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A Typical Memory HierarchyA Typical Memory Hierarchy

Virtual memoryVirtual memory Sources:
Textbook Chapter 5.10, 5.11

Virtual memory: Issues of implementation, B. Jacob, and T. Mudge, Computer, vol. 31, no. 6, pp. 33-43. June 1998.
(Virtual Memory  paper #1) 

Virtual memory in contemporary microprocessors,  B. Jacob, and T. Mudge, Micro, vol. 18, no. 4, pp. 60-75. July/Aug. 1998.
(Virtual Memory  paper #2) 
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• Overview & Motivation
• Paging Versus Segmentation
• Basic Virtual Memory Management
• Virtual Memory Basic Strategies
• Virtual Address Translation: Direct (Basic) Page Tables
• Speeding-up Translations:  Translation Lookaside Buffer (TLB)

– TLB-Refill Mechanisms: Hardware versus software TLB refill.
• Global Vs. Per-process Virtual Address Space
• Data/Code Sharing in Virtual Memory Systems
• Address-Space Protection in Virtual Memory Systems
• Page Table Organizations and Page Table Walking

1 Direct (Basic) Page Tables.
2 Hierarchical (or Forward-Mapped) Page Tables
3 Inverted/Hashed Page Tables

• Virtual Memory Architecture Examples
• The Hardware (MMU)/Software (OS) Mismatch In Virtual Memory

Virtual MemoryVirtual Memory

Chapter 5.10, 5.11, Two Ref. Papers
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• Virtual memory controls two levels of the memory hierarchy:    
• Main memory (DRAM).  
• Mass storage (usually magnetic disks).

• Main memory  is divided into blocks allocated to different running processes in 
the system by the OS:

• Fixed size blocks:  Pages (size 4k to 64k bytes). (Most common)
• Variable size blocks: Segments (largest size 216 up to 232).
• Paged segmentation:  Large variable/fixed  size segments divided into a number 

of fixed size pages (X86, PowerPC). 

• At any given time, for any running process, a portion of its data/code is loaded  
(allocated) in main memory while the rest is available only in mass storage.

• A program code/data block needed for process execution and not present in 
main memory result in a page fault (address fault) and the page has to be loaded 
into main memory by the OS from disk (demand paging).

• A program can be run in any location in main memory or disk by using a 
relocation/mapping mechanism controlled by the operating system which maps 
(translates) the address from virtual address space (logical program address) to 
physical address space (main memory, disk).

Virtual Memory: OverviewVirtual Memory: Overview

Superpages can be much larger

Using page tables
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• Original Motivation:
– Illusion of having more physical main memory (using 

demand paging)
– Allows program and data address relocation by 

automating the process of code and data movement 
between main memory and secondary storage.

• Additional Current Motivation:
– Fast process start-up.
– Protection from illegal memory access.

• Needed for multi-tasking operating systems.

– Controlled code and data sharing among processes.
• Needed for multi-threaded programs.

– Uniform data access
• Memory-mapped files
• Memory-mapped network communication

Virtual Memory: MotivationVirtual Memory: Motivation

e.g local vs. remote memory access

Demand paging
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Paging Versus SegmentationPaging Versus Segmentation
Fixed-size blocks
(pages)

Variable-size blocks (segments)

Page

Segment
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Virtual Address Space Vs. Physical Address Space

Virtual memory stores only 
the most often used portions
of a process address space in 
main memory and retrieves 
other portions from a disk as 
needed (demand paging). 

The virtual-memory
space is divided into pages 
identified by virtual page 
numbers (VPNs), shown on 
the far left, which are mapped 
to page frames or physical 
page numbers (PPNs) or page 
frame numbers (PFNs), in 
physical memory as shown on 
the right.

VPNs PFNs or PPNs

Virtual address to physical address mapping or translationPaging is assumed here

(PFNs)

Virtual  Address Space   = Process Logical Address Space

(or process logical address space)

Using a page table
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Basic Virtual Memory Management
• Operating system makes decisions regarding which virtual 

(logical) pages of a process should be allocated in real 
physical memory and where (demand paging) assisted with 
hardware Memory Management Unit (MMU)

• On memory access -- If no valid virtual page to physical 
page translation (i.e page not allocated in main memory)

– Page fault to operating system
– Operating system requests page from disk
– Operating system chooses page for replacement

• writes back to disk if modified

– Operating system allocates a page in physical 
memory and updates page table w/ new page 
table entry (PTE).

