OR creates bridges

Prague, July 8 - 11,2007
22M° EUROPEAN CONFERENCE
ON OPERATIONAL RESEARCH

Parallel Algorithms for the Two-Dimensional Cutting
Stock Problem

Coromoto Ledn Hernandez Gara Miranda Valladares
Casiano Rodriguez Ledn Carlos Segura Gonzalez

DrTO. DE EstAaDIsTICA, I.O. Y COMPUTACION

UNIVERSIDAD DE LA LAGUNA

Outline

e Introduction

e Improvements to the Sequential Algorithm
e Parallel Algorithm

e Synchronization Service

e Computational Results

e Conclusions

EURO XXII Prague 2007

Introduction

Cutting Stock Problem (CSP)

e CSP arise in many production industries.

e Large stock sheets (glass, textiles, paper, etc.) must be cut into
smaller pieces.

e CSP can be classified attending to:

the number of dimensions (1D, 2D, 3D)

the number of available surfaces and patterns
the shape of the patterns (regular or irregular)
the orientation

EURO XXII Prague 2007

Introduction

Constrained Two-Dimensional Cutting Stock Problem

e The Constrained 2DCSP is one of the most interesting variants of CSP and
targets the cutting of a large rectangle S of dimensions L X W in a set of smaller

rectangles using orthogonal guillotine cuts.

e Any cut must run from one side of the rectangle to the other end and be parallel

to the other two edges.

L
7

S

T
.

i

EURO XXII Prague 2007

Introduction

e The produced rectangles must belong to one of a given set of rectangle types
D = {Ty...T,} where the i-th type T; has dimensions I; X wj;.

Associated with each type T; there is a profit p;, and a demand constraint b;,.

w
i w,

[

3

ant
St

The problem goal is to find a feasible cutting pattern with x; pieces of type T;
maximizing the total profit:

Maximize 2?21 x;p; subject to x; < b; and x; € N

EURO XXII Prague 2007

Introduction

Solving the Constrained Two-Dimensional CSP

e Non-exact algorithms:

- Heuristics

- Evolutionary algorithms
e Exact algorithms:

e Depth-first searches (Christofides €& Whitlock (1977))

e Best-first searches (Viswanathan & Bagchi (1993), Hifi (1997), Cung et al. (1997))
e Parallel approximations:

e Parallel version of Wang's approximation (Nikias et al. (1998))
e Parallel version based on original Viswanathan & Bagchi algorithm and PPBB-
LIB (Tschéeke & Holthifer (1995))

EURO XXII Prague 2007

Sequential Algorithm

Viswanathan and Bagchi’s Algorithm

e The algorithm needs two lists of builds (subproblems):

® OPEN stores all the generated builds that are still pending to be analysed.
® CLIST stores the best builds that have been analysed.

e At each step, an element o with dimensions (a!, a¥) is removed from OPEN and
inserted into CLIST.

e This element is combined with the elements in CLIST in order to generate all the
new horizontal vz = (a8—) and vertical vy = (af|) builds (Wang (1983)).

a . — " —>

vertical horizontal

e The element from OPEN to be selected must be the one with the highest
estimated total profit (best-first search scheme).

EURO XXII Prague 2007

Sequential Algorithm

Modified Viswanathan and Bagchi’s Algorithm (Cung et al, 1997)

e In VB original version the combination is achieved traversing the whole CLIST.

e The new data structure for CLIST alleviate the generation of non-feasible builds.

A\ N AN

AL VR
\\&\

ALV A A

AU VAV

ALV VA

AV VAV VAV A VA s

e Improvements of the lower and upper bounds.

e Detection of duplicated/dominated builds.

EURO XXII Prague 2007

Initial Improvements to the Original Algorithm

e New data structure to store OPEN:

- Subproblems are sorted by the value of their upper bounds (best-first search).

- Lower bounds keep ascending and the upper bounds descending (Branch-and-Bound).

- When there is no space to afford storing the whole interval [besty, uppery] the data structure
becomes a tree-of-intervals.

- Insertions can be done in constant time.

- Full segments of memory can be freed any time the lower bound improves.

e Any feasible solution can be represented using postfix expressions.

e Shared memory parallelization of the subproblem generation loop.

