAT
Example:

Description:

RETURN
Example:

Description:

REVERSED
Example:

Appendix B: Reserved Words

Redundant in MODSIM I11.

rNum : REAL;

rNum : = 5.635

Built-in type which is used to represent floating point (fractional num-
bers).

TYPE
CustFil = RECORD
Age: | NTEGER,
Nanme: STRI NG
END RECORD;
Used to define arecord type. A record is a collection of fields which may
be accessed as a group, or individually by referring to a specific field
name.

REPEAT
I NC(K) ;
QUTPUT(K) ;

UNTIL k = 5;

Repeat the enclosed code until the BOOLEAN expression is TRUE. The
BOOLEAN expression is evaluated after each iteration.

PROCEDURE Sun{IN i, |
BEG N

RETURN i +j ;
END PROCEDURE;
The RETURN statement is used to exit from a function procedure and
specify the function result. When used in a proper procedure without are-
sult argument, it simply exits the procedure.

| NTEGER) : | NTEGER;

FOREACH obj | N nyQueueObj REVERSED

201

MODSIM Reference Manual

Description:

RMONI TOR
Example:

Description:

RMONI TORED

Example:

Description:

SELF
Example:

Description:

STRERR
Example:

Description:

STRI NG
Example:

Description:

202

END FOREACH,
Used in a FOREACH statement to specify the iteration will proceed from
the last item to the first.

ChMonCbj = MONI TOR CHAR OBJECT

RMONI TOR METHOD r access;
END OBJECT;
Declares a method within a monitor object which is called automatically

just before any attempt is made to access the value of a monitored vari-
able.

ch : RMONI TORED CHAR BY ChMonQnj ;

Declares avariable type to be right monitored. The RMONI TOR methods
of any objects attached to this variable will be called before the variable is
read.

| F obj = SELF

END | F;

An constant object reference variable which represents the object instance
of the current method.

i STRTO NT("abc"); { STRERR is TRUE }

i STRTOI NT("135"); { STRERR is FALSE }

Represents the status of the last STRTO NT or STRTOREAL built-in proce-
dure.

str STRI NG

str := "hello" + "world";
Built-in type which is used to represent a string (sequence of characters).

Memory management of STRI NGis handled automatically by MODSIM.

Appendix B: Reserved Words

TELL

Example: TELL Carl TO Start Mvi ng;

Description: Invokes a TELL method of an object. A TELL method is invoked asyn-
chronously and may contain WAI T statements. The TELL statement will
not wait for the invoked method to be completed.

Example: TYPE
Car Cbj = OBJECT
TELL METHOD St art Movi ng;

END METHOD;
Description: Part of the method heading for a TELL method.

TERM NATE
Example: TELL METHOD St art Movi ng;

BEG N
IF (Location = WallLocat)
OUTPUT(" Crash.");

TERM NATE;
END | F,

END METHOD;
Description: A TERM NATE statement is used from inside a object instance's TELL or

WAl TFOR method to prematurely stop execution of that method and any
method which invoked that method by means of aWAI T FOR statement.

THI SMETHOD
Example: TELL METHOD f oo;
VAR
a . ACTI D;
BEG N

a : = TH SMETHOD;

Description: Built-in constant of type ACTI D which representsa TELL or WAl TFOR
method activity. Itisavailable within TELL and WAI TFOR methods.

TO

Example: ASK bj 1 TO Renove;
TELL Obj1 TO Activate;
WAIT FOR Carl TO Mve;

203

MODSIM Reference Manual

Description:

TRUE
Example:

Description:

TYPE
Example:

Description:

UNTI L
Example:

Description:

VAR
Example:

Description:

VWAl T

Description:

204

TOis an optiona “noise word” provided to make ASK, TELL and WAI T

calls more readable.

VAR
b : BOOLEAN;
b : = TRUE;

One of the two BOOLEAN constants, the other being FALSE.

TYPE
weekdays = (Mon, Tue, Wed, Thur,
Precedes a series of type declarations.

Fri);

REPEAT
I NC(K) ;
OQUTPUT(K) ;

UNTIL k = 5;

| dentifies the terminating condition of a repeat |oop.

VAR
Len: | NTEGER;
Precedes a series of variable declarations.

WAIT FOR Carl TO GoTo(Gar age)
WAI T DURATION 5.0
WAIT FOR Signal TO Trigger

A WAI T statement will suspend execution of the routine while simulation

time elapses.

WAl TFOR
Example:

Description:

WHEN
Example:

Description:

VWHI LE
Example:

Description:

WTH

Appendix B: Reserved Words

OBJECT
El evat or Cbj = OBJECT

WAl TFOR METHOD Active(IN floor : | NTECGER,

OUT full : BOOLEAN)
END OBJECT;

A method which may only be called fromaWAI T FOR statement. Unlike
the TELL method, it may have OUT and | NOUT parameters. In addition,
the invoking method will not proceed until the method being waited for
returns.

CASE NewCar
VWHEN Saab, Chrysler:
QUTPUT("Fam |y car");
VWHEN Por sche:
QUTPUT(" Sports car");
OTHERW SE
OUTPUT(" A what ?");
END CASE;
|dentifies a case in a CASE statement.

WH LE k < 5
OUTPUT(k) ;
I NC(k) ;
END WHI LE;
Repeats the enclosed code while the BOOLEAN expression remains TRUE.
The BOOLEAN expression is evaluated before each iteration.

Description: See PRI NT and SPRI NT in Appendix C.

205

MODSIM Reference Manual

206

Appendix C. Built-in Procedures

For each of the procedures and functions listed below we have provided a procedure
heading which describes the number and type of parameters and the type of the return
value. Since these are built-in procedures, some may have special capabilities not avail-
able to user-defined procedures. For instance, the first procedure described can take ei-
ther an | NTEGER or REAL argument.

ABS (IN arg : INTEGER or REAL) : |INTEGER or REAL
Description: Returns the absolute value of the argument. Return value is of same type
asinput.

ACTI VATE(I N nonvar : AnyMonitoredVar;
I N nontype : AnyMonitoredCbj ect Type)
<nont ype> obj ect reference
Description: Activates a previously deactivated monitored variable.

ADDMONI TOR(I N nonvar : AnyMonit oredVar;
I N nonobj : AnyMbnitor Obj ect Var)

Description: Adds a monitor created by the user (dynamically) to the monitor list asso-
ciated with the nonvar .

CAPIN ch : CHAR) : CHAR
Description: Converts the input character to uppercase.

CHARTOSTRIN chrArray : ARRAY OF CHAR) : STRI NG
Description: Returns the STRI NG representation of an ARRAY OF CHAR.

CHR(IN n : INTEGER) : CHAR

Description: Converts an | NTEGER in the range 0 to 255, inclusive, to the correspond-
ing CHAR. For example, given an input of 65 it will return' A" . If n falls
outside the range 0 to 255, this routine returns CHR(0) .

CLONE(IN d : anyDynType) : anyDynType
Description: Takes any dynamic data type as an input and returns a copy. The dynamic
datatypes are: ARRAY, RECORD and OBJECT.

If the input type is an object, its Obj Cl one method isinvoked, if it exists.

207

MODSIM Reference Manual

DEACTI VATE(I N nmonvar : AnyMonitoredVar;
I N nontype : AnyMonitoredCbj ect Type)
<nont ype> obj ect reference
Description: Deactivates a monitored variable.

DEC(1 NOUT arg : AnyOrdinal Type [; IN n : INTEGER])
Description: Decrementsarg by n. i.e.arg := arg - n. If nisnot specified, it
defaultsto 1.

DI SPOSE(I N ref Var : AnyRef Type)

Description: Deallocates the space pointed to by the argument. The argument can be of
any dynamic data type; e.g. ARRAY, RECORD or OBJECT. Ther ef Var is
guaranteed to be initialized to NI LOBT, NI LARRAY or NI LREC after the
call.

If an object type is the input, DI SPOSE executes the object's
Obj Ter mi nat e method, if any, before deallocating the space used by the
specified object instance.

FLOAT(IN n : I NTEGER) : REAL
Description: Converts the argument to REAL.

GETMONI TOR(I N nmonvar : AnyMoni t or edVar;
I N nontype : AnyMonitoredCbj ect Type)
<nont ype> obj ect reference
Description: Returns the object type of a monitored object.

HALT

Description: Terminates a MODSIM program, returning control to the operating sys-
tem or other calling program. Uti | Mod also defines a routine called
Exi t ToOS which performs a halt while returning a status code to the op-
erating system. In both cases any PROCEDURES registered with ONEXI T
will be called before the program terminates.

H GH(IN arr : AnyArrayType) : |ndexType

Description: Returns the highest index of the array argument. The return typeisthe
same as the index type used to define the array. The argument can also
be an array element when AnyAr r ay Type isamulti-dimension array.

I NC(1 NOUT arg : AnyOrdinal Type [IN n : | NTEGER])

Description: Increments the given variable by the given amount, i.e.arg := arg +
n. If nisnot specified, it defaultsto 1.

208

Appendix C: Built-In Procedures

I NPUT(QUT varl : Sonetype [OUT var2 : Sonetype ...])

Description: Reads from standard input and inserts the acquired values in each of the
variables, sequentialy. The input values may be separated by spaces,
tabs, or newlines. Takes one or more parameters. Somet ype must be
one of: CHAR, | NTEGER, REAL, or STRI NG. The types can be mixed.

I NSERT(I NOUT strl1l : STRI NG
I N pos : | NTEGER,
I N str2 : STRI NG
Description: Inserts st r 2 at position pos instrl. If pos islessthan or equal to
zero, then str 2 isinserted ahead of str1. If pos is greater than the
length of str1, then str2 isinserted behind str1. If str1 isnull,
str2 isassignedtostrl. If str2 isnull,str1 isunchanged.

INTTOSTR(IN n : I NTEGER) : STRI NG
Description: Returns the STRI NG representation of n.

| SANCESTOR(I N obj type: AnyCObj Typel dentifier;
IN obj: AnyQbjlnstance) : BOOLEAN

Description: Allows you to determine at runtime whether an object variable has a cer-
tain object type in itsinheritance tree or is the object type itself.

LONIN arr : AnyArrayType) : IndexType

Description: Returns the lowest index of the array argument. The return type is the
same as the index type used to define the array. The argument can also be
an array element when AnyAr r ay Ty pe isamulti-dimension array.

LONER(IN str : STRING : STRI NG
Description: Returns a copy of str in which all upper-case characters have been
changed to lower-case.

MAX(Scal ar Type) : Scal ar Type
Description: Returns the maximum value of the given type which can be represented
by the computer. MAX may be used in constant expressions.

MAXOF(I N argl : Scal ar Type
[N arg2 : ScalarType ...]) : Scal arType
Description: Returns the highest value from the list of scalar type arguments. All of
the arguments in the list must be of the same scalar type.

M N(Scal ar Type) : Scal ar Type

Description: Returns the minimum value of the given type which can be represented by
the computer. M N may be used in constant expressions.

209

MODSIM Reference Manual

M NOF(I N argl : Scal ar Type
[INarg2 : ScalarType ...]) : Scal arType
Description: Returns the lowest value from the list of scalar type arguments. All of the
arguments in the list must be of the same scalar type.

NEW OUT rec : AnyRecordType)
Description: Allocates a new instance of arecord and returns a reference to it.

NEW OUT obj : AnyQbj ect Type)
Description: Allocates a new instance of an object and returns its reference value. The
object instance's bj | ni t method isinvoked automatically, if it exists.

NEW OUT array : AnyArrayType ;
IN lTow .high : IndexType [; low .high : IndexType ...])
Description: Allocates memory for an array. Note that, for a multi-dimensional array,
index ranges may be specified in separate NEWstatements, and the ar r ay
in that case would be specified by the already-defined indices.

OBJTYPEI D(I N objtype : AnyObj Typeldentifier) : |INTEGER
Description: Given an object class type name, it returns a unique | NTEGER valued
identifier for that type.

OBJTYPENAME(I N obj : ANYOBJ) : STRING

Description: Given an object reference variable it returns a string which contains the
object's type name. Note that the name which is returned is the original
type name of the object, not the new name assigned if the object type was
renamed in an | MPORT statement.

OBJVARI D(I N obj : ANYOBJ) : | NTEGER
Description: Given an object reference, returns a unique integer valued identifier for
the object type.

CDD(IN n : INTEGER) : BOOLEAN
Description: Returns TRUE if the number is odd, FALSE if even.

ONERROR(I N proc: AnyProcedure)
Description: Registers pr oc with the system so that upon encountering a sys-
tem error, proc will be invoked. Multiple procedures may be
registered. They will be invoked in last-in-first-out order.

ONEXI T(I N proc: AnyProcedure)

Description: Same as ONERROR except pr oc will be invoked upon any exit from the
program. Multiple procedures may be registered. They will be invoked
in last-in-first-out order.

210

Appendix C: Built-In Procedures

ORD(IN arg : AnyOrdi nal Type) : | NTEGER

Description: Returns the ordinal value of the argument. For instance, the character
"A'" has the ordina value 65. If we define the enumeration: (Mon,
Tue, Wed, Thur, Fri), then ORD(Thur) would return 3.

QUTPUT([IN argl : Sonmetype] [IN arg2 : Sonetype ...])

Description: Writes the arguments to the standard output. A newline character is writ-
ten after the last argument. If no arguments are given, a blank line is out-
put. Takeszero or more arguments. Sonet ype must be one of: CHAR,
| NTEGER, REAL, STRI NG, or Object reference. The types can be mixed.
If an object type is given as an argument, OUTPUT executes the object's
Obj Pri nt method. If an Qbj Pri nt method is not declared, the hexa-
decimal address of the object will be printed.

POSI TION(IN str1, str2 : STRING : | NTEGER

Description: Returns the position of str2 instr1. If str2 is not completely con-
tanedinstr 1, returns0. If either str1 or st r 2 isof length zero, a run-
time error occurs.

PRI NT ([expressionlist]) WTH formatstring
Description: Formats a string based on f or mat st ri ng and outputs the constructed
string to standard output with an appended new line.

REALTOSTR(IN x : REAL) : STRI NG
Description: Returns the STRI NG representation of x.

REMOVEMONI TOR(I N nonvar : AnyMonit oredVar;

IN nmoni bj : AnyMbnit oredObj ect Var)
Description: Removes a monitor created by the user (dynamically) from the monitor
list associated with nonvar .

REPLACE(1 NOUT strl : STRI NG
I N pos1,
pos2 : | NTEGER,
I N str2 : STRI NG
Description: Replaces the pat of strl from posl to pos2 with str2.
eg. ifstrl := "abcdefghijkl" andstr2 : = "WKYZ".

REPLACE(str1, 3, 4, str2) b strl = "abWKYZef ghijkl"

REPLACE(strl1, 1, 1, str2) P strl = "WKYZbcdef ghijkl"
REPLACE(str1, 2, 11, str2) b strl = "aWyzl"

211

MODSIM Reference Manual

If pos1 is0, aruntime error occurs. If poslisinstr1 but pos2 isout-
side, the end of st r 1 from pos1 isreplace with st r 2. If both pos1 and
pos2 areoutside of str 1, str 2 isconcatenated to theend of st r 1.

ROUND(I N arg : REAL) : | NTEGER
Description: Rounds the argument and returns the closest integer result. Thisis the al-
gorithm:
IF arg >= 0.0
RETURN(TRUNC(arg + 0.5));
ELSE
RETURN(TRUNC(arg - 0.5));
END | F;

SCHAR(I'N str : STRI NG
IN pos : INTEGER) : CHAR
Description: Returns the character at position pos instr. A run-time error occurs if
pos falsoutsideof str.

S| ZEOF(AnyTypeNare) : | NTEGER,

Description: Given any type specifier, this function returns the amount of memory
space, in bytes, required to store a variable of that type. For example,
S| ZEOF(| NTEGER) would return 4. S| ZEOF(Pl ayer RecType) would
return the number of bytes required to store arecord of that type.

SPRI NT([expressionlist]) WTH formatstring

Description: Returns a string constructed using formatstring. formatstring
may be aliteral, constant or variable STRI NG. Formatting is indicated by
embedding asterisks to indicate field width and real number precision.
Left justification, right justification, and centering are indicated by placing
a<, >, and ~, asthe last character of the field specification.

STRLEN(IN str : STRING : |NTEGER
Description: Returns the length of string str.

STRTOCHAR(I N str . STRI NG,
QUT chrArray : ARRAY | NTEGER OF CHAR)
Description: Convertsstr to an ARRAY | NTEGER OF CHAR.

STRTO NT(IN str : STRING : |NTEGER

Description: Returns the | NTEGER representation of str. If successful, sets the
system defined variable STRERR to FALSE. If str cannot be con-
verted, returns 0 and sets STRERR to TRUE.

212

Appendix C: Built-In Procedures

STRTOREAL(IN str : STRING : REAL

Description: Returns the REAL representation of str. If successful, sets the sys-
tem defined variable STRERR to FALSE. If str cannot be con-
verted, returns 0. 0 and sets STRERR to TRUE.

SUBSTR(I N pos1,
pos2 : | NTEGER,
INstr : STRING : STRING
Description: Returns substring of st r from pos1 to pos2, inclusive. If therangelies
outside of st r, returns a null string. If pos1 isin str and pos2 fals
outside, returns from pos1 to end of string. If pos1 islessthan or equal
to zero or pos1 isgreater than pos2, arun-time error occurs.

TRACE

Description: Output a series of messages (to standard output) which indicate the current
call stack.

TRUNC(IN arg : REAL) : | NTEGER
Description: Truncates ar g to an integer.

UPDATEVALUE(I N val ue : MonitorType)
Description: Called from LMONI TOR methods to modify the NEWWAL UE.

UPPER(I N str : STRING : STRI NG
Description: Returns a copy of str in which al lower-case characters have been
changed to upper-case.

VAL(I'N Ordi nal TypeNanme : O dinal Type;
IN O dNum : I NTEGER) : Ordinal Type
Description: Returns a value, of the specified type, which has the given ordinal posi-
tion. For instance, VAL(CHAR, 65) will return " A'.

213

MODSIM Reference Manual

214

Appendix D. Standard Library Modules

This appendix contains alphabetical listings of all of the constants, variables, types, pro-
cedures and objects defined by the standard library modules.

215

MODSIM Reference Manual

D.1 Module Name: Debug

D.1.1 Description
Provides functionality to help debug MODSIM programs.

D.1.2 Variables
None.

D.1.3 Types

None.

D.1.4 Procedures
Get Number Arr ays

Parameters: None

Return Vaue: | NTEGER

Description: Returns the number of currently alocated arrays.

Get Nunber Stri ngs

Parameters: None

Return Vaue: | NTEGER

Description: Returns the number of currently allocated strings.

Get Number Type

Parameters: IN typeid: | NTEGER

ReumVdue | NTEGER

Description: Returns the number of currently active objects/records with the id
typei d. The id of an object instance may be obtained through
OBJVARI D.

bj ect Dunp

Parameters: I N obj ect : ANYOBJ

Return Value: None

Description: Prints general information regarding the object reference to st dout .

Pri nt MentSt at s

Parameters: IN stream : StreanObj
Return Value: None
Description: Prints out a formatted record containing the number of currently alo-

cated arrays, strings, objects and records. For objects and records it
will print out the name of the object/record type and the number allo-
cated only if that number is greater than zero.

216

Appendix D: Standard Library Modules

WiteTrace

Parameters: IN filename : STRI NG

Return Vaue: None

Description: In the case of aruntime error or a call to TRACE in a program, the re-

sult of the traceback will be printed to afile (in the current working di-
rectory) named 'f i | enane' - the default, if nocall toWiteTrace is
made, is to write the result to st derr. Only those procedures and
methods compiled with the traceback option turned on will be in-
cluded in the trace list.

217

MODSIM Reference Manual

D.2 Module Name: GrpMod

D.2.1 Description

Provides functionality to represent and iterate over groups of objects.

D.2.2 Constants

None.
D.2.3 Types
G oupOr der Type
Type: enuner ati on
Constants: vFI FO {first in, first out}
vLI FO {last in, first out}
vRanked {ranked, - override Rank net hod}
Description: Determines the add behavior of groups.
St at | NTEGER
Type: LRMONI TORED | NTEGER BY | St at Obj , | Ti nedSt at Qo]
Description: Provides a definition for a monitored integer type that will gather sta-

tistics with and without respect to time.

D.2.3.1 Object Types

The following is alist of objects which are documented in Appendix E:

Queuebj

St ackObj
RankedCbj

BTr eebj

St at Queuebj
St at St ackQbj
St at Rankedbj
St at BTr eebj
Si mMueuehj

Virtual objects - intermediate objects which are not used directly:

G ouphj

ExpandedG oupObj

Basi cG oupQbj
ExpandedBasi cG oupQObj
Basi cRanked(bj

Basi cBTr eebj

St at G oupQbj

BSt at G oupQbj

218

Appendix D: Standard Library Modules

D.2.4 Procedures

CGet G oups

Parameters: IN obj : ANYOBJ
I NOUT groups : QueueQbj

Return Vaue: None

Description: Generates a queue containing pointers to each group of which the
specified (given) object is a member.

219

MODSIM Reference Manual

D.3 Module Name:

IOMod

D.3.1 Description

Provides I/O interface functionality.

D.3.2 Constants

None

D.3.3 Types

Fi |l eUseType
Type:
Constants:
Description:

enuner ati on

| nput Qut put I nCut Append Update CreateBinary

Used by the Open method of St r eanObj to determine the type of file
opening required. | nput, Qut put, | nQut, Append are text mode
opens. Updat e and Cr eat eBi nar y are binary mode opens.