Paging is assumed

(e.g system call to handle page fault))

Then restart
faulting process
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Typical Parameter Range For Typical Parameter Range For 
Cache & Virtual MemoryCache & Virtual Memory

Paging is assumed here

Program assumed in steady state

M

i.e page fault
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Virtual Memory Basic StrategiesVirtual Memory Basic Strategies
• Main memory page placement(allocation): Fully associative 

placement or allocation (by OS)  is used to lower the miss rate.
• Page replacement: The least recently used (LRU) page is replaced 

when a new page is brought into main memory  from disk.
• Write strategy: Write back is used and only those pages changed in 

main memory are written to disk (dirty bit scheme is used).
• Page Identification and address translation: To locate pages in main 

memory a page table is utilized to translate from virtual page 
numbers (VPNs) to physical page numbers (PPNs) .  The page table is 
indexed by the virtual page number and contains the physical 
address of the page.
– In paging: Offset is concatenated to this physical page address.
– In segmentation: Offset is added to the physical segment address.

• Utilizing address translation locality, a translation look-aside buffer 
(TLB) is usually used to cache recent address translations (PTEs) and 
prevent a second memory access to read the page table.

PTE = Page Table Entry
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Physical location 
of blocks A, B, C

Contiguous virtual address
(or logical ) space of a program

Virtual Virtual → Physical Address TranslationPhysical Address Translation

Page Fault: D in Disk
(not allocated in main memory)
OS allocates a page in physical 
main memory

virtual page 
numbers (VPNs)

Paging is assumed

Virtual address to physical address translation using page table
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Virtual to Physical Address Translation: Virtual to Physical Address Translation: 
Page TablesPage Tables

• Mapping information from virtual page numbers (VPNs) to physical page numbers is 
organized into a page table which is a collection of page table entries (PTEs).

• At the minimum, a PTE indicates whether its virtual page is in memory, on disk, or 
unallocated and the PPN (or PFN) if the page is allocated.

• Over time, virtual memory evolved to handle additional functions including data 
sharing, address-space protection and page level protection, so a typical PTE now
contains additional information including: 

– A valid bit, which indicates whether the PTE contains a valid translation;
– The page’s location in memory (page frame number, PFN) or location on 

disk (for example, an offset into a swap file);
– The ID of the page’s owner (the address-space identifier (ASID), 

sometimes called Address Space Number (ASN)Address Space Number (ASN) or  access key;
– The virtual page number (VPN);
– A reference bit, which indicates whether the page was recently accessed;
– A modify bit, which indicates whether the page was recently written; and
– Page-protection bits, such as read-write, read only, kernel vs. user, and so 

on.
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Basic Mapping Virtual Addresses to Physical Basic Mapping Virtual Addresses to Physical 
Addresses Using A Direct Page TableAddresses Using A Direct Page Table

PPN

Page Table Entry (PTE)

VPN

Physical Page Number
(PPN)

Paging is assumed
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Virtual to Physical Address Translation

3 2 1 01 1 1 0 9 81 5 1 4 1 3 1 23 1 3 0 2 9 2 8 2 7

Page offsetVirtual page number

Virtualaddress

3 2 1 01 1 1 0 9 81 5 1 4 1 3 1 22 9 2 8 2 7

Page offsetPhysical page number

Physicaladdress

Translation
PTE
(Page Table Entry)

physical page numbers (PPN) or  page frame numbers (PFN)

virtual page number (VPN)

Page Table

Paging is assumed

(VPN)

(PPN)

Virtual or Logical Process Address



EECC551 EECC551 -- ShaabanShaaban
#14 Lec # 11   Spring2006  5-10-2006

Virtual Memory TermsVirtual Memory Terms
• Page Table Walking: The process of searching the page table for the 

translation PTE.   Done by: Software (OS), Hardware (Finite State Machine)
• Allocated or Mapped Virtual Page: The OS has mapping information on its 

location (in memory or on disk) using its PTE in the page table.
• Unmapped Virtual Page: A page that either not yet been allocated or has been 

deallocated and its mapping information (PTE) has been discarded.
• Wired down virtual page: A virtual page for which space is always allocated 

in physical memory and not allowed to be paged out to disk.
• Virtual Address Aliasing: Mapping of two or more virtual pages to the same 

physical page to allow processes or threads to share memory
– Provides threads with different “views” of data with different protections

• Superpages: A superpage contains a number of contiguous physical memory 
pages but require a single address translation.  A number of virtual memory 
architectures currently support superpages.

