
Chomsky and Greibach Normal
Forms

Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

Computation Theory – p.1/25

Simplifying a CFG
• It is often convenient to simplify CFG
• One of the simplest and most useful

simplified forms of CFG is called the
Chomsky normal form

• Another normal form usually used in algebraic
specifications is Greibach normal form

Computation Theory – p.2/25

Note
Normal forms are useful when more advanced

topics in computation theory are approached, as

we shall see further

Computation Theory – p.3/25

Definition
A context-free grammar G is in Chomsky normal
form if every rule is of the form:

A −→ BC

A −→ a

where a is a terminal, A,B,C are nonterminals,

and B,C may not be the start variable (the axiom)

Computation Theory – p.4/25

Note
The rule S −→ ε, where S is the start variable,

is not excluded from a CFG in Chomsky normal

form.

Computation Theory – p.5/25

Theorem 2.6
Any context-free language is generated by a
context-free grammar in Chomsky normal form.
Proof idea:

• Show that any CFG G can be converted into a CFG G′ in
Chomsky normal form

• Conversion procedure has several stages where the rules that
violate Chomsky normal form conditions are replaced with
equivalent rules that satisfy these conditions

• Order of transformations:(1) add a new start variable, (2) eliminate
all ε-rules, (3) eliminate unit-rules, (4) convert other rules

Computation Theory – p.6/25

Proof idea, continuation

• Check that the obtained CFG G′ define the same language as the
initial CFG G.

Computation Theory – p.7/25

Proof
Let G = (N, T,R, S) be the original CFG.

Step 1: add a new start symbol S0s to N , and the
rule S0 −→ S to R

Note: this change guarantees that the start symbol

of G′ does not occur on the rhs of any rule

Computation Theory – p.8/25

Step 2: eliminate ε-rules

Repeat
1. Eliminate the ε rule A −→ ε from R where A is not the start symbol

2. For each occurrence of A on the rhs of a rule, add a new rule to R

with that occurrence of A deleted
Example: replace B −→ uAv by B −→ uAv|uv;
replace B −→ uAvAw by B −→ uAvAw|uvAw|aAvw|uvw

3. Replace the rule B −→ A, (if it is present) by B −→ A|ε unless the
rule B −→ ε has not been previously eliminated

until all ε rules are eliminated

Computation Theory – p.9/25

Step 3: remove unit rules

Repeat
1. Remove a unit rule A −→ B ∈ R

2. For each rule B −→ u ∈ R, add the rule A −→ u to R, unless
B → u was a unit rule previously removed

until all unit rules are eliminated

Note: u is a string of variables and terminals

Computation Theory – p.10/25

Convert all remaining rules

Repeat
1. Replace a rule A −→ u1u2 . . . uk, k ≥ 3, where each ui, 1 ≤ i ≤ k,

is a variable or a terminal, by:
A −→ u1A1, A1 −→ u2A2, . . ., Ak−2 −→ uk−1uk

where A1,A2, . . ., Ak−2 are new variables

2. If k ≥ 2 replace any terminal ui with a new variable Ui and add the
rule Ui −→ ui

until no rules of the form A −→ u1u2 . . . uk with

k ≥ 3 remain

Computation Theory – p.11/25

Example CFG conversion
Consider the grammar G6 whose rules are:

S −→ ASA|aB

A −→ B|S

B −→ b|ε

After first step of transformation we get:

S0 −→ S

S −→ ASA|aB

A −→ B|S

B −→ b|ε

Computation Theory – p.12/25

Removing ε rules
Removing B → ε:

S0 −→ S

S −→ ASA|aB|a

A −→ B|S|ε

B −→ b

Removing A → ε:

S0 −→ S

S −→ ASA|aB|a|SA|AS|S

A −→ B|S

B −→ b

Computation Theory – p.13/25

Removing unit rule
Removing S → S:

S0 −→ S

S −→ ASA|aB|a|SA|AS

A −→ B|S

B −→ b

Removing S0 → S:

S0 −→ ASA|aB|a|SA|AS

S −→ ASA|aB|a|SA|AS

A −→ B|S

B −→ b

Computation Theory – p.14/25

More unit rules
Removing A → B:

S0 −→ ASA|aB|a|SA|AS

S −→ ASA|aB|a|SA|AS

A −→ S|b

B −→ b

Removing A → S:

S0 −→ ASA|aB|a|SA|AS

S −→ ASA|aB|a|SA|AS

A −→ b|ASA|aB|a|SA|AS

B −→ b

Computation Theory – p.15/25

Converting remaining rules

S0 −→ AA1|UB|a|SA|AS

S −→ AA1|UB|a|SA|AS

A −→ b|AA1|UB|a|SA|AS

A1 −→ SA

U −→ a

B −→ b

Computation Theory – p.16/25

Note
• The conversion procedure produces several

variables Ui along with several rules Ui → a .
• Since all these represent the same rule, we

may simplify the result using a single variable
U and a single rule U → a

Computation Theory – p.17/25

Greibach Normal Form
A context-free grammar G = (V, Σ, R, S) is in
Greibach normal form if each rule r ∈ R has the
property: lhs(r) ∈ V , rhs(r) = aα, a ∈ Σ and
α ∈ V ∗.

Note: Greibach normal form provides a justifica-

tion of operator prefix-notation usually employed

in algebra.

Computation Theory – p.18/25

Greibach Theorem
Every CFL L where ε 6∈ L can be generated by a
CFG in Greibach normal form.
Proof idea: Let G = (V, Σ, R, S) be a CFG generating L. Assume that G

is in Chomsky normal form

• Let V = {A1, A2, . . . , Am} be an ordering of nonterminals.

• Construct the Greibach normal form from Chomsky normal form

Computation Theory – p.19/25

Construction
1. Modify the rules in R so that if Ai → Ajγ ∈ R then j > i

2. Starting with A1 and proceeding to Am this is done as follows:

(a) Assume that productions have been modified so that for
1 ≤ i ≤ k, Ai → Ajγ ∈ R only if i > j

(b) If Ak → Ajγ is a production with j < k, generate a new set of
productions substituting for Aj the rhs of each Aj production

(c) Repeating (b) at most k − 1 times we obtain rules of the form
Ak → Apγ, p ≥ k

(d) Replace rules Ak → Akγ by removing left-recursive rules

Computation Theory – p.20/25

Removing left-recursion

Left-recursion can be eliminated by the following
scheme:

• If A → Aα1|Aα2 . . . |Aαr are all A left recursive rules, and
A → β1|β2| . . . |βs are all remaining A-rules then chose a new
nonterminal, say B

• Add the new B-rules B → αi|αiB, 1 ≤ i ≤ r

• Replace the A-rules by A → βi|βiB, 1 ≤ i ≤ s

This construction preserve the language L.

Computation Theory – p.21/25

Conversion algorithm
for (k=1; k<=m; k++)

{for (j=1; j<=k-1; j++)

{for (each A_k ---> A_j alpha)

{

for all rules A_j ---> beta

add A_k ---> beta alpha

remove A_k ---> A_j alpha

}

for (each rule A_k ---> A_k alpha)

{

add rules B_k ---> alpha | alpha B_k

remove A_k ---> A_k alpha

}

for (each rule A_k ---> beta, beta does not begin with A_k)

add rule A_k ---> beta B_k

}

} Computation Theory – p.22/25

More on Greibach NF
See Introduction to Automata Theory, Languages,

and Computation, J.E, Hopcroft and J.D Ullman,

Addison-Wesley 1979, p. 94–96

Computation Theory – p.23/25

Example

Convert the CFG
G = ({A1, A2, A3}, {a, b}, R, A1)

where
R = {A1 → A2A3, A2 → A3A1|b, A3 → A1A2|a}

into Greibach normal form.

Computation Theory – p.24/25

Solution
1. Step 1: ordering the rules: (Only A3 rules violate ordering

conditions, hence only A3 rules need to be changed) Following
the procedure we replace A3 rules by: A3 → A3A1A3A2|bA3A2|a

2. Eliminating left-recursion we get: A3 → bA3A2B3|aB3|bA3A2|a,
B3 → A1A3A2|A1A3A2B3

3. All A3 rules start with a terminal. We use then to replace
A1 → A2A3. This introduces the rules B3 → A1A3A2|A1A3A2B3

4. Use A1 production to make them start with a terminal

Computation Theory – p.25/25

	Simplifying a CFG
	Note
	Definition
	Note
	Theorem 2.6
	Proof idea, {scriptsize continuation}
	Proof
	Step 2: eliminate $epsilon $-rules
	Step 3: remove unit rules
	Convert all remaining rules
	Example CFG conversion
	Removing $epsilon $ rules
	Removing unit rule
	More unit rules
	Converting remaining rules
	Note
	Greibach Normal Form
	Greibach Theorem
	Construction
	Removing left-recursion
	Conversion algorithm
	More on Greibach NF
	Example
	Solution