D.3.4 Procedures

Del eteFil e
Parameters:
Return Vaue:
Description:

IN fname : STRI NG
None
Removes the file f nanme from this disk storage device, if it exists. No

error results from attempting to delete a non-existent file.

Fi | eAccessTi nme

Parameters:
Return Value:
Description:

Fi | eExi sts
Parameters:
Return Vaue:
Description:

Fi | eMbdTi ne
Parameters:
Return Vaue:
Description:

Fil eSi ze

220

I N fname: STRI NG
| NTEGER
Returnstime file last accessed in seconds past 1/1/70 00:00 GMT .

I N fname: STRI NG

BOOLEAN

Determines whether the file named f nanme (or directory) exists on
the disk storage device. f nanme may be a full path specification for a
file.

I N fname: STRI NG
| NTEGER
Returns time file last modified in seconds past 1/1/70 00:00 GMT.

Parameters:

Return Vaue:

Description:

ReadKey
Parameters:

Return Vaue:

Description:

Appendix D: Standard Library Modules

IN fnanme: STRI NG
| NTEGER
Returns the size of the filein bytes, or -1 if the file does not exist.

None
CHAR

ReadKey reads one character from the console with no echo. It does
NOT require a Carriage Return, Enter or Newline before returning

with the character.

221

MODSIM Reference Manual

D.4 Module Name: ListMod

D.4.1 Description

Provides functionality to represent and iterate over collections of records.

D.4.2 Constants

None

D.4.3 Types

None

D.4.3.1 Object Types

The following is alist of objects which are documented in Appendix E:

Queueli st

St ackLi st
RankedLi st

BTr eelLi st

St at Queueli st
St at St ackLi st
St at RankedLi st
St at BTr eeli st

Virtual objects - intermediate objects which are not to be used directly:

Li st Obj

Basi cLi st Obj
Basi cQueueli st
Basi cSt ackLi st
Basi cRankedLi st
Basi cBTr eelLi st
St at Li st Obj

BSt at Li st Obj

BSt at Queueli st
BSt at St ackLi st
BSt at RankedLi st
BSt at BTr eelLi st

222

Appendix D:

D.5 Module Name: MathMod

D.5.1 Description

Genera purpose math procedures.

D.5.2 Constants

pi
Type:

REAL

Vaue: 3.1415926535897932;

Vaue: 2.7182818284590452;

e
Type: REAL
D.5.3 Types
None.

D.5.4 Procedures

ACOS
Parameters:
Return Value:
Description:

ASI N
Parameters:
Return Value:
Description:

ATAN
Parameters:
Return Value:
Description:

ATAN2
Parameters:

Return Value:
Description:

CEl L
Parameters:

Return Vaue:

Description:

I N x : REAL
REAL
Arccosineof x,-1<=x<=1

I N x : REAL
REAL
Arcsineof x,-1<=x<=1

IN x : REAL
REAL
Arc tangent of x from -pi/2 to pi/2

IN y: REAL
IN x : REAL

REAL

Two argument (cartesian) form of this operation.

I N x : REAL
| NTEGER
Returns the smallest integer not less than x.

Standard Library Modules

MODSIM Reference Manual

Cos
Parameters:

Return Vaue:

Description:

EXP
Parameters:

Return Vaue:

Description:

FLOOR
Parameters:

Return Vaue:

Description:

LN
Parameters:

Return Vaue:

Description:

LOGLO
Parameters:

Return Vaue:

Description:

PONER
Parameters:

Return Vaue:

Description:

SIN
Parameters:

Return Vaue:

Description:

SQRT
Parameters:

Return Vaue:

Description:

224

IN x : REAL
REAL
Cosine of x

I N x : REAL
REAL
Exponential function: e*x

I N x: REAL
| NTEGER
Returns the largest integer not greater than x

IN x: REAL
REAL
Natural log of x, 0 < x

I N x: REAL
REAL
Base 10 log of x , 0 <X

I N x: REAL

I N y: REAL

REAL

X raised to the y power

I N x: REAL
REAL
Sine of x

I N x: REAL
REAL
Square root of x, 0 <= X

Appendix D: Standard Library Modules

TAN

Parameters: I N x: REAL

Return Value: REAL

Description: Tangent of x, X <> -pi/2, x <> pi/2.

225

MODSIM Reference Manual

D.6 Module Name: OSMod

D.6.1 Description

A portable operating system interface. This module contains procedure definitions that
can be used to access various functions of the operating system. The procedures defined in
OSMod are intended to provide an OS interface to write portable applications but not ne c-
essarily to exploit all features of the underlying operating system.

D.6.2 Constants

OSOK, OSERROR

Type: | NTEGER

Description: Returns values for calls that return 'success (ok) or ‘error' as their return
value.

D.6.3 Types

AccessTypeET

Type: enumeration

Constants: ATRead { all ows read access }

file
ATWite { file allows wite access }
ATReadWite{ both read and wite ok }
ATExecute { file is marked executable }
ATFi | eCK { file exists and is accessible }

Description: Return type of Test Access procedure.

DI RHNDL

Type: ANYREC

Description: Directory handle. Used for reading directories.

Fil eTypeET

Type: enumeration

Constants: FTUnknown { file type unrecogni zed or file

doesn't exi st

FTDirectory { file is directory }
FTOrdi nary { ordinary file }
FTChar Speci al { Char special (Unix)
FTBI kSpeci al { Block special (Unix) }
FTFI FO { FIFQ pipe }

Description: Return type of Fi | eType procedure.

OSTi meRec
Type: FIXED RECORD
Fields: sec : | NTEGER seconds (0 - 59) }

mn : | NTEGER
hour: | NTEGER
nmday: | NTEGER
mon : | NTEGER

mnutes (0 - 59) }

hours (0 - 23) }

day of nmonth (1 - 31) }
mont h of year (1 - 12) }

Lot Yan Yasn Yoo Yoo

226

Appendix D: Standard Library Modules

year: |INTEGER { year - 1900 }
wday: | NTEGER { day of week (Sunday = 0) }
yday: I NTEGER { day of year (0 - 365) }
Description: Time record structure to hold the components of the system time. Set by
Local Ti me(), read by Ti meRec2Asc().

D.6.4 Procedures

D.6.4.1 Miscellaneous OS Queries and Calls

Cl ear Scr een

Parameters: None

Return Value: None

Description: Clear the text screen.

Exi t ToOS

Parameters: | N status: | NTEGER

Return Value: None

Description: Exit to OS and return status as the return code.

Note : This routine exits immediately. It does not call MODSIM ONEXI T routines and
does not cal the MODSIM debugger. For an dternative see Exit TOOS in
Util Mod.

Cet Conput er Type

Pamameters: None

Return Value: STRI NG

Description: Returns the type of the computer. See notes orGet OSType() below.

CGetCurrentDrive

Parameters: None

Return Value: STRI NG

Description: Returns the current drive. For PCs (Windows 95, NT) this is the drive
letter (with trailing colon). For UNIX systems an empty string is re-
turned.

Cet Env

Parameters: I N var: STRI NG

Return Value: STRI NG

Description: Gets the value of environment variable var. Returns an empty string
when var was undefined or the empty string. When the variable var was
undefined the procedure OSEr r or Code will return OSERROR (otherwise
OSOK) so that ‘'enmpty' can be distinguished from
‘undef i ned".

Get Host 1 D

227

MODSIM Reference Manual

Parameters: None
Return Value: | NTEGER
Description: Returns a hardware specific seriad number of the host. If none is avai I-
able, '0' is ieturned.
Cet Host Nanme
Parmeters: None
Return Value: STRI NG
Description: Returns the name of the host (if defined) on the network. When
"host nane" is not supported on the OS, an empty string is returned.
Get OSType
Parameters:
Return Value: STRI NG
Description: Returns the OS type of the current OS. The return string contains mult i-
ple words that describe the OS, e.g. the company, the OS name, the ver-
son, common adiases, etic. NEVER DO AN EXPLICIT STRING
COMPARE with the result this function, since the contents may change
in the future as additional information becomes necessary. Instead use the
built-in procedure POSI TI ON to match the word you are interested in.
YOU ARE GUARANTEED that components that are in the string WILL
NEVER BE TAKEN OUT. Therefore, existing code will not break when
additional nformation is added.
- All flavors of UNIX will contain the wordUNI X"
- All flavors of Windows will contain the wordf NDOWS"
Get ProgDi r
Parameters: IN prog: STRING
Return Value: STRI NG
Description: When prog is a path (i.e. contains directory seperation characters),
Get Pr ogDi r returns just the directory part of it. If it is just a name,
Get Pr ogDi r searches through the current ‘path’ and returns the first
directory that contains that file/executable or an empty string when not
found.
Get W ndowSysType
Pamameters: None
Return Value: STRI NG
Description: Returns the type of the current window system. See Get OSType()

above.

Get Wor ki ngDi rectory

Parameters:
Return Value:
Description:

228

None

STRI NG

Get current working directory as string (no trailing slash). If there was
an error, the empty string is returned.

Appendix D: Standard Library Modules

MaxFi | eNameLengt h

Parmeters:
Return Vaue:
Description:

OSEr r or Code
Parameters:
Return Value:
Description:

None

| NTEGER

Returns the maximum length of a file name (i.e. a path component) on
the current OS for the given drive. This includes only the name and not
any mandatory ext@sion part.

None.
| NTEGER
Error code of the last failed OS call.

D.6.4.2 Time Routines

Del ay
Parameters:
Return Value:
Description:

Local Ti ne
Parameters:
Return Value:
Description:

M cr oDel ay
Parameters:
Return Value:
Description:

I N seconds: | NTEGER
None
Delaysseconds' and then resumes execution.

I N timesecs. | NTEGER

OSTi meRec

Converts the given number of time seconds into minutes, hours, etc.
and fills OSTi neRec with the results. Note that OSTi neRec isalocd
(tatic) variable in Local Ti ne so that each call overwrites that single
time structure.

I N microseconds: | NTEGER
None
Delayshi cr oseconds' and then resumes execution.

Syst enReal Ti ne

Parameters:
Return Value:
Description:

Syst emTli me
Parameters:
Return Value:
Description:

Ti mreRecToAsc
Parameters:
Return Vaue:

None

REAL

Returns number of seconds since a fixed time point in the past. Reso-
lution is fractions of a second, if supported by operating system.

None
| NTEGER
Returns number of seconds since a fixed time point in the past.

I N osti merec: OSTi neRec
STRI NG

229

MODSIM Reference Manual

Description:

Ti meToString

Parameters:
Return Value:
Description:

Transforms time data from aOSTi neRec record into character form:
"Sat Apr 13 1545:30 1991\0"

IN ti mesecs: | NTEGER
STRI NG
Returns ASCII representation of given time (seconds) in string form as

described inTi neRecToAsc.

D.6.4.3 Files and Directories

AppendSl ash

Parameters:
Return Value:
Description:

BaseNane
Parameters:
Return Value:
Description:

ChangeDi r
Parameters:
Return Value:
Description:

CloseDir
Parameters:
Return Value:
Description:

CopyFil e
Parameters:
Return Value:
Description:

Del eteFil e
Parameters:
Return Value:
Description:

Di r Nane
Parameters:
Return Value:

230

I N path: STRI NG

STRI NG

Appends a directory separator character to ‘ pat h’ if the last character
of ‘pat h’ isnot already a directory separator character.

I N path: STRI NG

STRI NG

Returns only the last name part of ‘pat h’. Possble trailling dashes in
path areignored, i.e. for"/a/ b/ ", “b” isreturned.

I N path: STRI NG
I NTEGER
Change directory to path. ReturnsOSOK for ok, OSERROR on error.

I'N di rhndl:
| NTEGER
Close directory associated with di r hndl . Returns OSOK for ok,
OSERROR for error.

DI RHNDL

INfrom to: STRI NG
| NTEGER
Copiesfile'f roni to 't o' and returns OSOK on ok, OSERROR in case of

an error.

I N pth: STRI NG
| NTEGER
Remove file name. Return®SCK for ok, OSERROR On error.

I N path: STRI NG
STRI NG

Description:

Appendix D: Standard Library Modules

Returns only the directory part (without the last directory separator
character) of ‘pat h’. Possible trailing slashes in path are ignored.

Fi | eAccessTi nme

Parameters:
Return Value:
Description:

Fi | eExi sts
Parameters:
Return Value:
Description:

Fi | eMbdTi nme
Parameters:
Return Value:
Description:

Fil eSize
Parameters:
Return Value:
Description:

Fil eType
Parameters:
Return Value:
Description:

Get Di r SepChar
Parameters:
Return Value:
Description:

I N path: STRI NG

| NTEGER

Time of last file access in seconds since ' system time starting
poi nt' (see ‘Systenili ne’), or O for ERROR (e.g. file does not ex-
ist).

I N pth: STRI NG
BOOLEAN
Returns TRUE when file name existsFAL SE otherwise.

I N path: STRI NG

| NTEGER

Time of last file modification in seconds since 'system tine
starting point' (see‘Systeniline’), or O for ERROR (eg. file
does not exist).

I N path: STRI NG
| NTEGER
Returnsfile size in bytes for path or -1 if error.

I N path: STRI NG
Fil eTypeET
Get file type code for path.

None

CHAR

Returnsthe ' di rectory seperator chararacter' for the cur-
rent OS (e.g.' /' on UNIX)

I ncrFil eNanel f Exi sts

Parameters:
Return Value:
Description:

IN infil ename: STRI NG

STRI NG

Makes a unique filename from infil enane by incrementing a
'count er ' at the end of the file name. The format of infilenameis:
"<optional path><nane><i dx>.<ext>" where "<i dx>" is a
number (sequence of digits) or empty and the . " isthe ' ext ensi on
seperator char' forthisOS. When ‘i nfil ename’ does not ex-
ist, it is returned unchanged. When it does exist, the number in i dx is

incremented until the resulting file name does not exist (gets unique file

231

MODSIM Reference Manual

name). When ‘i nfi | ename’ is not found, ‘i dx’ starts at 1. When
“idx’ grows in width and the total length of the filename exceeds
MaxFi | eNameLengt h, ending characters of ‘i nfilenange’
(<nanme> part) are removed.

| sLegal Fi | eNanmeChar

Parameters: IN c: CHAR

Return Value: BOOLEAN

Description: Return TRUE if the given char can be used in the NAME PART of a
filename on the current OS.

MakeDi r

Parameters: | Ndirectory: STRI NG

Return Value: | NTEGER

Description: Make directory. ReturnsOSCK for ok, OSERROR On error.

MakeEnmpt yFi | e

Parameters: I Nfilename:STRI NG

Return Value: | NTEGER

Description: Makes an empty file with the given path. If the file dready exists, it is
overwritten. Returns OSCK on ok, OSERROR on error.

MakeTnpFil e

Parameters: I Ndirectory: STRI NG

Return Value: STRI NG

Description: Createsaunique t np filein'di rect ory' and returns the name. When

‘di rectory’ isan empty string, the current directory is used. The file
is created immediately (with MakeEnpt yFi | e) so that subsequent
callsto it will not return the same name.

MapToLegal Fi | eName

Parameters: I N nanestr: STRI NG
Return Value: STRI NG
Description: Maps an arbitrary string namestr to a lega file name, deleting all

characters from nanest r that areillegal for a file name on the current
operating system.

Mat chesFi | ePattern

Parameters: INstr, pat: STRI NG
Return Value: BOOLEAN
Description: Returns TRUE when string st r matches pattern pat . Intended for file

name pattern matching. Pattern recognizes wild cards " *" and "?" with
their usual meaning. Combinations of the wild card characters are al-
lowed. The wild cards work as follows:

Let ANYCHAR be one arbitrary character. The match of pat
againstst r isdone in aFORWARD comparison.

232

Appendix D: Standard Library Modules

A '"?"in pat matches exactly one ANYCHAR in st r (at the cur-
rent comparison position).

A "*" in pat matches a sequence (0 or more) of ANYCHARS in
st r EXCEPT the one character that follows the '*' in pat . For
instance, pat = "*." matches "abc." where *' matches
"abc". But "*." does not match "abc. d. ", since the first dot
instr will match thefirst (and only) dot ipat .

Note: Thisis not aregular expression match.

Note: Thisisafile name comparison. On Windows, the match rt case sensitive.

Mat chesFi | ePat t er nNoCase

Parameters: IN str, pat: STRI NG

Return Value: BOOLEAN

Description: Case insensitive version of Mat chesFi | ePattern’.

OpenDi r

Parameters: I Npat h: STRI NG

Return Value: DI RHNDL

Description: Call to start reading the directory 'pat h'. Returns a handle to the

opened directory that must be passed in to NextDirEntry and
Cl oseDi r . When the return DI RHNDL is NI LREC, the directory could
not be opened. When ' pat h' is an empty string the current directory
isread. Use 'Fi |l eType' and 'Mat chesFi | ePattern' to filter out
only certain entries when reading a directory.

Next Di rEntry

Parameters: I N di rhndl: DI RHNDL
Return Value: STRI NG
Description: Returns next directory entry in directory opened with QpenDi r or an

empty string for end or error. When end, OSEr r or Code is 0, other-
wise OSError Code <> 0 (OS dependent error code). See also:
‘Mat chesFil ePattern’.

RenoveDi r

Parameters: | Ndirectory: STRI NG

Return Value: | NTEGER

Description: Remove directory. Returns OSCK for ok, OSERROR for error when the

directory was not empty.

RenaneFil e

Parameters: I Nol d, new. STRI NG
Return Value: | NTEGER
Description: Rename file ol d to new (UNIX: mv). Might not work on al OSs to

rename directories. Returng0OSOK or OSERROR.

RemoveFi nal Sl ash

233

MODSIM Reference Manual

Parameters:
Return Value:
Description:

Test Access
Parameters:
Return Value:
Description:

I N path: STRI NG
STRI NG
Removes all directory separator characters from the end ofpat h’.

| Npath: STRING I N acc:
BOCOLEAN
Test file with name path for access rights by current user. The type

checked for isgiven imcc. Returns TRUE for access, FALSE other

AccessTypeET

D.6.4.4 Process Management

CheckBGTask

Parameters:
Return Value:
Description:

Get PID
Parameters:
Return Value:
Description:

Get PPI D
Return Value:
Description:

Ki | | BGTask
Parameters:

234

QUT pi d, status: | NTEGER

None.

This function can be used to query the operating system as to whether a
background task has finished yet, whether it terminated normally or
was killed by a signa and what exit code was returned (e.g. from an

Exi t ToOS() call). The output parameters are set as follows:

pi d: the process id of the terminated process, or -1 for ' no
children present' or O for ' no background task
has finished yet'. When pid is nether -1 or O, i.e. it
contains a vaid PI D of a background process that has termi-
nated, the remaining out parameters are set as follows:

exi t code: the exit/return code of the terminated process

st at us: 0 when child terminated normally (with Exi t () cal);
a value <> 0 indicates abnormal termination (e.g. killed, not
enough memory, etc.) in which case the value's interpretation is
dependent on the OS.

This call NEVER WAITS for a background task to finish. It always
returns immediately. To check for multiple finished background tasks,
it should be called in aloop aslong as the return val ue igregter than O.

exi t code,

None.

| NTEGER

Gets PI D of current process or -1 for error. Returns O when processes
are not supported on the current operating system.

| NTEGER
Gets PPI D (parent PI D) of current process or -1 for error.

IN pid: | NTEGER

Return Value:
Description:

St art BGTask
Parameters:
Return Value:
Description:

SystentCal |
Parameters:
Return Value:
Description:

Appendix D: Standard Library Modules

| NTEGER

Sends a 'ki | | ' signal to the background task PI D (previously started
with St ar t Backgr oundTask. Note that some programs can choose
to ignore the ki | | signa on some operating systems. Returns OSCK
for ok, OSERROR for error (e.g. wrong PID).

IN cnd: STRING |IN mnimzed: |NTEGER

| NTEGER

Issues ‘cmd’ as a background task and returns the PI D (process ID/ a
process handle) of the newly started task. Asin SystentCal |, 'cnd'is
handed to the systems command line interpreter/shell. This cal is asy n-
chonous, i.e. it returns immediately after starting the background job.
To find out when the background job has finished and what exit code
was returned by that task, you must call * HasBGTaskFi ni shed’ de-
scribed below. When ' mini mi zed' <> 0, the application runs
minimized (an icon but no window is shown).

IN cnd: STRING |IN mnimzed: | NTEGER

| NTEGER

Performs OS call with ‘cnd’ and returns the return code. ‘cmd’ is a
command string that will be handed to a command line interpreter.
This call is synchronous, i.e. it waits until the command returns. When
"mnimzed <> 0, the application runs minimized (an icon but no
window is shown).

235

MODSIM Reference Manual

D.7 Module Name: RandMod

D.7.1 Description
Provides random number generation capability.

D.7.2 Constants

None

D.7.3 Types

D.7.3.1 Object Types
The following is alist of objects which are documented in Appendix E:
Randontbj

D.7.4 Procedures

Fet chSeed
Parameters: IN Simscript SeedNumber : 1 NTEGER
Return Value: | NTEGER
Description: Fet chSeed will return the first seed of the specified SIMSCRIPT
random number stream. For example,
ASK RandStream TO Set Seed(Fet chSeed(4)).
Random
Parameters: None
Return Value: REAL
Description: Pseudo-random number generator. Returns a sample between 0.0 and

1.0 excluding the end points.

236

Appendix D: Standard Library Modules

D.8 Module Name: ResMod

D.8.1 Description
Contains descriptions of objects used to track resources used by an application.

D.8.2 Constants

None

D.8.3 Types

None

D.8.3.1 Object Types

The following isalist of objects which are documented in Appendix E:

Ent r yQbj
PriorityLi st
Al | ocQueuebj
Resour ceCbj

237

MODSIM Reference Manual

D.9 Module Name: SimMod

D.9.1 Description
Provides interface to simulation functionality.