• Memory Management Unit (MMU): Hardware mechanisms and structures 
to aid the operating system in virtual memory management including address 
generation/translation, sharing, protection.  Special OS privileged ISA instructions 
provide software/OS access to this support.  (e.g. TLBs, special protected registers)
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Page Table OrganizationsPage Table Organizations
Direct (Basic) Page Table:
• When address spaces were much smaller, a single-level table—called a direct table

mapped the entire virtual address space and was small enough to be contained in 
SRAM and maintained entirely in hardware (hardware page table walking). 

• As address spaces grew larger, the table size grew to the point that system designers 
were forced to move it into main memory.

• Limitations:
– Translation requires a main memory access:

• Solution:  Speedup translation by caching recently used PTEs in                             
a TranslationTranslation LookasideLookaside Buffer (TLB).Buffer (TLB).

– Large size of direct table:
• Example:  A 32 bit virtual address with 212 = 4k byte pages and 4 byte PTE entries 

requires a direct page table with   220 = 1M PTEs and occupies 4M bytes in 
memory.

• Solution:  Alternative page table organizations:
– Hierarchical (Forward-Mapped) page tables
– Inverted or hashed page tables

(Single-level)
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Direct Page Table OrganizationDirect Page Table Organization

Page offsetVirtual page number

Virtual address

PageoffsetPhysical pagenumber

Physical address

Physical page numberV a lid

If 0 then page is not
present in memory

Pagetableregister

Pagetable

2 0 1 2

18

3 1 30 2 9 2 8 2 7 1 5 1 4 1 3 12 1 1 1 0 9 8 3 2 1 0

2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

Two memory 
accesses needed:
• First to page table.
• Second to item.

•Page table usually in
main memory.

PTEs

PPN

VPN

Paging is assumed

VPN

(PPN)

How to speedup  
virtual to physical 
address translation?
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Virtual Address Translation Using              Virtual Address Translation Using              
A Direct Page TableA Direct Page Table

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page
number

Physica l page or
disk address

Page Faults
(requested pages
not allocated in main
memory)

Allocated
in physical
memory

PTEs

(VPN)

Paging is assumed

PPNs
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Speeding Up Address Translation:Speeding Up Address Translation:
Translation Translation LookasideLookaside Buffer (TLB)Buffer (TLB)

•• TranslationTranslation LookasideLookaside Buffer (TLB)Buffer (TLB) : Utilizing address reference temporal 

locality, a small on-chip cache used for address translations (PTEs).
– TLB entries usually 32-128
– High degree of associativity usually used
– Separate instruction TLB (I-TLB)  and data TLB (D-TLB) are usually used.
– A unified larger second level  TLB is often used to improve TLB performance 

and reduce the associativity of level 1 TLBs.

• If a virtual address is found in TLB  (a TLB hit), the page table in main memory is not 
accessed. 

• TLB-Refill: If a virtual address is not found in TLB, a TLB miss (TLB fault) occurs and 
the system must search (walk) the page table for the appropriate entry and place it into 
the TLB this is accomplished by the TLB-refill mechanism .

• Types of TLB-refill mechanisms:

– Hardware-managed TLB: A hardware finite state machine is used to refill 
the TLB on a TLB miss by walking the page table. (PowerPC, IA-32)

– Software-managed TLB: TLB refill handled by the operating system. (MIPS, 
Alpha, UltraSPARC, HP PA-RISC, …) 

Fast but 
not flexible

Flexible but 
slower

i.e. recently used PTEs
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Speeding Up Address Translation:Speeding Up Address Translation:

Translation Translation LookasideLookaside Buffer (TLB)Buffer (TLB)

1
1
1
1
0
1
1
0
1
1
0
1

1
1
1
1
0
1

Physical Memory

Disk Storage

TLB  (on-chip)
32-128  Entries

Physical Page
Address

Virtual Page
Number

Page Table
(in main memory)

Physical Page
or Disk Address

TagValid

Valid

TLB Hits

TLB Misses/Faults
(must refill TLB)

Page Faults

PPN

(VPN)

Page Table Entry (PTE)