EURO XXII Prague 2007

New Improvements to the Sequential Algorithm

A New Upper Bound

1. The following bounded knapsack problem is solved using dynamic programming:

n
max) ;_; CiTi

V(ia) = subject to

and

foral0<a<LxW

Z?:l (liw)x; <

x; < min{b;, |_l£J X mej}, x; € N

- Consider all the possible areas of the larger piece.
- Maximize the profit of the considered area.
- Constraints on the maximum number of pieces to use: dimensions and availability.

LW

l

bl =5

Tl

T1

Tl

T1

EURO XXII Prague 2007

New Improvements to the Sequential Algorithm

2. Then, Fy(z,y) is computed for each rectangle using the equations:

B max{Fv(z,y1) + Fv(z,y — y1) such that 0 < y; < | %]}
F(x,y) = max max{Fy(x1,y) + Fy(x — 1, y) such that 0 < x; < [$]}

max{c; such that I; < x and w; < y}
where

Fy(x,y) = min{F(z,y),V(z x y)}

- Consider all the possible vertical and horizontal subdivisions of the surface (x, y).
- Consider the individual piece that maximize the profit of the surface (x, vy).

¥l
A A | A
= —— —n
Vi ’ vi | y
v v | v
< > (T TTPIPPITTREARORERE > (ST RRRREER R >
X x X

EURO XXII Prague 2007

New Improvements to the Sequential Algorithm

3. Finally, substituting the bound of Gilmore and Gomory by Fy, in Viswanathan
and Bagchi upper bound the new proposed upper bound is obtained:

Uy (z,y) = max max{Uy(x + u,y) + Fy(u,y) suchthat0 < u < L — x}
o max{Uy (z,y + v) + Fv(z,v) such that 0 < v < W — y}

- Enumerate all possible ways such a rectangle R of dimensions (x,) is at the bottom-left corner
of some guillotine cutting pattern.

- Two possibilities: horizontal or vertical construction.

- Profit of the additional considered build plus the profit of the remaining area.

EURO XXII Prague 2007

New Improvements to the Sequential Algorithm

A New Lower Bound

e Mimics Gilmore and Gomory dynamic programming algorithm, but substituting
unbounded vertical and horizontal combinations by feasible suboptimal ones.

e Let be R = (7;)i=1..n and S = (s;)i=1...n, sets of feasible solutions using r; < b;
and s; < b; rectangles of type 1;.

e The cross product R ® S of R and S is defined as the set of feasible solutions
built from R and S without violating the bounding requirements:

- R® S uses (min{r; 4+ s;, b;})i=1..n rectangles of type T;.

bl =2
bz=1
b3 =3
ba =2

|
|
|

RxS

EURO XXII Prague 2007

New Improvements to the Sequential Algorithm

e The lower bound is given by the value H(L,W') computed by:

max{g(S(z,y1) ® S(x,y — y1)) such that 0 < y; < L%J}
H(x,y) = max max{g(S(z1,y) ® S(x — x1,y)) such that 0 < x; < L%J}
max{c; such that I; < x and w; < y}

being S(x,y) the build where the maximum is reached.

- Consider all the possible vertical and horizontal subdivisions of the surface (x, y).

- Consider the individual piece that maximize the profit of the surface (x, y).

®1 w2
A A |
y e — e —. *_sff 2 ‘_',.-’ |
. .yl
v v |
< > orrererasssssian e >
o X

EURO XXII Prague 2007

Parallel Algorithm

General Operation

e The parallel algorithm is partially based on VB modified version.

e Every processor has its own local CLIST and OPEN:

- CLIST is replicated and OPEN is distributed among the available processors.
e The initial builds are distributed among the processors.

e Each processor independently works as in the improved sequential scheme.
e Every certain periods of time, all processors have to do an exchange of computed
subproblems in order to generate the complete set of feasible solutions.

- Synchronization based on the number of search-loop iterations or number of
computed/generated nodes.
- lIrregular cost associated to each loop iteration or computed/generated node.

e The stop condition is reached when all the OPEN lists are empty.