D.9.2 Variables

Ti mescal e
Type: REAL
Description: Number of real seconds per simulation unit (graphics only).

D.9.3 Types

D.9.3.1 Object Types

The following is alist of objects which are documented in Appendix E:
ActivityG oup

Si mCont r ol Qbj
Tri gger Qbj

D.9.4 Procedures

ActivityLi st Dunp

Parameters: IN ProcObj : ANYOBJ
Return Value: None
Description: Dumps the activity list of a particular object.

Acti vityNane

Parameters: IN activity : ACTID

Return Value: STRI NG

Description: Given an activity record for a TELL METHOD, returns the name of
the method.

Acti vit yOmner

Parameters: IN activity : ACTID
Return Value: ANYOBJ
Description: Given an activity record for a TELL METHOD, returns the owner

object for this method instance.

I nt errupt

Parameters: I N obj ect: ANYOBJ
I N met hName: STRI NG

Return Value: None

Description: Causes the method named net hName of the object instance obj ect
to receive an interrupt message when it returns from its wait. No error

238

Appendix D: Standard Library Modules

occurs if no active method of this name is found for the indicated ob-
ject instance. If the method has been scheduled, but has not yet exe-
cuted it will simply be removed from the pending list.

I nterruptAll

Parameters: I N obj ect: ANYOBJ

Return Value: None

Description: Interrupts al activities scheduled for that object.

| nt errupt Met hod

Parameters: IN activity:ACTID
Return Value: None
Description: Sends an interrupt message to the specific method instance described

by 'activity." The activity reference should have been captured
when doing the original scheduling of the method. If the method has
already completed or the ' acti vity' argument is NI LREC, a run-
time error will result.

I nt errupt Wi ti ngFor

Parameters: IN activity: ANYREC
Return Value: None
Description: Interrupts the method(s) that are suspended and waiting 'acti vity'.

The'acti vi t y' must be amethod that was activated by a WAIT FOR
statement. This method will set the state of the invoking method to
interrupted and cause 'acti vi ty' to be removed from any pending

lists.
NumActivities
Parameters: I N obj ect: ANYOBJ
Return Value: | NTEGER
Description: Returns number of activities pending for an object.
NumAct Pendi ng
Parameters: None
Return Value: | NTEGER
Description: Returns the total number of activities pending.
NunObj Pendi ng
Parameters: None
Return Value: | NTEGER
Description: Returns the number of objects with activities pending.

239

MODSIM Reference Manual

NumAMAl TFOR

Parameters: None

Return Value: | NTEGER

Description: Returns the number of activitiesinaWAI T. . FOR status.

Pendi ngLi st Dunp

Parameters:
I N DoAct Li st : BOOLEAN

Return Value: None

Description: Dumps the entire pending list showing each object onit. If
DoAct Li st istrue, it also dumps each object's activity list.

Pendi ngLi st DunpToSt r eam

Parameters: I N doAct List : BOOLEAN; IN stream: streanmObj
Return Value: None
Description: Prints a summary of the contents of the simulation pending list to the

named file'st r eam. If 'doAct Li st'is'TRUE, it also dumps each
object's activity list.

Reset Si nmli nme

Parameters: I N newti me: REAL

Return Value: None

Description: Resets simulation time to newtime for multiple runs - may only bein-
voked before St ar t Si nmul at i on begins or after St ar t Si nul a-
tion ends.

Schedul edTi me

Parameters: IN activity : ACTID

Return Value: REAL

Description: Given an activity record for aTELL METHOD, returns the next time the
activity is scheduled to execute.

Si nili me

Parameters: None

Return Value: REAL

Description: Returns the current simulation time.

StartSi nmul ati on

Parameters: None
Return Value: None
Description: This procedure begins the ssmulation run. No simulation methods will

be initiated (actually executed) until St art Si nmul at i on is begun. At
least one method must be scheduled prior to caling
Start Si mul ati on or control will immediately return to the state-

240

Appendix D: Standard Library Modules

ment following the Start Si mul ati on. Control returns to this
statement after al pending method activities have completed.

St opSi nul ati on

Parameters:
Return Value:
Description:

UseCal endar
Parameters:
Return Vaue:
Description:

None

None

Will empty the pending list of all activities and return control to the
statement after St art Si mul ati on.

IN flag : BOOLEAN

None

Determines which of two algorithms will be used to order the simula-
tion pending list. The Calendar Queue algorithm is the default data
structure for ordering the simulation pending list. It works best for
models which may have 10 or more activities concurrently pending.
For certain models the older ranking algorithm may prove more opti-
mal. To obtain the older method pass 'FALSE' as the argument. To
restore usage of the Calendar Queue pass 'TRUE'.

241

MODSIM Reference Manual

D.10 Module Name: StatMod

D.10.1 Description

Contains definitions for statistical accumulation objects. Also included are predefined
statistical types for basic | NTEGER and REAL types.

D.10.2 Constants

None.

D.10.3 Types

Bl NTEGER

Type:
Description:

BREAL

Type:
Description:

hi st ogram

Type:
Description:

SI NTEGER

Type:
Description:

SREAL

Type:
Description:

TSI NTEGER

Type:
Description:

TSREAL

Type:
Description:

242

LMONI TORED | NTEGER BY | St at Ohj, | Ti nedSt at Qoj ;
Predefined | NTEGER type for collectiong statistics.

LMONI TORED REAL BY RSt at Obj , RTi medSt at Obj ;
Predefined REAL type for collecting statistics.

ARRAY | NTEGER OF REAL

Provides the type definition used by statistical objects for histograms.
Users may declare variables of this type and assign the Histogram
field of statistical objects to it, thereby getting access to the elements
of the

histogram.

LMONI TORED | NTEGER BY | St at Obj
Predefined | NTEGER type for collecting statistics.

LMONI TORED REAL BY RSt at Qbj ;
Predefined REAL type for collecting statistics.

LMONI TORED | NTEGER BY | Ti nedSt at Obj ;
Predefined | NTEGER type for collecting statistics.

LMONI TORED REAL BY RTi nedSt at Qbj ;
Predefined REAL type for collecting statistics.

Appendix D: Standard Library Modules

D.10.3.1 Object Types
The following is alist of objects which are documented in Appendix E:

| St at Obj

I Ti medSt at Qbj
RSt at Qbj

RTi medsSt at Qbj
St at Qbj

Ti medSt at Qbj

243

MODSIM Reference Manual

D.11 Module Name: UtilMod

D.11.1 Description

Provides general purpose utility procedures.

D.11.2 Constants

None.

D.11.3 Types

Machi neType

Type: enuner ati on

Constants: UnknownComp, Sun3, SPARC, Sun386, PC, VAXstation, DECsta
tion, SGI, Macll, Tektronix, DG88000, R6000, NeXT, HP300,
HP700, HP800, PCUnix, Motorola, DECALPHA

Description: Constants returned by Get Conput er Type function.

CSType

Type: enuner ati on

Constants: UnknownOS, DOS, 0S286, OS2, SunOS, VMS, Ultrix, Irix, UTek,
DGUnix, HPUnix, AlX, Macintosh, MACH, SCOUnix, Unix88, Win-
dows, Solaris, AlphaOSF

Description: Constants returned by Get OSTy pe function.

D.11.4 Procedures

Adr ToHex

Parameters: IN Adr : ANYREC
QUT Hex : STRI NG

Return Value: None

Description: Converts a dynamic record reference into a STRI NG containing the
hex representation of the record's address.

Cal | Debugger

Parameters: None

Return Value: BOOLEAN

Description: Invokes the MOSIM debugger, returns TRUE if the debugger was invoked.

Cl ockTi neSecs

Parameters: None
Return Value: | NTEGER
Description: Timein seconds since 1/1/70 .

244

Cl ockReal Secs
Parameters:
Return Vaue:
Description:

Dat eTi e
Parameters:
Return Vaue:
Description:

Exi t ToOS
Parameters:
Return Vaue:
Description:

Get CndLi neArg
Parameters:

Return Value:
Description:

Appendix D: Standard Library Modules

None

REAL

Time in seconds since 1/1/70 - resolution is fractions of seconds if the
OS provides support.

QUT ti nme : STRI NG

None

Provides date and time in following format: Tue Aug 02 17:38:32
1988 .

IN Status : | NTEGER
None
Halts execution, passing exit St at us to OS.

I N ArgNumber : | NTEGER,

QUT Arg: STRI NG

None

Returns command line arguments. Returns a null string if Ar gNunber
is higher than the actual arguments. Returns program name if given
Ar gNunber =0.

Cet Conput er Type

Parameters:
Return Value:
Description:

Get NumAr gs
Parameters:
Return Value:
Description:

Get OSType
Parameters:
Return Value:
Description:

None

Machi neType

Returns a constant of type ' Machi neType' which indicates the ma-
chine on which the program is running.

None
| NTEGER
Returns the number of command line arguments.

None

CSType

Returns a constant of type' OSType' indicating the type of operating
system under which the program is executing.

245

MODSIM Reference Manual

Runti neError

Parameters: I N message: STRI NG
Return Value: None
Description: Invokes MODSIM run-time error mechanism passing it the message.

246

Appendix D: Standard Library Modules

D.12 Module Name: Version

D.12.1 Description

Provides access to the version number of the MODSIM compiler.
D.12.2 Constants

None

D.12.3 Types

None

D.12.4 Procedures

get Ver si on

Parameters: None
Return Value: STRI NG
Description: Returns the version number of the MODSIM compiler, e.g. '1.2'.

get Ver si onDat e

Parameters: None

Return Vaalue: STRI NG

Description: Returns the build date of the MODSIM compiler, e.g. '10/18/96'.

bt ai nVer si on

Parameters: QUT version : STRING

Return Vaue: None

Description: Givesthe version of the MODSIM compiler, e.g. ' MODSIM-III Version 1.2'.

247

MODSIM Reference Manual

248

Appendix E: Objects

249

ActivityGroup

Module: Si mvbd

Derived From:Queueli st

Substitutes: ANYREC: ACTI D

Description: A specialized group for collecting activities.

ASK Method Return Type Private Defined By
Add None No ActivityG oup
Next None No ActivityG oup

FIELDS and METHODS

ASK Method: Add

Parameters. IN item: ACTID;

Return Value: None

Description: Adds an activity to the end of the group.

ASK Method: Next

Return Value: None

Parameters. | N nenber : ACTID;
Description: Returns next member.

250

ActivityList

Module:

SysMod

Derived From:RankedLi st
Description: A MODSIM internal.

Field Type Private Defined By

next Ti me REAL Yes Acti vi tyLi
Next Activity ActivitylLi st Yes Acti vi tyLi
PrevActivity ActivitylLi st Yes Acti vi tyLi
ASK Method Return Type Private Defined By

Set Next None Yes Acti vi tyLi
Set Prev None Yes Acti vi tyLi
Add None Yes Acti vi tyLi
AddFi r st None Yes Acti vi tyLi
Renove activitytype Yes Acti vi tyLi
RenmoveThi s None Yes Acti vi tyLi

FIELDS and METHODS

Internal to operation of the MODSIM system.

st
st
st

st
st
st
st
st
st

251

ActivityQueue

Module: Si mvbd

Derived From:Queueli st
activitytype

Description: A MODSIM internal.

FIELDS and METHODS: None

252

AllocQueueObj

Module:

ResMbd

Derived From: St at Queue(bj

Substitutes: Ent r yCbj for: ANYOBJ

Description: A list of Ent r yQObj 's containing references to objects that have acquired
one Or More resources.

Field Type Private Defined By

numResour ces | NTEGER No St at G ouphj

ASK Method Return Type Private Defined By

Adj ust None No Al'l ocQueuebj

Reset None No Al'l ocQueuebj

FIELDS and METHODS

Field:

Type:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

nunmResour ces
| NTEGER
Field provided for statistics.

Adj ust

IN delta : | NTEGER;

None

Updates nunResour ces field for statistics.

Reset
None
None
Reset monitors associated with nunResour ces.

253

BasicBTreeList

Module:

Li st Mod

Derived From:Li st Qbj

Description: A “virtual” object that provides the basic methods required for a btree or-
dered group. A btree is an efficient data structure for storing ordered sets
of data that will have many members.

Field Type Private Defined By

Or der | NTEGER No Basi cBTr eelLi st

ASK Method Return Type Private Defined By

Add None No Basi cBTr eelLi st

Fi nd #ANYREC No Basi cBTr eelLi st

Key STRI NG No Basi cBTr eelLi st

Qoj I nit None No Basi cBTr eelLi st

Set Or der None No Basi cBTr eelLi st

FIELDS and METHODS

Field:

Type:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

254

Or der

I NTEGER

Contains the maximum number of values that may be stored in a node of
the tree. The desired order of a tree depends upon the nature of the ob-
jectsto be stored. The default order of the btreeis 5.

Add

IN NewVenber : #ANYREC

None

Determines the correct insertion point for the passed in record based upon
its key value (returned by the Key method) and adds the record to the
group at that location in the tree. If more than one object may have the
same key, the new record will be added after all other equivalently keyed
records.

Fi nd

I N key: STRI NG

#ANYREC

This method will return the first record it finds that is associated with the
passed in string. If no record is found in the group with such a key
NI LREC is returned. If more than one record may have the same key the
Next method will provide references to them.

BasicBTreeList (cont.)

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

Key

I N obj ect : #ANYREC

STRI NG

This method will be used by the insertion and location methods of the

bt r ee to determine the correct location for this object. The user is ex-
pected to provide (by overriding) a method appropriate to the reocrds be-
ing added to the group.

Obj I ni t

None

None

Sets the default order of the bt r ee to 5.

Set Or der

I N degree: | NTEGER

None

Allows the order of the bt r ee to be changed. The bt r ee must be empty

when this is done otherwise a runtime error will be generated. In generd
an odd order works best.

255

BasicBTreeObj

Module:

G pMod

Derived From:Basi ¢ Gr oupObj

Description:

A *“virtual” object that provides the basic methods required for a btree or-
dered group based upon a user provided sting key. A btree is an efficient
data structure for storing ordered sets of data that will have many mem-
bers.

Field Type Private Defined By

O der | NTEGER No Basi cBTr eebj
ASK Method Return Type Private Defined By

Fi nd #ANYOBJ No Basi cBTr eebj
Key STRI NG No Basi cBTr eebj
Qoj I nit None No Basi cBTr eebj
oj Load None No Basi cBTr eebj
Set Or der None No Basi cBTr eebj

FIELDS and METHODS

Field:

Type:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

256

Or der

I NTEGER

Contains the maximum number of values that may be stored in a node of
the tree. The desired order of a tree depends upon the nature of the ob-
jectsto be stored.

Obj I ni t

None

None

Sets the default order of the btreeto 5.

bj Load
None
None
Internal.

Key

I N obj ect : #ANYOBJ

STRI NG

This method will be used by the insertion and location methods of the
btree to determine the correct location for this object. The user is expected
to provide (by overriding) a method appropriate to the objects being added
to the group.

BasicBTreeObj (cont.)

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

Fi nd

I N key: STRI NG

#ANYOBJ

This method will return the first object it finds that is associated with the
passed key in string. If no object is found in the group with such a key
NI LOBJ isreturned. If more than one object may have the same key the
Next method will provide references to them.

Set Or der

I N degree: | NTEGER

None

Allows the order of the btree to be changed. The btree must be empty

when this is done, otherwise a runtime error will be generated. In generdl
an odd order works best.

257

BasicGroupObj

Module: G pMod
Derived From:Gr oupbj
Description: A “virtual” object that describes the core methods that all group objects

have.

ASK Method Return Type Private Defined By

Add None No Basi cG oupQbj
AddAf t er None No Basi cG oupQbj
AddBef or e None No Basi cG oupQbj
Dunp None No Basi cG oupQbj
Enpty None No Basi cG oupQbj
Enpt yAndDi spose None No Basi cG oupQbj
Fi rst #ANYOBJ No Basi cG oupQbj
I ncl udes BOOLEAN No Basi cG oupQbj
Last #ANYOBJ No Basi cG oupQbj
Next #ANYOBJ No Basi cG oupQbj
bj C one No Basi cG oupQbj
Qoj Term nate None No Basi cG oupQbj
Prev #ANYOBJ No Basi cG oupQbj
Rank #ANYOBJ No Basi cG oupQbj
Renove #ANYOBJ No Basi cG oupQbj
RenoveThi s None No Basi cG oupQbj

FIELDS and METHODS

ASK Method: Add
Parameters: | N Exi stingMenber: #ANYOBJ
I N NewMenber: #ANYOBJ
Return Value: None
Description: Adds an object (NewiVenber) to the end of the group.

ASK Method: AddAf t er

Parameters: | N Exi stingMenber: #ANYOBJ
I N Newenber: #ANYOBJ

Return Value: None

Description: Adds the an object (NewiVenber) to the group after an object that is al-
ready a member of the group.

ASK Method: AddBef or e

Parameters: | N Exi stingMenber: #ANYOBJ
I N NewMenber: #ANYOBJ

Return Value: None

Description: Adds an object (NewiVerrber) to the group before an object that is already
amember of the group.

258

BasicGroupObj (cont.)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

Dunp

None

None

Prints information about a group object including references (hex ad-
dresses) to its members to st dout .

First

None

#ANYOBJ

Returns a reference to the first object in the group. If the group is empty it
returns NI LOBJ.

I ncl udes

I N candi dat e: #ANYOBJ

BOCOLEAN

Determines membership of an object in the group. If it is a member TRUE
is returned, otherwise FALSE.

Last

None

#ANYOBJ

Returns a reference to the last object in the group. If the group is empty it
returns NI LOBJ.

Next

I N candi dat e: #ANYOBJ

Description: A reference to an object that isa member of the group.
#ANYOBJ

Returns a reference to the object that immediately follows the passed in
object within the group. If the passed in object is the last member of the
group NI LOBJ isreturned.

bj Cl one

None

#ANYOBJ

Per MODSIM language.

bj Term nat e

None

None

Checks that the group is empty before disposal. If not, a runtime error is
generated. Groups must contain no members when they are disposed.

259

BasicGroupObj (cont.)

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

260

Prev

I N candi dat e: #ANYOBJ

Description: A reference to an object that is a member of the group.
#ANYOBJ

Returns a reference to the object that immediately precedes the passed in
object within the group. If the passed in object is the first member of the
group NI LOBJ is returned.

Renove

None

#ANYOBJ

Returns a reference to the first object in a group after removing that object
from the group.

RermoveThi s

I N nenber : #ANYOBJ

Description: A reference to an object that is a member of the group.
None

Removes a specific object from the group.

BasicListObj

Module:

Li st Mod

Derived From: Li st Qbj

Description: A “virtual” object that describes the core methods that all list objects
have.

ASKMethod ReturnType Private DefinedBy
AddAf t er None No Basi cLi st Qbj
AddBef or e None No Basi cLi st Qbj
Dunp None No Basi cLi st Qbj
Fi rst #ANYREC No Basi cLi st Qbj
I ncl udes BOOLEAN No Basi cLi st Qbj
Last #ANYREC No Basi cLi st Qbj
Next #ANYREC No Basi cLi st Qbj
Qoj Term nate None No Basi cLi st Qbj
Prev #ANYREC No Basi cLi st Qbj
Renove #ANYREC No Basi cLi st Qbj
RenoveThi s None No Basi cLi st Qbj

FIELDS and METHODS

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

AddAf t er

I N Exi sti ngMenber : #ANYREC

I N NewMenber : #ANYREC

None

Adds a record (NewiVenber) to the group after a record that is aready a
member of the group.

AddBef or e

I NExi sti ngMenber : #ANYREC

I N NewiVenber : #ANYREC

None

Adds arecord (Newienber) to the group before arecord that is already a
member of the group.

Dunp

None

None

Prints information about a group object including references (hex ad-
dresses) to its members to st dout .

261

BasicListObj (cont.)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:
Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

262

First

None

#ANYREC

Returns a reference to the first record in the group. If the group is empty it
returns NI LREC.

I ncl udes

I N candi dat e: #ANYREC

BOOLEAN

Determines membership of an record in the group. If it is a member TRUE
isreturned, otherwise FALSE.

Last

None

#ANYREC

Returns a reference to the last record in the group. If the group is empty it
returns NI LOBJ.

Next

I N candi dat e: #ANYREC

#ANYREC

A reference to arecord that is a member of the group.

Returns a reference to the record that immediately follows the passed in
record within the group. If the passed in record is the last member of the
group NI LOBJ isreturned.

bj Term nat e

None

None

Checks that the group is empty before disposal. If not, a runtime error is
generated. Groups must contain no members when they are disposed.

Prev

I N candi dat e: #ANYREC

Description: A reference to arecord that isa member of the group.
#ANYREC

Returns a reference to the record that immediately precedes the passed in
record within the group. If the passed in record is the first member of the
group NI LOBJ isreturned.

Renove

None

#ANYREC

Returns a reference to the first record in a group after removing that rec-
ord from the group.

BasicListObj (cont.)

ASK Method: RenmoveThi s

Parameters. | N menber : #ANYREC
Description: A reference to an record that is a member of the
group.

Return Value: None

Description: Removes a specific record from the group.

263

BasicQueuelList

Module: Li st Mbd
Derived From:Li st Qbj
Description: A “virtual” object for holding lists of records.

ASK Method Return Type Private Defined By
Add None No Basi cQueueli st

FIELDS and METHODS

ASK Method: Add

Parameters. | N NewMenber: #ANYREC

Return Value: None

Description: Inserts the passed in record at the end of the list.