PPN

Paging is assumed

• TLB: A small on-chip cache that contains recent address translations (PTEs).
• If a virtual address is found in TLB  (a TLB hit), the page table in main memory is not 

accessed. 
Single-level
Unified TLB shown
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Operation of The Alpha  21264 Data TLB Operation of The Alpha  21264 Data TLB 
(DTLB) During Address Translation(DTLB) During Address Translation

Virtual addressVirtual address

DTLB  =  128 entriesDTLB  =  128 entries

ProtectionProtection
PermissionsPermissions Valid bitValid bit

Address Space Address Space 
Number (ASN)Number (ASN)
Identifies processIdentifies process
similar to PIDsimilar to PID
(no need to flush (no need to flush 
TLB on context TLB on context 
switch)switch)

(VPN)

(PPN)

8Kbytes
pages

PID = Process ID

PTE
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A Memory Hierarchy Example:  TLB & Two Levels of CacheA Memory Hierarchy Example:  TLB & Two Levels of Cache

TLB:  Direct Mapped 256 entries

L1  direct mapped  8KB
L2  direct mapped 4MB

Virtual address 64 bits
Physical address 41 bits

D L1
Cache

L2
Cache

TLB

Alpha 21164:
L1 Data Cache: Virtually Indexed, Physically Tagged
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Basic TLB & Cache OperationBasic TLB & Cache Operation

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

W rite data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

No

YesNo

YesNo

W rite access
bit on?

YesNo

Write protection
exception

TLB miss
use page table

Virtual address

Physical address

Cache operation

Cache is usually physically-addressed

TLB Operation

Normal

TLB            TAG             L1 
access          check          DATA

TLB            TAG             L1 
access          check          DATA

TLB            TAG             L1 
access          check          DATA

TLB
Refill

(Memory Access Tree)
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CPU Performance with Real TLBs
When a real TLB is used with a TLB miss rate and a TLB miss penalty (time 
needed to refill the TLB) is used:

CPI = CPIexecution + mem stalls per instruction   +   TLB stalls per instruction

Where:
Mem Stalls per instruction  =    Mem accesses per instruction x mem stalls per access

Similarly:
TLB  Stalls per instruction  = Mem accesses per instruction   x   TLB stalls per access

TLB stalls per access =  TLB miss rate  x  TLB miss penalty

Example:
Given: CPIexecution =  1.3    Mem accesses per instruction = 1.4
Mem stalls per access =  .5        TLB miss rate  =  .3%   TLB miss penalty =  30 cycles
What is the resulting CPU CPI?
Mem Stalls per instruction  = 1.4 x  .5  =  .7    cycles/instruction 
TLB stalls per instruction   =   1.4  x   (TLB miss rate  x  TLB miss penalty)  

= 1.4 x .003 x 30 =  .126 cycles/instruction 
CPI  =   1. 3  +  .7  +  .126 =     2.126

(For unified single-level TLB)

1 + fraction of loads and stores
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Event Combinations of Cache, TLB, Virtual Memory

Cache TLB Virtual                          Possible?       When?
Memory

Hit         Hit           Hit                     TLB/Cache Hit
Miss Hit Hit Possible,  no need to check page table
Hit Miss Hit TLB miss, found in page table
Miss Miss Hit TLB miss, cache miss
Miss Miss Miss Page fault
Miss Hit Miss Impossible, cannot be in TLB if not in 

main memory
Hit Hit Miss Impossible, cannot be in TLB or 

cache if not in main memory
Hit Miss Miss Impossible, cannot be in cache if not 

in memory
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TLBTLB--Refill MechanismsRefill Mechanisms
(To handle TLB misses or faults) 

1- Hardware-managed TLB (ex.  PowerPC, Intel IA-32):
• Typical of early memory-management units (MMUs). 
• A hardware state machine is used to refill the TLB.
• In the event of a TLB miss, the hardware state machine would walk 

the page table, locate the mapping, insert it into the TLB, and restart 
the computation.

• Advantage:  Performance
– Disturbs the processor pipeline only slightly. When the state 

machine handles a TLB miss, the processor stalls faulting 
instructions only. Compared to taking an interrupt, the contents of 
the pipeline are unaffected, and the reorder buffer need not be 
flushed.

• Disadvantage: Inflexibility of Page table organization design
– The page table organization is effectively fixed in the hardware

design; the operating system has no flexibility in choosing a design.

i.e. Page table walking in hardware
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2- Software-managed TLB: (ex. MIPS, Alpha, UltraSPARC, HP PA-RISC...)

