Yy anc Jlel:
Forms

Teodor Rus

rus@s. ui ona. edu

The University of lowa, Department of Computer Science

Computation Theory — p.1/2

g JIYV

» One of the simplest and most useful
simplified forms of CFG is called the
Chomsky normal form

« Another normal form usually used in algebraic
specifications is Greibach normal form

topics In computation theory are approached, as
we shall see further

form if every rule is of the form:

A — BC

Y)

where a Is a terminal, A, B, C' are nonterminals,
and B, C' may not be the start variable (the axiom)

IS not excluded from a CFG in Chomsky normal
form.

ny context-free language is generated by a
context-free grammar in Chomsky normal form.

Proof idea;:

® Show that any CFG G can be converted into a CFG G’ in
Chomsky normal form

® Conversion procedure has several stages where the rules that
violate Chomsky normal form conditions are replaced with
equivalent rules that satisfy these conditions

® Order of transformations:(1) add a new start variable, (2) eliminate

all e-rules, (3) eliminate unit-rules, (4) convert other rules
H BH EH BN

Computation Theory — p.6/2

Computation Theory — p.7/2

Step 1: add a new start symbol Sys to NV, and the
rule Sy — Sto R

Note: this change guarantees that the start symbol
of G’ does not occur on the rhs of any rule

1. Eliminate the e rule A — e from R where A is not the start symbol

2. For each occurrence of A on the rhs of a rule, add a new rule to R
with that occurrence of A deleted
Example: replace B — uAv by B — uwAv|uv;
replace B — uAvAw by B — uAvAw|uvAw|aAvw|uvw

3. Replace the rule B — A, (if itis present) by B — A|e unless the
rule B — ¢ has not been previously eliminated

until all e rules are eliminated

Computation Theory — p.9/2

1. Remove aunitrule A — B € R

2. Foreachrule B— u € R, add the rule A — u to R, unless
B — u was a unit rule previously removed

until all unit rules are eliminated

Note: u IS a string of variables and terminals

1. Replacearule A — wjus...ug, k> 3, where each u;, 1 <i <k,
IS a variable or a terminal, by:
A— u1Ai, Al — ugAs, ..., Ap_o — Up_1Ug
where A{,A-, ..., Air_o are new variables

2. It k£ > 2replace any terminal «; with a new variable U; and add the
rule U, — u;

until no rules of the form A — wqusy...ur With
k > 3 remain

Computation Theory — p.11/2

S — ASA|aB
A — B|S
B — ble

After fi rst step of transformation we get:

SO — S
S — ASA|aB
A — BJS

B — Dble O EEEE

Computation Theory — p.12/2

Removing A — €.

> W0

S, S
— ASA|aBl|a
— B|S]e

SN b

S
ASA|aB|a|SA|AS|S
B|S

b

Computation Theory — p.13/2

Removing Sy — S

> W0

S
ASA|aB|a|SA|AS
B|S

b

ASA|aBla|SA|AS
ASAl|aB|a|SA|AS
B|S

b

Computation Theory — p.14/2

Removing A — S

> W0

ASAl|aBla|SA|AS
ASA|aB|a|SA|AS
S|b

b

ASA|aBla|SA|AS
ASAl|aBl|a|SA|AS
b|ASA|aB|a|SA|AS
b

Computation Theory — p.15/2

1 a
S — AA,|UB|a|SA|AS
A — blAA|UB|a|SA|AS
Al — SA

U — a

B — b

Computation Theory — p.16/2

variables U; along with several rules U; — a .

» Since all these represent the same rule, we
may simplify the result using a single variable
U and a single rule U — a

context-free grammar

Greibach normal form if each rule r € R has the
property: [hs(r) € V, rhs(r) = aa, a € 3 and

ae V™.

Note: Greilbach normal form provides a justifica-
tion of operator prefix-notation usually employed

In algebra.

\/ \/ TAY \/ [\ 4 v

CFG In Greilbach normal form.

Proof idea: Let G = (V, X, R, S) be a CFG generating L. Assume that G
IS In Chomsky normal form

° LetV ={A;, A,s,..., A, } be an ordering of nonterminals.

® Construct the Greibach normal form from Chomsky normal form

Computation Theory — p.19/2

2. Starting with A; and proceeding to A,, this is done as follows:

)

(b)

()

(d)

Assume that productions have been modifi ed so that for
1<i<k, A —AjycRonlyifi>j

If A, — A,~is a production with 5 < k, generate a new set of
productions substituting for A; the rhs of each A; production

Repeating (b) at most £ — 1 times we obtain rules of the form
Ak — Ap’)/, yy Z k

Replace rules A, — Ag~y by removing left-recursive rules

Computation Theory — p.20/2

scheme:

° If A— Aoy|Aas...|Aa, are all A left recursive rules, and
A — B1|6s|...|8s are all remaining A-rules then chose a new

nonterminal, say B

® Add the new B-rules B — a;|la; B, 1 <i <r

® Replace the A-rulesby A — 3;|6;B,1 <1 <s

This construction preserve the language L.

Computation Theory — p.21/2

{for (each Ak ---> Aj apha
{
foo al rues Aj ---> beta
add Ak ---> beta apha
remove Ak ---> Aj apha
}
for (each rue Ak ---> Ak alpha)
{
add rues Bk ---> adpha | apha Bk
renove Ak ---> Ak apha
}
for (each rue Ak ---> beta, beta does not begn wth AK
add rue Ak ---> beta Bk

Computation Theory — p.22/2

and Computation, J.E, Hopcroft and J.D Uliman,
Addison-Wesley 1979, p. 94-96

G = ({Ala A27 A3}7 {CL, b}7 R7 Al)
where
R = {Al — A2A3, A2 — A3A1|b, A3 — A1A2|CL}

Into Grelbach normal form.

conditions, hence only A3 rules need to be changed) Following
the procedure we replace As rules by: A3 — A3A;A3As|bAsAs|a

2. Eliminating left-recursion we get: A3 — bA3AsBslaBs|bAsAs|a,
Bg — A1A3A2|A1A3A233

3. All A5 rules start with a terminal. We use then to replace
A — Ay As. This introduces the rules B3 — A1A3A2|A1A3A233

4. Use A, production to make them start with a terminal

Computation Theory — p.25/2

	Simplifying a CFG
	Note
	Definition
	Note
	Theorem 2.6
	Proof idea, {scriptsize continuation}
	Proof
	Step 2: eliminate $epsilon $-rules
	Step 3: remove unit rules
	Convert all remaining rules
	Example CFG conversion
	Removing $epsilon $ rules
	Removing unit rule
	More unit rules
	Converting remaining rules
	Note
	Greibach Normal Form
	Greibach Theorem
	Construction
	Removing left-recursion
	Conversion algorithm
	More on Greibach NF
	Example
	Solution