264

BasicRankedList

Module:

Li st Mod

Derived From:Li st Qbj

Description: A “virtual” object for holding sorted lists of records.
ASK Method Return Type Private Defined By

Add None No Basi cRankedLi st
AddFi r st None No Basi cRankedLi st
Rank | NTEGER No Basi cRankedLi st

FIELDS and METHODS

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

265

Add

I N Newivenber : #ANYREC

None

Adds an object to the group by determining its rank relative to members
aready in the group. New member records having a rank equal to objects
already members of the group will be inserted after all such records.

AddFi r st

I N: #ANYREC

None

Inserts an record at the head of the group regardless of its rank. Caution
should be used in invoking this method as it can disturb the ranked nature
of the group.

Rank

I N obj ect 1: #ANYREC

I N obj ect 2: #ANYREC

| NTEGER

This method is provided as a “stub” so that the user may derive their own
group object from a RankedLi st (see below) and override the Rank
method to specify the desired ordering of the records. The return values
should be as follows:

recordl < record2 => -1
recordl = record2 => 0
recordl > record2 => 1

BasicRankedObj

Module: G pMod

Derived From:Gr oupbj

Description: A “virtual” object that allows ranked groups to be initially built quickly
without ranking.

ASK Method Return Type Private Defined By
AddFi r st None No Basi cRankedQbj

FIELDS and METHODS

ASK Method: AddFi r st

Parameters. |IN NewiMenber : #ANYOBJ
Return Value: None

Description: Adds before first.

266

BStatBTreeList

Module: Li st Mod
Derived From:Basi cBTr eelLi st
St at Li st Qbj

Description: Same functionality as Basi cBTr eeLi st plus accumulates statistics on
number of recordsin list.

Field Type Private DefinedBy

O der | NTEGER No Basi cBTr eelLi st
firstRoster ANYREC Yes Li st Obj

| ast Rost er ANYREC Yes Li st Obj

nunber St at | NTEGER NoO St at Li st Qbj
nunberin | NTEGER No Li st Obj

r oot ANYOBJ Yes Basi cBTr eelLi st
ASKMethod ReturnType Private DefinedBy

Add None No BSt at BTr eelLi st
Fi nd #ANYREC No Basi cBTr eebj
Key STRI NG No Basi cBTr eebj
Qoj I nit None No Basi cBTr eebj
Set Or der None No Basi cBTr eebj

FIELDS and METHODS
ASK Method: Add
Return Value: None
Parameters:
I N NewMenber : #ANYREC
Description: See Add method of Basi cBTr eeQbj .

267

BasicStackList

Module: Li st Mbd
Derived From:Li st Qbj
Description: A virtual object for holding stacks of records.

ASK Method Return Type Private Defined By
Add None No Basci cSt ackLi st

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters. IN NewMenber: #ANYREC
Description: Add record first in list.

268

BStatBTreeList

Module: Li st Mod
Derived From:Basi cBTr eelLi st
St at Li st Qbj

Description: Provides statistics gathering of BTree records.

ASK Method Return Type Private Defined By
Add None No BSt at BTr eelLi st

FIELDS and METHODS

ASK Method: Add

Parameters. IN NewMenber: #ANYREC

Return Value: None

Description: Add record to BTree and update level.

269

BStatGroupObj

Module: G pMod
Derived From:ExpandedBasi ¢Gr oupObj
St at G oupQbj

Description: A “virtual” object that provides all the basic functionality of group objects
plus the basic methods required for statistical accumulations on groups.

ASK Method Return Type Private Defined By

AddAf t er None No BSt at G oupQbj
AddBef or e None No BSt at G oupQbj
Count | NTEGER No BSt at G oupQbj
Maxi mum | NTEGER No BSt at G oupQbj
Mean REAL No BSt at G oupQbj
M ni mum | NTEGER No BSt at G oupQbj
Renove #ANYOBJ No BSt at G oupQbj
RenmoveThi s None No BSt at G oupQbj
Reset None No BSt at G oupQbj
Set Hi st ogram None No BSt at G oupQbj
St dDev REAL No BSt at G oupQbj
Vari ance REAL No BSt at G oupQbj
W dMean REAL No BSt at G oupQbj
W dSt dDev REAL No BSt at G oupQbj
W dVari ance REAL No BSt at G oupQbj

FIELDS and METHODS

ASK Method: AddBef or e

Parameters: | NExi sti ngMenmber: #ANYOBJ
| NNewivenber: #ANYOBJ

Return Value: None

Description: Inserts the ' NewMenber' immediately before the ' Exi st i ngMenber
within the group.

ASK Method: AddAft er

Parameters: | N Exi stingMenber: #ANYOBJ
I N NewMenber: #ANYOBJ

Return Value: None

Description: Inserts the ' Newienber' immediately after the ' Exi sti ngMenber
within the group.

ASK Method: Count

Parameters: None

Return Value: | NTEGER

Description: Returns the number of times the nunber | n field has been modified.

270

BStatGroupObj (cont.)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Type:
Description:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

Maxi mum

None

| NTEGER

Returns the maximum value that has been in the nunber I n field (i.e., the
maximum number of objects ever in the group).

Mean
None
REAL
The average number of objects in the group.

M ni nmum

None

| NTEGER

Returns the minimum value that has been in the nunber | n field (i.e., the
minimum number of objects ever in the group - aways 0).

Renove

None

#ANYOBJ

Returns a reference to the first object in a group after removing that object
from the group.

RermoveThi s
I N nenber
#ANYOBJ
A reference to an object that is a member of the group.
None
Removes a specific object from the group.

Reset

None

None

Clears the statistical accumulations to zero. Useful for multiple repetitions
of asimulation.

Set Hi st ogram

I N | ow. | NTEGER

I N hi gh:l NTEGER

IN interval : | NTEGER

None

Allows user to set up a histogram for accumulation on the nunber | n
field of the group.

271

BStatGroupObj (cont.)

ASK METHOD:
Parameters:
Return Value:
Description:

ASK METHOD:
Parameters:
Return Value:
Description:

ASK METHOD:
Parameters:
Return Value:
Description:

ASK METHOD:
Parameters:
Return Value:
Description:

ASK METHOD:
Parameters:
Return Value:
Description:

272

St dDev

None

REAL

Returns the standard deviation for the mean of the nunber I n.

Vari ance

None

REAL

Returns the variance for the mean of the nunber I n.

W dMean

None

REAL

Returns the average number of objects in the group, weighted with
respect to time.

W dSt dDev

None

REAL

Returns the standard deviation of the average number of objectsin the
group, weighted with respect to time.

W dVari ance

None

REAL

Returns the variance of the average number of objects in the group,
weighted with respect to time.

BStatListODb

Module: Li st Mbd
Derived From:Basi cLi st Obj
St at Li st Qbj

Description: A “virtual” object that provides all the basic functionality of list objects
plus the basic methods required for statistical accumulations on lists.

ASK Method Return Type Private Defined By

AddAf t er None No BSt at Li st Qbj
AddBef or e None No BSt at Li st Qbj
Count | NTEGER No BSt at Li st Obj
Renove #ANYREC No BSt at Li st Qbj
RenoveThi s None No BSt at Li st Qbj
Reset None No BSt at Li st Qbj
Set Hi st ogr am None No BSt at Li st Qbj
St dDev REAL No BSt at Li st Obj
Vari ance REAL No BSt at Li st Qbj
W dMean REAL No BSt at Li st Qbj
W dSt dDev REAL No BSt at Li st Obj
W dVari ance REAL No BSt at Li st Qbj

FIELDS and METHODS

ASK Method: AddAft er

Parameters. | N Newivenber: #ANYREC

Return Value: None

Description: Add arecord after an existing record and update level.

ASK Method: AddBef or e

Parameters. | N Newivenber: #ANYREC

Return Value: None

Description: Add arecord before an existing record and update level.

ASK Method: Count

Parameters. | N Newivenber: #ANYREC

Return Value: None

Description: Number of observations since last reset.
ASK Method: Maxi mum

Parameters. | N Newivenber: #ANYREC

Return Value: None

Description: Maximum level observed since last reset.
ASK Method: Mean

Parameters. | N Newivenber: #ANYREC

273

BStatListObj (cont)

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

274

None
Mean observation since last reset.

M ni mum

I N NewMenber: #ANYREC

None

Minimum level observed since last reset.

Renpbve
I N NewMenber :
None

#ANYREC

RemoveThi s
I N NewMember :
None

#ANYREC

Remove specific record from group and update level.

Reset

I N NewMenber :
None

Reset statistics.

#ANYREC

Set Hi st ogram
I N NewMenber :
None

Set histogram.

#ANYREC

St dDev

I N NewMenber :
None

Standard deviation since last reset.

#ANYREC

W dMean

I N NewMenber :
None
Time-wighted mean since last reset.

#ANYREC

W dVari ance

I N NewMenber :
None
Time-wighted variance since last reset.

#ANYREC

BStatListODb

ASK Method: Vari ance

Parameters: | N Newivenber: #ANYREC
Return Value: None

Description: Variance since last reset.

275

BStatQueuelList

Module: Li st Mbd
Derived From:Basi cQueueli st
St at Li st Qbj

Description: Same functionality as a Basi cQueuelLi st plus accumulates statistics on
number of recordsin list.

ASK Method Return Type Private Defined By
Add None No BSt at Queueli st

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters. | N NewiMenber : #ANYREC
Description: See Add method of Basi cQueueli st .

276

BStatStackList

Module: Li st Mbd
Derived From:Basi ¢St ack Obj
St at Li st Qbj

Description: This object has the same functionality as a Basi cSt ackLi st object.
The BSt at St ackLi st also accumulates statistics on a number of records

inthelist.
ASK Method Return Type Private Defined By
Add None No BSt at St ackLi st

FIELDS and METHODS

ASK Method: Add

Parameters. | N NewMenber: #ANYOBJ

Return Value: None

Description: Inserts' NewMenber ' at the end of the group.

277

BStatQueuelList

Module: Li st Mbd
Derived From:Basi cQueueli st
St at Li st Qbj

Description: Provides statistics gathering using ranked groups of records.

ASK Method Return Type Private Defined By
Add None No BSt at Queueli st

FIELDS and METHODS

ASK Method: Add

Parameters. | N Newivenber: #ANYREC

Return Value: None

Description: Inserts' NewMenber ' at the end of the group.

278

BStatRankedList

Module: Li st Mod
Derived From:Basi cRankedLi st
St at Li st Qbj

Description: Same functionality as Basi cRankedLi st plus accumulates statistics on
number of recordsin list.

ASK Method Return Type Private Defined By
Add None No BSt at RankedLi st
AddFi r st None No BSt at RankedLi st

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters. IN NewiMenber : #ANYREC

Description: See Add method of Basi cRankedLi st .

ASK Method: AddFi r st

Return Value: None

Parameters. | N NewMenber : #ANYREC

Description: See AddFi r st method of Basi cRankedLi st .

279

BStatStackList

Module: Li st Mod
Derived From:Basi cSt ackLi st
St at Li st Qbj

Description: Same functionality as Basi ¢St ackLi st plus accumulates statistics on
number of records

inlist.
ASK Method Return Type Private Defined By
Add None No BSt at St ackLi st

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters. IN Newienber : ANYREC
Description: See Add method of Basi cSt ackQbj .

280

BTreeList

Module: Li st Mod

Derived From:Basi cLi st Obj
Basi cBTr eelLi st

Description: A composite object that provides an ordered insertion of records into a
group based upon a key value for each record added. If the Key method is
not overridden insertion will be FIFO asin a QueuelLi st. Btrees are
an efficient data structure for ordered trees that will have many members
and do alot of insertion and deletion.

ASK Method Return Type Private Defined By
AddAft er None No BTr eelLi st
AddBef or e None No BTr eelLi st
Qoj Term nate None No BTr eelLi st
Renove #ANYREC No BTr eelLi st
RenoveThi s None No BTr eelLi st

FIELDS and METHODS

ASK Method: AddAf t er

Parameters. | N Exi stingMenber : ANYOBJ;
I N NewMenber : ANYOBJ;

Return Type: None

Description: Must not be overridden with aBTree.

ASK Method: AddBef or e

Parameters. | N Exi stingMenber : ANYOBJ;
I N NewMenber : ANYOBJ;

Return Type: None

Description: Must not be overridden with aBTree.

ASK Method: Obj Ter i nat e

Parameters: None

Return Type: None

Description: Cleanup internal BTree structures.

ASK Method: Renmove

Parameters: None

Return Type: None

Description: Remove first record from group.

281

BTreeList (cont)

ASK Method: RenoveThi s

Parameters. | N Menber : ANYOBJ;

Return Type: None

Description: Remove the specific record from the group.

282

BTreeObj

Module:

G pMod

Derived From: Basi cBTr eeObj

Description: A composite object that provides an ordered insertion of objects into a
group based upon a key value for each object added. If the Key method is
not overridden insertion will be FIFO as in a QueueObj . BTrees are an
efficient data structure for ordered trees that will have many members and
do alot of insertion and deletion.

ASK Method Return Type Private Defined By

AddAf t er None No Basi cBTr eebj

AddBef or e None No Basi cBTr eebj

Qoj Term nate None No Basi cBTr eebj

Renove #ANYOBJ No Basi cBTr eebj

RenoveThi s None No Basi cBTr eebj

FIELDS and METHODS

ASK Method:

Parameters:

Return Type:
Description:

ASK Method:

Parameters:

Return Type:
Description:

ASK Method:

Parameters:
Return Type:
Description:

ASK Method:

Parameters:
Return Type:
Description:

ASK Method:

Parameters:
Return Type:
Description:

AddAft er

I N Exi stingMenber : ANYOBJ;
I N NewMenber : ANYOBJ;
None

AddAf t er cannot be used with aBTree.

AddBef or e

I N Exi stingMenber : ANYOBJ;

I N NewMenber : ANYOBJ;

None

AddBef or e cannot be used with a BTree.

bj Term nat e

None

None

Verification and overhead.

Renove

None

None

Removes First, i.e., the element with the smallest key.

RenoveThi s

I N Member

None

Removes the specific member.

283

EntryObj

Module: ResMbd
Derived From:None
Description: This object isarecord of an object's use of a resource.

Field Type Private Defined By
oj ect ANYOBJ No Ent r yQbj
Tri gger Tri gger Obj No Ent r yQbj
Number | NTEGER No Ent r yQbj
Priority REAL No Ent r yQbj
Ti mer ANYOBJ No Ent r yQbj
State | NTEGER No Ent r yQbj
ASK Method Return Type Private Defined By
Initialize None No Ent r yQbj
Set Nunber I n None No Ent r yQoj
SetPriorityTo None No Ent r yQbj
Set State None No Ent r yQbj
Set Ti mer None No Ent r yQbj
Set Tri ggerTo None No Ent r yQbj

FIELDS and METHODS

Field: Obj ect
Type: ANYOBJ
Description: Object that own/requests the resource.

Field: Tri gger
Type: Tri gger Cbj
Description: Internal trigger.
Field: Nurber

Type: | NTEGER

Description: Number of units of the resource.

Field: Priority
Type: REAL
Description: Priority of the request.

Field: Ti mer
Type: ANYOBJ
Description: Internal.

Field: State

Type: | NTEGER
Description: Internal.

284

EntryObj (cont.)

ASK Method:
Return Vaue:

Parameters:

Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

Initialize

None

I N Qoj: ANYOBJ

I N nunmt | NTEGER

IN Trig: Triggerlbj
I N next: | NTEGER

I N pr: REAL

Initializes all fields of the object.

Set Nunber To

None

I N nunmber : | NTEGER
Setsthe Nunber field.

SetPriorityTo

None

IN pr : REAL
SetsthePriori ty field.

Set St at e

None

IN state : | NTEGER
Setsthe internal state field.

Set Ti ner

None

IN timer : ANYOBJ
Setsthe Ti ner field.

Set Tri ggerTo

None

IN Trig : Trigger Qbj
Setsthe Tri gger field.

285

ExpandedBasicGroupObj

Module:

G pMod

Derived From:Basi ¢ Gr oupObj

ExpandedBasi cG oupObj

Description: Adds support for FIFI, LIFO and ranked groups.
ASK Method Return Type Private Defined By
Set G oupOr der None No ExpandedBasi
Updat eDel ay None No ExpandedBasi
Updat eEntryLevel None No ExpandedBasi
Updat eLevel None No ExpandedBasi
Updat eExi t Level None No ExpandedBasi
Updat eNunEntri es None No ExpandedBasi
Updat eNunExi t s None No ExpandedBasi
Set Del aySt at s None No ExpandedBasi
Reset St at s None No ExpandedBasi
Add None No ExpandedBasi
Get Rost er Car d None No ExpandedBasi
Del Rost er Card None No ExpandedBasi
FIELDS and METHODS
ASK Method: Add
Parameters: | N NewMenber #ANYOBJ
Type: | NTEGER
Return Value: None
Description: Add a member to the group.
ASK Method: Del Rost er Card
Parameters. | N card : ANYREC;

I N menmber #ANYOBJ
Return Value: None
Description: Internal method.
ASK Method: Get Rost er Card
Parameters: | N NewMenber #ANYOBJ
Return Value: None
Description: Internal method.
ASK Method: Reset St at s
Parameters: None
Return Value: None
Description: Setsthe Ti mer field.

286

cG oupObj
cG oupbj
cG oupbj
cG oupbj
cG oupObj
cG oupObj
cG oupbj
cG oupbj
cG oupObj
cG oupObj
cG oupbj
cG oupbj

ExpandedBasicGroupObj (cont)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

Set G oupOr der

IN disc : GoupOrderType
None

Set theeGr oupOr der field.

Set Del aySt at s

IN flag : BOOLEAN
None

Set thebDel ay St at s field.

Set Level Stats

IN flag : BOOLEAN
None

Set thebLevel St at s field.

Updat eDel ay

IN obj : #ANYOBJ;
IN dt : REAL

None

Update the Del ay field.

Updat eLevel
INrDelta : REAL
None

Set the Level fied.

Updat eExi t Level
I N obj : #ANYOBJ
None

Update the Level field on exit from the group.

Updat eNunEntri es

I N obj : #ANYOBJ

None

Update the number of entries.

Updat eNunExi t s

IN obj : #ANYOBJ
None

Set the number of exits.

287

ExpandedGroupObj

Module: G pMod
Derived From:Gr oupbj
Description: Adds fields used in the ExpandedBasi cGr oupObj .

Field Type Private Defined By

bDel aySt at s BOOLEAN No ExpandedG oupCbj
bLevel Stats BOOLEAN No ExpandedG oupCbj
eG oupOr der STRI NG No ExpandedG oupCbj
rLevel | NTEGER No ExpandedG oupCbj
rNunentries ANYREC No ExpandedG oupCbj
rNunexits ExpandedG oupQbj
t Del ay ExpandedG oupObj

FIELDS and METHODS

Field: bDel aySt at s
Type: BOOLEAN
Description: If TRUE, collect delay stats.

Field: bLevel St ats
Type: BOOLEAN
Description: If TRUE, collect level stats.

Field: eG oupOr der
Type: G oupOr der
Description: Determines add behavior: FIFO, LIFO, Ranked.

Field: rLevel
Type: LMONI TORED REAL
Description: Membership level for monitoring.

Field: rNunkntries
Type: REAL
Description: Number of times member is added to group.

Field: rNunexi t s

Type: REAL

Description: Number of times member is removed from group.
Field: t Del ay

Type: LMONI TORED REAL

Description: Accumulates SIMTIME objects that are members of the group for the
purpose of monitoring.

288

GroupObj

Module: G pMod
Derived From:None
Description: A “virtual” object that describes the fields all group objects have.

Field Type Private DefinedBy
firstRoster ANYREC Yes G oupObj
| ast Rost er ANYREC Yes G oupObj
nunberin | NTEGER No G oupObj
ASK Method Return Type Private Defined By
Get Rost er Car d None No G oupObj
Del Rost er Card None No G oupObj

FIELDS and METHODS

Field: firstRoster

Type: ANYREC

Description: An internal (to the group object) record that contains a reference to the
first member of the group.

Field: | ast Rost er

Type: ANYREC

Description: An internal (to the group object) record that contains a reference to the
last member of the group.

Field: nunber | n
Type: | NTEGER
Description: A counter that has the current number of objects in the group.

ASK Method: Get Rost er Car d

Parameters. None

Return Value: | NTEGER

Description: Get aroster card for the new member.

ASK Method: Del Rost er Card
Parameters. None

Return Vaue: | NTEGER
Description: Delete aroster card.

289

IStatObj

Module: St at Mbd
Derived From: St at Qbj
Description: Statistical monitor for | NTEGER type.

Field Type Private Defined By
Maxi mum | NTEGER No | St at Qbj
M ni mum | NTEGER No | St at Qbj

LMONITOR Method Defined By:
access | St at Qbj

RMONITOR Method Defined By:
raccess | St at Qbj

FIELDS and METHODS

Field: Maxi mum
Type: | NTEGER
Description: Maximum observation since last reset.

Fields: M ni mum
Type: | NTEGER
Description: Minimum observation since last reset.

LMONI TOR Method: access

Description: Updates statistics based on observation. Increments the number of obser-
vations by 1. Updates minimum and maximum values if appropriate. Up-
dates the sum by the value of the observation. Updates the sum squared by
the squared value of the observation. Adds the value to the histogram if a
histogram is previously created by Set Hi st ogr am

RMONI TOR Method: r access
Description: Override method to add functionality to derived object.

290

iITimedStatObj

Module: St at Mod
Derived From: Ti medSt at Obj
Description: Time-weighted statistical monitor for | NTEGER type.

Field Type Private Defined By

Maxi mum | NTEGER No I Ti medSt at Qbj
M ni mum | NTEGER No I Ti medSt at Qbj
val ue | NTEGER No I Ti medSt at Qoj
ASK Method Return Type Private Defined By

Reset None No I Ti medSt at Qbj
TAdj ust None No I Ti medSt at Qbj

LMONITOR Method Defined By
access I Ti medSt at Qoj

RMONITOR Method Defined By
raccess I Ti medSt at Qoj

FIELDS and METHODS

Field: Maxi mum
Type: | NTEGER;
Description: Maximum observation since last reset.