• Typical of recent memory-management units (MMUs). No hardware TLB-
refill finite state machine to handle TLB misses. 

• On a TLB miss, the hardware interrupts the operating system and vectors to 
an OS software routine that walks the page table and refills the TLB.

• Advantage: Flexibility of Page table organization design
– The page table can be defined entirely by the operating system, since 

hardware never directly manages the table.
• Disavdantage:  Performance cost.

– The TLB miss handler that walks the page table is an operating system 
primitive (call ) which usually requires 10 to 100 instructions 

– If the handler code is not in the instruction cache (I cache miss) at the 
time of the TLB miss exception, the time to handle the miss can be much 
longer than in the hardware walked scheme. 

– In addition, the use of  precise exception handling mechanisms adds to the 
cost by flushing the pipeline, removing a possibly large number of 
instructions from the reorder buffer. This can add hundreds of cycles to 
the overhead of walking the page table by software. 

TLBTLB--Refill MechanismsRefill Mechanisms

i.e. Page table walking in software (OS)
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Virtual Memory Architectures:
Global Vs. Per-process Virtual Address Space

• Per-process virtual address space:  
– The effective or logical virtual address generated by a process is extended 

by an address-space identifier (ASID) forming a per-process virtual 
address and is  included in TLB and page table entries (PTEs) to 
distinguish between processes or contexts. 

– Each process may have a separate page table to handle address 
translation.

– e.g  MIPS,  Alpha,  PA-RISC, UltraSPARC.

• Global system-wide virtual address space:
– The effective or logical virtual address generated by a process is extended 

by a segment number forming a global, flat or extended global virtual 
address.  (paged segmentation)

– Usually a number of segment registers specify the segments assigned to    
a process.

– A global page translation table may be used for all processes running on 
the system.

– e.g IA-32 (x86),  PowerPC.

OS protected
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Data/Code Sharing in Virtual Memory SystemsData/Code Sharing in Virtual Memory Systems
• Shared memory allows multiple processes to reference the same 

physical code and data possibly using different virtual addresses

1 Global sharing of data can be accomplished by a global access bit in 
TLBs,  PTEs.
– For per-process virtual address space using address-space 

identifiers (ASIDs), the hardware ASID match check is disabled. 
–

2 Sharing at the page level is accomplished by virtual address aliasing, 
where two or more virtual pages are mapped the same physical page 
with possibly different protections.
– Disadvantage: Increases overheads of updating multiple PTEs every time 

the OS changes a page’s physical location (page reallocation).
– Used in Unix-based OSs.

3 In systems that support a global virtual address (using paged 
segmentation), sharing at the segment level can be accomplished by 
assigning two or more processes the same segment number.
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AddressAddress--Space Protection in Virtual Memory SystemsSpace Protection in Virtual Memory Systems
• Per-process virtual address space systems using ASIDs:

– The OS places the running process’s address-space identifier(ASID) 
in a protected register, and every virtual address the process 
generates is concatenated with the address-space identifier.

– Each process is unable to produce addresses that mimic those of 
other processes, because to do so it must control the contents of the 
protected register (OS access only)  holding the active ASID.

• Global virtual address space using using paged segmentation:

– A process address space is usually composed of many segments, the 
OS maintains a set of segment identifiers for each process. 

– The hardware can provide protected registers to hold the process’s 
segment identifiers, and if those registers can be modified only by 
the OS, the segmentation mechanism also provides address-space 
protection.
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Alternative Page Table Organizations:Alternative Page Table Organizations:
Hierarchical Page Tables

• Partition the page table into two or more levels:
– Based on the idea that a large data array can be mapped by a smaller 

array, which can in turn be mapped by an even smaller array.
– For example, the DEC Alpha supports a four-tiered hierarchical page 

table composed of Level-0, Level-1, Level-2, and Level-3 tables.

• Highest level(s) typically locked (wired down) in physical 
memory
– Not all lower level tables have to be resident in physical memory or even 

have to initially exist.

• Hierarchical page table Walking (access or search) Methods:
– Top-down traversal (e.g IA-32)

• Hardware managed TLB/page walking usually used
– Bottom-up traversal (e.g MIPS, Alpha)

• Software managed TLB/page walking usually used

Sometimes also called:  Forward-Mapped Page Tables

(i.e physically addressed)
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Example:
A Two-Level Hierarchical Page Table

• Assume 32-bit virtual addresses, byte addressing, and 4-Kbyte 
pages, the 4-Gbyte address space is composed of 1,048,576 (220) 
pages. 