EURO XXII Prague 2007

Parallel Algorithm

Sequential Case

OPEN = {a, b, c} cLIsT = { }
OPEN = {aa—, b, aal, ¢} CLIST = {a}
OPEN = {b, aal, ¢} CLIST = {a, aa—}

OPEN = {bal, bb|, aa|, ba—, ¢} crLisST = {a, aa—, b}

Parallel Case

Processor 1 OPEN = {a} CcLIST = {}
Processor 2 OPEN = {b} CLIST = {}
Processor 3~ OPEN = {c} cLIsT = {}
Processor 1 OPEN = {aa—, aal} CLIST = {a}
Processor 2 OPEN = {bb|} CLIST = {b}
Processor 3 OPEN = {cc—, cc|} CLIST = {c}
Processor 1 ~ OPEN = {aa—, aa|} + {ab builds} cLisT = {a, b, ¢}
Processor 2 OPEN = {bb|} + {bc builds} cLisT = {b, a, c}
Processor 3~ OPEN = {cc—, cc|} + {ca builds} crisT = {¢, a, b}

EURO XXII Prague 2007

Parallel Algorithm

Communication Scheme

It has been implemented using a synchronization service.

The synchronization subroutine is called when:

- a processor has no pending work

- an active alarm of the synchronization service goes off

The information given by each processor consists of:

- best solution value
- OPEN list size
- set of builds analyzed since the last synchronization step

Information to be updated by each processor:

- Elements computed by other processors must be inserted into the local CLIST
- Combinations of computed elements are uniformly distributed among processors
- Local best solution is updated with the best solution found by any of the processors

EURO XXII Prague 2007

Parallel Algorithm

Load Balancing Scheme

e Requires three configuration parameters:

- MinBalThreshold, MaxBalThreshold, MaxBalancelLength.

e The method is executed after the computation of the pending combinations.

e Operation:

(a) Sort the set of processors attending to their OPEN size.

(b) Match the processor with largest OPEN list with the processor with the smallest one, the
second largest one with the second smallest and so on.

(c) Partners will make an exchange of elements if the one with larger OPEN has more than
MaxBalThreshold elements and the other has less than MinBalThreshold.

(d) The number of elements to be exchanged is proportional to the difference of the two OPEN
sizes, but it can never be greater than MaxBalancelLength.

EURO XXII Prague 2007

Synchronization Service

e All synchronizations in the model are done through time alarms (alarm clocks).

e Service independent of the particular algorithm and the MPI implementation.

e Using the service:

- By using a daemon, an alarm clock manager is created on each node.
- For each received request, the service manager creates a new alarm clock process that will
communicate to the corresponding requester.

NODE

AlarmClock Request

MPI Process

AlarmClock Assignment

MPI Process |€— - — - — - — & — =« — -

AlarmClock
Manager

\ 4

AlarmClock

- Algorithmic processes can activate/cancell alarm clocks.

- When an alarm goes off, the corresponding process is notified.

EURO XXII Prague 2007

Computational Results

Description of the Experiments

For the computational study, we have selected some CSP instances from the
ones available in the related literature.

Tests have been run on a cluster of 8 HP nodes, each one consisting of two
Intel(R) Xeon(TM) at 3.20GHz.

The interconnection network is an Infiniband 4X SDR.

The compiler and MPI implementation used were gcc 3.3 and MVAPICH 0.9.7.

Sequential tests:

- Comparison of the original lower bound and the new one.
- Comparison of the original upper bound and the new one.
Parallel tests:

- Executions with 1, 2, 4, 8, 16 processors.
- Comparison of execution times and number of computed nodes.

EURO XXII Prague 2007

Computational Results

Lower and Upper Bounds Results

UPPER BOUND
SOLUTION LOWER BoOuUND 4 Uy,

PROBLEM Value Value | Time Init | Search [Nodes Init [Search | Nodes
25_03 21693 21662 0.442 0.0309 2835.07 179360 0.0312 2308.78 157277
25_05 21693 21662 0.436 0.0311 2892.23 183890 0.0301 2304.78 160932
25_06 21915 21915 0.449 0.0316 35.55 13713 0.0325 20.83 10310
25_08 21915 21915 0.445 0.0318 205.64 33727 0.0284 129.03 25764
25_09 21672 21548 0.499 0.0310 37.31 17074 0.0295 25.49 13882
25_10 21915 21915 0.510 0.0318 1353.89 86920 0.0327 1107.18 73039
50_01 22154 22092 0.725 0.1056 2132.23 126854 0.0454 1551.23 102662
50_03 22102 22089 0.793 0.0428 4583.44 189277 0.0450 3046.63 148964
50_05 22102 22089 0.782 0.0454 4637.68 189920 0.0451 3027.79 149449
50_09 22088 22088 0.795 0.0457 234.42 38777 0.0428 155.35 29124
100_08 22443 22443 1.218 0.0769 110.17 25691 0.0760 092.91 22644
100_09 22397 22377 1.278 0.0756 75.59 20086 0.0755 61.84 17708