Field: M ni num
Type: | NTEGER;
Description: Minimum observation since last reset.

Field: Val ue:
Type: | NTEGER;
Description: The value being monitored.

LMONITOR Method: access;

Description: Updates statistics based on observation. Increments the number of obser-
vations by 1. Updates minimum and maximum values if appropriate. Ad-
justs time dependent values.

RMONITOR Method: raccess;
Description: Provides access to object if monitored statistic is accessed. Override
method to add functionality to derived object.

ASK Method: Reset
Parameters. None

291

ITimedStatObj (cont)

Return Value: None
Description: ResetsM ni numand Maxi numand sets current time.

ASK Method: TAdj ust

Parameters. None

Return Value: None

Description: Updates time dependent values.

292

ListObj

Module: Li st Mbd

Derived From: None

Description: A “virtua” object that describes the fields all list objects have. All list
objects are designed to hold RECORDs.

Field Type Private Defined By

nunberin | NTEGER No Li st Obj

FIELDS and METHODS

Field:

Type:
Description:

nunmber | n
I NTEGER
A counter that has the current number of objectsin the group.

293

PriorityList

Module:

ResMod

Derived From: St at RankedObj

Substitutes: Ent r yObj for: ANYOBJ

Description: Keeps a list, ranked by priority, of all objects waiting to receive a re-
source.

Field Type Private Defined By

nunmResour ces | NTEGER No PrioritylLi st

ASK Method Return Type Private Defined By

Add None No PrioritylLi st

Adj ust None No PrioritylLi st

Rank | NTEGER No PrioritylLi st

Reset None No PrioritylLi st

FIELDS and METHODS

Field: numResour ces
Type: | NTEGER

Description:

LRMONI TORED | NTEGER by | St at Cbj and | Ti medSt at Qoj .

ASK Method: Add

Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

294

I N NewMenber : EntryQbj
REAL;
Inserts NewVerrber in proper ranking order.

Adj ust

I N NewSeed

None

Updates nunResour ces field for statistics.

Rank

IN a, b : EntryQbj

None

Relative order of a, b based on priority.

Reset

None

None

Resets monitors associated with nunber Resour ces.

Queuelist

Module: Li st Mbd

Derived From:Basi cLi st Obj
Basi cQueueli st

Description: A composite object that provides a grouping mechanism based upon FIFO
(first-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By
bj Load None No Queueli st

FIELDS and METHODS

ASK Method: bj Load

Parameters. None

Return Value: REAL

Description: Load Queueli st from a persistent data base.

295

QueueObj

Module: G pMod

Derived From:Basi ¢ Gr oupObj

Description: A composite object that provides a grouping mechanism based upon FIFO
(first-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By

Add None No QueueCbj
FIELDS and METHODS

ASK Method: Add

Parameters: | N NewMenber : ANYOBJ

Return Value: REAL
Description: Add the new member first.

296

RandomObj

Module: RandMvbd
Derived From:None
Description: Provides a variety of statistical distributions for random number genera

tion.
Field Type Private Defined By
ori gi nal Seed | NTEGER No RandonCbj
current Seed | NTEGER No RandonCbj
antithetic BOOLEAN No RandonCbj
ASK Method Return Type Private Defined By
Sanpl e REAL No RandonCbj
Set Seed None No RandonCbj
Reset None No RandonCbj
Uni f or nReal REAL No RandonCbj
Uni f or m nt | NTEGER No RandonCbj
Exponenti al REAL No RandonCbj
Nor mal REAL No RandonCbj
Gamma REAL No RandonCbj
Bet a REAL No RandonCbj
Triangul ar REAL No RandonCbj
Set Antithetic None No RandonCbj
Qoj I nit None No RandonCbj
Dunp None No RandonCbj
LogNor nal None No RandonCbj
Qoj I nit None No RandonCbj
Erl ang None No RandonCbj
Wi bul | None No RandonCbj
Poi sson None No RandonCbj
Bi nom al None No RandonCbj

FIELDS and METHODS

Field: antithetic
Type: BOOLEAN
Description: Generate antithetic variates.

Field: current Seed
Type: | NTEGER
Description: Current seed - changes on every random draw.

Field: ori gi nal Seed

Type: | NTEGER
Description: Argument in last Set Seed message.

297

RandomObj (cont.)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

298

Bi noni al

None

None

Generate a random sample from the Binomial distribution. The binomial
distribution represents the integer number of successesin "n" independent
trials, each having the probability of success "p". The values of both "n"
(number of trials) and "p" (probability”" must be greater than 0.

Bet a

I N al phal: REAL

I N al pha2: REAL

REAL

Returns a random sample from the beta distribution related to the gamma

function where the result is restricted to the unit interval. Given argu-
ments of al phal and al pha2 must be greater than O;

al phal, al pha2 > 0; Beta(al phal, al pha2) =
Gamma(al phal, al phal) / (Ganmma(al phal, al phal) +
Gamma(al pha2, al pha2))

Dunp
None
None

Er | ang

None

None

The Erlang distribution is a special case of "Gamma" which results when
"dpha' isaninteger. If 'K =1'thisfunction is the same as the exponential
distribution. Generate a random sample from the Erlangian distribution.

Exponenti al
I N nmean: REAL
REAL

Returns a random sample from the exponential distribution, mean > O.

Gamma

I N mean: REAL
I N al pha: REAL
REAL

RandomObj (cont.)

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Returns a random sample from the gamma distribution. This distribution
has smaller variance and more control in parameter selection than the Ex-
ponential method, and can therefore be used to more realistically represent
observable data. nmean, al pha > 0;nmean = al pha * beta inthe
standard representation of this distribution.

LogNor mal

None

None

Generates a random sample from the Log Normal distribution. The log
normal distribution is often used to characterize skewed data. The given
"mean” must be greater than 0.

Nor mal

I N mean: REAL
I N si gma: REAL
REAL

Returns a random sample from the normal distribution. This distribution
generates the Gaussian bell-shaped curve. si gma > 0.

Obj I nit
None
None

Poi sson

None

None

Generates a random sample from the Poisson distribution. Poisson idstri-
butions are often used to model the number of occurences of some event
in agiven period of time. The value of mu must be greater than 0.

Reset

None

None

Resets to the original seed last specified by Set Seed.

Sanpl e

None

REAL;

Returns sample Swhere: 0.0<S<1.0

Set Antithetic

IN onOf f : BOOLEAN
None

299

RandomObj (cont.)

Description:

ASK Method:
Parameters:

Type:
Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

300

Toggles sampling with antithetic variates, default is FALSE.

Set Seed

I N NewSeed

| NTEGER

None

All Randombj s start with adefault of Fet chSeed(1). A new seed
can be generated at any time.

Tri angul ar

IN mn: REAL
I N node: REAL
IN max: REAL
REAL

Returns a random sample from the triangular distribution,
mn < nmean < max.

Uni f or m nt

IN | o:l NTEGER

I N hi: 1 NTEGER

| NTEGER

Returns a random sample from the uniform distributionin[| o, hi] .

Uni f or mnReal

I N | o: REAL

I N hi : REAL

REAL

Returns a random sample from the uniform distributionin[| o, hi] .

Wi bul |

None

None

Generates a random sample from the Weibull distribution. The Weibull
function can be used to generalize distribution function implementation.
By selecting the values of the parameters, several families can be repre-
sented. For example, if shape = 1 the Welbull function is the same as
Exponenti al withnmean = scal e. Theshape and scal e arguments
must be greater than 0.

RankedList

Module:

Li st Mod

Derived From:Basi cLi st Obj

Basi cRankedLi st

Description: A composite object that allows the user to specify arelative order between
records being added to the group. Records will be added to the group
based upon this ordering. If the Rank method is not overridden the inser-
tion order of the group is undefined.

ASK Method Return Type Private Defined By

oj Load None No RankedLi st

FIELDS and METHODS

ASK Method:

bj Load

Return Value: None

Parameters
Description:

None
Establishes ranked list when read from a persistent data base.

301

RankedObj

Module: G pMod

Derived From:Basi ¢ Gr oupObj
Basi cRanked(bj

Description: A composite object that allows the user to specify arelative order between
objects being added to the group. Objects will be added to the group based
upon this ordering. If the Rank method is not overridden the insertion or-
der of the group is undefined.

ASKMethod Return Type Private Defined By
Add None No RankedCbj

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters | N NewMenber : ANYOBJ
Description: Performs ordered insertion.

302

ResourceObj

Module:

ResMod
Derived From:None

Description: This object type provides a blocking resource acquisition mechanism. This
mechanism is particularly useful for smulation scenarios. Object in-
stances requesting one or more resources from the created (instantiated)
pool will be granted acquisition as the resources are or become available.
The requesting method will block (WAI T FOR) at the point of request un-
til the request can be fulfilled or it is interrupted.

Field Type Private Defined By

Al'l ocationLi st All ocQueueQbj No Resour cebj
MaxResour ces I NTEGER No Resour cebj
Pendi ngLi st PrioritylLi st No Resour cebj
Pendi ngResour ces| NTEGER No Resour cebj
Resour ces I NTEGER No Resour cebj
ASK Method Return Type Private Defined By

Al'l ocCount | NTEGER No Resour cebj
Al'l ocMaxi mum | NTEGER No Resour cebj
Al'l ocMean REAL No Resour cebj
Al'l ocM ni mum | NTEGER No Resour cebj
Al'l ocSt dDev REAL No Resour cebj
Al'l ocVari ance REAL No Resour cebj
Al'l ocW dMean REAL No Resour cebj
Al'l ocW dStdDev REAL No Resour cebj
Al'l ocW dVari anceREAL No Resour cebj
Al'l ocat e None Yes Resour cebj
Cancel None No Resour cebj
Create None No Resour cebj
Fi nd #ANYOBJ Yes Resour cebj
I ncr ement Resour cesBy None No Resour cebj
Nurber Al | ocat edTo | NTEGER No Resour cebj
QojInit; None No Resour cebj
Qoj Ter m nat e; None No Resour cebj
PendW dMean REAL No Resour cebj
PendW dSt dDev REAL No Resour cebj
PendW dVar i ance REAL No Resour cebj
Pendi ngCount | NTEGER No Resour cebj
Pendi ngvaxi num | NTEGER No Resour cebj
Pendi ngMean REAL No Resour cebj
Pendi ngM ni num | NTEGER No Resour cebj
Pendi ngSt dDev REAL No Resour cebj
Pendi ngVari ance REAL No Resour cebj
ReportAvailability | NTEGER No Resour ceCbj

303

ResourceObj (cont)

ASK Method Return Type Private Defined By
Repor t Nunber Pendi ng | NTEGER No Resour ceCbj
Reset None No Resour cebj
Reset Al | ocationStats None No Resour ceCbj
Reset Pendi ngStats None No Resour ceCbj
Set Al | ocHi st ogram None No Resour ceCbj
Set Al | ocationStats None No Resour ceCbj
Set PendHi st ogr amNone No Resour cebj
Set PendSt at s None No Resour cebj
TakeBack None No Resour cebj
Transfer None No Resour cebj
TELL Method Return Type Private DefinedBy
Decr ement Resour cesBy None No Resour cebj
WAITFOR Method Return Type Private DefinedBy
Get Resour ce None No Resour cebj
G ve None No Resour cebj
PriorityG ve None No Resour cebj
Ti medG ve None No Resour cebj

FIELDS and METHODS

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

304

Al | ocati onLi st
Al | ocQueuebj
A group of Ent r yObj s describing currently allocated resources.

Pendi ngLi st

PriorityLi st

A group, ordered by priority (highest to least), of Ent r yObj s describing
resource regquests.

MaxResour ces

| NTEGER

Total number of resources potentialy available from the Resour ceObj
instance.

Resour ces
| NTEGER
The number of currently available resources for the instance.

Pendi ngResour ces
| NTEGER
Number of resources requested.

ResourceObj (cont)

ASK Method:
Return Value:
Parameters
Description:

ASK Method:
Return Value:
Parameters
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

TELL Method
Parameters:
Return Value:
Description:

Obj I ni t

None

None

Creates dl internal data structures.

bj Term nat e

None

None

Empties and disposes internal data structures.

Report Avai l ability

None

| NTEGER

How many could be obtained immediately.

Repor t Nunmber Pendi ng

None

| NTEGER

Number requested that have not yet been provided.

Nurber Al | ocat edTo

I N Obj ect : #ANYOBJ

| NTEGER

The number of resources that have been allocated to object.

Create

I N nunber : | NTEGER

None

Initialize resource to have number of resources.

I ncr ement Resour cesBy

I N i ncBy: | NTEGER

None

Increase the number of resources in the total resource pool.

: Decr ement Resour cesBy

I N decBy: | NTEGER
None
Decrease the number of resources in the total resource pool.

305

ResourceObj (cont)

WAITFOR Method: G ve

Parameters. | N Me: #ANYOBJ
I N nunber Desi red: | NTEGER

Return Value: None

Description: Requests acquisition of 'nunber Desi r ed' resources and alocates them
to object 'Me'. Calling method is blocked until resource(s) become avail-
able on afirst comefirst served basis.

WAITFOR Method: Ti nedG ve

Parameters. | N Me: #ANYOBJ
I N nunber Desi red: | NTEGER
IN timePeriod: REAL

Return Value: None

Description: Same as G ve above except if resources are not acquired within
t i mePer i od simulation units the calling method will be resumed with an
| NTERRUPT. Calling code should have an ON | NTERRUPT clause to
handle this case.

WAITFOR Method: PriorityG ve

Parameters. | N Me: #ANYOBJ
I Nnumber Desi red: | NTEGER
IN priority: REAL

Return Value: None

Description: Same as G ve above except those requests that must be queued will be
gueued based upon the given priority. The higher the priority argument
the more forward in the pending list the request will be placed.

WAITFOR Method: Get Resour ce

Parameters. | N Me: #ANYOBJ
I N nunber Desi red: | NTEGER
IN timePeriod: REAL
IN priority: REAL

Return Value: None

Description: A combination of Ti medG ve and PriorityG ve. Reguesting method
will 't i meout " if resource is not allocated within t i mePer i od simula-
tion units and calling method will be resumed with an | NTERRUPT condi-
tion (an ON | NTERRUPT clause should be provided), queued requests will
be allocated based upon given priority.

ASK Method: TakeBack
Parameters. | N Fromve: #ANYOBJ

I N nunmber Ret ur ned: | NTEGER
Return Vaue: None

306

ResourceObj (cont)

Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Type:

Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

ASK Method:
Parameters:
Return Vaue:

This returns previously allocated resource(s) that were acquired by object
From\e. If the object did not have the resource to begin with a runtime
error will result.

Transfer

IN From To:#ANYOBJ

I N nunber Tr ans: | NTEGER

None

Transfers “ownership” of resource from Fr om object to To object. User
must provide code to notify both objects of condition. This method is pro-
vided to facilitate preemption allocation.

Cancel

I N Obj ect : #ANYOBJ

I N nunber ToCancel : | NTEGER

None

Cancels al or portion of request for resource(s) that is currently on pend-
ing list - user must provide code to notify object of cancellation.

Reset
None
None
Resets both Allocation and Pending statistics.

Reset Al | ocati onStats

None

None

Resets statistics for the Al | ocat i onLi st .

Set Al | ocationStats

IN on

BOOLEAN

None

Statistics gathering may be turned on (TRUE) or off - default is off.

Set Al | ocHi st ogr am

I N | ow. | NTEGER

I N hi gh:l NTEGER

I N interval : 1 NTEGER

None

Set up resource allocation histogram bounds.

Al | ocMaxi mum

None
| NTEGER

307

ResourceObj (cont)

Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

The maximum number alocated at any time up to the present simulation
time.

Al l ocM ni mum

None

| NTEGER

The minimum number allocated at any time up to the present simulation
time.

Al | ocCount

None

| NTEGER

Returns the number of times the number of units of the resource was allo-
cated at the present ssmulation time.

Al | ocMean

None

REAL

The mean number of objects on the allocation list.

Al | ocVari ance

None

REAL

The variance of the number of objects allocated.

Al | ocSt dDev

None

REAL

The standard deviation of the number of objects on the allocation list.

Al | ocW dMean

None

REAL

The mean, weighted with respect to time, of objects on the allocation list.

ASK Method: Al | ocW dVari ance

Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Vaue:

308

None

REAL

The weighted variance of the number of units of the resource with respect
to time, of objects on the allocation list.

Al | ocW dSt dDev
None
REAL

ResourceObj (cont)

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

The weighted standard deviation with respect to time, of objects on the
alocation list.

Reset Pendi ngSt at s
None
REAL
Reset the pending stats.

Set Pendi ngSt at s

None

REAL

Set up resource pending histogram bounds.

Set PendHi st ogram

None

REAL

Set up resource pending histogram bounds.

Pendi ngMaxi mum

None

REAL

The maximum number of objects requested but not yet granted.

Pendi ngM ni mum

None

REAL

The minimum number of objects requested but not yet granted.

Pendi ngCount

None

REAL

The number of times the object pending was updated.

Pendi ngMean
None
REAL
The mean of the number of objects on the pending list.

Pendi ngVari ance

None

REAL

The variance of the number of objects requested but not yet granted.

Pendi ngSt dDev
None

309

ResourceObj (cont)

Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:

Return Value:
Description:

310

REAL
The standard deviation of the number of objects requested but not yet
granted.

PendW dMean

None

REAL

The average, weighted with respect to time, of objects on the pending list.

PendW dVari ance

None

REAL

The weighted variance of the number of objects on the pending list.

PendW dSt dDev

None

REAL

The weighted standard deviation of the number of objects on the pending
list.

Fi nd

I N Cbj : #ANYOBJ

#ANYOBJ

For private use by the Resour ceObj , locates a particular object on the
pending list for transfer or cancellation purposes.

Al | ocat e

I N Me: #ANYOBJ

I N nunber : | NTEGER

IN priority: REAL

None

For private use by the Resour ceObj , actually executes granting resource
request and all attendant bookkeeping.

RStatObj

Module: St at Mbd
Derived From: St at Qbj
Description: Statistical monitor for REAL type.

Field Type Private Defined By
Maxi mum REAL No RSt at Qbj
M ni mum REAL No RSt at Qbj

LMONI TOR Method Defined By
access RSt at Qbj

RMONI TOR Method Defined By
raccess RSt at Qbj

FIELDS AND METHODS

Field: Maxi mum
Type: REAL
Description: Maximum observation since last reset.

Fields: M ni mum
Type: REAL
Description: Minimum observation since last reset.

LMONI TOR Method: access
Description: Provides access to object if monitored statistics is accessed.

RMONI TOR Method: r access
Description: Updates statistics based on observation.

311

RTimedStatObj

Module: St at Mod
Derived From: Ti medSt at Obj
Description: Weighted statistical monitor for REAL type.

Field Type Private Defined By

Maxi mum REAL No RTi medSt at Qbj
M ni mum REAL No RTi medSt at Qbj
val ue | NTEGER No RTi medSt at Qbj
ASK Method Return Type Private Defined By

Reset None No RTi medSt at Qbj
TAdj ust None No RTi medSt at Qbj

LMONITOR Method Defined By
access RTi medSt at Qbj

RMONITOR Method Defined By
raccess RTi medSt at Qbj

FIELDS AND METHODS

Field: Maxi mum
Type: REAL
Description: Maximum observation since last reset.

Fields: M ni mum
Type: REAL
Description: Minimum observation since last reset.

LMONI TOR Method: access
Description: Updates statistics based on observation.

RMONI TOR Method: r access
Description: Provides access to object if monitored statistics is accessed.

ASK Method: TAdj ust

Parameters. None

Return Value: None

Description: Updates time dependent values.

ASK Method: Reset

Parameters. None

Return Value: None

Description: Resets Minimum, Maximum, and setsr eset Ti ne.

312

SimControlObj

Module:

Si mvbd

Derived From: None

Description:

The simulation control object lets the developer resolve time ties.

This object provides mechanisms for fine-tuning the execution of activities within a
simulation. To take advantage of its capabilities (tie-breaking and time advance notifi-
cation) the user must derive an object type from this class and override the desired be-

haviors.

In addition, either or both, of the 'Set' methods must be called to notify the

simulation controller of the desired behavior.

ASK Method Return Type Private Defined By

Ti meAdvance REAL No Si mCont r ol Qbj
ChooseNext ACTI D No Si mCont r ol Qbj
ActivityTrace ACTI D No Si mCont r ol Qbj
Set Ti eBr eaki ng None No Si mCont r ol Qbj
Set Ti neAdvance None No Si mCont r ol Qbj
Set Acti vityTraceNone No Si mCont r ol Qbj
FIELDS AND METHODS

ASK Method: ActivityTrace

Parameters: | N activity : ACTID

Return Value: ACTI D

Description: Trace simulation activities. Method is activated right before the activity is

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

activated or reactivated and just before it is suspended for a WAIT.

ChooseNext
| N group :
ACTI D
Choose the next event in the case of atime tie. The method is invoked
when there are two or more activities scheduled for the identical ssimula-
tion time. The method must return the activity which should be activated
next.

ActivityG oup

Set ActivityTrace

IN flag : BOOLEAN

None

If TRUE, then Act i vi t yTr ace iscaled for each new activity.

Set Ti eBr eaki ng

IN flag : BOOLEAN

None

If TRUE, then ChooseNext is called to resolve timeties.