• If each of these pages is mapped by a 4-byte PTE, we can organize 
the 220 PTEs into a 4-Mbyte linear structure composed of 1,024 
(210) pages, which can be mapped by a first level or root table with
1,024 PTEs.

• Organized into a linear array, the first level table with  1,024 PTEs
occupy 4 Kbytes. 
– Since 4 Kbytes is a fairly small amount of memory, the OS

wires down this root-level table in memory while the process is 
running   (physically addressed). 

– Not all the lower page level (level two here also, referred to as 
the user page table) have to be resident in physical memory or 
even have to initially exist (virtually addressed).

– As, shown on next page.

i.e each first level PTE map to a block of 1024 PTEs in second level
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Example:
A Two-Level Hierarchical Page table

Typically, the root page table is wired down in the physical memory 
while the process is running.
The user page table (lowest level table, level 2 here) is paged in 
and out of physical main memory as needed.

32-bit 4-GByte virtual addresses,  4-Kbyte pages,  4-byte PTEs

Wired Down
1K PTEs

1K PTEs

(Level 1)

(Level 2)

(Physically Addressed)

(Virtually Addressed)
(total = 1K x 1K)
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Hierarchical Page Table Walking MethodsHierarchical Page Table Walking Methods
Top-down traversal or walking: (e.g IA-32)
• Example for the previous two-level tables:

Disadvantage: The top-down page table walking method requires 
as many memory references as there are table levels.

(i.e TLB miss or fault, not in TLB)

(Level 1) (Level 2)

Hardware managed TLB/page walking usually used

Wired-down
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Bottom-up traversal or table walking (e.g MIPS, Alpha)
• A bottom-up traversal lowers memory access overhead 

and typically accesses memory only once to translate a 
virtual address.

• For the previous two-level tables example:
• Step 1:

– The top 20 bits (virtual page number) of a TLB faulting virtual address are 
concatenated with the virtual offset of the user page table (level two).

– The virtual page number of the faulting address is equal to the PTE index in the 
user page table. Therefore this virtual address points to the appropriate user 
PTE.  A TLB lookup is performed using this virtual address.

– If a load using this address succeeds, the user PTE is placed into the TLB and can 
translate the faulting virtual address.

– The user PTE load can, however, cause a TLB miss of its own.  Requiring step 2
• Step 2:

– Perform top-down traversal or walking.

Hierarchical Page Tables Walking MethodsHierarchical Page Tables Walking Methods

Software managed TLB/page walking usually used
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BottomBottom--up Table Walking Exampleup Table Walking Example

• The bottom-up method for accessing the hierarchical page 
table typically accesses memory only once to translate a virtual
address (Step 1). 

• It resorts to a top-down traversal if the initial attempt fails 
(Step 2)

(i.e TLB miss or fault, not in TLB)

In TLB?
Done

Not in TLB?
Top-Down
Traversal

(e.g MIPS, Alpha)

Search
in TLB
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• Instead of one PTE entry for every virtual page belonging to a process, the 
inverted page table has one entry for every page frame in main memory.

– The index of the PTE in the inverted table is usually equal to the page frame number 
(PFN) of the page it maps. 

– Thus, rather than scaling with the size of the virtual space, it scales with the size of 
physical memory.

• Since the physical page frame number is not usually available, the inverted table 
uses a hashed index based on the virtual page number (Typically XOR of upper 
and lower bits of virtual page number

• Since different virtual page numbers might produce identical hash values,          
a collision-chain mechanism is used to let these mappings exist in the table 
simultaneously. 

– In the classical inverted table, the collision chain resides within the table itself. 
– When a collision occurs, the system chooses a different slot in the table and adds 

the new entry to the end of the chain. It is thus possible to chase a long list of 
pointers while servicing a single TLB miss.

• Disadvantage: The inverted table only contains entries for virtual pages actively 
occupying physical memory.  An alternate mapping structure is required to 
maintain information for pages on disk.