EURO XXII Prague 2007

Computational Results

Parallel Algorithm Results

PROCESSORS
1 2 4 8 16
PROBLEM Time [Nodes Time [Nodes Time [Nodes Time | Nodes Time | Nodes | Sp.
2503 202204 | 157277 || 166526 | 161200 77047 | 157281 || 384.05 | 150424 || 197.82 | 157603 | 11.67
2505 3068.19 | 160932 || 1738.02 | 168941 86323 | 168367 || 408.39 | 165323 || 206.10 | 162020 | 11.18
25_06 23.82 10310 11.51 10310 6.36 10310 3.01 10310 1.57 10310 13.26
25_08 129.02 25764 61.38 25764 29.98 25764 15.52 25764 8.33 25764 15.48
25_09 20.44 13882 13.69 14257 7.02 13916 3.57 13916 2.09 14150 12.44
25_10 1140.41 73039 539.89 73039 266.96 73039 132.32 73039 67.94 73039 16.16
50_01 1651.51 102662 963.07 102662 508.67 116575 240.93 103545 123.72 102965 12.53
50_03 4214.54 148964 2084.77 148964 1057.70 151362 512.12 150644 258.51 149039 11.78
50_05 4235.27 149449 2141.41 149449 1077.47 153813 512.43 150937 260.03 149450 11.64
50_09 161.38 29124 77.65 29124 40.34 20124 19.45 29124 10.34 29124 14.94
100_08 08.96 22644 48.74 22644 25.83 22644 12.60 22644 6.98 22644 13.31
100_09 60.05 17708 38.29 19987 18.74 18509 10.59 20584 4.77 18100 12.58

EURO XXII Prague 2007

Computational Results - SpeedUp

20 T T T T
07_100_08 ——
0F_25_05 ——
07_25_10 —%—

15

Speedup
=
()
T

1
16

2
Frocessors

EURO XXII Prague 2007

07_25_05 ERES

L)
—
L
(8]
-
=

EURO XXII Prague 2007

Computational Results - Load Balancing

E
e e e

12

B B B n e nnaaass

ke e

[o e, o B 8 B L T B % e T L L T T L L R L L L e L A R A
000000000’000000’00.’0’0’0.’00’000000’000000’0000000000000000000’0’0’0’0;

POt R X KR S I K R KR A I I KR K IR I R I KRR K AR I I F R A I I I N AR A I H

11

HEEEREEREO:

AHaaaa

12000

R e S et e
L
o tti“dii“mﬁii‘"dﬂmfﬁ =

b e e S S S S S S S S S S 5
....... o
L e e e o o v P P e o v P P o o v P n P o v o o P o o P o, om0, o £] [}

Lo S N RS
-—
1
]

10000

sapoy papndwosg

Conclusions

Computational results prove the quality of the new lower and upper bound.

All the approaches to parallelize VB strive against the highly irregular computation
structure of the algorithm and its intrinsically sequential nature.

A new parallel distributed and synchronous algorithm has been designed from
the basis of the inherently sequential VB algorithm.

Parallel results demonstrate the almost linear speedups and verify the high
scalability of the implementation.

A totally application-independent synchronization service has been developed.

The service provides an easy way of introducing periodic synchronizations in the
user programes.

The synchronization service has been decisive for the well operation of the parallel
scheme and for the right behaviour of the load balancing model.

EURO XXII Prague 2007

Future Work

e Improvements of the load balancing scheme:

- Instead of considering only the size of the lists, it would be fairly to introduce

some method to approximately calculate the work associated to each of the
subproblems in OPEN.

e Improvements of the synchronization scheme:

- At the initial and latest stages of the search, many of the alarms are cancelled
because processors do not have enough work.

- It would be interesting to have an automatic and dynamic way of fixing the
time between synchronizations while the search process is progressing.

EURO XXII Prague 2007

Thank you for your attention!

Questions?

This work has been supported by the EC (FEDER) and by the Spanish Ministry of Education inside the ‘Plan Nacional
de 1+D—+1" with contract number TIN2005-08818-c04-04.

The work of G. Miranda has been developed under the grant FPU-AP2004-2290.

EURO XXII Prague 2007