313

SimControlObj (cont)

ASK Method:
Parameters:
Return Value:
Description:

ASK Method:
Parameters:
Return Value:
Description:

314

Set Ti nreAdvance

IN flag : BOOLEAN

ACTI D

If TRUE, then Ti mreAdvance is called when the ssimulation clock is to
advance.

Ti meAdvance

| N newTi ne : REAL

REAL

Notification of advance of the ssmulation clock. This method is invoked
when the simulation time is about to be advanced. Any desired work may
be performed from this method including scheduling more activities. The
method must return either the current simulation time which will allow
any newly scheduled activities to be performed or the new proposed
simulation time which has been passed in as an argument.

SimQueueObj

Module: G pMod
Derived From: ExpandedBasi cG oupQbj

RankedCbj
Description: LIFO, FIFO and ranked groups with delay and level monitoring.
Field Type Private Defined By
oDel ayMoni t or
oLevel Moni t or
ASK Method Return Type Private Defined By
AddDel ayMoni t or REAL No Si mMQueuebj
AddLevel Moni t or ACTI D No Si mMQueuebj
RenoveDel ayMoni t or ACTI D No Si mMQueuebj
RenovelLevel Moni t or None No Si mMQueuebj
Qoj Init None No Si mMQueuebj
Reset St at s None No Si mMQueuebj
Qoj Term nate None No Si mMQueuebj
Add None No Si mMQueuebj
Get Rost er Car d None No Si mMQueuebj
Del Rost er Card None No Si mMQueuebj
FIELDS AND METHODS
Field: oDel ayMoni t or
Type: RSt at Qbj
Description: Statistics.
Field: oLevel Moni t or
Type: RTi medSt at Qbj
Description: Weighted statistics.
ASK Method: AddDel ayMoni t or
Parameters. | N non : RSt at Qbj
Return Value: None
Description: Adds monitor to t del ay field.
ASK Method: AddLevel Moni t or
Parameters:. | N non : RTi nedSt at Qoj
Return Value: None
Description: Adds monitor tor Level field.

315

SimQueueObj (cont)

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

316

RenoveDel ayMoni t or

None

None

Removes monitor from t Del ay field.

Rermovelevel Moni t or

None

None

Removes monitor fromr Level field.

Qoj Init

None

None

Default version does nothing.

Reset St at s
None
None

ResetsnunEnt ri es, numExi t s and monitor objects.

Qbj Term nat e

None

None

Verification and overhead.

Add

I N NewiVenber
ACTI D
Supports LIFO, FIFO and ranked insertions.

ANYOBJ

CGet Rost er Card
| N NewMenber
None

Internal

ANYOBJ

Del Rost er Card

| N menmber ANYOBJ
None

Internal

StackList

Module: Li st Mbd

Derived From:Basi cLi st Obj
Basi cSt ackLi st

Description: A composite object that provides a grouping mechanism based upon LIFO
(last-in-first-out) insertion and removal.

ASK Method ReturnType Private Defined By
bj Load None No St ackLi st

FIELDS and METHODS

ASK Method: Obj Load

Parameters. None

Return Value: None

Description: Load St ackLi st from a persistent data base.

317

StackObj

Module: G pMod

Derived From:Basi ¢ Gr oupObj

Description: A composite object that provides a grouping mechanism based upon LIFO
(last-in-first-out) insertion and removal.

ASK Method Return Type Private Defined By
Add None No St ackObj

FIELDS and METHODS

ASK Method: Add

Parameters. Newienber

Return Value: REAL

Description: Add the new member last.

318

StatBTreelList

Module: Li st Mbd

Derived From:BSt at Li st Obj
BSt at BTr eeLi st

Description: Same functionality as Basi cBTr eeLi st plus accumulates statistics on
number of recordsin list.

319

StatBTreeObj

Module: G pMod

Derived From:BSt at Gr oupObj

Description: Same functionality as a BTr eeCbj plus statistical accumulation on num-
ber of objects kept in group.

ASK Method Return Type Private Defined By
Add None No St at BTr eebj

FIELDS and METHODS

ASK Method: Add

Parameters. NewiMenber

Return Value: REAL

Description: Performs balanced insertions, accumul ates stats.

320

StatGroupObj

Module: G pMod
Derived From:None
Description: Provides basic fields required by group objects that accumulate statistics.

Field Type Private Defined By
nunber St at | NTEGER NoO St at G oupQbj

FIELDS and METHODS

Field: number

Type: St at | NTEGER

Description: A monitored integer field that parallels the nunber I n field of group ob-
jects. It isthisfield upon which statistics are kept.

321

StatListODbj

Module: Li st Mod
Derived From:None
Description: Provides basic fields required by list objects that accumulate statistics.

Field Type Private DefinedBy
nunber St at | NTEGER No St at Li st Obj

FIELDS and METHODS

Field: number

Type: St at | NTEGER

Description: A monitored integer field that parallels the nunber I n field of group ob-
jects. It isthisfield upon which statistics are kept.

322

StatObj

Module: St at Mod
Derived From:None
Description: Provides basic functionality and fields for Statistical accumulation.

Field Type Private Defined By
Count | NTEGER No St at Obj
Sum REAL No St at Qbj
SunOf Squar es REAL No St at Qbj
hi gh | NTEGER No St at Obj
i nterval | NTEGER No St at Qbj
| ow | NTEGER No St at Obj
ASK Method Return Type Private Defined By
Qoj Term nate None No St at Qbj
Mean REAL No St at Qbj
MeanSquar e REAL No St at Qbj
Reset None No St at Qbj
Get Hi st ogram None No St at Qbj
Set Hi st ogram None No St at Qbj
St dDev REAL No St at Obj
Vari ance REAL No St at Qbj

FIELDS AND METHODS

Field: Count
Type: | NTEGER
Description: Number of observations.

ASK Method: Mean
Parameters. None
Return Value: REAL
Description: Compute the mean of observations.

ASK Method: MeanSquar e

Parameters: None

Return Value: REAL

Description: Compute the mean square of observations.

Field: Sum

Type: REAL
Description: Sum of observations.

323

StatObj (cont.)

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

ASK Method:

Parameters:

Return Vaue:

Description:

324

SunOf Squar es
REAL
Sum of sgquares of observations

hi gh
| NTEGER
High bound of histogram.

i nterval
| NTEGER
Number of intervals.

| ow
| NTEGER
Low bound of histogram.

Set Hi st ogr am

I N Low: | NTEGER

I N Hi gh: 1 NTEGER

IN I nterval : |1 NTEGER

None

Set up parameters for histogram collection: bin for al values lower than
Low and higher than Hi gh will automatically be allocated to the Oth ele-
ment and Hi gh - Low DIV Interval + 1 element respectively.

St dDev

None

REAL

Compute the standard deviation of the observations.

Vari ance

None

REAL

Compute the variance of the observations.

Reset
None
REAL
Reset statistics.

CGet Hi st ogram

None

None

Get the monitor's histogram pointer.

StatObj (cont.)

ASK Method: Obj Ter i nat e
Parameters: None
Return Value: None

Description: Disposes histogram if it exists.

325

StatQueuelist

Module: Li st Mbd

Derived From:BSt at Li st Obj
BSt at Queueli st

Description: Same functionality as Basi cQueueLi st plus accumulates statistics on
number of recordsin list.

326

StatQueueObj

Module: G pMod

Derived From:BSt at Gr oupObj
BSt at Queuebj

Description: Same functionality as a QueueQbj plus statistical data provided from the
number of objects in the queue.

ASK Method Return Type Private Defined By
Add None No St at Queuebj

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters. NewiMenber
Description: Add new member last.

327

StatRankedList

Module: Li st Mbd

Derived From:BSt at Li st Obj
BSt at RankedLi st

Description: Same functionality as Basi cRankedLi st plus accumulates statistics on
number of recordsin list.

328

StatRankedObj

Module:

Derived From:BSt at Gr oupObj
BSt at RankedQbj

G pMod

Description: Same functionality as RankedQbj plus statistical accumulation on num-
ber of objects kept in group.

ASK Method Return Type Private Defined By

Add None No St at RankedQbj

AddFi r st None No St at RankedQbj

Get Rost er Car d None No St at RankedQbj

Del Rost er Card None No St at RankedQbj

Qbj I ni t None No

FIELDS and METHODS

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:

Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

Add
None
Newivenber

Add new member first.

AddFi r st
None
Newivenber

Add at beginning of membership list.

Del Rost er Card

None

rec = ANYREC
obj : ANYOBJ
Internal routine.

Get Rost er Car d

None
Newivenber

Internal routine.

Obj I nit
None
None

St at RankedQbj

Setsfield required for invoking ranked Add behavior.

329

StatStackList

Module: Li st Mbd

Derived From:BSt at Li st Obj
BSt at St ackLi st

Description: Same functionality as Basi ¢St ackLi st plus accumulates statistics on
number of recordsin list.

330

StatStackObj

Module: G pMod

Derived From:BSt at Gr oupObj

Description: Same functionality as a St ackQbj plus statistical accumulation on num-
ber of objectsin group.

ASK Method Return Type Private Defined By
Add None No St at St ackQbj
Qoj I nit None No St at G oupQbj

FIELDS and METHODS

ASK Method: Add

Return Value: None

Parameters: None

Description: Add new member first.

ASK Method: Qbj I ni t

Return Value: None

Parameters: None

Description: Setsfield required for invoking L1FO behavior .

331

StreamObj

Module: | Ovbd

DerivedFrom: None

Description: Object type provides the basic file (stream) input-output capabilities.
Field Type Private Defined By
eof BOOLEAN No St r eanObj
fileName STRI NG No St r eanmObj
handl el N ANYREC Yes St r eanObj
handl eQUT ANYREC Yes St r eanmObj
hal t OnErr BOOLEAN No St r eanmObj
i oOResul t | NTEGER No St r eanObj
i sBi nary BOOLEAN No St r eanmObj
ASK Method Return Type Private Defined By
Cl ose None No St r eanObj
Del et e None No St r eanmObj
Dunp None No St r eanmObj
Get Posi tion None Yes St r eanmObj
| sOpen None No St r eanObj
Qoj I nit None No St r eanObj
Qoj Term nate None No St r eanmObj
Open None No St r eanmObj
Posi tion None Yes St r eanObj
ReadBl ock None No St r eanObj
ReadChar None No St r eanObj
Readl nt None No St r eanmObj
ReadLi ne None No St r eanmObj
ReadReal None No St r eanObj
ReadStri ng None No St r eanObj
Set Hal t onErr None No St r eanObj
Wit eBl ock None No St r eanmObj
Wit eChar None No St r eanmObj
Wi teExp None No St r eanObj
Wit eHex None No St r eanObj
Witelnt None No St r eanObj
Witeln None No St r eanObj
Wit eReal None No St r eanObj
WiteString None No St r eanObj

332

StreamObj (cont.)

FIELDS and METHODS

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

Field:

Type:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

eof
BOOLEAN
Set to TRUE when the last item in thefileis read.

fil enanme
STRI NG
Name of thefile.

hal t OnErr
BOOLEAN
If TRUE, generate a runtime error when an inout/output error is detected.

handl el N
ANYREC
Internal and implementation specific.

handl eOQUT
ANYREC
Internal and implementation specific.

i oResul t
| NTEGER,;
The result of the last 10 request.

i sBi nary
BOOLEAN
True when file last opened in Binary mode.

Cl ose

None

None

Concludes access the opened file.

Del ete

None

None

Removes the opened file from the disk storage device.

Dunp
None
None
Printsto st dout basic information regarding the object instance.

333

StreamObj (cont.)

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:

Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:

Description:

ASK Method:
Return Vaue:

334

CGet Posi tion

| NTEGER

None

Returns the position (in bytes) from the beginning of the file to the current
location of the file pointer. The file pointer is advanced by reads, writes or
explicit positioning to thefile.

I sOpen

None

None

Has a file been opened.

Obj I nit
None
None

bj Term nat e

None

None

Ensures that the file is closed before disposing of the object.

Open

None

I N Fil eName: STRI NG

IN I Qdirection:FileUseType

Sets up “communication” between user and disk file named 'FileName.'
Files may be opened for input, output or both depending on the constant
' Odi rection.

Position

None

I N noveTo: | NTEGER

Moves the file pointer noveTo bytes from the beginning of the file. Use-
ful for random accessing files.

ReadBl ock

None

I N buf fer: ANYREC

I N size: |l NTEGER

I N bl ocknunt | NTEGER

Reads size bytes from the location size * blocknum in the file into the rec-
ord 'buffer.'

ReadChar
None

StreamObj (cont.)

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:
Return Vaue:

Parameters:

Description:

ASK Method:
Return Vaue:

Parameters:
Description:

ASK Method:

QUT ch: CHAR
Reads a single character from the currently opened file.

Readl nt

None

QUT n: | NTEGER

Reads a single integer from the currently opened file.

ReadLi ne

None

OUT str: STRI NG

Reads from current position to end of line NOT including the newline. If
lineislonger than st r , as much as will fit is read, and remainder of lineis
truncated

ReadReal

None

QUT x: REAL

Read area number from the file.

ReadStri ng

None

QUT str:STRI NG

Reads up to the next space or tab.

Set Hal t onErr
None

None

Set hal t OnErr field.

Wi teBl ock

None

I N buf fer: ANYREC

I N size: | NTEGER

I N bl ocknunt | NTEGER

Writes size bytes from the beginning of the record 'buffer' to the file
starting at file position size * blocknum bytes from the beginning of the
file.

Wit eChar

None

I N ch: CHAR

Writes a single character to the opened file.

WiteExp

335

StreamObj (cont.)

Return Vaue:
Parameters:

Description:

ASK Method:
Return Vaue:
Parameters:

Description:

ASK Method:
Return Vaue:
Parameters:

Description:

ASK Method:
Return Value:
Parameters:
Description:

ASK Method:
Return Vaue:
Parameters:

Description:

ASK Method:
Return Value:
Parameters:
Description:

336

None

I N num REAL

IN fieldw dth: I NTEGER

I N precision:| NTEGER

Writes a real number, in exponential form (3.14 e 10) to the currently
opened file.

Wit eHex

None

I N nunm | NTEGER

IN fieldw dth: | NTEGER

Writes the integer value numto the currently opened file as a hexadecimal
number.

Witelnt

None

I N nunm | NTEGER

IN fieldw dth: | NTEGER

Writes the integer value numto the currently opened file.

WitelLn
None
None
Writes a single newline to the currently opened file.

Wit eReal

None

I N num REAL

IN fieldw dth: | NTEGER

I N precision:| NTEGER

Writes a single real number in standard form (i.e., 123.889) to the file.

" preci sion' argument indicates the number of places to the right of the
decimal to write.

WiteString

None

IN str:STRI NG

Writes a single string to the opened file.

TimedStatObj

Module:

St at Mbd

Derived From: St at Qbj

Description: Adds fields and methods for statistical accumulation weighted with re-
spect to simulation time.

Field Type Private Defined By
Last Ti me REAL No Ti medSt at Cbj
FirstTinme REAL No Ti medSt at Cbj
ASK Method Return Type Private Defined By
Get Hi st ogram REAL No Ti medSt at Cbj
Mean REAL No Ti medSt at Cbj
MeanSquar e REAL No Ti medSt at Cbj
Reset None No Ti medSt at Cbj
Updat eHi st ogr am None Yes Ti medSt at Cbj

FIELDS and METHODS

Field:

Type:
Description:

Field:

Type:
Description:

ASK Method:
Return Vaue:

Description:

ASK Method:
Return Vaue:

Description:

ASK Method:
Return Vaue:

Description:

ASK Method:
Return Vaue:

Parameters:
Description:

Last Ti me
REAL
Simulation time of last observation.

FirstTi me
REAL
Simulation time of first observation.

Mean
REAL
Compute the time-weighted mean.

MeanSquar e
REAL
Returns the time-weighted mean square.

Reset
None
Reset statistics.

Updat eHi st ogr am

None

I N val ue: REAL

Use value to update a cell in the histogram array.

337

TimedStatObj (cont)

ASK Method: Get Hi st ogr am

Return Value: None

Parameters: IN value: REAL

Description: Get the monitor's histogram pointer.

338

TriggerObj

Module: Si mvbd

Derived From:None

Description: Provides asynchronous rendezvous capability for TELL methods.
ASK Method Return Type Private DefinedBy
Dunp None No Tri gger Cbj
I nterrupt Tri gger None No Tri gger Cbj
NumAai ti ng None No Tri gger Cbj
Qoj I nit None No Tri gger Obj
Qoj Term nate None No Tri gger Cbj
Rel ease None No Tri gger Cbj
TELL Method Return Type Private Defined By
Tri gger None No Tri gger Obj
WAITFOR Method Return Type Private Defined By
Fire None No Tri gger Cbj

FIELDS and METHODS

ASK Method:
Return Value:
Parameters:
Description:

Dunp
None
None
Print out relevant information regarding state.

WAITFOR Method: Fi r e;

Return Value:
Parameters:
Description:

ASK Method:
Return Value:
Parameters:
Description:

ASK Method:
Return Value:
Parameters:
Description:

ASK Method:
Return Value:
Parameters:
Description:

None
None
Enables suspension of calling TELL method.

I nterruptTrigger

None

None

Interrupt all activities pending aTri gger Obj .

Numi ti ng

| NTEGER

None

Returns number of activities waiting to be triggered.

Obj Init
None

None
Initializes internal data structures.

339

TriggerObj (cont)

ASK Method: Obj Ter i nat e

Return Value: None

Parameters: None

Description: Cleans up internal data structures.

ASK Method: Rel ease

Return Vaue: None

Parameters. None

Description: Synchronous release of suspended activities.

TELL Method: Tri gger

Return Value: None

Parameters. None

Description: Asynchronous release of suspended activities.

340

Index

.(dot)
symbol inidentifier.........coooooiiiiniiiiinnae 32
0Ot NOLALTON. ... e 56
.mod
file eXtension........cccoceeveieieene e e 94, 99
A
ACCUMUIBLIVE EITOFS......eeieveeieeiieeree e e 21
accuracy of representation...........cccceevceeneenns 21
ACTID oot e 151, 154-155
ACTID variable.......cccoevvvineeiiis e, 155
BCHIONS ..o e 101
ACHVITIES .ot e 4,141
CONCUIMENT ..ottt e 141
interrupt or StOP....cccvveveerieer e 153, 155
order of .ooeeiieieee 151, 155
scheduled.........oeevviiiieee e 142
activities scheduled for object.............. 153, 155
BCHIVITY oo 144, 153, 155, 183
SYNCHIONOUS......coviieieeiiii et e 148
actiVvity record........ccoooeveceeneeenenne e 153, 155
ACVItYLISt. oo, 153, 155
ActivityName procedure...........c........ 151, 155
ActivityOwner procedure..................... 151, 155
ACVITYTIaCE...coeiiieeii e e 153
Actual parameter........oooeeeeeiieenen e e 84
Ao 158-159
AAATEN ..o e 159
AddAfter or AddBefore methods................. 159
AddBEfOre......ooiiiiiieee e 159
AlOCALE.......eei et 47
allocating ObJeCtS........cooveereiiiieeee e 109
allocation
AYNAMIC ..t e 57
ANCESLON ... ieeeeeiee et e 126, 183
AND oo e 32,187
ANIMALTON. ..o e 179
ANONYMOUS tYPE.....coeieiieiiiei et e 63
ANSLLc e 22
antithetic variateccoooeveeieniie i e 163
ANYOB.J........... 56, 71, 108-114, 136, 157, 160
referenceto fields........c.cccoeevirenne 109, 114
ANYREC........ccoooveiirnne 55, 71, 108, 111, 114
aPProxXimation errors........ccooeeeeveerveesenns 21,74
arithmetic Operator..........cccocvevvieeneeices e, 30
ARRAY .ot 43-56, 66, 188
aAllocationcooceeeeeiiiiiee e e 59, 60
ANONYMOUS tYPE.......oeeeeieeeiiieeeiee e e 63

bouNdS........cooiiiie e 61
diSPOSAlooiiiiiii e 60
AYNAMIC.. i e 45
AyNamIC SIZINGcoeveeneieiie e e 57
in Boolean expression..........oceevveereeenenne. 59
INItIAlIZATON ... e 60
OPEIAtiONS. ...t e 59
=100 1= o [T RPR 60, 61
type declaration.........cccooceeceenieiiens e 57
array bounds..........cccooeveiiiiiinns e, 57
array elements
FEfEIeNCINGcevveeeeenee e e 59
array of fieldS.....ooovviiiii e, 45
ARRAY OF INTEGER.........cccccooiiiiiiinnne 44
ARRAY OF STRING........ccovviirieiineenee e 44
AS 90, 188
resolve IMPORT conflict........cccccceeeiienene 90
ASCII character set.......ccooovcevieienciie e 22
ASK i 108, 114, 117, 118, 124, 188
method within object..........cccccoiiiieens 117
ASK METHOD..........ccenuenne. 104-105, 114-116
proper or funtion type.........cccceeevveereeennen. 116
ASK statememt........ccooeeeiieenieie e 115
ASK statement
effect on program execution..................... 115
ASSIGNMENT ..o e 48, 55, 64
assigNMeNt OPErator...........ceveerveerereieesceeeens 30
assignment statement............ccoeeeeeiieenien e e, 73
asynchronous Call..........ccccevcveveriien e e 116
automatic compilation...........ccoeceeeveeienniie e 5
automatic initialization...........ccccceecvereenne. 38, 55
B
base type......ccooveviniiniee 56, 125, 126, 183
base types.......cccvverneiiiienee e 132, 136
BEGINcoiiiiiieiiereeee e e 11, 189
begin end
PasCalcoveriiiiee e 70
PENAVION ... 183
Beta distribution............ccccoeveiieiinin s 163
DINAIY ..o 27
binary number system..........cccocoevieiiniie e, 20
binary operator..........cccocoeeveeniniies e, 31, 32
binding
AYNAMIC...eieieee et e 183
Binomial distribution............ccoccevvvniiniene 163
BINTEGER.......c.cceiiiieee e 165, 245
PIOCK ..o 2,9, 13,14, 189
blocking mechanism
FESOUICE......cciurieieeirierre s e 167