Alternative Page Table Organizations:Alternative Page Table Organizations:
Inverted/Hashed Page Tables (PowerPC, PA-RISC)
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Reducing Collision-Chain Length in Inverted Page Tables
Increase Size of Inverted Page Table:
• To keep the average chain length short, the range of hash values produced can be 

increased and thus increasing the size of the hash table. 
• However, if the inverted page table’s size were changed, the page frame number 

(PFN) could no longer be deduced from the PTE’s location within the table. 
• It would then be necessary to explicitly include the page frame number (PFN) in the 

PTE, thereby increasing the size of every PTE.

Hash Anchor Table (HAT):
• As a trade-off to keep the table small, the designers of early systems increased the 

number of memory accesses per lookup: 
– They added a level of indirection, the hash anchor table (HAT).

• The hash anchor table is indexed by the hash value and points to the chain head in 
the inverted table corresponding to each value.

• Doubling the size of the hash anchor table reduces the average collision-chain length 
by half, without having to change the size of the inverted page table.

• Since the entries in the hash anchor table are smaller than the entries in the inverted 
table, it is more memory efficient to increase the size of the hash anchor table to 
reduce the average collision-chain length.

1

2
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Inverted/Hashed Page Table

• The inverted page table contains one PTE for every page frame in memory, 
making it densely packed compared to the hierarchical page table. 

• It is indexed by a hash of the virtual page number.

With Hash Anchor
Table (HAT)

Faulting Virtual Address (i.e TLB miss or fault, not in TLB)

(e.g. HP PA-RISC)
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Step 1:
• The TLB faulting virtual page number is hashed, indexing the hash anchor table. 
• The corresponding anchor-table entry is loaded and points to the chain head for that 

hash value. 
Step 2:
• The indicated PTE is loaded, and its virtual page number is compared with the 

faulting virtual page number. If the two match, the algorithm terminates. 
Step 3a:
• The mapping, composed of the virtual page number and the page frame number (the

PTE’s index in the inverted page table), is placed into the TLB.
Step 3b:
• Otherwise, the PTE references the next entry in the chain (step 3b), or indicates that it 

is the last in the chain. If there is a next entry, it is loaded and compared.
• If the last entry fails to match, the algorithm terminates and causes a page fault.

Table Walking Algorithm For Inverted Page Table Table Walking Algorithm For Inverted Page Table 
With Hash Anchor Table (HAT)
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Table Walking Algorithm For Inverted Table Walking Algorithm For Inverted 
Page TablePage Table

Next PTE in chain

VPN matches:
Load mapping into TLB

No VPN match
Check next entry
in chain

TLB Fault:

(e.g XOR)
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Virtual Memory Architecture Examples

Source:
Virtual memory in contemporary microprocessors,  B. Jacob, and T. Mudge, Micro, vol. 18, no. 4, pp. 60-75. July/Aug. 1998.

(Virtual Memory  paper #2) 
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MIPS Virtual Memory Architecture
• OS handles TLB misses entirely in software.
• The hardware supports a bottom up hierarchical page 

table through the TLB context register.
• MIPS uses address-space identifiers (ASIDs) to provide 

address-space protection.
– To access a page, the ASID of the currently active process 

must match the ASID in the page’s TLB entry.
• Periodic cache and TLB flushes are unavoidable, as there 

are only 64 unique context identifiers in the R2000/R3000 
and 256 in the R10000 (8-bit ASID). 
– This is because systems usually have more active processes 

than this, requiring sharing of address-space identifiers 
and periodic ASID remapping.

Per-Process Virtual Address Space
Software-Managed TLB
(No fixed page table organization)
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MIPS R10000 Address Translation Mechanism

TLB

PFN

Per-Process Virtual Address Space
Software-Managed TLB
(No fixed page table organization)

VPN
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• The PowerPC 604, which maps a process’s logical/effective addresses onto a global 
flat virtual address space using paged segmentation.

• Segments are 256-Mbyte contiguous regions of virtual space, and 16 segments make 
up an application’s 4-Gbyte address space. 

– The top 4 bits of the 32-bit effective address select a segment identifier from a set of 
16 hardware segment registers. 

• The segment identifier is concatenated with the bottom 28 bits of the effective 
address to form an extended virtual address that indexes the caches and is mapped 
by the TLBs and page table.

• The PowerPC defines a hashed page table for the OS: a variation on the inverted 
page table that acts as an eight-way set-associative software cache for PTEs. 