341

MODSIM Reference Manual

BOOLEAN. ..o, 19, 25, 31, 40, 47
Boolean expression.........cc.cceeveene 40, 59, 74-81
Boolean literalccooeveiieeiiiies e 29
BOOLEAN type.....coverieeeeiieeienie e s 24
bounds.........ccoeiiiiiii 56, 57

inarray dimensionsS.........cccoveeeneeeceeeniee e 57

upper and lower in array.........cccoceeeeeeeeenne 58
Pracket.......ooeeviiiee e 17
BREAL. ..ottt e 165, 245
BLrEe . ..o 157
BTreeOb)......ccoieeiiiiiiieeeeies e 158
built-in procedure...........cccoeeviiiieennnne 32, 205
built-in simple datatype..........cccccoeeveeiennee. 19
BY e 189

[00P INCIrEMENT......cceiieiieieeeeee e 78

C

C language interface..........c.ccoeoevrieenenns 95, 99
C/C++ interface

STRING datatype.......cccoovvveererieneenie e 97

STRING datatype passed in...........ccceeee.. 97
C/C++ source code

Naming CONVENtiONS.........ccevveerieeeieeenieen e 95
CALL oot e 38, 85, 189
Cancel method.........c.coooevieiiniens e 168
case label ... 76
CASE SENSITIVE. ...ttt e 12
CASE statement...........cccveeeereenenienn creeeeneen 76

type of eXpression iN........cccceveeeeveeeieenee 76
CHAR ..ot 19, 22, 25, 40, 47
CHAR tYPE.....eeiieeeeeeeee e e 22,23
CharaCtercoovvi i e 22
character literalooovveiiieis e, 28
Chinese character Set.........ccoveviveeieninnn e 22
ChooseNext method

SiImControlObj.........cceeceeieeeieeieen 151, 155
ClasS......ccvveeire e 107, 114, 190

MELAL ..t e 107, 114
Classvariables.........ccccoveriiieniene e 107, 114
CLONE ...t 50, 110, 114, 205
ClOSE...ocii et s 175
Code MaNAgEMENT.........coueeieeiieeee e s 5
€ode SAMPIE......ooiiiiiieiee 9
COMMENT......ciiriiiiiirierre e e 17
comments

NESLE ..ottt e 17
comparison of fields........ccocceeieiiiiiiiniiene 160
comparisons

VAIUB. ... e 31
compilation

MOAUIAS ...t e 1

SEPAIALE.eeieeeee ettt e 89
COMPIALTON. ... e 5
COMPONENT.....ceeiiiieeiiieeieeeeie et e e 183

342

CONCALENALION......uvveieeeeirieee et ceeitree e e e 40
CONCUITENT.....evviiiieieeeeeeeee e e 143
concurrent activitieS........ccoveeeeeiicvveeeeninns 4,141
conflicting field names
ININNEMtaNCe ... e, 136
conflicting methods...........ccccoviiiniien e 183
conformant type.........cceeeeeiveenee e e 23
CONST ..o e 36, 190
constant declaration.........ccccceeeevecvveeeeeii e, 35
Control charactercccoveeeeiiicieeeeee e, 28
CONEIOl SLIUCKIUNE....uveeeeeecitieeee et e 70
conversion
DY P 71
COPY ettt eeieeeeettee e et e eeeeite e e s aan e e sabe e neee s 50
dynamic datatype.......ccceeeerrerrieenies e 50
cyclic relationships.........ccooceiiiiinnne 93, 99
D
data
orphaned..........ccoooiiiiii i e, 51
dataelement.......ccccceeeeciieeee e e, 43, 56
datahiding.......cccooeieieiiie e 137
data sharingcccooceeereeiieeneeee e 137
data StrUCLUIEvvveeee et et 43
AYOrEOALe.....ceeeieee ettt e 52
ARRAY oo 43
AYNAMIC .. e 46, 184
FIXEA i1 46, 63
OBUJIECT ...ttt e 43
RECORD......cocciiiteeeeeeectieee e e 43,52
without identifier.......c..cooeveeiieeeiiieeee e, 48
data structures
building compleX........cccoooeiiieniiiinn e, 62
Jat@tYPR..ceeeiieeee et e 20
BOOLEAN.........ccooveeeeeiiieeen, 19, 24-25, 31
built-in sSimple........cccoooii e, 19
CHAR ..., 19, 22, 23
copy Of dyNamiC........ccoceeveieiiriieeie e 50
definition Of.....coeeiivii e, 20
AYNAMIC .. e 84, 183
dynamic vs. fiXed.......cocoeveieriiiiiiciiee e 54
ENUMETALiONveeeeeiciieeee et e 19
FIXEA. e e, 47,184
FIXED RECORD..........coovtverieeeireeeee e, 64
INTEGER ..ottt 19,21
MODSIM VS. C/CH+..uueeeiiiciiiieeiiccieeeeeee 95
ProCeAUIE.......coivieiieiee e e 38
REAL....cccteee et e 19,21
SIMPlE.ei 19, 186
STRING.....ccveeeeeetteeeeeeeee e 19, 23
structured.......ccoeeeeeecciiieee e, 19, 43, 186
SUDFANGE......eeiieeiee e e 19, 25
user defined.........cccoveeeeeiiiciee e, 43
user-defined simple........ccocoveiiiiniennne e 19

data types
CIEAE NEWeeiereeree e e 36
AYNAMIC .. e 47
replaceable..........coocoiiiiiiiiiini e, 111,114
dealloCate.........ooveeeieeieec e e 47
EDUGOES .. 5
DEC.... e e 24, 206
deCimalcoveeeiiee 27
decimal NOtatioN..........cccveeiieeiini e 27
declaration..........ccccceevenee. 10, 35, 62, 104, 114
CONSEANT.......coiriiiiiirie e e 35, 36
MELNOd........eovereiiieee e e 104, 114
ODJECL...eeiveeieeee e e 102, 104, 114
of method.........cccoeviiii e 115
of procedures, object methods.............. 93, 99
ProCeAUre........cocueeieiiieenie e e 35, 38
SYNEBX. ..ttt e e 37
TYPE oo e 36
VAR e e 35
Variable......coovei 37
declaring an object type........ccoeeveeriierennnnnn. 102
DecrementResourcesBy.........cccccceevieeeninenn. 169
DEFINITION module........ 89-99, 104-105, 114
with IMPLEMENTATION module..... 92, 99
delayed method call.........ccoooceeviieniicnen e 116
DElEE....eiitieieeec e e 175
DeleteFile......cooiiiiiieie e 176, 245
delimiter ... 11,15
COMMENT ...ttt e 17
derived object.......ccooveiiiiii e, 129, 136
derived type.......ccoovveeiineree 125, 126, 183
descendant..........coeeveiieneeiie e 126
describe the nature of the data.............cccoc..e. 35
development environment............ccccceeieeeeeeenne 5
dimension
BITAY ...ttt e sneeas 56
TINOEX .t e 56
discrete-event simulation................. 4,141,142
DISPOSE........ 47, 51-55, 60, 101-114, 183, 206
Of ANYOBU.......ooeiiiiiieeenee e 110, 114
distribUtioN.........ccooveiiiiee e 163
DIV .o e 30, 31, 190
double PreCiSion..........ceceeieeeree e e 21
DOWNTO......oiiieiieiinieenieeeet e 190
loop iNCrement.........cooeeeeee e e, 78
DResSMOd.MOd..........ccooeriinienieies e 167
DStatM0d.MOd.........cceereeiiienieee e 165
duplicate symbols........ccccooviiiiniinnn e 98, 99
DURATION.....ccotiiiieieeieees e 145, 191
DURATION in WAIT statment........... 144, 145
AYNAMIC @TAY ...veeveeeiee et e 45
dynamic binding.........ccocoeviiinniii e 183
dynamic data structure............c.cceeeeeeenne 46, 63
dynamic data StruCtures..........cccccevveeveeeanen. 157

Index

dynamic datatype................. 47, 50, 5455, 183

ODJECL. ..ottt e 101
dynamic memory management...............c....... 47
AYNAMIC SHNG.....eeiveereeeeireerieeee e e 23

E

elapse simulation time..........cccoeceveieenieenen e 141
element.......ccoov i 43
ELSE. .. e 74,191
ELSIF. .o e 74,191
encapsulation..........ccocceeveveeenne 1,101, 137, 183
END WAIT oot e 144, 145
enumerated typPe........ocveeveerreeeiee e e 24,91
enumerated types

in OUTPUT statment...........ccceeevvvreennenn 173
EeNUMEYationccooeeeerveeneenneenn 19, 25, 47, 183

aNONYMOUS tYPE.......vveeeieee e e 63
BOF .ttt s 177
€QUAI SIgN....eiiiieiie e e 30
Erlang distribution............cccccoiiiiniis v 163

FUNEIME.....eiiiieieee e e 109, 114, 251
errors

APPrOXiMELTIONeeeveeiieeiee e e 74
evaluating eXPreSSiONS.......cooeeveeerieeeieeesies sees 39
evaluation

BOOLEAN. ...t e 32
EVENL ..ottt e 142
example

OUTPUT and INPUTcccoovveenieienen 173

RandomODbj.........coveeriiniiiiee e 163
EXECULION OFdEN........eevereeriieieceeriee e 151, 155
EXISISFIle.c.oiiiieeee e 176
EXIT e e 77,191
EXIT statementccooeeivieeneenien e 79, 81
EXPONENt.......coiiiiiiiieeeee e e 27
Exponential distribution...........c.cccccevieeneene 163
exponential NotatioN...........ccceveeerieeeienn e, 27
EXPIESSIONeeiiiieiie st e 35, 39, 40

BOOLEAN. ...t 32, 40, 59

mathematicalccccovvvinienenie e 40
expressions

BOOLEAN. ...t e 32

EVAIUBLING. ...coeveeeeeeiee e e 39

F

FALSE.....cooiiee e 24,29, 192
FetchSeed.........ccovieiiiee e 165, 245
field..ooiie 4,43-45, 52, 101-124, 183

PRIVATE......cooieeiiiereeiee 107, 114, 137
field name ... 52
fields

INNENted ..o e 125
FIFO. ..o e 157, 158

CIFCUMVENEING...ccuveeiveeiee et e 159

MODSIM Reference Manual

i€ 94, 99
dOES it EXISh....eeeieeeieeiee e e 176
Naming CONVENtioN..........cceeveerveeneenns 94, 99
repositioning within...........cc.cccoeoniiens 175

file ClOSE. ..o 175

filedelete.......ooniniiiiee e 175, 176

fileend flag......ccoooeeiiini 177

filel/O
FaNdOM BCCESS....cciuviaieeiiie e et e eiee e 64

file name extension..........cccoccveieenieeniee e 94, 99

FIl@ OPEN....oiii e 175

fileread flagcccooeveeeiiiiii 177

fIll@SIZE i 177

filename.........oooeeiiiii e 95, 99
CONSLFAINES ..ot e 95, 99

FileSIZe ..o e 177, 245

BT 150, 155

BTt e 158

FIXED ARRAY ...ccccccvrienienn. 46, 63, 66, 83, 84
ASSIGNMENT.....eeiiiiiie e e 64
COPY -t eureee ettt e et e et srnee e e sabeeeenee e e sneeas 64
each dimension.........ccccoeviineni i e 65
IN OF INOUT ...t e 65
ragged not allowed...........ccocoiieeiniie e, 66

FIXED ARRAY tYPe..ccoieerieiieieeienee e e 64

fixed data Structure..........cccoceeveieenieennec e 46, 63

fixed datatype................. 47, 48, 54-55, 63, 184

FIXED RECORD..........cccecvrvrrieeniennnn 46, 63, 66
declared as expliCit type........coereeeniennnenne 64

FIXED RECORD type.....cccccevereireenienne e 64

FIXED RECORDS.........cccceoiiienienieniee e 63

Flag e 24

floating point NUMDEYcccoeiieiieiiieie e 21

FOR in WAIT statment..........cccccceeruene 144, 145

FOR statement..........ccooeeevreeneeies e 78,79

FOREACH ... e 79, 192
with empty group........cccoeeeevieiecciei e, 80

Formal parameterccocceeieeiieinens e 84

formal parameter qualifier..........cccoccveienneene 84

format String.......oooeveceeiiieie s 174

fOrMatSIIiNg...ccoveeieeiee e e 174

FORWARD.......cootiirieii e e 87,193

free formatted 1/O.......ccoviiiieii e 173

FUNCLION....oieii e e 83
MODSIM.....ooiiiriieiiiieeeee e e 32

function method............cccccevnenen. 104, 114, 184

Function procedure............cccocoeeeneene 83, 86, 184

function result type.......cocoeeveeereeeiee e s 86

G

Gamma distribution............cccoevevriieein e 163

(015 0 1= 1o 1Y/ o L= TS 55, 56

GELRESOUICE........eeeeeieee et e 167

GetResource method...........ccooceeiiieiiiinne 168

344

GetResource request method.............ccceeeee. 168
GIVE. i e 167, 168
Givemethod..........ccoooviieiins e 168
OlOSSANY....eeieiieiee ettt s 183
GOTO Statement.........coceeveereereeiieie seeenennens 73
Graphic EAItoroooviiiiiiieeie e 179
GraphiCs ...cceeeiiieee e e 179
OFOUP .ttt e 111, 114,184
LIFO and FIFO.......cccooveiiiieieeiee e 157
number times has changed....................... 160
QUEUE. ...ttt et 157
QUEUEOD) ... 158
FANKEd......ooiiiiieiie et e 157
removing from.........ccoccevoieiniiee i e 159
SEACK. .. 157
SEEALIStCEl ... 160
group based on user defined Rank............... 158
group Ordering.......ccceveeeereeneeseenes veseenieens 157
OFOUPS. ...eeiireesiree sttt et 157
GrpMod module.........cccoeeeeiieneiiennene 157, 160
H
hanging reference..........ccooveiiniiies e 52
help SyStem.......oo i 5
hexadeCimal..........cooeveeniniiies e 27
hexadecimal address of object...................... 173
Hierarchical type........cccooerieiiiinniiii e 102
hierarchy ..., 101
ODJECL. ..ottt e 126
HIGH ..o 61, 206
hisStogram........cccoceeniiineee e, 245
for ResourceOb}........cvcveeiieenieiiees e, 170
I
O e e 173
[CON...iiiitiici e 179
identifier.......cccoeevennene 11, 20, 24, 47, 106, 114
length.......cooii e, 98-99
LF e s 16, 193
IF statement.........coeeveeieicecseee e 69, 73, 76
multiple ChoICe........ooveiiieiee e, 73
IMPLEMENTATION module... 89-99, 104-114
IMPOIt..ceviiiieeeie 89, 94, 99, 105, 114, 193
CONFIICE. ..ot e 90
enumerated tYPe.......ccoeveereeereriiiee e e 91
IMPORT statement..........cocceveeienieenees e 90
IN e e 65, 84, 147, 194
IN parameter.........cococeevceeeenieee i e 64, 147
INC ..o e 24, 206
INCIUES ... e 158
increment of loop variable...........cccocceeeeeeee 79
IncrementResourcesBY...........cocevieeeeieeeenee. 169
independent compilation...........ccccccevieeniennen s 1
INOEX ..t e 43, 44, 56

BITAY ..ttt e 44
INNENTT ... e 128
Inheritance.........cocoveeveeiieicee e 101, 125, 184

base type......coo e 125

conflicting field names.........c..cccoeveiennee 136

derived type....cooceeieeeeee e 125

MUItIPIE....ccveeie 125, 132, 136
inherited........cccooveeeinenne 125, 130, 135, 136, 194

class variables and methods............. 107,114

OBjINIt....ceiieieie e 131, 136

order of method execution............... 131, 136
inherited behaviors.........cccocceieieiienee 130, 136
inherited call ..o, 131, 136

QUATTIE. ... e 185
initialization..........ccccovveiveenennenoen 38, 135,136

AUEOMALIC .. e 38

BOOLEAN. ...ttt e 38

CHAR ..ot e 38

enumeration variable..........cccoooeiiiiiiinen 38

INTEGER ..ot e 38

ordinal tYPeS......ceeveeriei et e 38

REAL ..ottt e 38

STRING.....oooiiiieiee e 38
INITATIZE. .. 60
initialize MOdules...........ccoooeiiiiniiiiin e 89
INOUT......ccvenee 84, 97-99, 116, 147, 194, 245
INPUT .o 3, 83,173, 207, 245
input/output

[OMod module.........cccoeveiiiiiiiiee e 173

StreamODb)ooveii 173
INSLANCE. ... eeeieieeiee e e 143,184
INTEGER.. 2, 3, 10, 14-31, 38-50, 59-66, 96-99
integer literal.........coooeiiiiiii e 26
INTEGER type.....ccooieiiiieiieereet e 21
interrupt.......... 141, 153-155, 167-168, 194, 245
InterruptTrigger method

TriggerODb] ..oooveeviieeeeee e 150, 155
INVOKE. ...ttt e 184
invoking amethod...........ccocceeiiiiiiniin e 115
invoking aprocedure..........ccueeeieeeieeeiies seeans 85
IOMod module........ccooceiiiiiiiiiies e, 173
TORESUIL. ... e 177
SO 646 character Set.........cocoveeiieiiceeieee e 22
iterate through a group..........cccceveeeveernenne. 157

J
Japanese character set.......cccoooevieiieiiinnin e 22
K
KANJT .. e 22
Katakana.........ccceveernieeiiee i e 22
key

STRING.....coiiiiiiiiiee e e 158

Key method.........ccoooiiiiiiiinis e, 158

Index

L
LBttt e 158
[AYOUL ..ot e 9
length of identifier..........ccocoeeniieiennn 13, 98-99
Lexical COMPONENLS.........ooveeeiierrieeeneees e 9
library module..........cccoooiriiiiiiiii i 5
library modules.........cccoooviiiiiiiniis s 89
LIFO i e 157-158
link
[IMITS.ceiie e e 98-99
[INK FECOIAS.....ccvieiieie e e 46
[INKE ISt ..o e 46, 54
list
[INKE ..o e 54
[iteral ..o 11, 26
boolean.........ccoeeviiienie e 29
CharaCter.........oooveviviiiies e 28
deCimal.......cooveieeiee e 27
enumerated tyPe.......ccoeveereeereeniee it e 29
hexadeCimal..........ccooevviieeniniii e 27
110 e = TR OPR SR 26
FEAL ... e 27
SING ettt e 28
literal CcoNStant...........coocveveerenieenes e 20
[OCAIITY ..o e 9
logical OPErator..........coeeieeiiieenieeies e 32
LogNormal distribution............cccccceiieenenne 163
[ONG INTEGEN ..t e 21
loop increment
BY 78
DOWNTO.....iiiiiieiiniienieee s e 78
TO e e 78
[00p INCrEMEeNtS........cueeiiieieeieereee e 78
[00P ItEralioN.....ccceveieeiie e e 80
REVERSEDccooiiiiiiiie e 80
loop statement..........ccceeeeeieeeiee e e, 77,81
loop variable.........ccooeiiiiiii e 78
INCTEMENT ...t e 79
LOW ..ot e 61, 207
M
MAIN MODULE................. 9, 89, 92, 104, 114
MAX o e 12, 22, 24, 207
MAXOF ... e 83, 207
MaxXRESOUICES..........ccvriveirrieiiiie s 169
MEAN......coitiiiicic et et 160
MEMDEN .. s 184
memory
rUNNING OUL Of......coovieiiiiieie e e 51
MEMOrY 1€8K........ccceeieiiiieiie e e 51
MEeMOry 10CaliONS........cooceeriiereeeee e e 55
Memory management...........coeeveeeereeeesiee s 47
AYNAMIC.. it e 47

MODSIM Reference Manual

MESSAGE.eeieeireeeeireeeeieee e e eeesneeeesaeeas 115, 184
MeSSage PasSiNg......cveeeevreerrrererieees eee e 101
MELA ClaSS....coveieieeiie et e 107,114
method................ 1, 101, 102, 115, 183184, 196
ASYNCHIONOUS.......ccoveeeieieeeeee e e 145, 186
ClasS.....coiieeresee 107, 114
declaration.........cooveeveeenineiees e, 104, 114
fUNCLION ..o 104, 114, 184
INHERITED......ccooiiiiiiieeee 130, 136
INVOKING. ..t e 115
not returning aresult...........ccccceeuene 104, 114
OVERRIDE.............. 107, 114, 125, 129, 136
ParametersS........ocovveeeriieeeeee e e 104, 114
pause to wait for condition................ 150, 155
PRIVATE.....coi e 107, 114, 137
PrOPEreveeeiiiee e 104, 114, 145, 185
returning aresult..........cccoceeveeeiieennn 104, 114
TELL oo e 186
time elapsing........ccoeeeeveiiniece e, 186
METHOD declaration.......... 102, 104, 114, 115
METHOD heading.......ccccoovevervrieenieenn. 102, 114
MIN. e e 22, 24, 207
MOD ..ot e 30-31, 196
MOdINit......coeeiieeiiee e e 89, 94, 99
order of execution...........ccceveeerennnnen. 94, 99
modular StrUCtUre..........ceeieiiieieeee e 89
MOAUIE ..ot e 1,5, 89, 196
MOdUulUS OPErator..........ceeeveeieeeieeeie e 30, 31
MONITORED INTEGER field.................... 161
MONITORING.........ccooeriirireieiine e 120, 124
Multi-dimension array..........cccceeeeeneeeiennnnn 58
multiple choice IF statement..............ccccue.... 73
multiple inheritance...........cccccc.... 125, 132, 136
Multiple Process ACtiVities...........ccceveeeenenne 151
N
Naming CONVENtioN..........cccceeneeeiveeneeen . 94, 99
naming conventions
C source code........ooveerrieeneniiee e 95, 99
nested COMMENE.........coocerrerriieiee et e 17
NEW47, 51-60, 101-110, 114, 183, 196, 208
new capabilities........cccvvviiiiiiiiie e 101
NEW data tyPeS......cevveereeeieenieeiees e 36
newline character..........ocooioiiieniiiie v 173
NEXL. .t e 158, 161
NILARRAYoooviiiiiiniirieene, 60, 105, 114, 196
NILOBJ............ 56, 105-106, 114, 159, 161, 196
NILREC.......ccooovevennn. 52, 55-56, 105, 114, 197
NONMODSIM.....ccooiiieiiiieneeniennn 95-99, 197
Normal distribution............cccoooviiininenne 163
NOT o e 32,197
NOLALTON ..t e 56
NUIT SEFNG .o e 38
number

346

FANAOM.....ee e e 163
number field.........cooooiiii e, 161
number times group has changed................. 160
NUMEXiCal BCCUIACY......ceiveereeeieieieesiee e cerieens 21

o
ODbJCIoNE.....ccieeeeeseeeee e 110, 114

OVEITIAE. ..o e 110, 114
object............. 1, 4, 4351, 59, 62, 101, 184, 197

BCHVITY oo e 144

ATAY OF o 101

CLONE.......cciiieitiienieee e e 110, 114

declarationcoceeeeenineieniiee e 104, 114

declaration/initialization................... 105, 114

derived. ... e 129, 136

DISPOSE ..o e 110, 114

dynamic Creation..........ccceeeeeeieennenns 105, 114

Encapsulation of data & code.................. 101

FIElO e 101

field with reference variable............. 107,114

fIEldS. ..o 118, 124

hierarchy ... 101

N GIOUPS. ..ce et e 157

INNENTANCEooiteiieeee e e 125

inserting first in group.........ccoceeeveeveeennen. 159

iNSerting in group........cccceeeeeeeeneeene 158, 159

INSLANCE.....ooiveiiiieiii e 102, 106, 114

INEEraCtioN......ccoveiieieieeee e e 143

METHOD declaration............... 102,104,114

METHOD heading..........cccooverveeunene. 102, 114

modification of fields.........c..ccece.. 118, 124

NEW ..ot e 106, 114

new data type capabilities...........c.ccccee...e. 101

ObjCloNe.......oieeeeeee e 110, 114

OBjINIt....cceiieiee e 110, 114, 124

ObjInit in multiple inheritance......... 135, 136

ObjTerminate.........coceeveevieenieniie e 110, 114

Polymorphism.........ccccccevieennen. 101, 130, 136

ProPErtiES......vee et e 101

PROTO ...t e 157

referenceas SELF ... 118

removing from group........ccceceeeveeevenennen. 159

routines/methods............cccoveieiniiien e 101

stetistical data collection..............ccc......... 160

statistical MONItOr...........ceeveriiieeieiiie e 165

type declaration............cccceeueene 102, 105, 114
object declaration............cccccceeeveennenne. 104,114
object hierarchy..........ccoccoeeviiiieniis e 126
object instance..........coeevevrieeneenns 102, 109, 114

CONCUIMENT ..ottt e 143
OBUJIECT tyPe...cceeiveeeerieenieeeesieee s 101, 183
object type declaration.................. 102, 104, 114
ObJECtS QUEUEING......ccveeeeeeieie et e 157
ObjINit ..o 110, 114, 131, 136

of RandomODj.........ceeveiiieirieeiees e 163
OVEITIE.....eeieeiiiee e e 131, 136
Objlnit method............ccccevveienieni e 135, 136
10 0]] = 111 SRR 173
ObjTerminate........ccoooeeveeneeeieen e, 110, 114
ON INTERRUPTccoeiiriiiienienieies 144, 148
ON INTERRUPT clause............... 153, 155, 168
ON INTERRUPT in WAIT statement.. 144, 145
Open il oo 175
0OpPErand.......cceoveeieriieeree e e 31,175,183
OPEIATION...eieeie et e 183
operations
BITAY ...t et e e 59
OPEIALOT.....couvieeeieie e e 11, 29, 30
ANtNMELIC...ceieeeee e 30
BSSIGNMENE ...t e 30
DINAY....cccoiiie e 30, 31, 32
[0GICAl ... 32
MOAUIUS........eoiiiiieiieeeee e 30-31
PreCedenCe.........ccoveiarieeiee e e 39
Felationalccooeeeiiieri e 31
UNBIY <ttt e eereeesneee e 30-32
operator precedence........coveveevieereeeiiees ceeens 39
OR .o e 32,197
OFAEN . e 151, 155
OFAENTNG .ot e 10
Of QrOUPS. ...ceeii ettt e 157
ordinal type......cccoveeeeeeeiineneene 19, 25, 56, 184
orphaned data...........cceveieieiniii e 51
OTHERWISE ...t e 76, 198
OUT .t e 84,116, 147, 198
OUT parameterc..occeeevveeerieeeni e 97, 99
OUTPUT.....ccovereennn 3, 83,173, 174, 209, 245
OUTPUT procedure..........occeeeveereeenenscennns 85
OUTPUTING ODJECES.......eeeieeeieeiieeieee e 173
OVERRIDE.......... 107, 114, 125, 129, 136, 198
override ObjINit........ccoeeieiiiieniieee e 131, 136
P
parameter
ACEUAL ... 84
COPY OF et 84
fOrmalooeeee 84
formal qualified.........cccoooiiiiiiiiiii s 84
MELNOd........eeieieiieeece e e 104, 114
PasSING t0 C....ooovveeeieieieeree et e 97,99
parameter list.......ccoveeiiiiiieee e 83
EIMPLY et e 88
parameters
OUT OF INOUT ..ot e 85
PArENNESESeiiveeeiie e e 39
pass by reference........cooceeeeeieiicniin e 84, 185
pass by value........ccoceiiiniiiiici e 185
pause to wait for condition................... 150, 155

Index

pending list........cccevierninnne 142, 153, 155, 245
PendingRESOUICES..........ccceieeiiieeiieeie e 169
Pl e 90, 190, 245
o101 411 SRR 48
[OSE ...t e 51
Poisson distribution.............ccccecvveenienie e 163
polymorphism...........ccccc.c.... 1, 4,101, 130, 136
PreCedENCE......evieieeii et et 35
precedence rule.........cccoooviieeiiinnes s 39
Presentation GraphiCs..........ccceeeeveeeieeinenee 179
Prev...o e e 158, 161
PRINT ..ot e 174, 198, 209
priority of resource request.........ccccoeeieeeienne 168
PriorityGIVe......coooeeeieiieeee s e 167-168
PriorityGive method............cccoooiiiniinnn e 168
PRIVATE......cco i 107, 114, 137, 198
Private ProPertycccoceeneeeiieereeenees e 185
Procedure.........cocoeeveieneeeiieen e 55, 83, 86, 198
executed before program...................... 94, 99
fUNCioN....coiiii e 83, 86, 184
MOdINit.....ccooeriiieiieee e 94, 99
MODSIM ...t e 32
PrOPEY ...ttt e 83
FECUISIVE. ...ttt et 83
used before defined..........ccoceivieieeinn e 87
procedure blocK..........coooviiiiiiiiiiis e 86
procedure declaration...........ccccceeveeeuenee 35, 38
PROCEDURE heading..........cccoovvvineeneennn e 86
ProceduUIe tYPe........eeiuereieeiieerie e e 38
ProCEAUIES.ovieieiei et e 85, 245
PUIHTE-TN. .. e 85
user defined.........ocoovviiienenii e 38, 85
Process.......ccooeevereeieeicsien s 2,4, 142-44, 185
program execution
ASYNCHIONOUS........eviuveeieriieeniee e e 116-117
Program StrUCKUIe.........ceeiveee e e 9
project management..........o.ceeceerieeeneeesceneens 5
proper method...........cccceiiennnenns 104, 114, 185
proper methods.........ccooovvieeniinis s 145
Proper procedure............cceeeeiieeiiennn e 83, 185
ProPErtiesS.coevoeeeieiiieenee et e 101, 185
PROTO OBJECTcceeviieerieeieeeenenn 114, 167
replaceable types.........cccveveveeeieennn 113114
pseudo-random NUMDbET............ccoeceviieenennne 163
PUbliC Property.......coceevevieeneees e 185
Q
QUEUE. ...ttt e e 157
QUEUEOD) ... 158, 162
R
ragged aITaycooeeeeeeieie e e 60, 61
RandMod module.........ccccceiiiienieins e 163
RaNOM.......ociiiiiiiiieiee e 165, 245

MODSIM Reference Manual

random number ... 163
PSEUAO.......coeeiieiee it e 163
reproducible...........ccooiiiiii 164

random number generator
non object-oriented...........ccccoeiieiiieeniene 165
PEriOd Of ..ot e 164

Random variable.........cccooooiiiiniii e 163

RandomODb)j.........cceveriiiiieiies e, 163

Rank method...........cccoeoiiiiiiiiii s 158-160

FANKE ... e 157

RaNKedOb)j........covveiiiienieiie e 158-159

read character from console.................. 177, 245

ReadChar.........oeeiiiiireee e 176

REAINT.......oiiiiiieee e e 176

ReadK@Y.....cccvieeieeee e 177, 245

ReadLine.......cccooiiiiiiiiene e e 176

ReadRealcceeeieiiee e 176

ReadStriNg.......coviveeiiiiieeee s e, 176

REAL 19-21, 30, 38, 40, 47, 59, 63, 74

real NUMDErccoveiiiiiiie e, 20-21, 27

REAL tYPe..eoiiiiee e e 21

REAL vaues
EXACT et s 74

RECORD..........ccccenuennn. 43-52, 59, 66, 185, 199
AYNAMIC....eiiieiieie e e 46

RECORD type declaration...................... 52, 102

FECUrSIVE ProCedUre........ccocueereeerieenieeene ceeenne 83

recursive TERMINATE........cccoceveiiens 154, 155

reference
hanging........ccoceeiiiiie e 52
PESS DY ..ot e 84, 185

reference type......cocveeceeiieenennne 105, 114, 185

reference value.........cccoooeviieeniennnen e 106, 114

reference variable. 48-55, 84, 102-114, 138, 185

relational OpPerator..........ccoveeeereerieeeneesceeneenns 31

REMOVE... ..o 158

Remove method...........cccoiiiiiiniin e 159

RemMOVEThIS.....coiiiiiieiieee e 158

RemoveThismethod...........cccocceeviiiiennine e 158

FENAIME.utiieeieeeeetee et eee et e e e e e e sareeeeas 90

REPEAT stafement.........c.ceoeveenenieeiee e 78

Replaceable types..........ccceeeeruenne 111-112,114

Reserved WOrd.........cocoveeiieeneeniens e, 12,187

FESOUICE.....ueeieieeeeetteeesieee et eeeieeessnreeeeneeeaas 167
Create method...........cccoevieiiiiiiiii s 169
histogram Set Up.......ccooeveeerieeeneniiee e 170
PreemMpPtioN.........cooceereeereenee et e 168
FEIEASE. ... ettt e 167
revoking request for.........cocovveneencennieens 169
transfer ownership.........coceveeeieeiieeneee 169

resource acqUiSItion.........ccoceeveeereesieeie e 167

resource blocking mechanism..................... 167

resource request
Priority Of.....cooiuiiiiiiieeees e 168

348

FESOUICE MELUMN ..o et e e 169
ResOUrCeOD)]........oiveerereiiieieses e 167-170

SEtAIIOCSEALS.......eeeieeeiee e e 170
ResourceObj field MaxResources................ 169
ResourceObj field PendingResources.......... 169
ResourceObj field Resources............ccceeuee. 169
ResourceObj SetPendStats.........ccocceeveeenene 170
ResourceObyj statistics.........ccoeveerveennen. 167-170
ResourceObj TakeBack method................... 169
resources

changing set Ofcccoeiiiiiiiiin e 169

pending reqUESES.........ceeevee e e 169
resources available...........ccocceviiinnnn e 169
Resources field.........ocoveerieiniiiies e 169
resources requested.........ccoocvereeeieeiies e 167
RETURNcooiiiiiiiie e e 86, 199
RETURN statement.........ccocevvenereennen . 81, 86
REVERSED........ccoooiiiiiiieiiees e 80, 199
round Off ETOrS.......ccoeeveeiiiiieeee e e 21
FOULINE ..t e 83, 184, 185
runtime error

FESOUrCe reqUESL.......ccovveeriiieeeiee e e 167

FESOUICE MELUMN ...t e 169

transfer of resource ownership................. 169

S

sample MODSIM code..........ccceveeerieenennie e 9
sample of MODSIM code........cccccceverenieennenne. 2
SCAlAr TYPR..eee et e 19, 186
scheduled actiVities..........cocoveiieeiieenee e 142
scientific Notation...........cocceeveiiieeiiien e 27
SCOPE....evvrerreenrernnes 9, 13-14, 102, 105, 114, 137
scope of identifier. ... 15
scope of reference.......cccoveeeveeeereeenenne. 105, 114
SEEU. .. e 163, 245
SELF...oiie e e 118, 186, 200
SEMICOI 0N, s 16
Separate compilation............ccoevveerieeniennnnene 1,5
SEPAALON ..ot e 11, 16
sequence Of eXeCULION..........cceeveeerereciee e e 73
SetAllocHistogram..........ccceeeeeiieeneniiee e 170
SEtAIOCSHALS.....coieveeieiieeieeee e 170
SetPendingHistogram..........cccceevieenieennieee 170
SetPendStats

of ResSoUrceOD)........cuevieeeieiiieeriie e 170
SELSEEU. ...t e 165
SetTieBreaking method

SImControlObj.........cceeveerieerieaiens 151, 155
SetTimeAdvance

SImControlObj.........cceeveerieerieaiens 153, 155
shared variable.........ccocoeiiiiiiiiii e 186
short-circuit evaluation..............cccceueenee. 32,40
SiImControlObj........ccooeveieriieeeeeie e 151, 155
SIMDRAW ...ttt e 5

simple datatype.......ccooceeeerieneneenn 19, 43, 186
SIMSCRIPT 1.5 4,164
SIMTIME(). e 141, 155, 251
simulation time...........cccoceeuene. 4,141-144, 251
elapsing........ccveevenienieenn, 141-147,167, 183
notification of advance..................... 151, 155
PESSAGE Of ... e 142
PASSING. .. veeiveeetee et riee et e siee e 116
UNIt CONVEISIONS.......coivieeinieenieeiesiees e 141
UNIES OF o e 141
update notification...........ccccceeevuennee 153, 155
SINTEGER........cccooiiiiieieee 165, 245
SOUICE COUR......eoitieresiee et e 95, 99
SOUICE fil@. i e 94, 99
SPRINT ..ot e 174, 201, 210
SREAL ..ottt e 165, 245
SEACK. et e 157
StaCKOD] ... e 158, 159
StackObj tyPe....ooeeeeeeeeeee e e 159
standard iNPUL.c.ooveeeiieniieeee e e 173
standard OULPULoevveeieriieereeeie e 173
standard procedure...........coceveieniniiinie e 12
ST .t e 101
SEALEMENT......ooviiiiieee e 69
Statement SEQUENCE........coeeieeeeriieee s e 70
statistical data.........cevereeiieiinien e 160
statistical distribution............cccocvveeiinnnnn. 163
statistical groups.........coceveeeierrieeniees e 161
statistical monitor objects...........cceveveiennne 165
stetistics
on ResourceOb).......coovveeieiiiieenens 167, 170
pre-defined types of variables.................. 165
StatQUEUEOD]......ccveeeirieerieeeeseee e 160, 339
StatRanNkedOb).........ccoveeerieiireeres e 160
StAStACKOD)] ... e 160
SEADEV ..ot e 160
stream
random NUMDEN.........c.coeciveeneeiiiee e 163
StreamOD)].......c.occveveeiiieee 173, 175, 338
StreamODbj for input/output............cccceveeneen. 173
STRING......coiiiieeee 19, 22, 40, 47
charaCteristicS Of........ccoevverieiiiieiee e 23
generation of format............ccccceveeiennne 174
STRING KEY ...t e 158
String literalooveeieiei 28
STRING type....ccovieeieiiiierieeee e 23,97, 99
strongly typed.......ccccoeceiiieennen. 3,9, 3031, 186
structured datatype..........cceeeeerunnene 19, 43, 186
SUBBIOCK. ... e 87
(501 0] 0] (0]0 = o ¢ ORI 83
SUDFaNGE....covvieeeeeiee e 19, 25, 56, 58, 70
SUDFANGE LYPE...cevee ettt e 25
SUD-TOULINE.......ooiiii e e 185
SUBIOULINE. ... e 83

Index

SUDSEITULE. ... e 113-114
SUDSEITULION. ... e 111-114
SWITCHL e 24
SYMDBOIS.....coii e 15
T
TakeBack method...........ccoevceeniennnenns 167, 169
TELL o 117, 141-146, 201
method within object..........cccccoiiiiiens 117
TELL METHOD.... 104, 114116, 154-155, 186
TERMINATE........ccvieee 149, 154-155, 201
TERMINATE statement..........cocceveeneieennenn. 81
TIME. e e 141
UNITS OF e e 141
TimeAdvance method
SiImMControlObj.........ccveveerieeiieeiens 153, 155
TimedGive method...........cccoooiiieenenne 167, 168
for resource reqUEst...........ccoceeeveeeieeeninene. 168
time-elapsing method............cccooeiinniinnnn. 186
TO i e 117, 201
[oop INCrement..........oooeeeeeree e e, 78
TOKEN L. e, 9,11, 16
TranS el ..o e 168
Transfer method..........cccooeeiieniiiinis e 167
Triangular distributionc.ccccevieeinnne. 163
THIQOEN e e 150, 155
Trigger ObJeCt........ccvvveerieiiiieiiee e 150, 155
TriggerODj....c.coveeiieeeee e 150, 155
TRUE.....ci e 24, 29, 202
TSINTEGER.......cccooiiiiiieneeciee e 165, 245
TSREAL ..ot e 165, 245
TYPE. e 2, 20, 36, 62,95, 99, 202
Ordinalcooiiiiii e e 184
FEFEIENCE. ...t e 185
SCAlAN ..t e 186
UNAErYiNg....cccoioeeiiieiee e 186
TYPE CASINGee it e 72
type checking.........cccooveiieeniennee e 55, 109, 114
circumvent with ANYOBJ............... 109, 114
type compatibility.........cccoeeriiiiiniier e 70
tYPE CONVEISION.......viiiiiiee et e 3,71
TYPE declaration.........cccocceeveeeieeniieseeieee 36
ANONYMOUS. ...cmvieeeiireeiireeesnrees sereeesneeeesaes 63
BITAY et e e ane e saeeas 57
PROTO OBJECT........ccoeveerirrenien 111, 114
RECORD........ccoemeeriiieneeiee e 52, 102
U
UNAIY OPEIELONceieivieeeiieeeeiee e eeeieeeeeeeeas 32
UNAEfiNEdooiiiiie e e 52
underlying type......ccoceeeeeneeiieeniee e 126, 186
Uniformint distribution.............ccccceeveeeneene. 163
UniformReal distribution..............cccocoeenene 163
UNItS Of tiMe.....eiiiii e, 141

MODSIM Reference Manual

UNTIL et e 78, 202
update simulation time............cccccoee.... 153, 155
user-defined simple datatype..........cccceeuenne 19
user-defined type.......coooeereeiieeneeenie e 24
\Y
VAL (s e 24,211
PASS DY ...t e 185
Value COMPAriSON.......oevueeeieeiieenee e ceeenieens 31
VAR o e 62, 202
variable....oooeeee 20, 105, 114
ClaSS....oiiieciee e e 107, 114
global in module...........cceceiiieenennns 105, 114
local to method...........ccoocoeviiieenne. 105, 114
reference.......... 48, 52, 84, 102, 105, 114, 185
refers to DISPOSEd data structure............. 51
SNAMEH ... e 186
Variable declaration...........cccocoeeiieinienie e 37
VaaNCe....ccouieiueeiiee et e 161
VISIDIHITY. o e 9
w
WAIT oo 4,144, 154155, 186, 202
WAIT DURATION.....ooiiiriniriereniee e 145

350

WAIT FOR....oeeiieeiieeeeeeveee 148-155, 167
TERMINATE....cooieieieeeeeeeeee e 149, 155
WAIT FOR statement...........cccceveeeeeeecvennne . 116
WAIT statement........cceeeeeeecvvieeeeeeciin e, 81
SYNMEBX. ..t reee e seeee e e seee e 144
WAIT statements
MUILIPIE....eeiie e e 154-155
WAITFOR.....oooveeeeieeeeeeieee e, 141-144, 203
WAITFOR METHOD... 114-116, 147, 155, 186
Welbull distribution............ccccveeeeeeeiiveee e 163
WHEN ... e, 76, 203
WHILE statement........ccc.coeevveeeeeeeiiee e, 77
WhOIE NUMDET ... 21
WIHEE NG ... e, 176
WIHEECHANvveeie e e, 176
WIHEEHEX ...t e 176
WIHEEINt e e 176
WIHEELN . e 176
WriteReal........coooeeeieiieeecee e, 176
WIHESIIING ..o e 176
WEAMEAN......ceeviiceieeeee e e 161
WHASLADEV.....ceeieeeeveeee e e 161
WHAVarianCe........cooccvveeeeeiicveeeeees e 161