– Similar to the classic inverted table, it requires a backup page table for maintain 
information for pages on disk

• Hardware TLB-Refill: On TLB misses, hardware walks the hashed page table.
• Address-space protection is supported through the segment registers, which can 

only be modified by the OS.   
• The segment identifiers are 24 bits wide and can uniquely identify over a million 

processes. 
• If shared memory is implemented through the segment registers, the OS will rarely 

need to remap segment identifiers.

PowerPC 604 Virtual Memory Architecture

Global Virtual Address Space, Hardware-Managed TLB
(Inverted page table organization)
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PowerPC 604 
Address 

Translation 
Mechanism

TLB

PFN

Global Virtual Address Space, Hardware-Managed TLB
(Inverted page table organization)

Global Virtual Address
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PowerPC Hashed/Inverted 
Page Table Structure

Eight-way set-associative software cache for PTEs

Global Virtual Address Space, Hardware-Managed TLB
(Inverted page table organization)
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• X86 another  architecture which uses paged segmentation.
• The x86’s segmentation mechanism often goes unused by today’s OSs, which instead 

flush the TLBs on context switch to guarantee protection.
• The per-process hierarchical page tables are hardware defined and hardware-

walked. 
– The OS provides to the hardware a physical address for the root page table in one of a set 

of control registers, CR3.
– Hardware uses this address to walk the two-tiered table in a top-down fashion on every 

TLB miss.
• Unlike the PowerPC, the segmentation mechanism supports variable-sized segments 

from 1 byte to 4 Gbytes in size, and the global virtual space is the same size as an 
individual user-level address space (4 Gbytes).

• User-level applications generate 32-bit addresses that are extended by 16-bit segment 
selectors. 

• Hardware uses the 16-bit selector to index one of two software descriptor tables, 
producing a base address for the segment corresponding to the selector. 

• This base address is added to the 32-bit virtual address generated by the application 
to form a global 32-bit linear address.

• For performance, the hardware caches six of a process’s selectors in a set of on-chip 
segment registers that are referenced by context. 

IA-32 (x86) Virtual Memory Architecture

Global Virtual Address Space, Hardware-Managed TLB
(Two-level hierarchical page table organization)

i.e hardware TLB refill using a finite state machine
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Intel Pentium II/III Address Translation Mechanism

Global Virtual Address Space, Hardware-Managed TLB
(Two-level hierarchical page table organization)

PFN

Global Virtual Address
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Alpha 21164 Address Translation Mechanism

Per-Process Virtual Address Space
Software-Managed TLB.  No fixed page table organization):
But 3-level hierarchical page with Bottom-up Table Walking is common  

VPN

PFN
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PA-RISC 2.0 Address Translation Mechanism

Segment Registers

Protections ASIDS
(8 per process)

TLB

PFNMatch with 31 bit access
identifier in PTE

Global Virtual Address

Global virtual address space using segmentation + Multiple ASIDS
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PA-RISC Hashed/Inverted Page Translation Table 
(HPT)

Classic inverted page table.  
Walked by software (any page organization can be supported by OS) 
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UltraSPARC I Address Translation Mechanism

TLB

PFN

Per-Process Virtual Address Space
Walked by software (any page organization can be supported by OS)
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The Hardware (MMU)/Software (OS) Mismatch In Virtual MemoryThe Hardware (MMU)/Software (OS) Mismatch In Virtual Memory
• Most modern processors have hardware to support virtual memory in terms Memory 

Management Units (MMUs) including TLBs, special registers.
• Unfortunately, there has not been much agreement on the form that this support should 

take. 
• No serious attempts have been made to create a common memory-management support or 

a standard interface to the OS. 
• The result of this lack of agreement is that hardware mechanisms are often completely 

incompatible in terms of:
– Hardware support for Global or Per-process Virtual Address Space
– Protection and data/code sharing mechanisms.
– Page table organization supported by hardware.
– TLB-refill & page walking mechanisms
– Hardware support for Global or Per-process Virtual Address Space.
– Hardware support for superpages ….

• Thus, designers and porters of system-level software have three somewhat unattractive 
choices: 

– Write software to fit many different architectures, which can compromise 
performance and reliability; or 

– Insert layers of software to emulate a particular hardware interface, possibly 
compromising performance and compatibility

– Operating system developers often use only a small subset of the complete 
functionality of memory-management units (MMUs) to make OS porting more 
manageable.

Solution ?       Common industry-standard virtual memory interface ?
or  …. No MMU/hardware TLB ?


